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Abstract

Halogenation is one of the cases for which advanced molecular simulation methods

are mandatory for quantitative and predictive studies. The present work provides a

systematic investigation of the importance of higher-order multipoles on specific sites of

halobenzenes, other than the halogen, for static and dynamic properties in condensed-

phase simulations. For that purpose, solute-solvent interactions using point-charge

(PC), multipole (MTP) and hybrid point-charge/multipole (HYB) electrostatic models

are analyzed in regions of halogen bonding and extended to regions of π orbitals of

phenyl carbons. Using molecular dynamics simulations and quantum chemical methods

it is found that the sigma-hole does not only affect the halogen and the carbon bound

to it but its effect extends to the carbons adjacent to the CX bond. This effect increases

with the magnitude of the positive potential of the sigma-hole. With the MTP and
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HYB3 models all hydration free energies of the PhX compounds are reproduced within

0.1 kcal/mol. Analysis of pair distribution functions and hydration free energies of

halogenated benzenes provides a microscopic explanation why ”point-charge”-based

representations with off site charges fail in reproducing thermodynamic properties of

the sigma-hole. Application of the hybrid models to study protein-ligand binding

demonstrates both, their accuracy and computational efficiency.
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1 Introduction

Over the past 10-15 years, halogenation has emerged as one of the important chemical mod-

ifications pursued in medicinal,1–3 materials and supramolecular chemistry4,5 . Halogen-

bonding was sought-after in rational drug design due to the directionality of the interaction,

its tunability and its hydrophobicity.2,6–11 It has enabled in several instances the successful

design of ligands with improved binding affinities towards their targets.12,13 Nowadays, halo-

genated compounds, containing F, Cl, Br and I constitute 20% of all pharmaceutical small

molecule drugs used in medicinal chemistry,14 several of which are halogenated phenyl rings.

Examples include antiviral drugs (HIV-1 integrase inhibitors),15,16 kinase inhibitors (GSK-3

(glycogen synthase kinase-3))17 and psychoactive reactional drugs.18

Covalently bonded halogen atoms exhibit a sigma-hole, which sometimes results in a posi-

tive electrostatic potential along the CX bond (see figure in Table 1) that can interact with

negatively charged sites on other molecules, and a negative electrostatic potential on the

flanks. The positive sigma-hole character is enhanced along the F < Cl < Br < I series,

upon going from the lighter to the heavier halogen.19–23 Due to the anisotropy of the charge

distribution, an understanding of the underlying electronic properties is critical for develop-

ing improved empirical force fields to capture the sigma-hole in order to accurately compute

ligand binding free energies. This will provide valid predictions when optimizing ligands for

their target. For a target protein and a series of inhibitors it is possible to determine accurate

relative affinities ∆G from computations.24 However, the free energy differences ∆∆G may

be smaller than the relative errors in the calculations and result in false positive and false

negative predictions. An example for the functional relevance of differential stabilization

energies of ∼ 1 kcal/mol is afforded by the experimental observation that a difference of 0.7

kcal/mol in the ∆Gs between two candidate therapeutic proteins can markedly increase the

thermodynamic stability and physiological availability of one analog relative to the other.25

It is therefore critical to reduce the margins of uncertainty through the use of refined molec-
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ular electrostatic potentials that capture the positive lobe of the sigma hole and enables

a significant exploration of phase-space which is directly linked to correctly accounting for

entropic contributions.

Hydration free energies constitute an experimentally accessible target quantity which is ide-

ally suited to validate force fields. Simple point-charge (PC) descriptions of the electrostatic

potentials, which assign a partial charge to each atom in the system, do not accurately

reproduce the hydration free energies ∆Ghyd of halogenated compounds26–28 as they fail to

reproduce the positive lobe of the sigma-hole.7,29 Two point charges (i.e., on C and X) cannot

describe the strong electrostatic variation across the C–X bond. In order to account for this

effect, a partial positive charge can be added in the region of the sigma-hole along the C–X

bond.27,30–32 This is akin to including additional point charges for modeling higher order

multipoles as has been done for carbon monoxide.33–35 However, the hydration free energies

from such improved ”PC-based” models, (e.g. the OPLS-AAx force field with an extra PC

on the halogen) still showed significant discrepancies for PhCl and PhBr (between 0.5 and

1 kcal/mol), while they obtained satisfactory results for PhI.27 The reasons for this remained

unclear. Using a PC force field, that does not account for the positive cone of the sigma-hole,

leads to low ∆Ghyd that significantly differ from experimental values by 0.5± 0.01 and 0.91

± 0.04 kcal/mol for Cl and Br, respectively.26 Simulations with the OPLS-AAx force field

with an extra PC on the halogen, reproducing the sigma-hole feature, resulted in ∆Ghyd that

are very close to those from a pure PC model and differ from experimental values by 0.37

and 0.25 (±0.05 kcal/mol) for Cl and Br, respectively.27 Contrary to that, using higher-order

multipole (MTP) expansions of the electrostatic potential in molecular simulations instead of

the more customary point charges (PC) have provided more accurate solvation free energies

∆Ghyd.
26 The improved description of the intermolecular dynamics when using MTP force

fields in classical molecular dynamics (MD) simulations of condensed-phase systems was

previously validated in combined experimental-computational studies. They included the
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2-dimensional infrared (2d-IR) spectroscopy of small molecules in water like cyanide CN−,36

N-methylacetamide NMA37 and fluoro-acetonitrile F-ACN,38 where differences in the first

solvation shell in MTP compared to PC simulations were validated by comparing correlation

and decay times of solute-solvent interactions from experiment. Other important efforts to

better account for the anisotropy of the charge distribution of halogens included polarizable

multipole force fields like SIBFA39–41 and AMOEBA42 and the polarizable ellipsoid force

field for halogen bonds PEff.43

Because computational investigations of solvation phenomena require extensive sampling (re-

peated simulations on the multi-nanosecond time scale), mixed quantum mechanics (QM)

molecular mechanics (MM) QM/MM simulations at the DFT-level with sufficiently large

basis sets are usually not possible. It is therefore critical to have suitable quantitative and

validated force fields. For the present case this amounts to correctly capturing the positive

lobe of the sigma-hole and effects extending over regions adjacent to the modification site.

Here, the impact of the description of the sigma-hole and the neighboring atoms on ther-

modynamic observables was determined. The above mentioned PC and MTP electrostatic

models provide means to unambiguously isolate the role of each chemical group in computing

hydration free energies or radial distribution functions. Starting from a simple PC descrip-

tion, an increasing number of atoms with an improved distributed multipole description was

systematically included in mixed PC/MTP models as indicated in Table 1. This leads to

hybrid PC/MTP models 1, 2 and 3 (HYB1, HYB2, HYB3), based on previously validated

PCs, MTPs and LJ parameters were used.26 HYB1 has MTPs on the halogen X and Cα

bound to it and PCs on the rest of the atoms, HYB2 with additional MTPs on all atoms

except for the adjacent carbons Cβ and HYB3 has MTPs on the CX group and the two

Cβ. Full multipole models provide a near-redundant set of parameters, meaning that some

of the multipoles do not improve the accuracy of the electrostatic energy.44 The current

work quantifies the performance of three such hybrid models which are particularly relevant
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since they can provide similar accuracy compared to the full MTP model for the observables

considered here (hydration free energy) at reduced computational cost. The approach cho-

sen here also allows to analyze and understand the importance of correctly capturing the

dynamics around chemically interesting sites (e.g. halogens) and the degree to which MTP

parametrizations are transferable from one chemical system to another one.

2 Computational Methods

2.1 Molecular Dynamics Simulations

All MD simulations were carried out with CHARMM45 together with provisions for static

atomic multipolar simulations.26 The models considered include a conventional point-charge

(PC), a multipole (MTP) and hybrid (PC/MTP) models. The hybrid models are a mixed

PC/MTP parametrization containing atoms treated with the PC parameters and others

with MTP parameters, see Figure in Table 1. Charges, multipoles and LJ parameters were

those from previous work26 where the PC/MTP parameters were fit to the ESP and the

vdW parameters were fit to experimental thermodynamic properties like density, heat of

vaporization and hydration free energy (see SI.I for more details). Polarization effects are

included implicitly in the Coulomb and LJ parameters.46,47 In addition, mixed quantum me-

chanics/molecular mechanics (QM/MM) simulations employing the density functional tight

binding (DFTB2) method were performed using the van der Waals radii of the corresponding

atom types from a PC treatment.48,49 In the context of the present work, DFTB2 provides

fluctuating point charges but may not faithfully capture the anisotropy of the electrostatic

interactions and hence serves as a model between PC (static) and MTP (anisotropic). In

all simulations, the TIP3P model was used for water.50 For PC-PC interactions, PME was

used with grid spacing of 1 Å, a relative tolerance of 10−6 and a cutoff of 12 Å, together with

a 10 Å switching for the Lennard-Jones (LJ) interactions. For higher MTP interactions a

power-law dependent switching was employed.26
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Each system was first energy minimized using steepest descent, then heated from 0 to 298 K

at constant volume for 40 ps, and equilibrated in the NPT ensemble at p = 1 atm for 40 ps

using a Langevin damping coefficient of γp = 20 ps−1 on the piston. Bonds involving hydro-

gens were constrained with SHAKE.51 The Hoover heat-bath method provided temperature

and pressure coupling, using masses as reported previously.26

Thermodynamic Integration: Hydration free energies were computed using thermody-

namic integration (TI). Applying a control parameter λ, TI switches between the initial

(λ = 0, state A) and the final (λ = 1, state B) state by gradually altering all nonbonded

interactions. Working in the slow-growth regime, the free energy is

∆GA→B =

∫ 1

0

dλ

〈

∂H

∂λ

〉

λ

≈
∑

i

(λi+1 − λi)

〈

∂H

∂λ

〉

λm

, (1)

where A → B refers to the transformation between states A and B, the canonical average 〈·〉λ

is performed over the phase space generated by H(λ), and λm = (λi + λi+1)/2. Derivatives

of the Lennard-Jones and PC electrostatic energies were obtained from the PERT module,

using soft-core potentials for the LJ interactions.52,53 The change in free energy due to MTP

electrostatics with coupling λm was computed as described in Ref.26 In these simulations,

first the LJ interactions were fully grown in the presence of soft-core potentials. Next, the

electrostatic interactions were turned on, in order to avoid the need for soft-core electrostatic

potentials.

Using a thermodynamic cycle,54 the hydration free energy ∆Ghyd is calculated as the dif-

ference of the free energy of insertion of the compound between water ∆Gsol and vacuum

∆Gvac, ∆Ghyd = ∆Gsol −∆Gvac.
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2.2 Quantum Chemical Calculations

The electron distribution around the target molecules was also analyzed from electronic

structure calculations using Gaussian 09.55 They were carried out for the optimized struc-

ture using the dispersion-corrected B97-D functional56 and the aug-cc-pVTZ57,58 basis set,

except for Iodine for which the pseudo-potential containing basis set, aug-cc-pVTZ-PP59

The Electron Localization Function (ELF) quantifies the amount of Pauli repulsion based

on the conditional probability of finding an electron close to a reference electron of the same

spin.60,61 The volumes delimited by an isosurface of the ELF function defines the localization

domains. ELF basins correspond to minimal Pauli repulsive areas around a local maximum,

and they are divided into core basins C (containing the nucleus) and valence basins V (bonds

and lone pairs). The ELF analysis was done with the TopMod program.62 Furthermore, the

molecular electrostatic potential (MEP) for the four halobenzenes (X=F, Cl, Br, I) used

the electron density from the same Gaussian calculations employed for the ELF analysis and

they were mapped at the 10−3ea−3
0 isodensity surface, using Gaussview5.63 In all calculations

the optimized structure of the halogenated benzenes was used.

3 Results and Discussion

3.1 Hydration free energies

Table 1 summarizes the experimental and calculated hydration free energies ∆Ghyd using the

different electrostatic models, with typical errors of ±0.05 kcal/mol, consistent with previous

work.26,27 It was shown that for benzene, both PC and MTP models are equally able to re-

produce the experimental hydration free energy ∆Ghyd.
26 The PC model is clearly deficient

for all halogenated phenyls. The substitution of PCs with MTP on the CX group (HYB1)

slightly improves ∆Ghyd, bringing them closer by 0.2 to 0.3 kcal/mol to the full MTP model

and experimental results. Nevertheless, the presence of the sigma-hole electrostatics on the
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atoms make a similar argument for out-of-plane effects. Indeed, strong quadrupole moments

(Qzz) orthogonal to the plane of the molecule are present for PhF, PhBr, PhCl, and PhI. A

collection of point charges within the plane of the molecule fail to describe such contributions

and MTPs are mandatory (Figure 1).

On the other hand, all hybrid models considerably improve the hydration free energy of PhI.

Interestingly, strong Qzz coefficients are found on Cα, while the Cβ yield weak coefficients

(data not shown). Though a PC model would fail to reproduce the quadrupole moment, the

large van der Waals radius of iodine effectively diminishes the contribution of the adjacent

carbons. This also rationalizes why placing off-site charges on I, as in OPLS-AAX, leads to

satisfactory agreement with experimental data.

(a) (b) (c) (d)

Figure 2: Isosurfaces of the difference between MTP and (a) PC and (b) HYB1 and (c)
HYB2 and (d) HYB3 ESPs of PhCl. Blue regions denote the error propagation around
atomic sites. The root-mean squared error in the first interaction belt of PC, HYB(1,2,3)
and MTP ESPs with respect to the ab initio potential are 0.92, 0.67, 0.53, 0.47 and 0.32
kcal/mol, respectively.

The difference between the full MTP density and that generated by the PC and hybrid mod-

els is shown in Figure 2. With MTPs on X and Cα in HYB1 (Figure 2b) the error around

these sites decreases compared to the PC model (Figure 2a)). However an error still persists

around the CX bond. The addition of MTPs on the Cβ (HYB3) shows a large improvement

in reproducing the full MTP model, and removes the error around the CX bond (Figure

2d). In contrast, the model lacking MTPs on β carbons (HYB2 model, Figure 2c) alters the
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overall electrostatics around the halogen even though the latter has MTPs. This also shows

that the lack of an explicit out-of-plane contribution to the π orbitals around the β carbons

has a significant impact on the overall electrostatics of the CX group and Cβ carbons which

in part explains the underestimated ∆Ghyd when replacing multipoles on these atoms by

PCs (HYB2) and the accurate reproduction of ∆Ghyd when placing MTPs on these atoms

(HYB3).

As an independent assessment of these observations the electron localization function (ELF)60,61

was analyzed for PhF to PhI and PhH as reference. The ELF provides chemically intuitive

information concerning chemical bonds and lone pairs. Figure 3a reports ELF localization

domains along the series F < Cl < Br < I. The V (C,C) basin reflects the pronounced π

character of the C-C bond. This arrangement along the z−axis further characterizes the

nature of π orbitals by the quadrupolar moment component Qzz.

Compared to PhH, where all V (C,C) basins have the same volume (196.40 au3) and electron

population (2.76 e), all halobenzenes PhX show an increase in the electronic population and

a decrease of the corresponding basin volume around the Cα–Cβ bonds, that leads to an

increased electron density. This is also associated with an increase of the basin volume V (X)

around the halogen (Figure 3b). Contrary to that, the remaining C–C bonds around the

cycle are not affected (see SI.II for the detailed analysis). This suggests that electron delocal-

ization around the Cα–Cβ bonds arises from a modified electronic distribution in the in-plane

sp hybrid orbitals of the Cα and Cβ carbons which leads to modifications of the orthogo-

nal non-bonding p−orbitals on Cβ. This density redistribution causes electronic anisotropy

around the atoms and should be reflected when mapping the electrostatic potential.

Figure 3c visualizes the sigma-hole as a positive potential region along the C-X bond (green/blue,

extended for I) and a negative potential region on the flanks (red, extended for F). For the
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C-atoms, however, no atom-specific effects are found. The electron distribution over the ring

shrinks and turns less electronegative in going from F to I (color shifts from red/yellow to

yellow). This is why the anisotropy around the Cα–Cβ atoms induced by the presence of the

halogen is generally left unnoticed.

Overall, both thermodynamic and electronic studies are complementary and suggest that

the electron distribution around the halogen has a significant impact on the electrostatic

anisotropy of the CX group and the adjacent carbons Cβ. Therefore, an accurate descrip-

tion of the solvation free energy requires capturing the electrostatics around the sigma-hole

(the presence of the positive cone) and the off-the-plane contributions of neighboring atoms

extending up to the Cβ carbons adjacent to the CX group.

V(X)

V(C   ,C   )α     β 

V(C   ,C   )α     β 

c)

a)

IBrClF

−2.12e

2.12e
−2

b)

−2

Figure 3: The ELF localization domains and basin populations of halobenzenes along the
series F< Cl< Br< I. Panel (a) ELF isosurface (η = 0.8) for PhF to PhI (from left to right).
Basins for the lone pairs are denoted V (X), where X is the halogen; basins related to the
atomic bonds are denoted V (C,C). Panel (b) Basin volume and electronic population for
the PhX molecules. The blue line with circles and the green line with triangles represents
the basin volume of V (X) and V (Cα,Cβ), respectively; the red line with squares represents
the electronic population of V (Cα,Cβ). Panel (c) Molecular Electrostatic Potential MEP
of PhX, at the 10−3ea−3

0 isodensity surface. The black arrow indicates the increase in the
sigma-hole strength of the halogens F < Cl < Br < I. The red arrow indicates the decrease
of the electron rich region δ− on the sides of the C–X bond in going from F to Cl to Br to I,
and the blue arrow indicates the increase of the electron deficient region δ+ along the C–X
bond from F to Cl to Br to I.
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3.2 Solvent Structure

In order to probe the influence of the different electrostatics on the local solvation structure

of the probe molecules in water, radial distribution functions g(r) around the halogen and

around the π-system of the benzene ring were analyzed.

First, the radial distribution functions g(r) around the halogen was investigated (Figure 4).

For this, the X–water(oxygen) gXO and X–water(hydrogen) gXH were determined from 2 ns of

NPT simulations with the different charge models PC, MTP and HYB3, and from DFTB2

QM/MM simulations.48,49 For PhF, the F-O pair distribution function peaks at 3.2 Å for

MTP and HYB3 and the amplitude (reflecting the occupation probability) is similar. How-

ever, for the PC model the peak is shifted to shorter distances (2.5 Å) due to the decreased

van der Waals range of fluorine compared to the MTP and the HYB3 model (σF,PC = 1.1

Å vs. σF,MTP = 1.7 Å) and gXO < 1. The F-H pair distribution function gFH(r), exhibits

a pronounced first peak at 1.4 Å indicating a hydrogen bond between the fluoride and the

water hydrogens. Conversely, for the MTP and HYB3 models, the first peak deforms into a

plateau and is shifted to ≈ 2 Å. For Cl, Br and I, the g(r) resemble each other although the

first and second maximum is more pronounced in the case of PC. Simulations with PC, MTP

and the HYB3 model yield very similar results whereas DFTB2 leads to somewhat reduced

amplitudes for Br and I which is probably related to the parametrization of DFTB249 which

may be improved in DFTB3.65 This was reported for several cases due to the presence of

a large sigma-hole on Br and I, but can be enhanced by empirical corrections for halogen

bonding.49
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 RDF  X−−−O(water)  RDF  X−−−H(water)

X = F X = F

X = Cl X = Cl

X = Br X = Br

X = I X = I

Figure 4: Radial distribution function g(r) for X–O(water) (left panels) and for X–H(water)
(right panels) for four halobenzenes PhX, X=F, X=Cl, X=Br and X=I, from top to bottom,
for simulations with different electrostatic models.
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Figure 5 shows the calculated g(r) (a) for X–water(O) and (b) for X–water(H) for all halo-

genated compounds from 2 ns MTP simulations and highlights the role of the electron-

rich (δ−) and electron-poor (δ+) regions of the sigma-hole in X–water interactions. The

amplitude of gXO(r) increases in going from F to I which implies a stronger interaction

(g(r) ∝ exp (−βw(r)) where w(r) is the potential of mean force) and a larger number of X–

O interactions through the relationship between g(r) and occupation number (see below). On

the contrary, the amplitude of gXH(r) decreases in going from F to I which implies a smaller

number of X–H interactions. The hydrogen-occupation number NH(rs) = 4πρH
∫ rs
0

r2g(r)dr

up to separation rs around the halogen decreases with increasing size of the halogen atom (see

Figure 5(b)). Here, ρH is the density of hydrogen atoms in the simulation and g(r) = gXH(r).

An extensive survey of structures in the Cambridge Structural Database together with elec-

tronic structure calculations6 have characterized the geometry of halogen bonds in small

molecules containing F to I. This showed that electronegative atoms (including oxygen and

nitrogen) prefer to interact with the δ+ of Cl, Br, and I (but not F) along the C–X bond

axis. This is confirmed by later studies which show that the electropositive potential along

the CX-bond can turn into an H-bond donor through a water bridge.7,66 It was also found

that for Cl, Br and I the unexpectedly large number of short X–water(O) contacts (and for

I > Br > Cl) is related to a decreased probability to form X–water(H) interactions because

the magnitude of the δ− region decreases (see Figure 3).

The current observations also support recent static work on the dual feature of the CX bond

in halobenzenes in which this doubly-faceted nature was quantified by quantum chemistry

(QC) calculations.11,67 In other words, the dual character was leveraged in the recognition

sites of several target proteins by considering mono- and polysubstituted halobenzenes11 and

was probed by a bifunctional molecule approaching each of the two regions δ+ and δ−.67 In

the light of these studies, the present analysis confirms that the increase in amplitude of the
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gXO(r) peak, in going from X=F to X=I can be explained by the increase of the volume

and strength of the δ+ region of the sigma-hole whereas the decrease in amplitude and in

occupation of the gXH(r) (i.e. weakening of the hydrogen bond) is related to the decrease of

the volume and strength of the δ− region of the sigma-hole.

The behavior of the H-bonding water network pointing towards the π-system of the benzene

ring was also investigated (Figure SI.2). The RDF plots of the PhX carbons from PC and

MTP simulations show a similar behavior of the symmetric carbons with respect to one an-

other, [Cβ1; Cβ2] and [Cγ1; Cγ2]. The difference between the g(r) plots of both electrostatic

models (PC vs. MTP) show that the most affected atoms by the electrostatic representation

are the ones closer to the halogen, Cα and Cβ, while Cδ Cγ are less effected (Figure SI.3).

These findings correlate with the electronic distribution around these atom sites, obtained

by the ELF analysis and provide additional insight why HYB3 accurately describes the sol-

vation free energy.

The superposition of the radial distribution functions g(r) for the water molecules around

Cα (Figures SI.4) and Cβ (Figure SI.5) taken from PC and MTP simulations, show for both

water approaches, that the PC representation tends to shift the first peak to lower distances,

and the g(r) peak increases when going to larger halogens. This indicates an increased over-

coordination of water hydrogen atoms, and translates into an inaccurate representation of

the PC model that gets more unrealistic when passing to larger halogens. Figure 6 reports

results for X=F and X=Br. The g(r) for the Cβ–water(H) distance displays a shoulder at

≈ 2.5 Å for PC which is less apparent in MTP simulations. This is even more pronounced for

the Cα carbon (Figure 6(A) lower panel). Concomitantly, the amplitudes for the Cα–O and

Cβ–O radial distribution functions also differ between PC and MTP simulations even though

the vdW radii of all carbon atoms in both PC and MTP models are identical (σC,PC/MTP =

2.0 Å). Figure 6(B) reports the occupation number difference ∆N(r) between PC and MTP
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b)  RDF  X−−−H(water)

a)  RDF  X−−−O(water)

Figure 5: Superposition of the g(r) from MTP simulations for X–O(water) (a) and X–
H(water) (b) for the halogens. The blue and red arrows indicate the increase (X–O(water))
and decrease (X–H(water)) in the g(r) peak, respectively, in going from F to Cl to Br to
I. The dashed lines in the right panel are N(r) for X–H(water); the upper x−axis belongs
to N(r), and the lower x−axis belongs to g(r). The red arrow indicates the decrease of the
electron rich region δ− on the sides of the C–X bond in going from F to Cl to Br to I, and
the blue arrow indicates the increase of the electron deficient region δ+ along the C–X bond
from F to Cl to Br to I.

18

Page 18 of 35

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



simulations for Cα(Br) and Cβ(Br). In all cases the O(water) and H(water) occupation in

the first solvation shell is larger in PC simulations. The corresponding g(r)s for Cl are sim-

ilar to those of Br in all cases. The calculated N(r) from MTP simulations for Br and F

(Figure 6C) show H-bonding in the first solvation shell with a larger N(r) for Cβ than for

Cα in PhBr and a similar occupation number for Cβ and Cα in PhF, but higher than that

of PhBr. Hence, larger N(r) leads to reduced ∆Ghyd. This is consistent with the fact that

fluorine is more electronegative and attracts more water molecules, thus affecting also the

waters around the Cα and the Cβ carbons since these water molecules are H-bonded to one

another. Moreover, the results for the MTP model are consistent with those from DFTB2

simulations (data not shown).

19

Page 19 of 35

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



B)A)

C)

D) E)

F

Br

Br

PC PC MTPMTP

F

Figure 6: Radial distribution function g(r) and the occupation number of hydrogen atoms
N(r) around the carbons adjacent to the CX bond (Cβ) and the CX carbon (Cα). Panel
A: g(r) for Cβ(Br)–water(O) and –water(H) (upper panel) and Cα(Br)–water(O) and –
water(H) (lower panel) from PC and MTP simulations. Panel B: ∆N(r) between PC and
MTP simulations for Cβ(Br) and Cα(Br) with –water(O) and –water(H). Panel C: N(r) of
Cα(X)-water(H) for PC and MTP simulations for Br and F. Panels D and E: Snapshots of
the organized water network around the halogen X, Cα and Cβ from the 2 ns PC and MTP
simulations for F and Br, respectively.

Different orientations of water molecules around the compound and the halogen atom are

present. However, the water network around X, Cα and Cβ is organized and exhibits well
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defined H-bonds to these atoms and between each other (Figure 6D, E). Owing to the dou-

ble nature of the sigma-hole, two types of bonds are formed: one between the δ− region

and water(H) on the flanks and one between the δ+ region of the sigma-hole and water(O)

along the CX axis. For the PC model, a water(H) will always point towards the X atom

along the CX bond, indicative of an incipient H-bond (Figure 6D,E (PC)). This is a further

reason why the PC model, lacking the δ+ region, can not correctly describe the halogen-

water interactions. As for the MTP model, water molecules are oriented such as to allow

hydrogen-bonding between the (water)H and the δ− region and halogen-bonding between

the (water)O and the δ+ region of the sigma-hole. This is clearly observed for Br (Figure

6E), because the magnitude of the δ+ region is very large compared to that of F (Figure

6D (MTP)). Hence, the water molecules are more dispersed and allow for a certain water

molecule to interact with the δ+ region through its oxygen atoms. Within this water net-

work, the water molecules bound to Cα and Cβ are also affected by the electrostatic model of

X, and vice-versa. Therefore, misrepresenting the electrostatics around one of these atoms

will destabilize the water network. On that account, the water network organization around

X, Cα and Cβ provides a microscopic explanation for the difference in the calculated ∆Ghyd

between electrostatic models, and they show why by including an off-the-plane quadrupo-

lar contribution on the carbons adjacent to the CX bond (HYB3 model) the experimental

∆Ghyd values can be accurately reproduced.

Finally, the influence of the size of I on the electrostatic representation of the adjacent car-

bons was probed. The ∆g(r)s of the different electrostatic models with respect to the MTP

simulation were plotted for Cα and Cβ of PhI and compared to PhCl, a smaller halogen con-

taining phenyl, as reference (Figure 7). For PhCl, HYB1 and HYB2, lacking both MTP on

Cβ, present the same large g(r) deviation with respect to the MTP model, whereas HYB3,

with MTPs on the CX group and Cβ, has the same behavior of MTP (Figure 7 left panel).

While, for PhI, the g(r)s of Cα and Cβ present a similar behavior between the 3 hybrid
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models (HYB1,2 and 3), with a small deviation compared to the MTP model (Figure 7 right

panel). These observations show that the large vdW radius of I masks Cα and Cβ’s contri-

butions to the solvent dynamics and thus the reproduction of the anisotropy around these

sites by adding a quadrupolar contribution can be ignored. This correlates and provides a

valid explanation why placing off-site charges on X , as in OPLS-AAX, leads to satisfactory

agreement with experiment for I and not for Cl.

Figure 7: RDF evolution curve differences ∆g(r) with water (H) of the different electrostatic
models with respect to the MTP simulation, for the Cα and the Cβ carbons of PhCl (left
panel) and PhI (right panel).

These findings highlight the delicate balance between sterics (encoded in the atoms’ van

der Waals parameters) and electrostatic anisotropy (order and placement of MTPs) of the

interactions. As the ordering of the water molecules around a particular halogen differs for

PC and MTP treatments, such a conformational contribution directly affects the thermo-

dynamic property determined from it. This is consistent with an earlier study68 describing

a simple but accurate method to decompose the free energy into its entropic and energetic

components. It was shown that the large changes of the solvent structure on dissolution of

the solute occur in the first and second solvation shells which contributed most to the en-

ergy, whereas the reorganization of all solvent molecules contributes to entropy changes. In

yet another study,69 calculated free energies and entropies were shown to correlate with the
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change in the number of hydrogen bonds and that this increase in water–solute interaction

is entropically unfavorable.

3.3 Application of Mixed Models to Protein-Ligand Binding

The effect of the charge distribution anisotropy on the halogen was previously investigated

on the stability and affinity within a protein-ligand complex, of which Cyclin-dependent

Kinase 2 (CDK2),30 Caseine Kinase 2 (CK2)26,32 and non-nucleoside inhibitors of HIV reverse

transcriptase (NNRTIs)27 with polyhalogenated ligands. In the same spirit, the efficiency

of the hybrid model HYB3 was then tested in protein-ligand binding. It was previously

demonstrated that accurately describing the sigma-hole of the halogenated compound has a

large impact on protein-ligand binding affinity.26 The study compared the binding of 4,5,6,7-

tetrabromobenzotriazole70 with CK2 between PC and MTP electrostatics. It was found that

the ligand represented with MTP was up to 3.8 ± 0.3 kcal/mol more stable than the ligand

represented with PC.
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MTP

PC
MTP PC

C)B)A)

Figure 8: Casein Kinase II inhibitors TBS and 3NG. Schematic representation of
the chemical structure of TBS (a) 4,5,6,7-tetrabromobenzotriazole and 3NG (b) 5-[(3-
chlorophenyl)amino]benzo[c][2,6]naphthyridine-8-carboxylic acid, along with the electro-
static treatment applied in the spirit of the HYB3 model. The red dashed arc separate
between MTP and PC treated atoms. (c) Cartoon representation of the protein-ligand com-
plex (taken from PDB: 1J91, chain A bound to TBS). Side chain atoms of residues involved
in interactions with TBS are indicated as magenta sticks, and the ligand is englobed with a
yellow transparent surface in the ligand-binding pocket.

For this, we studied the binding of two halogenated ligands 4,5,6,7-tetrabromobenzotriazole

TBS70 and 5-[(3-chlorophenyl)amino]benzo[c][2,6]naphthyridine-8-carboxylic acid 3NG71 with

CK2 (PDBs:1J9171 and 3PE1,72 respectively) using HYB3 electrostatics and compared

against PC and MTP treatments. This system was chosen for the complexity of the ligands

and to invoke the transferability of the PC, MTP and LJ parameters previously found26 for

these atom types. The ligand’s PC/MTP and LJ coefficients were those parametrized for

halobenzenes and pyrrole by Bereau et al.,26 while the water, protein and chloride-counterion

parameters were those from the CHARMM22-CMAP force field.73–75 Since hydrogens are

unresolved in the crystal structure, the triazole hydrogen of the TBS ligand was positioned

towards ARG47 instead of PHE113, to allow formation of possible H-bonds between the NH

and the anionic residue ASP175. The hydration free-energies were calculated using TI in

both protein and bulk water environments. For this NPT simulations were performed along
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with restraining potentials on the ligands to help converge the sampling of the free-energy

calculations.76–78 Parameters of the restraining potentials were estimated from a 120 ps equi-

libration simulation. Indvidual TI simulations were run with δλ=0.05 spacings with a further

10 ps equilibration and 40 ps production runs. Three electrostatic models were generated

for the ligands: a PC, an MTP and a HYB3 model. For TBS, the HYB3 model consisted

in placing MTPs on the tetrabromobenzene and PCs on the triazole ring, as represented in

figure 8(A). As for 3NG, only the chlorobenzene ring was considered, and MTPs were placed

on Cl, Cα and both Cβs (see Figure 8(B)).

The protein-ligand free energy difference between the ligand represented with PC and with

MTP/HYB3 electrostatics ∆∆G
PC→MTP/HYB3

bind = ∆G
MTP/HYB3

bind - ∆GPC
bind, quantifies the rela-

tive stability of PC, MTP and HYB3 simulations. For TBS, we obtain a free energy difference

of ∆∆GPC→MTP
bind = −3.6±0.3 kcal/mol and ∆∆GPC→HYB3

bind = −3.2±0.3 kcal/mol for the MTP

and the HYB3 model, respectively. MTP results are on par with the results previously found

by Bereau et al.26 For 3NG, we obtain a free energy difference of ∆∆GPC→MTP
bind = −1.3±0.4

kcal/mol and ∆∆GPC→HYB3
bind = −1.1 ± 0.4 kcal/mol for the MTP and the HYB3 model,

respectively. In both cases, HYB3 reproduces the MTP results within statistical error. Both

models show the same increased stability compared to a standard PC force field. The differ-

ence in stability matches the added hydration free energy provided by all four bromine for

TBS, and the added hydration free energy provided by Cl for 3NG. The larger free energy

difference observed for TBS emerges from the presence of four Br whereas 3NG contains only

one halogen. In other words, for TBS an average difference of 0.8 to 0.9 kcal/mol between

PC and MTP and HYB3 models per halogenation site is found which nicely reflects the 1.3

and 1.1 kcal/mol found for 3NG. This analysis demonstrates the transferability of the pa-

rameters used and supports the conclusion that including MTPs on carbon atoms adjacent

to a halogenated site into PC-based force fields is mandatory to improve the energetics and

structural dynamics.
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The cost-efficiency of the HYB3 model over a full MTP model, was also evaluated. For this,

a pure liquid simulation of a 28 Å box containing 150 PhI molecules was run for 120 ps. The

computing time is considerably reduced by 44% for such a system containing 1800 atoms

which is non-negligible. In protein-ligand simulations, where MTP electrostatics are applied

on the ligand only the CPU time ratio between MTP and PC simulations is estimated to

be ≈ 1.2 (20 % overhead).26 When applying HYB3 electrostatics on the ligand instead of

MTP, the CPU time is further reduced lowered to around 1.1 which is almost on par with

the timing of PC-only simulations but at considerably improved accuracy.

4 Conclusions

The present work focuses on capturing the charge distribution around halogenated benzenes

using empirical force fields, and to link energetics and halogen-water dynamics. Halogena-

tion of phenyl rings not only leads to formation of a sigma-hole on the halogen but also

to a pronounced reorganization of the electron density around the modification site which

has, however, attracted less attention. Significant out-of-plane contributions are found on

the neighboring β carbons —an observation we make both at the electronic-structure level

and identify its thermodynamic impact when immersed in water. The results rationalize

previous difficulties encountered in modeling halogens with point-charge models and off-site

charges: reproducing the positive lobe of the sigma-hole is not sufficient to recover the ther-

modynamics of a halogen in water—as found by 0.5 to 1 kcal/mol discrepancies in predicting

hydration free energies. Such a difference amounts to close to 1 order in binding affinity per

substitution—of critical relevance for pharmaceutically-active compounds9 or halogenated

proteins.79 The quadrupolar contributions are included in the hybrid model HYB3 which

yields close-to-identical hydration free energies compared with a full MTP description. How-
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ever, it should be noted that other properties, e.g. stacking interactions, may still require a

full MTP description.

The quadrupolar contributions can be ignored in the case of I, where its large vdW radius

masks Cβ’s contributions to the solvent dynamics. This finding explains why placing off-site

charges on X, as in OPLS-AAX, leads to satisfactory agreement with experiment for I and

not for Cl and Br. Halogenation is a case where quadrupolar electrostatic are mandatory

on atoms two bonds away from the halogen for predictive computational work in drug de-

sign and in material sciences. We propose a new hybrid PC/MTP model for halogenated

compounds that has the accuracy of MTP calculations at a lower computational cost. Be-

yond simulation models, we expect these conclusions to be useful in practice when rationally

designing halogenated drugs.

Acknowledgments

Support by the Swiss National Science Foundation through grants 200021-117810, the NCCR

MUST, and the University of Basel is gratefully acknowledged.

Associated Content

Supporting Information

Force field parametrization details. The full electron localization function ELF analysis.
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Politzer, P. J. Mol. Model. 2011, 17, 3309–3318.

(11) El Hage, K.; Piquemal, J.-P.; Hobaika, Z.; Maroun, R. G.; Gresh, N. J. Comput. Chem.

2015, 36, 210–221.

28

Page 28 of 35

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(12) Lu, Y.; Shi, T.; Wang, Y.; Yang, H.; Yan, X.; Luo, X.; Jiang, H.; Zhu, W. J. Med.

Chem. 2009, 52, 2854–2862.

(13) Wilcken, R.; Zimmermann, M. O.; Lange, A.; Joerger, A. C.; Boeckler, F. M. J. Med.

Chem. 2013, 56, 1363–1388.

(14) Herrera-Rodriguez, L.; Khan, F.; Robins, K.; Meyer, H.-P. Chim. Oggi 2011, 29, 31–33.

(15) Steigbigel, R. T.; Cooper, D. A.; Kumar, P. N.; Eron, J. E.; Schechter, M.;

Markowitz, M.; Loutfy, M. R.; Lennox, J. L.; Gatell, J. M.; Rockstroh, J. K.; Kat-

lama, C.; Yeni, P.; Lazzarin, A.; Clotet, B.; Zhao, J.; Chen, J.; Ryan, D. M.;

Rhodes, R. R.; Killar, J. A.; Gilde, L. R.; Strohmaier, K. M.; Meibohm, A. R.;

Miller, M. D.; Hazuda, D. J.; Nessly, M. L.; DiNubile, M. J.; Isaacs, R. D.; Nguyen, B.-

Y.; Teppler, H. N. Engl. J. Med. 2008, 359, 339–354.

(16) Shimura, K.; Kodama, E.; Sakagami, Y.; Matsuzaki, Y.; Watanabe, W.; Yamataka, K.;

Watanabe, Y.; Ohata, Y.; Doi, S.; Sato, M.; Kano, M.; Ikeda, S.; Matsuoka, M. J.

Virol. 2008, 82, 764–774.

(17) Fugel, W.; Oberholzer, A. E.; Gschloessl, B.; Dzikowski, R.; Pressburger, N.; Preu, L.;

Pearl, L. H.; Baratte, B.; Ratin, M.; Okun, I.; Doerig, C.; Kruggel, S.; Lemcke, T.;

Meijer, L.; Kunick, C. J. Med. Chem. 2013, 56, 264–275.

(18) Motel, W. C.; Healy, J. R.; Viard, E.; Pouw, B.; Martin, K. E.; Matsumoto, R. R.;

Coop, A. Bioorg. Med. Chem. Lett. 2013, 23, 6920 – 6922.

(19) Clark, T.; Hennemann, M.; Murray, J.; Politzer, P. J. Mol. Model. 2007, 13, 291–296.

(20) Murray, J.; Lane, P.; Politzer, P. J. Mol. Model. 2009, 15, 723–729.

(21) Politzer, P.; Murray, J. S.; Clark, T. Phys. Chem. Chem. Phys. 2010, 12, 7748–7757.

(22) Politzer, P.; Murray, J. S. Chem. Phys. Chem. 2013, 14, 278–294.

29

Page 29 of 35

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(23) Politzer, P.; Murray, J. S.; Clark, T. Phys. Chem. Chem. Phys. 2013, 15, 11178–11189.

(24) Schmid, M.; Nogueira, E. S.; Monnard, F. W.; Ward, T. R.; Meuwly, M. Chem. Sci.

2012, 3, 690–700.

(25) Hua, Q.; Nakagawa, S. H.; Jia, W.; Huang, K.; Phillips, N. B.; Hu, S.; Weiss, M. A. J.

Biol. Chem. 2008, 283, 14703–14716.

(26) Bereau, T.; Kramer, C.; Meuwly, M. J. Chem. Theory Comput. 2013, 9, 5450–5459.

(27) Jorgensen, W. L.; Schyman, P. J. Chem. Theory Comput. 2012, 8, 3895–3901.

(28) Martins, S. A.; Sousa, S. F.; Ramos, M. J.; Fernandes, P. A. J. Chem. Theory Comput.

2014, 10, 3570–3577.

(29) Politzer, P.; Murray, J.; Concha, M. J. Mol. Model. 2008, 14, 659–665.

(30) Ibrahim, M. A. A. J. Comput. Chem. 2011, 32, 2564–2574.

(31) Rendine, S.; Pieraccini, S.; Forni, A.; Sironi, M. Phys. Chem. Chem. Phys. 2011, 13,

19508–19516.

(32) Kolár̃, M.; Hobza, P. J. Chem. Theory Comput. 2012, 8, 1325–1333.

(33) Straub, J. E.; Karplus, M. Chem. Phys. 1991, 158, 221.

(34) Meuwly, M.; Becker, O.; Stote, R.; Karplus, M. Biophys. Chem. 2002, 89, 183–207.

(35) Nutt, D. R.; Meuwly, M. Biophys. J. 2003, 85, 3612–3623.

(36) Lee, M. W.; Carr, J. K.; Gllner, M.; Hamm, P.; Meuwly, M. J. Chem. Phys. 2013, 139 .

(37) Cazade, P.-A.; Bereau, T.; Meuwly, M. J. Phys. Chem. B 2014, 118, 8135–8147.

(38) Cazade, P.-A.; Tran, H.; Bereau, T.; Das, A. K.; Klsi, F.; Hamm, P.; Meuwly, M. J.

Chem. Phys. 2015, 142 .

30

Page 30 of 35

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(39) Gresh, N. Curr. Pharm. Des. 2006, 12, 2121–2158.

(40) Piquemal, J.-P.; Chevreau, H.; Gresh, N. J. Chem. Theory Comput. 2007, 3, 824–837.

(41) El Hage, K.; Piquemal, J.-P.; Hobaika, Z.; Maroun, R. G.; Gresh, N. J. Comput. Chem.

2013, 34, 1125–1135.

(42) Mu, X.; Wang, Q.; Wang, L.-P.; Fried, S. D.; Piquemal, J.-P.; Dalby, K. N.; Ren, P. J.

Phys. Chem. B 2014, 118, 6456–6465.

(43) Du, L.; Gao, J.; Bi, F.; Wang, L.; Liu, C. J. Comput. Chem. 2013, 34, 2032–2040.

(44) Jakobsen, S.; Jensen, F. J. Chem. Theory Comput. 2014, 10, 5493–5504.

(45) Brooks, B. R.; Brooks, C. L., III; Mackerell, A. D., Jr.; Nilsson, L.; Petrella, R. J.;

Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; Caflisch, A.; Caves, L.;

Cui, Q.; Dinner, A. R.; Feig, M.; Fischer, S.; Gao, J.; Hodoscek, M.; Im, W.; Kucz-

era, K.; Lazaridis, T.; Ma, J.; Ovchinnikov, V.; Paci, E.; Pastor, R. W.; Post, C. B.;

Pu, J. Z.; Schaefer, M.; Tidor, B.; Venable, R. M.; Woodcock, H. L.; Wu, X.; Yang, W.;

York, D. M.; Karplus, M. J. Comput. Chem. 2009, 30, 1545–1614.

(46) Jorgensen, W. L.; Tirado-Rives, J. J. Am. Chem. Soc. 1988, 110, 1657–1666.

(47) Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Kollmann, P. A. J. Am. Chem. Soc. 1993,

115, 9620–9631.

(48) Cui, Q.; Elstner, M.; Kaxiras, E.; Frauenheim, T.; Karplus, M. J. Phys. Chem. B 2001,

105, 569–585.
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