
 

 

This document is confidential and is proprietary to the American Chemical Society and its authors. Do not 
copy or disclose without written permission. If you have received this item in error, notify the sender and 
delete all copies. 

 

 

 

Generalized DFTB repulsive potentials from unsupervised 

machine learning  
 

 

Journal: Journal of Chemical Theory and Computation 

Manuscript ID ct-2017-00933j.R2 

Manuscript Type: Article 

Date Submitted by the Author: 14-Mar-2018 

Complete List of Authors: Kranz, Julian ; Institute of Physical Chemistry, KIT,  
Kubillus, Maximilian; Karlsruhe Institute of Technology, Department of 
Chemistry and Biosciences 

Ramakrishnan, Raghunathan; Tata Institute of Fundamental Research, 
Centre for Interdisciplinary Sciences 
von Lilienfeld, O. Anatole; University of Basel, Chemistry Department 
Elstner, Marcus; Karlsruhe Institute of Technology, Physical Chemisrty 

  

 

 

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation



Generalized DFTB repulsive potentials from

unsupervised machine learning

Julian J. Kranz,† Maximilian Kubillus,† Raghunathan Ramakrishnan,‡,§ O. Anatole

von Lilienfeld,∗,‡ and Marcus Elstner∗,¶

†Institute of Physical Chemistry, Karlsruhe Institute of Technology, Germany

‡Institute of Physical Chemistry and National Center for Computational Design and

Discovery of Novel Materials (MARVEL), Department of Chemistry, University of Basel,

Klingelbergstrasse 80, CH-4056 Basel, Switzerland

¶Institute of Physical Chemistry and Institute of Biological Interfaces (IBG-2), Karlsruhe

Institute of Technology, Germany

§Present address: Tata Institute of Fundamental Research, Centre for Interdisciplinary

Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500075, India

E-mail: anatole.vonlilienfeld@unibas.ch; m.elstner@kit.edu

Abstract

We combine the approximate Density-Functional Tight-Binding (DFTB) method

with unsupervised machine learning . This allows to improve transferability and ac-

curacy, make use of large quantum chemical data sets for the parametrization, and to

efficiently automatize the parametrization process of DFTB. For this purpose, general-

ized pair-potentials are introduced, where the chemical environmental is included during

the learning process leading to more specific effective two-body potentials. We train

on energies and forces of equilibrium and non-equilibrium structures of 2100 molecules,

and test on ∼ 130.000 organic molecules containing O, N, C, H and F atoms. Atom-
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ization energies of the reference method can be reproduced within an error of ∼ 2.6

kcal/mol, indicating drastic improvement over standard DFTB.

Introduction

Despite major advances in computer hardware, computational efficiency is still a major factor

in the application of quantum chemical methods. Accurate Kohn-Sham Density Functional

Theory (DFT) methods1,2 face limitations when it comes to system size, number of molecules

or molecular clusters to be evaluated, or sampling efficiency in Molecular Dynamics (MD)

simulations.3 Empirical force field (Molecular Mechanics: MM) methods, on the other hand,

are extremely powerful tools in terms of computational efficiency and are quite accurate

for the class of problems they have been parametrized for. But they are also limited by

high parametrization effort, lack of parameter transferability, and explicit functional form

restricting their flexibility to adapt to changing chemical environments. In terms of compu-

tational efficiency, accuracy and parameter transferability, semi-empirical (SE) methods are

midway between ab initio/DFT and empirical force field methods. They are roughly three

orders of magnitude faster than DFT methods using medium sized basis sets and roughly

three orders of magnitude slower than empirical force field methods.

SE methods can be derived from Hartree-Fock (HF) or DFT, and recent years have shown

major improvements in accuracy concerning covalent4–6 and non-bonding interactions.7 SE

models approach the accuracy of DFT methods with medium sized basis sets, e.g. ’double-

zeta plus polarization’ (DZP) basis sets, which yield sufficient accuracy for many problems

of interest. Despite many improvements in the last years, it seems that SE methods in

general and the Density Functional Tight Binding (DFTB) method in particular have been

converged in terms of accuracy due to their inherent inflexibility to reflect varying chemical

situations with relatively fixed variants of SE-Hamiltonians. For example, heats of forma-

tions and reaction energies for standard test sets show errors of 3-7 kcal/mol, depending
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on the focus of the parametrization strategy. DFTB already includes computed or exper-

imental data in a fitting process, in the form of the so called repulsive potentials, which

are one part of the DFTB total energy and can be based completely on empirical data or

quantum chemical calculations. The other part of the total energy, the electronic part, can

be completely computed from DFT traditionally using GGA functionals, but recently also

long-range corrected functionals have been implemented, hence improving on typical DFT

errors.8–11

With the availability of large amounts of reference data, data driven approaches be-

come interesting alternatives to physical model potentials and approximate solutions of the

Schrödinger equation. Lately, artificial intelligence techniques have become increasingly pop-

ular in molecular modeling, quantum chemistry, and condensed matter physics.12–19 Several

applications of machine learning techniques14,15,18,19 and neural networks16,17,20 to traditional

quantum chemical problems show the great promise of this approach. A typical feature of

data driven methods is its interpolative nature. Extrapolations beyond the data set are

difficult, and convergence beyond a certain accuracy can be slow if poor choices are made

among the many representations, similarity and regressor options.

Therefore, it has been suggested to combine the efficient SE methods with ML ap-

proaches,21,22 since the former contributes important chemical information “easy” to cap-

ture, while the latter may improve on the accuracy by overcoming the limited flexibility

of SE methods due to their inherent approximations, such as minimal basis sets, integral

approximations, or use of atomic charges in the Hamilton. One possibility is to augment an

SE method with a machine learning approach in the so called ∆ML21 method, correcting

results based on a description of the entire molecule, or alternatively parameters of an SE

Hamiltonian matrix22 may trained. Both approaches lead to significant improvements in

accuracy.

In this work, we combine the semi-empirical Density-Functional Tight-Binding (DFTB)

method with ML to improve the prediction of thermochemical data and molecular struc-
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tures. In contrast to other SE methods, the DFTB Hamilton matrix elements are computed

in a 2-center approximation and are not derived by fitting to experimental or computed

data. However, the repulsive potential, which is bond-specific rather than atom or molecule-

specific, is fitted to reproduce molecular energies and structures. The repulsive potential is

a natural target for a data driven expansion of DFTB. First of all because it already is an

empirical term, so no existing rigor is taken away by moving to a different model for the fit.

Second, because it is an inherently local, that is, spatially confined property, acting across

bonds, and as such ought to be well described by a local model. Many current ML develop-

ments employ local representations in their molecular descriptors, to allow for transferability,

for example to larger molecules than those included in the training set,15,19,20,23 which is dif-

ficult if the descriptor depends on the molecular size. In that case, long-ranged interactions,

such as between charges or molecular dipole moments, are not easily accounted for, but in a

DFTB based approach those are treated at the level of the electronic terms, not the repulsive

potentials. Hence, DFTB provides a platform for a model scalable to large molecules, because

only local properties are fit, while including intermolecular and environmental interactions.

Also, the set of potential bond topologies that may occur is much smaller than the set of all

possible molecules. Working with repulsive potentials for bonds thus reduces the expected

amount of required training data significantly. Finally, the repulsive potential model treats

equilibrium and perturbed geometries on equal footing, providing a good foundation for the

description of entire potential energy surfaces, eventually to include, as we hope, transition

state structures. Since information about bond angles is already provided by the electronic

part, only distance dependent information needs to be fit, and this also reduces the amount

of training data required.

The machine learning trend in molecular modeling brings about ever larger sets of molec-

ular data. So far the DFTB methodology did not benefit from this development, since

parametrizations were created manually,24 although progress has been made on automatiz-

ing the process.25,26 Yet, since the number of free parameters is small, still only limited and
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handpicked data can be included in the fit.

In this work, we therefore propose a generalization of the DFTB repulsive potentials,

which will depend on a quantitative notion of the bond topology, rather than on atom

types. Hence, we intend to overcome the limits imposed on DFTB by the small number of

parameters, and tackle those errors that cannot be reduced anymore by physically motivated

extensions of the method, and that are mostly of spatially localized nature.

The method is designed to require as little user input as possible. It is meant to scale

to large training data sets, hence rendering the growing amount of available data useful for

DFTB parametrization. Yet, we intend the method to also work with more limited amounts

of training data, to be applicable in cases where the amount of data is insufficient for pure

ML models to be feasible.

The paper is structured as follows: We first describe DFTB and its repulsive potentials

briefly and then introduce the generalized repulsive potentials, for which we provide a proof

of principle implementation. Then we analyze its performance. Finally, we discuss some

technical details necessary for practical implementation and draw conclusions.

DFTB Background

DFTB

The DFTB methodology consists of a series of computational models, which are derived as an

approximation to DFT. The total energy E[ρ] is expanded at a reference electron density ρ0,

which is taken as the sum of contracted free atom densities. The expansion may be truncated

at the first, second or third order and the corresponding models are known as DFTB1,27

DFTB228 and DFTB3.29 Introducing Kohn-Sham orbitals φi the energy functional expansion

5
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in the DFTB2 case reads:

E[ρ] ≈
∑
i

fi〈φi| −
1

2
∇2 +

∫
d3r′

ρ0(r′)

|r− r′|
+
δExc[ρ0]

δρ(r)
+ Vext(r)|φi〉

+
1

2

∫
d3rd3r′

(
1

|r− r′|
+

δ2Exc[ρ0]

δρ(r)δρ(r′)

)
δρ(r)δρ(r′)

+ Exc[ρ0] + Enuc-nuc −
1

2

∫
d3rd3r′

ρ0(r)ρ0(r′)

|r− r′|
−
∫
d3r

δExc[ρ0]

δρ(r)
ρ0(r).

(1)

The fi are orbital occupations, Vext includes electron-nuclei and external field interaction,

Enuc-nuc denotes the inter-nuclear interaction, and Exc refers to the exchange-correlation

functional, where DFTB employs the gradient-corrected PBE functional. The terms in the

last line depend only on the reference density ρ0 and the nuclear repulsion, and form the

so-called repulsive potential Vrep. This is the focal point of our method and will be discussed

in more detail in the next section. The linear and second order terms in eq. 1 in the first

and second line are further approximated and expressed as:

E
(1)
DFTB =

∑
ij

∑
µν

cµicνjH
(0)
µν (2)

E
(2)
DFTB =

1

2

∑
A,B

∆qA∆qBγAB, (3)

where the ∆qA are the differences between the Mulliken charges of atom A and the corre-

sponding neutral atom, and the cµi are the expansion coefficients of the Kohn-Sham orbital

φi =
∑
cµiχµ in the basis {χi} that consists of a minimal basis of Slater-type orbitals confined

to the valence shell. The zeroth order Hamiltonian

H(0)
µν = 〈χµ| −

1

2
∇2 +

∫
d3r′

ρ0(r′)

|r− r′|
+
δExc[ρ0]

δρ(r)
+ Vext(r)|χν〉

is pre-calculated in a two-center approximation, where ρ0 is the sum of atomic densities

around the atoms on which the basis functions χµ and χν are centered. At second order,

the shape of the local density around atom A is assumed to be well described by a spherical

6
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function ΦA, so that the Coulomb integrals γAB =
∫
d3rd3r′

(
1

|r−r′| + δ2Exc[ρ0]
δ(r)δr′

)
ΦA(r)ΦB(r′)

can be evaluated analytically. In the DFTB3 model, resulting from a third order expansion,

eq. 1 is augmented by an extra term as follows:

E
(3)
DFTB =

1

3

∑
AB

∆q2
A∆qBΓAB (4)

The off-diagonal terms ΓAB are analytic representations of third order integrals and the

diagonal terms can be calculated as atomic hardness derivatives.

Repulsive Potential

The last row of eq. 1 contains the core-core repulsion and those energy contributions, that

depend on the reference density ρ0 only. They are grouped together into a single term called

the repulsive potential Vrep, which is approximated as a sum of two-center repulsions,

Vrep =
1

2

∑
A,B

VAB(|RA −RB|). (5)

These two-body potentials are fitted to the difference of the total energy of a reference

calculation and the DFTB electronic energy,

Vrep(|RA −RB|) = Eref(|RA −RB|)− EDFTB(|RA −RB|),

with the energy contributions eqns. 2, 3 and 4,

EDFTB =
∑
i

E
(i)
DFTB.

The DFTB pairwise potentials VAB depend only on the atom types of A and B, in

contrast e.g. to force field models, where different bonding environments are encoded by

different bonding parameters. Since the terms from eq. 1 that are grouped into the repulsive

7
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potential contribution depend on the reference density only, the adaption to different bonding

situations is, in principle, governed by the DFTB electronic energy contributions.

Atomization and reaction energies can form part of the reference energies, as well as

forces, in particular at equilibrium structures.6 In previous work, the repulsive potential

contributions have been fitted to minimize the errors for atomization energies, geometries

and vibrational frequencies for the G2/97 reference set.

However, since the electronic terms are subjected to approximations as well – using a

minimal basis set, applying a monopole approximation, neglecting three-center contribu-

tions, to name only the most prominent ones – the transferability is limited in practice.

This becomes apparent, for example, in an optimization conflict for atomization energies

and vibrational frequencies. To reach a reasonable accuracy for both properties, two distinct

parametrizations had to be generated6 because of the limited transferability of the param-

eters between different hybridization states, that is, single, double and triple bonds. This

is due to a number of reasons: (i) For good vibrational frequencies, the repulsive potentials

need to have certain curvatures at the equilibrium distances, for atomization energies certain

absolute values are needed, and these two conditions can not be fulfilled simultaneously when

a certain accuracy is targeted. (ii) Further, a different degree of over-binding is found for

single, double and triple bonds, leading to a relative shift of the potentials between the bind-

ing regimes, which is not possible to integrate into a single repulsive potential function. (iii)

Finally, the repulsive potentials have to vanish before the second neighbor distances in order

to avoid spurious long-range effects, which put additional restraints on the optimization for

the bonding properties.

Therefore, entangling theses different issues in a more adaptive repulsive energy scheme

should lead to an overall improvement in accuracy.

8
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Method description

Generalized repulsive potentials

In the standard DFTB approach only one repulsive potential

VAB = Vt(A)t(B),

is used to connect two atoms A and B of certain atom types, denoted by t(A) and t(B).

In contrast, we now introduce a variable number of different potentials

VAB(R) = Vt(A)t(B)(R) + ∆Vb(A,B)(R), (6)

called generalized repulsive potentials, which depend also on the bond type b(A,B), to be de-

fined later. They are generated automatically and in a scalable way and augment the element

pair repulsive potential Vt(A)t(B)(R), which comes from any existing DFTB parametrization.

In this work, we use the repulsive parameters from 3OB,6,30 while ∆Vb(A,B)(R) is a correction

to this potential that can incorporate environment-specific information not grasped by the

electronic parts of DFTB. By fitting corrections, rather than entirely new potentials, the

existing potentials continue to serve as a fall-back for very unusual bonds, while for known

bonds the correction term will improve the description. As b(A,B) will denote bonds much

more specific than the element pair t(A)t(B), in practical applications there is a chance to

encounter bond topologies for which no specific repulsive potential has been fitted yet. For

example, it is possible to assign different repulsive potentials to different bond types (e.g.

single, double, triple), but also to be more specific and distinguish various chemical envi-

ronments for each type. A carbon-carbon single bond may be subject to change when, for

instance, neighboring electronegative atoms withdraw electrons, compared to the situation

in pure hydrocarbons.

9
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For the functional form of ∆V (R) we chose to use polynomials of degree k:

∆Vb(R) =
k∑
i=0

a
(b)
i R

i. (7)

Other forms, such as splines, are possible as well, but at present we find simple polynomials

to be sufficient. Note that if the forms of Vt(A)t(B) and ∆Vb(A,B) agree, to linearly fit a

correction potential ∆Vb is equivalent to fitting parameter corrections ∆a
(b)
i . This holds for

polynomials, splines, and other models linear in the parameters. Repulsive potentials should

be short ranged and therefore tend to zero at large distances. To impose such asymptotic

behavior, a cut-off Rc can be introduced at which ∆Vb(R) is smoothly set to zero. At present,

we only run tests on geometries near equilibrium. Therefore, the asymptotic behavior is not

relevant in this context.

Eventually, the full generalized repulsive potential for a given molecular geometry reads

Vrep =
1

2

∑
AB

(
Vt(A)t(B)(RAB) + ∆Vb(A,B)(RAB)

)
, (8)

RAB = |RA −RB| is the distance between atom A and B and b(A,B) adds corrections for

a set of bond types much larger than in traditional DFTB.

The reason we opt to merely generalize the repulsive potentials, rather than to build a

direct ML model for them, is that we find the required amount of data for the approach to

work to be much lower than for a pure ML model. To construct a model beyond equilibrium

geometries, scans of the potential energy surface are required, but if bonds reoccur with

different lengths in various molecules, this information can in part be taken from different

molecules to reduce the number of data points required for individual molecules. Moreover,

the repulsive potentials only need to entail distance dependent information, with angular

information coming from the electronic contributions, further reducing data requirements.

For example the ANI-1 neural network based model20 is remarkably successful as a direct

ML model for the potential energy surfaces of isolated organic molecules, and parametrized

10
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from a very similar training set, but in training uses vastly more extensive scans. The

underlying data set has recently been made publicly available,31 and in future work it will

be insightful to also explore a combination of such a model with DFTB as a direct ML model

for the repulsive potentials. Yet, we believe models with less data requirements will remain

useful, at least in the foreseeable future. The ANI-1 training data, like most comparable

data sets, is based on double-zeta quality DFT calculations that often lack the required

accuracy, but are used because the computational cost associated with larger basis sets, or

even higher level methods, is very significant. However, replacing a training set of the size

used in this work to parametrize our method is absolutely feasible. We further intend to

apply the method to systems such as transition metal complexes, where suitable training

data is harder to produce.

Bond descriptor

Figure 1: Example of a potential bond descriptor. The two large carbon atoms form the
bond, all atoms displayed as balls are included in the descriptor. Atoms are labeled as they
appear in the descriptor.

To define b(A,B), bond descriptors have to be introduced, which allow the recognition of

certain bonds in molecular structures. This information is basically encoded in the geomet-

rical arrangement of atoms in the immediate vicinity of the bond. For instance, single and

double bonded atoms will have a different number of nearest neighbor contacts, determining

their hybridization state. The atom type of the neighbors can indicate certain properties

11
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of the local electronic structure (like local electron density). Lately, machine learning tech-

niques for the prediction of molecular properties have become popular and accordingly much

research on molecular descriptors has been undertaken, providing a wealth options of varying

sophistication, see e.g. Refs. 32,33. Here, we started out with the rather simple Coulomb

matrix descriptor,12 which turns out to work satisfactorily for the purpose of this work.

Many known descriptors perform much better in ML models than the Coulomb matrix, so

this choice requires some justification. In common ML models of molecular properties,34 in

particular regression models, the descriptor appears directly in the mathematical expressions

used for property predictions, and hence its precise form can have a strong impact on the

quality of the model. However, in the clustering step for bond identification that will later

follow, most of the descriptor’s nuanced behavior is lost, so that the effect of the descriptor

on the present application is much weaker, and good performance in ML models needs not

transfer directly to this application. The dependence on molecular size is also not a problem

here because the number of atoms that can appear near a bond in physically meaningful

systems is limited, so that bond identification is effectively a constant size problem.

The bond geometry is represented by a matrix with diagonal terms identifying and atom

type and off-diagonal terms are given by the nuclear Coulomb repulsion of the respective atom

pairs. The atoms are ordered unambiguously and the descriptor respects all the important

symmetries like translational and rotational invariance of the bond.

The bond descriptor requires two parameters and is defined as follows: Two atoms A

and B are considered bonded for the purpose of the repulsive potentials if their distance

RAB = |RA −RB| is smaller than an element dependent cut-off RAB < Rc
t(A)t(B). A second

parameter Rc
b defines a volume within which all atoms O are included in the description of

the chemical environment of the bond between A and B (see Fig. 1). Specifically, an atom

O is included in the descriptor if

min
C=A,B

|RO −RC | < Rc
b. (9)

12

Page 12 of 39

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Then the bond descriptor b(A,B) is defined as

b(A,B) =



1
2
ηZ2.4

A
ZAZB

|RA−RB |
ZAZO1

|RA−RO1
| ...

ZAZB

|RA−RB |
1
2
ηZ2.4

B
ZBZO1

|RB−RO1
| ...

ZO1
ZA

|RO1
−RA|

ZO1
ZB

|RO1
−RB |

1
2
Z2.4
O1

...

...
...

... . . .


. (10)

Attention has to be paid to the order of the atoms to make the descriptor unambiguous.

The two atoms of the bond, A and B come first and their order is determined by their norm,

that is

(
1

2
ηZ2.4

A

)2

+
∑
C 6=A

(
ZAZC
|RA −RC

|
)2

≥
(

1

2
ηZ2.4

B

)2

+
∑
C 6=B

(
ZBZC

|RB −RC |

)2

,

where C runs over all atoms in the descriptor. Likewise, the other atoms O1, O2, ..., following

A,B are ordered according to the norms of their rows.

b(A,B) basically constitutes the Coulomb matrix of the bond environment, except for the

special role of the first two rows that always contain the information about the bonded atoms

and the extra factor η that scales the diagonal entries for atoms A and B. η should be larger

than one to give particular weight to the atom types of the bonded atoms and to ensure

that bonds involving different elements are always further apart than bonds involving the

same elements in the space of bonds spanned by the bond descriptors. There is no sensitive

dependence on the precise value of η.

Finally, we need to define a notion of distance between two bonds b(1) and b(2). We use the

2-norm

d(b(1), b(2)) =

√∑
ij

(
b

(1)
ij − b

(2)
ij

)2

, (11)

where bij are the entries of the descriptor matrix. The 2-norm provides the practical advan-

tage that certain libraries can be used directly in the implementation of the method, which

do not support the 1-norm that is often used for estimating similarity of structures when
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using the Coulomb matrix.12 However, there is no significant difference between the two

choices for our application. All Coulomb matrices need to have the same dimension, and for

chemical environments characterized by a smaller number of participating atom the matrix

is filled with zeros. The zeros may be thought of as atoms infinitely removed from the bond.

The parameter Rc
b critically affects the specificity of the bond descriptor. If it is smaller

than the shortest typical bond length, only the two bonded atoms will be included, and

nothing is gained over the existing DFTB repulsive potentials since no information about

the environment enters the description. Using values larger than typical bond lengths, the

nearest neighbors of the bonding atoms will be included, which is the minimal representation

of the chemical environment and already leads to very good results. Further increasing the

magnitude of the parameter, non-local information can be included as well. Hence, the

method can take in ever more information as the amount of training data grows. This is a

desired feature of the approach. In principle, one can go up to the limit where the entire

molecule forms the descriptor and one has a molecule specific fit. Such descriptors are used

for example in the ∆ machine-learning approach.21 Of course, with increasing specificity

more and more training data is required.

Bond clustering

The next step is the automatic identification of bonds from data, that is, the clustering of

relevant bond-types from a large training set of molecular structures according to the the

descriptor defined above. Every cluster, or bond type, will define one generalized repulsive

potential. In each of the molecular structures contained in the training set, bonds and

their respective environments are identified according to the two cut-off criteria, and the

Coulomb-matrices are then set up. Similar bonds yield very similar descriptors, although

they are not exactly identical due to slightly varying interatomic distances. Hence, bonds

form clusters of a finite, but narrow width in the high dimensional feature space spanned

by the bond descriptors, where different clusters correspond to different bond types. The
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dimension of the feature space is determined by the size of the largest Coulomb matrix and

depends on the value of Rc
b. When Rc

b is such that nearest neighbors are included in the

descriptor, the dimension is bounded from above by about 82 = 64 because there are 8 atoms

in the descriptor of a C-C single bond, and it is not chemically possible to gather many more

atoms in such a small volume. Recall that this ensures we deal with a problem of fixed

dimensionality, and the size dependence of the Coulomb matrix descriptor is therefore of no

concern.

Identifying bond types now becomes a clustering problem. Such problems are common-

place in unsupervised machine learning,35 and many methods have been proposed for their

solution. The choice of an appropriate algorithm, however, turned out to be not completely

straight forward. In particular, the highly unbalanced number of data points in different

clusters was problematic. Since some bond types are far more abundant than others, the

clustering algorithm has to be insensitive to the number of cluster members. For example,

the popular k-means36,37 algorithm was found to be unsuitable for this reason, as our train-

ing set contained, among others, far more, C-H than C-F bonds and k-means would only

produce a large amount of C-H, but no C-F cluster.

The mean-shift algorithm38,39 that was originally developed for image processing applica-

tions, in contrast, turned out to work very well. Here, we give only brief description of the

algorithm; more detail can be found in original literature.38,39 Let

m(b) =

∑
i biK

(
d(b,bi)
h

)
∑

iK
(
d(b,bi)
h

) (12)

be the mean-shift vector at position b. b is a general bond descriptor, the bi are the bond

descriptors in the set to be clustered, the real number h > 0 is the kernel width, and the

function K is the kernel function. K can be any positive function integrating to one, but for
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the purpose of this work we adopt a flat kernel:

K(x) =


1 for 0 ≤ x ≤ 1

0 otherwise
. (13)

The flat kernel is a simple choice and performs well for our application. With the mean-shift

vector clusters are now identified through the iteration

b(t+1) = m(b(t)), t = 0, 1, ... (14)

that will converge to a value b∗, the centroid of a cluster. One scans sufficiently many initial

values b(0) to find all centroids and thus all clusters.

The algorithm in this form appears rather abstract, but it has an intuitive interpreta-

tion. If we assume the data points bi to be samples from a continuous density ρ(b), then

with a smoothing kernel function K the smooth density can be approximated as ρ(b) ≈
1

Nhd

∑
iK
(
d(b,bi)
h

)
, where N is the number of samples and the exponent d is the dimension.

It can be shown that ∇ρ(b) ∝ m(b). Consequently, the mean-shift algorithm can be thought

of as a steepest-descent optimization to find the local maxima of ρ, and clusters can be

identified with blobs in the density. Although the flat kernel is not a smooth one, it can

be approximated arbitrarily well by a smooth kernel and, therefore, the same argument still

holds.

The mean-shift algorithm is available as part of the scikit-learn Python module,40 which we

employ in our implementation of the method.

The kernel width parameter h is of crucial importance, since it sets the minimal distance

of two points at which they are still regarded as members of the same cluster. Therefore,

it also determines how many different bond types will be identified. Because the number of

clusters M is more intuitive and tangible, we will classify the resulting repulsive potentials

by M , rather than h. Yet, even though we refer to M for clarity, h remains the fundamental
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variable.

M can be increased as the amount of training data grows. Hence, the method can scale to

large training sets by fitting many different potentials. In the limit of very large sets, every

individual bond could be represented by its own fitted potential.

At last, after bond types have been identified through clustering, any new bond b not in

the training set must be assigned the cluster or bond type it belongs to. Alternatively, it

may also happen that no existing bond type describes b well. This case must be recognized,

too. A mean-shift iteration started from b will converge to the centroid b∗ of the cluster best

describing b, thus identifying the bond type. For simplicity’s sake, we assume b∗ to be the

centroid closest to b according to the metric d(b, b∗), an assumption we found well justified.

Then, b∗ can be identified simply as

b∗ = arg min
b̃∈centroids

d(b, b̃).

To rule out the cases where b∗ does not describe b well, we demand that the centroid and

bond are closer to each other than a certain tolerance distance w∗:

d(b, b∗) < w∗.

A well chosen value of w∗ depends on whether the cluster of b∗ is narrow or wide. Therefore,

we calculate the cluster width σ∗ from the training data:

σ∗ =

√ ∑
b̃ belongs to b∗

d(b̃, b∗)2.

The sum runs over all bond descriptors belonging to centroid b∗ in the training set. Hence,

we set

w∗ = τ · σ∗,
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with a tolerance factor τ to be chosen manually.

Potential fit

In the next step, the repulsive potentials ∆Vb(R) for all new bond types b are fitted in the

same way as the standard DFTB repulsive parameters. The a(b)
i in eq. 7 are determined such

as to minimize a fitness function f(a
(1)
0 , a

(1)
1 , ..., a

(2)
0 , ...), which contains molecular atomization

energies Eat and forces F for a set of equilibrium and perturbed molecular geometries as

target properties:1

f(a
(1)
0 , a

(1)
1 , ..., a

(2)
0 , ...) =

∑
m∈equi

(
Eref

at,m − EDFTB
at,m −

∑
b∈m

∆Vb(Rb)

)2

+ fopt
∑

m∈equi

1

3Nat,m

(
Fref
at,m − FDFTB

at,m +
∑
b∈m

Rb

Rb

∂

∂R
∆Vb(Rb)

)2

+ epert
∑

m∈pert

(
Eref

at,m − EDFTB
at,m −

∑
b∈m

∆Vb(Rb)

)2

+ fpert
∑
m∈opt

1

3Nat,m

(
Fref
at,m − FDFTB

at,m +
∑
b∈m

Rb

Rb

∂

∂R
∆Vb(Rb)

)2

.

(15)

Perturbed geometries are created from equilibrium geometries through displacement along

normal mode coordinates. The fitness function is generated by summation of all equilibrium

and perturbed molecular geometries, and by computation of the energy and force contribu-

tions resulting from the repulsive potentials, which sum over all bond types b. The potentials

can be written as

∆Vb(Rb) =
(
1RbR

2
b ...
)
·
(
a

(b)
0 a

(b)
1 ...

)T
,

1The atomization energy is the difference between the molecular energy and the sum of free atom energies
of the atoms constituting the molecule. To the DFTB free atom energies spin polarization terms are added
to account for the lack of direct spin polarization.6
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and therefore the optimization procedure is a least squares problem of the form minx |y −

Ax|2, with given vector y and matrix A, where the parameter vector x has to be determined.

Many tools exist to solve this problem. We use the Numpy41 least-squares function that

utilizes a singular value decomposition.

The weight factor 1
3Nat,m

is added since for each geometry only one energy but 3Nat,m force

conditions have to be fulfilled. In that way energies and forces are given the same initial

weight. The additional weight factors fopt, epert, and fpert control the relative weights of

energies and forces for equilibrium and perturbed geometries, respectively. They must be

set manually.

Application

The approach is applied to a large set of molecules, which features structures and energies

computed at the B3LYP/6-31G(2df,p) level of theory. For a final reparametrization a higher

level of theory is desirable. Therefore, we use these data for a proof of concept approach in

order to evaluate the procedure suggested in this work.

Data set

To test the method we use a molecular data set created by Ramakrishnan et al.,42 which

provides optimized structures and properties for small organic molecules from the GDB-

1743 set, containing the elements C, H, O, N, and F with up to nine non-hydrogen atoms.

The set contains 133,885 molecules, geometry optimized at the B3LYP/6-31G(2df,p) level

of theory.44–46

The set of molecules is separated into a training set composed of the first 2100 molecules

and a test set containing the rest. The training set is supplemented with non-equilibrium

geometries generated as follows: Starting from relaxed geometries, all coordinates are dis-

placed in both directions of all those normal modes which affect bond lengths. The amount
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of displacement is chosen such that the energies vary only on the order of 1 kcal
mol with respect

to the equilibrium energy. For the distorted structures, energies and forces are computed

using B3LYP/6-31G(2df,p), to be consistent with the other reference data. Eventually the

training set contains about 150000 relaxed and unrelaxed structures in total. For every

molecule in the test set we run DFTB calculations with 3OB parameters and the full third

order formalism6,29 that yield the DFTB base line of electronic and repulsive potential con-

tributions.

A training set of 2100 different molecules is small by ML standards, where often at least

several ten thousands to a hundred thousand different molecules are used for training. The

training set size for now is limited by the need to perform potential energy surface scans

for each molecule and the computational resources available to us. As more large data sets

involving perturbed geometries will become publicly available in the future, the underlying

data can be improved. By the standards of DFTB parametrization 2100 molecules is a very

large number of training molecules, orders of magnitudes more than what is, and can be,

used for conventional repulsive potential parametrization.

We supplement the test set with some external molecules to benchmark transferability

that will be discussed when results are presented.

Clustering and fit

The cut-off parameters used for the 3OB repulsive potentials6 are chosen as the cut-off pa-

rameters Rc
t(A)t(B) that determine atom pairs connected by generalized repulsive potentials.

The cut-off parameter Rc
b that determines which atoms enter into the Coulomb-matrix de-

scriptor is set to Rc
b = 1.8Å. For the molecular structures considered in the present work

this includes nearest neighbors of the bonded atoms. The parameter η, which gives special

weight to the bonded atoms, is chosen as η = 5 and tests showed that the results are not

very sensitive to the precise value of η, once η > 2. Lastly, the tolerance factor τ is put

to τ = 3, and again results are not very sensitive to the precise value of the parameter
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within reasonable bounds. Mean-shift clustering is performed on the set of all bonds found

in the equilibrium geometries of the training set molecules for these parameter values. As a

precaution to prevent over-fitting, we drop bond types that are not present in at least three

different molecules. Especially when two bonds occur only once and in the same molecule,

their potentials can cancel each other and therefore assume arbitrary values. To solve this

problem, one can simply generate more data from geometry perturbations for bonds that do

not occur often enough, but we refrained from doing so at the present exploratory stage.

Hence, sets with M = 10, 25, 42, 84, 111, 200, and 259 different bond types are created. Tab.

1 gives values of h for each M for reproducibility. M does not vary continuously with h, but

tends to jump, so that there is no exact one-to-one correspondence.

Table 1: Values for the Kernel width h resulting in certain numbers of potentials M . Most
widths h were in terms calculated as the qth percentile of pairwise distances of data points,
explaining their odd values. The percentiles q are then also given.

M 10 25 42 84 111 200 259
h 93.26 75.525 58.627 43.402 36.089 27.130 23.4
q 15% 9% 5% 3% 2% 1.3% -

Varying numbers of generalized repulsive potentials allow us to investigate whether the

performance of the method indeed improves with growing numbers, and at what point per-

formance saturates.

For each set of bond types, we fit generalized repulsive potentials ∆Vb(R) as polynomials of

degree k = 6, that is, with 7 free parameters. The weight of equilibrium forces fopt is set to

fopt = 100, non-equilibrium force weight is put to fpert = 1, and non-equilibrium atomization

energies carry weight epert = 1. We found those values by trial and error. They have not

been properly optimized yet.

Results

At first, we investigate the clustering step that is pivotal for the method, which stands and

falls with the meaningful identification of bond types as a foundation for the generalized
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Figure 2: Visualization of the bond descriptors from the training set and M = 200 centroids
from mean-shift clustering in two dimensions. The high dimensional descriptor space has
been projected to two dimensions by a principal component analysis.47,48 Note that the large
clusters decompose into many smaller clusters corresponding to different chemical environ-
ments. The mean-shift algorithm covers all clusters well regardless of the number of data
points in them.
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repulsive potentials. Fig. 2 shows two dimensional projections of all the bond descriptors

in the training set, generated by a principal component analysis47,48 (PCA). PCA identifies

the two dimensional subspace in which the variance of the data is maximal. Various clusters

of different sizes appear already in two dimensions that in higher dimensions decompose in

terms into more, smaller clusters. Clusters correspond to different kinds of bonds, many of

which are indicated in the figure. Also displayed in Fig. 2 are the centroids of the clustering

with M = 200 clusters. For every centroid there is one generalized repulsive potential. We

find that all clusters are covered with centroids, and the large clusters carry many centroids

because of the many smaller clusters they contain, but small, isolated clusters are covered too.

This is important, and, for example, k-means failed to achieve this. Altogether, Fig. 2 shows

a reasonable clustering according to bond topology and supports that the Coulomb matrix

based bond descriptor, together with mean-shift clustering, can indeed identify meaningful

bond types.
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Figure 3: Sample repulsive potentials for a C-C single and double bond with M = 111
generalized repulsive potentials. Magnitude, slope and curvature are altered by the potential
corrections.

Next, we examine the fitted potentials ∆V . Higher order polynomials can oscillate sig-
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nificantly in the case of over-fitting. By visual inspection the potentials are confirmed to be

well behaved. Fig. 3 shows two representative sample potentials for a single and double C-C

bond. Position, slope and curvature of the repulsive potentials are altered, but the functions

remain monotonously decaying without spurious behavior. Of course, because no boundary

conditions were applied, this is only true for distances sufficiently close to the respective

bond lengths, but in the present study we only work with such geometries. It is also inter-

1.5 1.52 1.54 1.56
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V
re

p
(R

) [
H

a]

×10 -3
VCC

Figure 4: Generalized repulsive potentials for different types of C-C single bonds. The atoms
that make up the descriptor are displayed in the legend. Potentials differ, particularly by a
vertical displacement, with slopes more similar.

esting to see how different potentials for the same bond topology, such as, for example, C-C

single bonds, can occur. Fig. 4 shows various potentials for C-C single bonds. While most

of them remain close to the uncorrected potential VCC, there is a considerable variation for

some of them. They appear to be up- and down-shifted, while slopes remain similar. There

is a tendency that for chemical environments with more electronegative substituents on the

bonded atoms, the potentials are shifted upwards.

Table 2: Mean absolute (MAE) and root mean squared (RMSE) error in atomization energy
taken over all test set molecules.

M 0 10 25 42 84 111 200 259
MAE [kcal/mol] 7.38 7.34 4.32 3.71 3.01 2.97 2.89 2.64
RMSE [kcal/mol] 9.31 9.74 5.65 5.46 3.94 3.95 4.00 3.82
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Figure 5: Mean absolute error in atomization energy for the molecules in the test set for a
growing number M of generalized repulsive potentials. As the number of potentials grows,
the error decreases quickly and significantly, demonstrating that increasing the number of
repulsive potentials indeed improves the method.

Ultimately, the method’s usefulness is determined by its quantitative performance. For

a benchmark, we applied it to all of the ∼ 130, 000 molecules in the test set. Fig. 5 shows

the mean absolute errors (MAEs) in atomization energy with varying numbers of general-

ized repulsive potentials; Tab. 2 displays MAEs and root mean squared errors (RMSE).

The MAEs monotonously decay as the number of potentials grows. The first step is very

small, then the error decreases rapidly. The improvement brought about by the addition of

generalized potentials is clear. With M = 259 generalized repulsive potentials the remain-

ing error is ∆E259 = 2.64 kcal
mol , down from ∆E0 = 7.34 kcal

mol with the original 3OB repulsive

potentials. Therefore, the error is significantly reduced to about a third of the original er-

ror. Figs. 6 and 7 show histograms of absolute errors in atomization energies and force

per atom, respectively. The distribution of errors in the atomization energy narrows sig-

nificantly, demonstrating a systematic improvement, already reflected in the lower MAEs.

Forces improve too: initially the histogram shows two peaks, a large and a much smaller

one at a higher error. The second peak indicates a small, systematic error in the predicted

geometries, and this is removed after the addition of generalized repulsive potentials. How-

ever, the large peak is hardly moved. DFTB already predicts geometries well, and most of
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Figure 6: Normalized histogram of absolute errors in atomization energy for the ∼ 130000
molecules in the test set with M = 259 generalized repulsive potentials.
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Figure 7: Normalized histogram of the magnitudes of errors in force per atom for the
molecules in the test set with M = 259 generalized repulsive potentials.
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the error is in the bond angles, not lengths. Because repulsive potentials only yield forces

along bond axes, the generalized potentials cannot reduce those errors.

Overall, a clear improvement of the performance of the method by the addition of generalized

repulsive potentials is apparent.
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Figure 8: Normalized histogram of absolute errors in atomization energy for the 622
molecules in the Jorgsen test set with M = 259 generalized repulsive potentials. The his-
togram for the large test set is also shown for comparison.

Beyond testing on the large test set of 130k molecules, we conduct some further bench-

marks. First, we also analyze MAEs for molecules from a smaller test set introduced by

Jorgsen et al.49 that has been previously used to benchmark DFTB.6 The set contains 622

molecules containing C, H, N, and O. Most molecules of the Jorgsen set are contained in

the large test set, but the smaller set is commonly used for quantum chemical benchmarks,

and therefore it is illustrative to compare performance on the well known subset with the

whole. For a fair assessment, we did not use results reported in the literature, but rather

created data at our own reference level of theory, B3LYP/6-31G(2df,p). Fig. 8 shows error

histograms with and without generalized repulsive potentials. A clear improvement is visible.

Results look very similar to the large test set results, albeit more oscillatory due to sparcity

of data. The MAEs of ∆E0 = 8.26 kcal
mol with the original DFTB and ∆E259 = 3.64 kcal

mol are

somewhat larger because of a few outliers, which are less frequent in the large set. That may

be regarded as an example that good performance on average not necessarily implies good
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performance for every specific problem.
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Figure 9: Normalized histogram of absolute errors in atomization energy for 155 random
molecules from the GDB-17 database with 17 heavy atoms. M = 259 generalized repulsive
potentials are used.

To demonstrate transferability to larger molecules, we sample 155 random molecules with

17 C, N, O, or F atoms from the GDB-17 database, for which we created geometries following

the same protocol as before for the smaller molecules. Fig. 9 displays a histogram of absolute

errors in atomization energy, and the visible improvement is comparable to that in the set of

smaller molecules. The MAE reduces from ∆E0 = 10.31 kcal
mol to ∆E256 = 4.17 kcal

mol , by a factor

of about 1/2. At this point, note also that the vast majority of training molecules contained

only 8 or fewer heavy atoms, whereas the benchmark molecules were composed of 9 heavy

atoms, so that the large benchmark already constituted an, although limited, transfer to

larger molecules. We also test the method on a set of drug molecules we have previously

used for benchmarks of other methods.19 We test on the 18, out of 24, drug molecules listed

in Fig. 3 of Ref. 19 that contain only H, C, N, and O atoms. This set contains molecules

such as aspirin and vitamin C, with up to 113 atoms. The MAE drops from ∆E0 = 12.42 kcal
mol

to ∆E256 = 7.90 kcal
mol , in line with the other results.

To assess predictions at non-equilibrium geometries molecular dynamics (MD) sampling,

lasting 10 ps at a temperature of T = 300 K, was performed for 100 random molecules

from the test set. Of course, thus only the local vicinities of the molecular potential energy
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Figure 10: Normalized histogram of absolute errors in atomization energy for 100 random
molecules from the test set at perturbed geometries sampled from MD simulations at T =
300 K.

surfaces are sampled, but no extended regions involving, for example, reaction trajectories,

which the method does not improve at present. Fig. 10 shows a reduction in errors; MAEs

improve from ∆E0 = 11.23 kcal
mol to ∆E256 = 5.66 kcal

mol by a margin comparable to the other

results.

Table 3: Comparison of errors in atomization energies for ∼ 130k molecules with results
obtained from smaller training sets.

training set size M h MAE [kcalmol ] RMSE [kcalmol ]
2100 200 27.13 2.89 4.0
2100 111 36.09 2.97 3.95
1000 156 24.71 3.52 5.52

Finally, in Tab. 3 we investigate the effects of training set size. A clustering and fit

was performed with only 1000, rather than 2100, molecules in the training set. MAEs of

atomization energies are about 0.5 kcal
mol larger than for comparable parametrizations with the

full training set. A training set of 1000 molecules is already large enough to be useful, but

clearly there is still room for improvement with more training data.
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Conclusion

We have introduced generalized repulsive potentials for the DFTB method, where the tra-

ditional atom-type potentials are substituted by bond-type potentials. Bond types are de-

termined by automatic clustering, leading to a description which reflects the chemical envi-

ronment of the bond. Due to the automatic bond identification, repulsive potentials can be

parametrized to fit large data sets and are not limited by the number of parameters that can

be scaled up as required. This brings DFTB into the age of data driven approaches. We pre-

sented a preliminary implementation of the method that clearly demonstrates the potential of

the method to push forward DFTB development, offering significantly improved quantitative

performance. It is more difficult to compare the method directly to pure ML approaches,

rather than to conventional DFTB, because most employ much more training data, and

results with only a few thousands molecules in the training set are rarely reported. In one

recent study, Kernel ridge regression with a constant size molecular descriptor,50 capable of

reaching chemical accuracy with bigger training sets, yields an MAE of ∆EKKR = 3.64 kcal
mol

for the test set of 130k molecules with 2000 molecules in the training set, against an error

of ∆E256 = 2.64 kcal
mol with extended DFTB and a training set size of 2100. Extrapolating the

learning curves reported in Ref. 34, where multiple ML methods and descriptors were com-

pared, indicates a similar MAE of about 3.5 kcal
mol with 2000 training molecules for the best

performing method considered in this study. When we apply the ∆ML method21 with a

DFTB base line and 2000 training molecules, we find an MAE of ∆E∆ML = 3.4 kcal
mol . Overall,

DFTB with generalized repulsive potentials seem to compare favorably to these examples,

given the limited training set size here considered. Some recent direct ML models, however,

perform better even with small training sets. In Ref. 18, transferability of information from

one chemical element to another is exploited to reach chemical accuracy of ∆E = 1 kcal
mol

with only 2000 training molecules. The SOAP-GAP method achieves the same feat15 with

about a 1000 training molecules. Finally, in Ref. 19, 200 training samples suffice to reach

chemical accuracy. Here, however, the samples are preselected from a much larger reference
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set. This idea, in particular, should also be applicable to the repulsive potential approach,

with bond types selected based on their performance for equilibrium geometries in a large

set, and geometry sampling only performed afterwards. It must also be born in mind that

DFTB calculations are usually at least one order of magnitude slower than pure ML models.

But at least presently, most ML models require preoptimized structures at the SE level, or

better, destroying any advantage in computational cost.

In conclusion, what this work achieves is a clear demonstration that simple data based ex-

tensions can lead to significantly improved performance of DFTB, and likely similar SE

methods, and it thus helps guide the future development of such methods. What the role

of SE models in the long run will be in light of the impressive development of direct ML

models is to be seen.

As a next step, a larger training set and the incorporation of recent ideas from direct ML

models will certainly help to further improve the method. Also, since this paper reports a

proof of concept, further developments are required before routine application to quantum

chemical problems: (i) The reference data should be be computed using a higher level method

than used here. Now that the principal functionality of the method has been established, a

smaller test set for verification will be sufficient, which allows to compute using higher level

approaches. (ii) Using better reference data, a test of different descriptors should be per-

formed in order to evaluate, whether the final performance can be improved. The literature

offers a rich choice of options and in future work we will try to identify the best solution.

Because bond clustering is conceptually quite different from direct, supervised ML models,

we do not necessarily expect performance data reported in the literature to directly trans-

fer to this application. (iii) Finally, a smooth switching between different bond-potentials

has to be enabled, in particular when this scheme shall be applied for molecular dynamics

simulations. Up to now, hard cut-offs are assigned, which have to be substituted switching
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functions f . The generalized repulsive potential becomes

∆VAB(RAB) =
∑
b̃

f(d(b(A,B), b̃)∆Vb̃(RAB),

where b̃ runs over all bond types and f interpolates smoothly between f(0) = 1 and f(∞) =

0. One possibility would be the use of an error-function. (iv) Further, the description of

chemical reactions can be improved by adding transition state geometries to the training set.
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