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In a recent publication we presented a fitting environment for parametrizing point charge

(PC) and multipolar (MTP) force fields for condensed-phase simulations.1 After publication

of this work it came to our attention that one of the scripts contained an error which caused

an energy component in the free energy simulations to return incorrect values. This affects

the optimization of the parameter ℓ when scaling the Lennard-Jones parameters according

to ε∗ = ℓε and R∗

min/2 = ℓRmin/2 but not the MTP terms.

Hence, all compounds considered were reparametrized according to the procedure described

in Ref.1 The corresponding correlations between experiment and the optimized parametriza-

tions are reported in Figures 1 and 2. While the best ℓ typically differs by ∆ℓ = 0.1 the

average quality of all parametrizations is unchanged. In the published article1 the statistical

measures for ∆Ghyd and ∆H were (RMSE=0.36 kcal/mol, R2 = 0.99) and (RMSE = 0.53

kcal/mol, R2 = 0.97) (see Figures 3 and 4 in Ref.1), which changes to (RMSE=0.31 kcal/mol,
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Figure 1: Correlation between experimental and computed solvation free energies ∆Ghyd

(kcal/mol, respectively, x−axis and y−axis) for a range of compounds of interest. Computed
values obtained after optimization of the LJ parameters.

R2 = 0.99) and (RMSE = 0.57 kcal/mol, R2 = 0.96) using the correct script, respectively.

For one example, N-Methyl-Acetamide, the three observables (ρ, ∆H, ∆Ghyd) were given ex-

plicitly as a function of the scaling ℓ in Table 1 of Ref.1 This data has been recomputed and

is reported here in Table 1. In this case the same scaling ℓ = 0.95 is found to provide the best

parametrization, i.e. the one with the lowest score S =
∑3

i=1 wi(Obsi − Calci)
2 with wρ = 1,

w∆H = 3 and w∆G = 5 which differently weights the three observables.1 The scores S are

now larger in magnitude than in the original work1 because the results from the hydration

free energy simulations differ.

The current results show that the quality of the parametrizations and all conclusions from
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Figure 2: Correlation between experimental and computed enthalpy of vaporization ∆Hvap

(kcal/mol, respectively, x−axis and y−axis) for a range of compounds of interest. Both,
MTP and LJ parameters were optimized.

Table 1: Dependence of ρ (g/cm3), ∆Hvap and ∆Ghyd (both in kcal/mol) when scaling the
Lennard-Jones parameters. In bold face is shown the value of ℓ minimising the score S.

Scaling ℓ ρ ∆Hvap ∆Ghyd Score S
0.9 1.13 14.24 -10.57 1.2
0.925 1.08 13.95 -10.41 0.8
0.95 1.00 14.11 -10.31 0.3

0.975 0.99 13.84 -10.23 0.5
1 0.95 13.82 -9.78 0.9
1.025 0.92 13.68 -9.27 4.1
1.05 0.88 13.57 -9.01 6.9
1.075 0.84 13.29 -8.21 20.0
1.1 0.81 13.47 -7.98 23.7
Expt. 0.942,3 14.22,4 -10.085

the original article remain unchanged. However, the value of the scaling ℓ that is required

for a particular quality of a parametrization changes.
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