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January 30, 2019

Abstract

The effect of single amino-acid mutations on the rebinding dynamics of nitrogen

monoxide (NO) to myoglobin is investigated using reactive molecular dynamics simu-

lations. In particular, mutations of residues surrounding the heme-active site (Leu29,

His64, Val68) were considered. Consistent with experiments, all mutations studied here

have a significant effect on the kinetics of the NO rebinding process which consists of a

rapid (several 10 ps) and a slow (100s of ps) time scale. For all modifications considered

the timescales and rebinding fractions agree to within a few percent with results from

experiments by adjusting one single, physically meaningful, conformationally averaged

quantity: the asymptotic energy separation between the NO-bound (2A) and photodis-

sociated (4A) states. It is furthermore shown that the thermodynamic stability of WT

versus mutant Mb for the ligand-free- and ligand-bound variants of the protein can be

described by the same computational model. Therefore, ligand kinetics and thermo-

dynamics are related in a direct fashion akin to Φ−value analysis which establishes a

relationship between protein folding rates and thermal stability of proteins.

Keywords: Myoglobin, Mutations, Molecular Dynamics Simulations, Nitrogen

Monoxide Rebinding, Thermodynamic Stability
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1 Introduction

With its ability to bind and transport diatomics such as oxygen (O2), nitrogen monoxide

(NO) or carbon monoxide (CO), myoglobin (Mb) plays important physiological functions in

living organisms. Its main function consists of binding O2 and storing it in the muscle cells.

In addition, myoglobin also reacts with NO and CO, both of which are involved in processes

such as the regulation of blood pressure, neurotransmission and platelet aggregation. This

has led to extensive investigations of the interaction of myoglobin with these three diatomics

within a physicochemical perspective.1–5

Rebinding of NO to wild-type and mutant myoglobins has been extensively investigated,

both experimentally6–16 and computationally.17–22 The studies for WT myoglobin establish

that the overall rebinding process consists of a rapid and a slow process. The time con-

stant for the fast process ranges from 12.0 ps to 24.5 ps whereas the slow process extends

from 126.4 ps to 279.3 ps. Previous studies on NO rebinding to mutant myoglobins (e.g.

V68F,23,24 H64V14 and H64Q8) suggest that this is also true for mutant Mbs, albeit with

different time constants.

In the present work, the rebinding kinetics of NO to WT and mutant Mb (Figure 1) is

studied by means of reactive molecular dynamics (MD) simulations. A particular focus is on

investigating the effect of single point amino acid mutations around the ligand binding site

(the heme-iron, see Figure 1) on the kinetics of NO rebinding. Here, mutations of Leu29,

His64 and Val68 are considered for which experimental reference data is available. This

leads to a computational model which can be further assessed in view of other physicochem-

ical properties such as the impact of each mutation on the thermodynamic stability of the

ligand-free and ligand-bound-protein. The effect of a mutation on the thermodynamic sta-

bility of a protein is most commonly determined by comparing the relative difference in the

free energy of unfolding (∆∆G) for the wild type vs the mutant protein, no ligand included.
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Figure 1: Myoglobin (grey cartoon representation) with the heme group and the bound
NO ligand in the Fe-NO conformation. Heme and NO are shown in licorice. Left-hand
inset shows active site environment with His64, Leu29, Val68, and His93 (coordinating from
below). Right-hand inset: Internal coordinates R, θ and φ to describe the interaction of NO
with the heme-iron and the iron out-of-plane motion. The heme unit and the His93 amino
acid are shown in licorice, the NO ligand in CPK and the heme-Fe, heme-nitrogen and the
nitrogen of the His93 in van der Waals representation.

Previous research25 suggests that, for lysozyme, ∆∆G is of the order of 2 kcal/mol. A recent

collection of all ∆∆G values shows that they are of similar magnitude for Mb.26

4

Page 4 of 40

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



The connection between kinetics and thermodynamics following structural perturbations has

been discussed in the literature in the context of rate-equilibrium-free-energy relationships27

following work by Brønsted and Pedersen28 and Hammett.29 Such linear free energy rela-

tionships were then further developed and led, e.g., to Φ−value analysis which relates the

folding kinetics and thermodynamic stability of the wild-type protein with that of point

mutants, e.g. from protein engineering.30,31 Here, the kinetics for ligand rebinding and the

stability changes between ligand-bound- and ligand-free WT and single-point mutants for

Mb is analyzed based on a molecularly refined picture for ligand rebinding dynamics.

In the following, first the computational methods are described. Then, the NO-rebinding

dynamics for WT and a number of experimentally characterized Mb-mutants is discussed,

followed by an analysis of the thermodynamic stability of the ligand-free and ligand-bound

WT and mutant Mbs. Finally, the results from kinetics and thermodynamics are discussed,

and then conclusions are drawn.

2 Computational Methods

All MD simulations were carried out using the CHARMM program32,33 with the all atom

force field for proteins CHARMM22,34 including the CMAP correction,35 iron in its +2

oxidation state (Fe(II)), and periodic boundary conditions. The wild-type (WT) and 12

mutant myoglobins were studied: L29F, L29V, L29W, H64A, H64Q, H64V, H64L, H64F,

V68F, V68L, V68I, and V68W.

In each case, the system consisted of the NO-bound protein in the Fe-NO conformation, sol-

vated in a cubic box of TIP3P36 water, with dimensions 63.6× 63.4× 63.5 Å3. The systems

were heated to 300 K, equilibrated at 300 K and 1 atm for 250 ps, and further propagated
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for another 100 ps, using a timestep of 1 fs and a cutoff of 14 Å for the non-bonded inter-

actions. For electrostatic interactions, Particle mesh Ewald (PME) was used with grid-size

spacing of 1 Å and a relative tolerance of 10−6. SHAKE was used for constraining the bonds

involving hydrogen atoms.37,38 In order to generate a diverse set of initial conditions for the

subsequent reactive MD simulations, 5 independent initialization runs were performed.

2.1 NO Rebinding Simulations

Reactive MD simulations were performed using accurate and validated 3−dimensional po-

tential energy surfaces V (R, θ, φ) for the bound 2A and unbound 4A states.21,22 This PES is

a reproducing kernel Hilbert space (RKHS) representation39,40 based on more than 1000 en-

ergies calculated at the B3LYP/6-31G(d,p) level of theory. The relevant coordinates are the

Fe-CoM(NO) coordinate R, the angle θ between the Fe-CoM(NO) and the NO vectors, and

the Fe-out-of plane position angle φ, see inset Figure 1. Both states relevant to the present

work (the bound 2A and unbound 4A manifold) are used together with reactive molecular

dynamics simulations in order to follow the rebinding dynamics after NO-photodissociation

from the heme-iron.

The asymptotic separation: A priori the two force fields for the 2A and 4A states are inde-

pendent of each other because they do not share a common zero of energy. However, their

asymptotic energy separation ∆ (see Figure 2) is known to be between 5 and 10 kcal/mol.22,41

The asymptotic energy separation is the energy difference between the 4A and 2A states for

infinite separation of the ligand and asymptotically, the 4A state is the lower of the two (see

Figure 2.) This has to be taken into account when using the two force fields in a reactive MD

simulation because for this the relative energy separation is relevant. For WT Mb, an ap-

propriate value to qualitatively describe NO-rebinding with the mixed RKHS/CHARMM22

force field was found to be ∆ = −10.25 kcal/mol.21,22 However, this value does not provide
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the correct rebinding kinetics and depending on the active site environment, this value may

change due to local interactions. Furthermore, such a ∆ is a conformationally averaged

quantity.

Figure 2: Schematic to show the relationship between the 2A (Mb-NO bound state, solid blue
and Mb-ON bound state, dashed blue) curves and two 4A (unbound state, red and orange)
curves for different values of ∆1 and ∆2. These two asymptotic shifts lead to different inner
barriers ∆ETS,1 and ∆ETS,2 which affect the rebinding dynamics and to stabilization of
the Mb-ON state (for ∆1) or not (for ∆2). The inset shows the relationship between the
value of ∆ and the height of the inner barrier ∆ETS for the Fe-NO (black) and the Fe-ON
configuration (green), respectively.

NO-Rebinding Protocol: Following the initial equilibration for each system five independent

runs were continued in the NV T ensemble (300 K) for 2 ns in the NO-bound state, using the
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2A RKHS potential. Every 2.5 ps, a frame is extracted for which a constant energy (NV E)

MD simulation is successively run in (i) the bound state for 2.5 ps, (ii) the Fe-NO bond is

broken and the dynamics is continued on the unbound state for 0.5 ps (which is the typical

time until the unliganded species appears ) and (iii) followed by dynamics on the mixed,

reactive PES for a maximal simulation time of 200 ps. Excitation from the bound to the

unbound state (step (ii)) is done by instantaneously switching the force fields from 2A to 4A.

This adds approximately 50 kcal/mol to the system which is within the range of excitation

energies (49 kcal/mol to 81 kcal/mol) used in experiments.42 If the ligand rebinds in the

Fe-NO conformation earlier than 200 ps after photodissociation, the simulation is stopped.

However, it is also possible that the ligand transiently rebinds in the Fe-ON geometry from

where further dynamics may lead to Fe-NO. For WT Mb a final Fe-ON geometry was found

for 2% of the trajectories with ∆ = −7.25 kcal/mol and no stable Fe-ON state was obtained

with ∆ = −10.25 kcal/mol.

Data Analysis: For trajectories in which NO rebinds within the total simulation time allowed

(200 ps), a rebinding time is determined. The ensemble of rebinding times provides the basis

to follow the rebinding kinetics. For this, the cumulative distribution p(τ) of rebinding times

is determined, from which the unbound fraction N(t) can be obtained. Then, rebinding times

are determined based on the kinetic constants extracted from fitting to single- or multiple-

exponential decays

N(t) =
∑
i

aie
−(kit) (1)

where ki are the kinetic coefficients and ai is the associated amplitude for process i. The

respective decay times are then τi = 1/ki. Sums of exponentials were used to allow direct

comparison with the literature.7,12,16,22,23 However, other parametrizations have also been

used in the past, in particular stretched exponentials N(t) = ae−(kt)
β

or a power-law.6
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2.2 Free Energy Simulations

Computational mutations to estimate protein stability is based on the notion that the bind-

ing free energy corresponding to a given side chain, considered as a ”pseudo-ligand” of the

wild type protein, reflects the importance of this side chain to the thermodynamic stability

of the protein.43 The protein stability difference ∆∆Gstab between WT and a particular mu-

tant Mb was calculated according to ∆∆Gstab = ∆G2 - ∆G1 = ∆G4 −∆G3 (see Figure 3)

since it is computationally easier to determine ∆G1 and ∆G2 than ∆G3 and ∆G4.
44 Here,

∆G1 and ∆G2 are the free energies for changing the side chain of a WT residue (WT a.a.)

into its mutant in aqueous phase as an isolated residue (–CH3 terminated at Cβ) and in the

protein, respectively. Therefore, destabilizing mutations have a positive ∆∆G.

Figure 3: Thermodynamic cycle used to calculate the stability free energy differences
∆∆Gstab = ∆G2 − ∆G1 = ∆G4 − ∆G3 between WT protein and the mutants. ∆G1 and
∆G2 are the free energies of mutating the side chain of the residue in question in aqueous
phase as an isolated residue and in the protein, respectively. And ∆G3 and ∆G4 are the free
energies of going from a sole residue to being part of the protein for the WT residue and for
the mutant, respectively.

For the free energy simulations, hybrid residues with dual topology44,45 were constructed

for mutations L29V, H64F, H64V and V68F, both in their unbound- and NO-bound forms.

Initial coordinates were taken from the previously equilibrated structures.
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All contributions to the free energies in the thermodynamic cycle were computed using

thermodynamic integration (TI)46 which applies a scaling parameter λ, and switches between

the initial (λ = 0, state A) and the final (λ = 1, state B) state by gradually damping all

nonbonded interactions. The free energy difference is then

∆GA→B =

∫ 1

0

dλ

〈
∂H
∂λ

〉
λ

≈
∑
i

(λi+1 − λi)
〈
∂H
∂λ

〉
λm

, (2)

where A→B refers to the transformation between the WT (state A) and the mutant (state

B). The canonical average 〈·〉λ is performed over the phase space generated by H(λ), and

λm = (λi + λi+1)/2. The calculation is performed using the PERT module in CHARMM

along with soft-core potentials for the Lennard-Jones contribution.46,47

Free energy simulations at each λ−value were carried out in the NPT ensemble, using the

Hoover heat-bath method48 with pressure coupling at T = 298 K, p = 1 atm, and the masses

of the temperature and pressure piston to 20 % and 2 % of the system’s mass, respectively.

A friction coefficient of 50 ps−1 was used. The interval 0 < λ < 1 was divided into 34 steps

with windows at the two ends of the λ−interval more finely spaced.49 For each of these steps

the system was re-equilibrated for 20 ps followed by 40 ps of dynamics during which infor-

mation was accumulated. λ was changed from initial to final value using the slow-growth

protocol,50 which allowed the system to re-equilibrate between steps. The overall results

from the forward (WT→ Mutant) and backward (Mutant→WT) run are lower and upper

bounds to the free energy difference, respectively. The results reported are averages of 5 runs.
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3 Results and Discussion

3.1 Rebinding Dynamics

For an initial assessment of the rebinding kinetics, reactive MD simulations were carried out

with a shift of ∆ = −10.25 kcal/mol which had been determined in previous work.22 The

unbound fraction N(t) of WT and mutant Mbs after photodissociation from 750 indepen-

dent trajectories, each propagated for 200 ps or less if the ligand rebound earlier, are shown

in Figure 4. The rebound fraction after 200 ps is 60.0% (see Table 1) for WT and differs

substantially for the various mutants.

Figure 4: NO rebinding curves from 750 independent simulations for WT and mutant myo-
globins with ∆ = −10.25 kcal/mol; WT (black), H64Q (red), H64V (green), V68F (blue)
V68I (orange), L29F (violet) and L29V (cyan).

Table 1 reports the decay times for wild-type and several mutant Mbs, the corresponding

amplitudes, as well as the rebinding fractions after 200 ps compared with experiments. For

WT myoglobin, τ1 lies at the lower bound of values reported in the literature (for detailed
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Table 1: NO-rebinding times τi, amplitudes ai and the fraction of rebound N
at 200 ps for WT and mutant Mbs from simulations with ∆ = −10.25 kcal/mol.
Results from the present work and from the literature are compared. References
to experiments for WT,6,8,10,14,23,24,51,52 H64Q,8 H64V,14 V68F,23,24,53 V68I,24,53

L29F,7 and L29V.7 For amplitudes from analysis of experiments which do not
not add up to 1, the fitting function included a constant offset am, i.e. N(t) =∑m−1

i=1 ai exp−t/τi +am.

Mb a1 (ps) τ1 (ps) a2 (ps) τ2 (ps) % N(t) (200 ps)
WT 0.42 11.4 0.58 326.5 60.0± 1.9
Experiment 0.37 to 0.54 12.0 to 24.5 0.46 to 0.63 126.4 to 279.3 77.0 to 81.2
H64Q 0.63 8.1 0.37 63.5 97.7± 0.6
Experiment 0.48 8.9 0.43 122.0 82.7
H64V 0.55 9.2 0.45 144.2 86.6± 1.4
Experiment 0.51 10.0 0.43 92.0 89.1
V68F 0.42 14.0 0.58 85.0 93.2± 1.1
Experiment 0.78 8.0 to 10.1 0.21 35.0 to 60.2 98.3
V68I 0.45 13.0 0.55 259.5 73.2± 1.9
Experiment 0.36 91.0 0.33 955.0 98.3
L29F 0.48 8.4 0.52 155.5 85.4± 1.5
Experiment 0.95 6.0 to 6.7 0.03 200.0 96.9
L29V 0.21 20.9 0.79 777.8 38.5± 2.5
Experiment 0.80 400.0 31.9

list of references, see Table 1), while τ2 = 327 ps is larger than the largest value reported in

previous experimental studies (280 ps).6 The rebound fraction after 200 ps (60%) is consid-

erably lower compared to the range of values found in the literature (77.0% to 81.2%). This

disagreement and how to resolve it will be further discussed when considering how these

observables depend on the value of the asymptotic shift ∆ between the 2A and 4A states.

The kinetics of NO rebinding to Mb has also been studied experimentally for the mutants

H64Q,8 H64V,14 V68F,23,24,53 V68I,24,53 V68L,53 L29F,7 and L29V.7 The results in Table

1 from rebinding simulations with ∆ = −10.25 kcal/mol indicate that for the H64V mu-

tant close agreement with experiment is found for rebinding times (τ1, τ2), their amplitudes

(a1, a2) and the rebound fraction N(t) after 200 ps. Furthermore, most of the short rebind-

ing times τ1 (except for V68I) are consistent with experiment whereas the amplitude a1 of
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this process does not always agree and a similar observation is made for the time scale and

amplitude of the slower process. Rebound fractions for H64V, V68F, and L29V are within

a few percent of the experimentally reported values whereas for all other mutants in Table

1 they differ by more than 10 %.

However, because different active site mutations modulate the energetics of the 2A vs. 4A

state, one single value of ∆ can not be expected to be appropriate for all systems. Rather,

it is expected that individual values for ∆ within a few kcal/mol of the optimal value for the

WT protein - as a meaningful reference - will best describe the rebinding dynamics of NO to

mutant Mbs. The dependence of the rebinding times, amplitudes and fractions on the value

of ∆ is considered next.

3.2 Influence of the Asymptotic Shift

As previously discussed, for most myoglobins with decay times/rebinding fractions avail-

able in the literature, the reactive MD simulations were not able to quantitatively describe

rebinding times, amplitudes and fractions within 200 ps. The only free parameter in the

present simulations is the asymptotic separation ∆ between the 2A and the 4A state. To il-

lustrate the effect of ∆, the potential energy curve for a typical situation (NO-heme-histidine,

θ = 150◦) is sketched in the main part of Figure 2. Depending on the value of ∆ the crossing

geometry and barrier height between the two manifolds varies. The inset of Figure 2 shows

the effect of ∆ on the rebinding barrier height ∆ETS for the Fe-NO and Fe-ON configurations

(θ = 150◦ and θ = 30◦, respectively). For the Fe-NO configuration, the barrier is less than

≈ 2 kcal/mol for a wide range of ∆. This is consistent with the notion that NO rebinding

to heme Fe via the N atom is thermodynamically an almost barrier-less process.54 On the

contrary, transition barriers for the Fe-ON configuration depend more strongly on ∆.
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Except for H64V (see Table 1) the simulations performed with ∆ = −10.25 kcal/mol fail to

reproduce the experimentally observed kinetics for NO rebinding to all Mbs. This implies

that - as a consequence of the modified active site environment for each mutant - the value of

∆ required to match the experimentally observed rebinding times, amplitudes and fraction

slightly differs from one Mb variant to another.

As an example, for wild-type Mb, the experimentally observed rebound fraction (77.0% to

81.2%) differs from the computed value (60 %) with ∆ = −10.25 kcal/mol. Hence, the

shift was modified to ∆ = −7.25 kcal/mol. From 1750 rebinding trajectories the rebound

fraction after 200 ps is 78.1%, with decay times of 12.9 ps and 202.9 ps and amplitudes of

0.45 and 0.55, respectively. These results are i) a clear improvement over the simulations

with ∆ = −10.25 kcal/mol, and ii) all within the ranges reported from experiments on WT

myoglobin (see Table 1) and with recent X-ray absorption experiments.16 The raw simulation

data (open symbols), together with the double exponential fit (red), are shown in Figure 5

together with experimentally determined NO-rebinding curves to Mb in water6,8,10,14,23,24,51,52

and the agreement is found to be excellent.

It is also possible to directly compare with experiments at T = 283 K, carried out in D2O.12

The viscosities of H2O and D2O differ by ∼ 20 %55 and lowering the temperature leads to an

increase in viscosity in the temperature range between 290 and 200 K, respectively.52 Earlier

experiments had pointed towards a solvent-viscosity dependence for NO rebinding to Mb on

the sub-nanosecond time scale in glycerol/water mixtures9 and also in microperoxidase.12,56

Also, the NMR spectrum of ligand-bound Mb was found to depend on the H2O/D2O ratio

used in the experiments57 as was the electron transfer rate in Mb.58 Finally, the infrared

spectroscopy of MbCO also showed a dependence on the H2O/D2O ratio.59 Therefore, addi-

tional reactive MD simulations were performed for NO rebinding to wild-type myoglobin at

283 K which is the temperature used in the experiments.12 In total, 750 rebinding simulations

14

Page 14 of 40

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Figure 5: The NO-rebinding curves for WT Mb for ∆ = −7.25 kcal/mol compared with
experimental data. The open symbols (black for rebinding in H2O; red in D2O) are the
raw data and the solid black and red curves are the fits to a bi-exponential decay, respec-
tively. Experimental kinetics are all colored curves using the parameters from the literature.
The dark green trace is for rebinding in D2O

12 and all other traces are for rebinding in
H2O.6,8,10,14,23,24,51,52

were run and analyzed. The rebinding fraction was 90.3%, and fitting a double exponential

function yields decay times of 11.2 ps and 107.8 ps, respectively, with amplitudes of 0.54

and 0.46, consistent with the experiments (89.8%, 5.3 ps and 133.0 ps, amplitudes 0.54 and

0.46).12 Simulations at 300 K yield a rebinding fraction of 97.2% at 200 ps, with decay times

of 9.5 ps and 68.6 ps, respectively, with amplitudes a1 = 0.64 and a2 = 0.36.

For the V68F mutant (see Table 1), the kinetic parameters (rebinding fraction, decay times,

amplitudes) determined with ∆ = −10.25 kcal/mol, were not fully consistent with the ex-

periments. Hence, rebinding simulations were carried out for ∆ = −7.25 kcal/mol. The
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rebound fraction after 200 ps is 98.4%, in very good agreement with the one found from

an experimental fit (98.3%).24 Decay times τ1 and τ2 are 8.0 ps and 63.5 ps, respectively,

also in very good agreement with the literature.23,24 whereas the amplitudes determined

from the rebinding simulations (0.55/0.45) differ somewhat from those obtained from the

experimental fit (0.78/0.21). Overall, changing ∆ from –10.25 kcal/mol to –7.25 kcal/mol

considerably improved the agreement between simulations and experiment for the WT and

the V68F mutant.

Finally, simulations with modified shifts were also performed for the L29F mutant. Two

different values of ∆ were considered, –8.25 kcal/mol and –6.25 kcal/mol, respectively. For

∆ = −8.25 kcal/mol, the rebound fraction after 200 ps was 86.4%, with decay times of 6.4

ps and 145.5 ps, and respective amplitudes of 0.56 and 0.44. For ∆ = −6.25 kcal/mol, N(t)

after 200 ps amounted to 90.0%, with τ1 and τ2 are 6.6 ps and 132.1 ps, a1 = 0.60 and

a2 = 0.40. As ∆ is decreased, the rebound fraction increases, while τ2 decreases and the

amplitudes change slightly. Overall, the decrease of the asymptotic shift brings the reactive

MD simulations closer to the experimental observations.7,20

In summary, the best agreement between computed rebinding fractions and rebinding times

for the four systems WT, L29F, H64V, and V68F from explicit rebinding simulations was

obtained with asymptotic shifts ∆ ranging from –10.25 kcal/mol to –6.25 kcal/mol. As

already mentioned, the value of ∆ is a conformationally averaged quantity. In reality, ∆

depends in a complicated fashion on the instantaneous conformation of the heme-unit and

the orientation of the unbound ligand relative to the heme and it would be difficult to cast

this dependence in parametrized form. The different “best values” for ∆ for the different

mutants highlight the fact that depending on the active site mutation the energetics and

thereby the rebinding kinetics are modified, see Figure 2.
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The question thus remains, how to interpret this span of ∼ 4 kcal/mol for ∆ in terms of the

structure and dynamics of the system. Since the value for ∆ i) affects the relative energetics of

the two states involved, ii) changes the barriers for rebinding, and iii) hence the rebinding ki-

netics, one conceivable and testable hypothesis is that ∆ (as an ensemble average) is related

to the differential (thermodynamic) stability between the unbound and NO-bound states

δ∆∆Gstab = ∆∆Gunbound
stab − ∆∆GNO−bound

stab where ∆Gunbound is the relative stability change

∆∆Gstab = ∆G2 −∆G1 (see Figure 3) between the WT and mutant unbound-protein and

∆GNO−bound is that for the NO-bound-protein. In other words, the hypothesis for the follow-

ing consideration is that the change in the asymptotic shift δ∆ = ∆mut −∆WT = δ∆∆Gstab

required to yield the correct rebinding kinetics correlates with the change in differential ther-

modynamic stability between the unbound and NO-bound forms of the protein.

3.3 Differential Stability of NO-Bound and Unbound Mb

Because the ligand (NO) always interacts in the same fashion with the heme group to which

it binds (because V (R, θ, φ) does not change depending on the protein variant), differences

in rebinding kinetics for WT, L29F, H64V, and V68F - and hence chemical selectivity - is ex-

ercised through other factors. One possibility is the differential thermodynamic stabilization

between the ligand-free and ligand-bound forms of the WT and the mutants. In other words,

the relative thermodynamic stability between WT and mutant Mb for the ligand-free and

ligand-bound state differ due to modifications in the local interactions between the ligand

and the environment.

The available experimental data on the stability of holo- and apo-Mb have been recently

assessed and analyzed to compare with predictions from protein stability calculators.26 In

the following, this data (SI Table S1 from Ref.26) and the present free energy simulations

are compared. The analysis26 assumes that differential stability changes between WT and

17

Page 17 of 40

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



mutant Mb are similar for holo- and apo-Mb, respectively. This is consistent with the finding

that the bimolecular rate of hemin binding is approximately the same for all apohemoglobins

and apomyoglobins60 and that hemin loss rates vary only in a narrow range.61 For ligand-

bound MbNO the differential stabilization energies are not well known due to experimental

difficulties.26,62–64 In particular, for Mb(II)NO (with iron as Fe(II)) the unfolding would have

to be anaerobically which generates metMb and NO−3 whereas with Fe(III) with air present

the NO dissociates which forms nitrites and NO radicals through oxidation. Changes in

thermodynamic stability for the mutations L29F, L29V, H64F, H64V and V68F (see Figure

1) in their ligand-free and NO-bound forms were determined from free energy simulations

(see Methods) and the results are summarized in Table 2.

Table 2: Protein stability difference (in kcal/mol) for L29F, L29V, H64F, H64V
and V68F mutations for ligand-free and ligand-bound Mb. The estimated ex-
perimental error is ≈ 0.5 kcal/mol.26 δ∆∆Gstab = ∆∆Gligand−free

stab −∆∆Gligand−bound
stab is

the difference in stability when mutating the residues in question in the ligand-
free and in the ligand-bound form, respectively. The reference value for the
asymptotic separation is ∆WT = −7.25 kcal/mol which is the value to obtain the
experimentally observed kinetics for WT Mb. From this, the expected (or predicted)
∆Mut for a mutant - under the assumption that kinetics and thermodynamic sta-
bility are related - is ∆mut = δ∆∆Gstab+∆WT. ∗ indicates value for δ∆ estimated to
yield best agreement with NO-rebinding kinetics from simulations of the relative
thermodynamic stability.

∆∆Gstab L29F L29V H64F H64V V68F
Ligand-free 0.34± 0.4 1.53± 0.31 −0.54± 0.3 −0.56± 0.3 −1.05± 0.3
Ligand-free (Exp.) 0.1361 1.7265 –1.5161 / –0.8166 –0.3666 –0.3866 / –0.8261

iStable67 1.36 1.66 –0.90 –0.97 0.84
NO-bound −0.79± 0.4 1.65± 0.5 5.25± 0.37 2.30± 0.4 −3.40± 0.4

δ∆∆Gstab 1.1 −0.1 −5.8 −2.9 2.4
δ∆ 1 to 2 ∗ N.D. N.D. −3.0∗ 2 ∗

For L29V the computed destabilization (1.53 kcal/mol) for ligand-free Mb compares favourably

with the experimentally determined value of 1.72 kcal/mol for holo-Mb.65 This serves as a

benchmark for the free energy simulations. The ligand-bound form is also destabilized by
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a similar amount (1.65 kcal/mol, see Table 2). Thus, for L29V the differential change in

thermodynamic stability δ∆∆Gstab ≈ 0.

For L29F - replacing Leu with the larger Phe (hydrophobic) residue - a negligible stability

change is found for the ligand-free form (0.34 kcal/mol compared with 0.13 kcal/mol for

the apo protein26,61) whereas the NO-bound protein is stabilized by –0.8 kcal/mol. This

mutation affects the volume, the geometry of the binding site and the internal hydrophobic

side chain packing, see Figure 6. A structural explanation is provided by separate 10 ns of

MD simulations for the ligand-free and ligand-bound forms for the WT and L29F mutation

(Figure 6). Superposition of the WT ligand-free and ligand-bound structure at 0, 5 and 10

ns of MD shows only minor structural changes in the active site (Figure 6, upper row). How-

ever, replacing the highly conserved Leu29 by a bulky phenylalanine side chain decreases the

volume of the binding site. This leads to frequent collisions between the bound NO ligand

and Phe29 causing the side chain to shift towards His64, which, in turn, is pushed away from

the NO-binding site (Figure 6, lower row). This reorientation of His64 breaks the helix and

changes the hydrophobic side chain packing. Therefore the increase in stability observed in

the ligand-bound form, might originate from favorable stacking interaction between the two

aromatic rings (Phe29 and His64). Time resolved X-ray studies68 for the L29F mutant of

MbCO found a concerted movement of Phe29 and His64 with concomitant displacement of

His64 away from heme-bound CO towards the solvent which support the present findings

(see also Figure 7).

It has been found that Mb sacrifices protein folding stability (reduced thermodynamic sta-

bility of WT compared with His64 mutants) for functionality (affinity to binding of O2 and

discrimination against CO). Specifically, mutation of His64 to aliphatic or aromatic side

chains invariably increases the thermodynamic stability of apo-Mb.61 This is consistent with

the present findings for H64F (–0.54 kcal/mol) and H64V (–0.56 kcal/mol) which compare
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quite favourably with experiment, see Table 2. For H64F the substitution of His64 (basic) by

Phe64 (hydrophobic aromatic) leads to favorable hydrophobic packing between the helix E

region and the molten globule core, which explains the stabilization of ligand-free Mb.61 For

the H64V mutation substitution of His by a hydrophobic residue leads to favorable hydropho-

bic packing between the helix E-region which rationalizes the stabilization of the apo form.61

L29F

WT

t = 0 ns t = 5 ns t = 10 ns

NO

His64

Leu29

Fe

His93

Fe
NO

His64

His93

Phe29

His64

disrupts

and breaks

the helix

Figure 6: Conformational rearrangement of Mb with the heme group in both ligand-free
(transparent orange) and ligand-bound (green) form as a function of the L29F mutation
at different simulation time. Upper row: superposition of the ligand-free vs. the ligand-
bound (NO-bound) form in WT myoglobin at 0, 5 and 10 ns of production MD. Lower row:
superposition of the ligand-free vs. the ligand-bound form in L29F mutant at 0, 5 and 10
ns of production run. Representations: protein, new cartoon; His64, Leu/Phe29, Heme and
NO, licorice; Fe, vdw.

On the other hand, ligand-bound H64F and H64V are destabilized by 5.25 and 2.30 kcal/mol,

respectively. For ligand-bound H64F the presence of NO aggravates the situation since Phe64

is located at the entrance of the heme binding pocket and Phe at position 64 blocks the bind-
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ing site entry. Thus, for the H64F mutant the heme becomes restrained and the presence

of NO causes a deformation of the Heme (see Figure 3 in SI). The differential stabilizations

for H64V is δ∆∆Gstab = −2.9 kcal/mol compared with δ∆∆Gstab = −5.8 kcal/mol for the

H64F mutant. As the results in Table 2 show, the computations are able to correctly de-

scribe stabilizing and destabilizing effects for ligand-free Mb and - within the error bars -

even yield quantitative agreement with experiment.61,65,66

Finally, the V68F mutation leads to ligand-free Mb which is more stable than WT by –1.05

kcal/mol. The replacement of the aliphatic Val by a bulky hydrophobic aromatic residue

(Phe) leads to space restrictions around the heme and creates a more hydrophobic distal

heme pocket that stabilizes the native state.61 Interestingly, the same stabilizing effect due

to perpendicular π−stacking is found for the ligand-bound form and it is even more pro-

nounced (–3.40 kcal/mol). This can be rationalized by the fact that residue 68 falls closer

to the depth of the pocket and so the heme is not blocked at the entry and can adjust and

adopt favorable structural rearrangements in the presence of NO (see Figure 4 in SI). These

conclusions are also supported by previous studies where the contribution of the heme affin-

ity to the stability of myoglobin was determined quantitatively.69
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Leu89
His93

His97

Phe43

Arg45
His64

Phe29

Val68

CO

Fe

NO

Phe29

His64

CO NO

His93

His97

Fe

A B

X−ray structure (PDB 2G0Z), Aranda          2006

TI structure (at           )λ = 1

et al.

Figure 7: Superposition of NO-bound L29F structures from experiment (X-ray structure,
PDB code: 2G0Z;68 CO-bound) (in transparent orange) and from the TI simulations (struc-
ture sampled at λ = 1; NO-bound) (in green). (A) Shows the entire heme pocket with
the important residues, and (B) emphasizes on residues Phe29 and His64. Representations:
protein, new cartoon; important residues like His64, Leu/Phe29, Heme NO and CO, licorice;
Fe, vdw.

Complementary to the TI simulations, thermodynamic stabilities were also determined by

“iStable”67 for all ligand-free Mb considered here. This software uses structural data and

machine learning techniques to obtain a consensus score from several independent protein

stability assessment schemes to predict the change in thermodynamic stability between the

WT and a single point mutant. Using the 1U7S reference structure (holo-Mb), the predicted

stability changes for the L29F, L29V, H64F, H64V, and V68F mutants are compatible with

the results from TI (see Table 2), except for the V68F mutant.

4 Discussion and Conclusion

Prediction of ∆ based on thermodynamics: The data for the H64V mutant suggests that
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values of ∆ which generate the correct ligand rebinding kinetics (∆ = −10.25 kcal/mol com-

pared to ∆ = −7.25 kcal/mol for the WT, i.e. a decrease of −3.0 kcal/mol) also lead to the

correct differential stabilization of ligand-free and ligand-bound Mb of −2.9 kcal/mol. In

other words, an appropriate value for the asymptotic separation ∆ of the energy manifolds

of the 2A and 4A states links (rebinding) kinetics and thermodynamic stability. In order

to further investigate and quantify this qualitative and potential relationship two additional

mutants were considered, L29F and V68F. First, the value for δ∆ was determined from the

differential stabilization between the ligand-free and ligand-bound state obtained by thermo-

dynamic integration (δ∆ = δ∆∆Gstates stab) and in a next step these δ∆ values were used to

infer the change in asymptotic separation ∆ relative to WT (∆ = δ∆ + ∆WT) to determine

the rebinding kinetics from 750 separate, individual rebinding simulations.

Table 3: Rebinding times, amplitudes and rebinding fraction within 200 ps for
the L29F and V68F mutants for different values of ∆.

Mb ∆ a1 τ1 (ps) a2 τ2 (ps) % N(t) (200 ps)
V68F –10.25 0.42 14.0 0.58 85.0 93.2± 1.1
V68F –5.25 0.71 7.8 0.29 94.2 94.8± 1.0
Experiment 0.78 8.0-10.1 0.21 35.0-60.2 98.3
L29F –10.25 0.48 8.4 0.52 155.5 85.4± 1.5
L29F –8.25 0.56 6.4 0.44 145.5 86.4± 1.5
L29F –6.25 0.60 6.6 0.40 132.1 90.0± 1.3
L29F –5.25 0.61 5.8 0.39 142.0 88.4± 1.4
Experiment 0.95 6.0-6.7 0.03 200.0 96.9

Thermodynamic integration for the V68F mutant suggests that the relative stability change

of ligand-free- and ligand-bound Mb for the mutant relative to the WT is δ∆∆Gstab = −2.4

kcal/mol (see Table 2). Therefore, rebinding dynamics simulations were run for ∆ = −5.25

kcal/mol which is 2 kcal/mol lower than the value (∆ = −7.25 kcal/mol) for WT which

yields good agreement with experiment (see Figure 5). The NO-rebinding dynamics for the

V68F mutant for both values of ∆ is summarized in Table 3. The rebinding fraction after

200 ps for both values of ∆ are quite similar (93 % vs. 95 %) and compare favourably with
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experiment (98 %). For the short time scale τ1 the simulations with ∆ = −5.25 kcal/mol are

in better agreement with experiment (7.8 ps compared with 8.0 to 10.1 ps from experiment)

than those for ∆ = −10.25 kcal/mol (14 ps). The long rebinding time scales τ2 are similar

to one another but somewhat longer than those measured (85 ps and 94 ps compared to a

value between 35 ps and 60 ps). What really differs between the simulations with the two

values for ∆ is the amplitude of the rapidly rebinding fraction which increases from 42 %

(∆ = −10.25 kcal/mol) to 71 % (∆ = −5.25 kcal/mol) compared with 78 % from exper-

iment. Overall, the simulations with the lower value for ∆ better describe the rebinding

dynamics after photodissociation as compared with experiment.

Similarly, for the L29F mutant the δ∆∆G value of 1.1 kcal/mol suggests that rebinding

dynamics simulations with ∆ = −6.25 kcal/mol should yield improved ligand rebinding ki-

netics. As is shown in Table 3 the reference value of ∆ = −10.25 kcal/mol leads to reasonable

agreement for the two rebinding time scales and amplitudes and the rebinding fraction. How-

ever, decreasing ∆ to between −8.25 kcal/mol and −5.25 kcal/mol improves the rebinding

fraction, the short time scale τ1 and the amplitudes of both rebinding processes. Only for

τ2 a somewhat less satisfactory result is found which, however, is the minority component

(3 %) in the experiment. Nevertheless, the improvement by decreasing ∆ according to the

change in thermodynamic stabilisation is not quite as good as for the V68F mutant.

Structural Interpretation: Previously it was found that the long and short time scales for

the ligand rebinding process are due to discrete conformational (sub-)states sampled by the

system.22 Furthermore, different rebinding time scales are often associated with different free

energy barriers ∆G‡ between the initial (NO dissociated) and final states (NO bound). This

implies that either ∆H, ∆S, or both change depending on the value of ∆. In order to address

this point the configurational space (R, θ) sampled by the dissociated ligand before rebind-

ing is considered a) for the WT, V68F, H64V, and L29F mutants, respectively (Figure 8)
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and b) for the same mutant (V68F) but for two values of the asymptotic shift ∆, see Figure 9.

Figure 8: Comparison of (R (Fe-NO distance), θ (Fe-N-O angle)) distributions for wild-type
vs. mutant Mb after photodissociation. All simulations are carried out with the ∆−value
which leads to rebinding kinetics consistent with experiment. WT (top left, ∆ = −7.25
kcal/mol, f(FeON) = 1.6 %), V68F (top right, ∆ = −5.25 kcal/mol, f(FeON) = 23.2
%), H64V (bottom left, ∆ = −10.25 kcal/mol, f(FeON) = 0.2 %), L29F (bottom right,
∆ = −5.25 kcal/mol, f(FeON) = 7.9 %). Iso-contours in steps of 10% of the maximum
density are shown. Darker regions correspond to high probabilities whereas lighter regions
to lower probabilities. f corresponds to the fraction of population that is in the Fe-ON
geometry.

Depending on the residues lining the active site, the available space for the ligand and the

topology of the probability distribution function change. This is reflected in the maxima of

P (R, θ) which shift and in the number of maxima which can differ from one variant to the
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next. The short rebinding time scales for L29F, V68F, H64V, and WT are τ1 = 5.8 ps, 7.8

ps, 9.2 ps, and 12.9 ps and the amplitude of the rapid rebinding process is largest for L29F

and V68F which are mutations from “small” to more “bulky” side chains. It is also for these

two mutants that the fraction of population of the metastable Fe–ON state is largest (23 %

for V68F and 8 % for L29F). Hence, it is conceivable that the possibility to populate the

metastable state contributes to more rapid rebinding and to increasing the probability for

this process.

Turning to P (x, y, z) for V68F and two values for ∆ (–10.25 kcal/mol as the standard value

and –5.25 kcal/mol which reproduces the experimentally observed kinetics, see Table 3) it

is found that the projection P (x, z) parallel to the heme plane for the two values of ∆ is

rather similar (see Figure 9). On the other hand, the projections P (x, y) and P (y, z) have

additional favourable regions that can only be populated for ∆ = −5.25 kcal/mol. Because

these concern regions closer to the iron atom (which is located in (0, 0, 0)) they influence

the rebinding kinetics and contribute to the rapid phase as is found in the reactive MD

simulations. The time scale τ1 shortens from 14.0 ps to 7.8 ps and its amplitude increases

from 42 % to 71 %. It is found that ∆ affects the available space for the ligand - see Figure

9. For the same ligand (here NO) the enthalpic part is largely unchanged; hence what is

affected in the change of the rate, i.e. the free energy barrier, is the entropic part.

In the present work NO-recombination primarily from positions within the active site, in-

cluding docking site B,11,70 was investigated. Nevertheless, as the rebinding fractions ranging

from 30 % to 98 % within the first 200 ps indicate (see Tables 1 and 3), the photodisso-

ciated ligand samples other regions of the protein interior. They include sites such as the

Xe-pockets71–73 from where the ligand rebinds on longer scales, though, and were not further

analyzed in the present work.
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Figure 9: Influence of the asymptotic shift ∆ on the conformational ensemble sampled by the
dissociated ligand for the V68F mutant. The average heme-plane is in the xy− plane with
the iron atom in (0,0,0). From top to bottom cuts through the xy−, xz−, and yz−planes.
Left column for ∆ = −10.25 and right column for ∆ = −5.25 kcal/mol. For the lower
∆−value the Fe–ON state, which has the NO ligand considerably closer to the heme-iron
(y ∼ −2 Å), becomes accessible (see Figure 2) which leads to the rapid rebinding time scale
(τ1 = 7.8 ps).
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Previous synthetic and computational work suggested that the Fe–ON linkage isomer could

be formed after photodissociation in MbNO.18,74 However, subsequent spectroscopic studies

of WT, and five mutants (I28W, L108W, V68Y, H64L, and H64V) were unable to support

this proposition.13 It is interesting to note that for WT the fraction of Fe–ON consistent

with the rebinding kinetics is ∼ 2 % whereas the state is not populated at all for H64V

which agrees with these experiments. Hence, the concentration of Fe–ON may simply be

too small to be detected in these experiments and for the systems studied. On the contrary,

for mutants L29F and V68F the fraction of Fe–ON consistent with the rebinding kinetics

is considerably larger (8 % and 23 %, respectively) and it would be interesting to consider

these mutants when searching for the Fe–ON state.

Comparing WT and mutant MB, the NO-rebinding kinetics and the thermodynamics of

ligand-free vs. ligand-bound Mb suggests that rebinding kinetics and thermodynamic sta-

bility are related. The structural interpretation of the rebinding time scales indicates that

changes in the asymptotic separation ∆ affect the internal conformational space available

to the ligand as they directly modulate the volumes of the internal cavities. The general

finding that internal pocket volume is inversely related to thermodynamic stability (smaller

volume leads to increased stability) is consistent with NMR-work on WT and L99A mutant

Lysozyme.75 Here, it is found that V68F is thermodynamically more stable than L29F for

both, ligand-free and ligand-bound Mb and for the ligand-free-forms the computations are

in good agreement with experiment. This apparently leads to a more compact binding site

which is reflected in a reduction of the available configurational space for the dissociated lig-

and to sample, see Figure 8. This, in turn may be reflected in the larger rebinding fraction

of 94.8 % for V68F vs. 88.4 % for L29F (from experiment: 98.3 % vs. 96.9 %) within 200

ps.

The relationship between protein stability and kinetics for WT and mutants has been in-
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vestigated in detail for protein folding.30 In this context it is interesting to remark that the

value of ΦF for folding has been found to be mutation-specific because “..each mutation

removes different interactions and has different effects on the denatured state[..]”.31 In the

present work this is reflected by the fact that for each mutant a slightly different value for the

asymptotic separation ∆ is required (starting from a reference value for the WT) in order to

correctly describe the ligand rebinding kinetics in the Mb mutants. The required changes in

∆ for the mutants relative to WT as the reference are ∼ 2 kcal/mol which is consistent with

typical thermodynamic stability changes upon mutation for Mb which span a range from −2

kcal/mol to +4 kcal/mol.26

In summary, it is established that the rebinding kinetics of NO to Mb can be quantitatively

characterized from atomistic simulations by adjusting one single, conformationally averaged

quantity: the asymptotic energy separation ∆ of the energy manifolds. Because each muta-

tion removes (or introduces) different local and potentially nonlocal interactions it is evident

that the “best” value of ∆ for a particular mutant (relative to the “canonical value” of ∆

for the WT protein) slightly differs depending on the protein variant considered. Most im-

portantly, the same computational model can be used to determine the differential stability

of the ligand-free- and ligand-bound form of the protein. Thus, for Mb a direct link between

kinetics and thermodynamics for ligand rebinding dynamics and differential protein stabil-

ity is found, akin to the relationship from Φ−value analysis between protein stability and

protein folding kinetics.
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discussions.

Supporting Information

The supporting information contains four figures illustrating the trajectory of transformation

corresponding to the mutation (via the thermodynamic integration protocol) of wild-type

myoglobin to the L29V (Figure 1), L29F (Figure 2), H64F (Figure 3) and V68F (Figure 4)

mutants. This document also includes a comparison of 2-dimensional (R, θ) distributions for

WT vs V68F and L29F myoglobins for the default and the experimentally relevant ∆ values

(Figure 5). This material is available free of charge via the Internet at http://pubs.acs.org.
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