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Abstract

The structure of molecular adlayers is of great interest for surface functionaliza-

tion. As molecular complexity increases, the subtle interplay of the relevant inter-

actions becomes more difficult to unravel. Here, we present a scanning tunneling

microscope (STM) and atomic force microscope (AFM) study along with free-energy

calculations using density functional theory on two closely related NDI-cyclophane

molecules. These three-dimensional double-decker molecules are designed to attach to

the substrate with one subunit while the other functional moiety is exposed to the en-

vironment. The molecular arrangements obtained on Ag(111) are rationalized by the

inclusion of adatoms from the substrate into the structure. The presence of adatoms

is identified by a drastic change in corrugation of the STM images that takes place

at moderate bias voltages. Our calculations using density functional theory of the

system’s free energy yield that two adatoms favorably co-adsorbe with the molecules.

Introduction

The delicate balance among surface-adsorbate interactions leads to chemical properties of

increasing complexity as new molecules on solid surfaces are explored.1–3 An important

aspect of surface functionalization is the effect of the adsorbed molecules on the surface

structure of the substrate. Surprisingly profound modifications of the substrate may occur.

For example, Cu-phthalocyanine induces facetting of Ag(110) surfaces.4 The rather inert C60

fullerene can drastically affect the surfaces of coinage metals, which themselves are not very

reactive. On Au(110), Ag(100), Au(111) and Cu(111), C60 removes substrate atoms and thus

increases its coordination with metallic atoms.5–8 Adsorbed molecules can bind to metallic

atoms thus creating complexes. For example, thiols have been shown to be able to bind Au

adatoms at gold substrates.9,10 Another example are the metal organic networks induced by

surface adatoms.11–19 Such effects are not limited to molecules with reactive end groups such

as thiols. For example, ethylidyne (C2H3) is capable of producing a significant reconstruction
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of the Ru (0001) substrate,20 insulin alters the flat landscape of gold terraces,21 which also

does pentacene.22

The above examples highlight the important role of metal adatoms in the creation of

adsorbed molecular networks. These adatoms are naturally present on the surface and

minimize the system’s free energy by coordinating with the molecules in a hierarchy of

structures. Unfortunately, it can be very difficult to actually detect the presence of the

adatoms themselves. Careful analysis of the structures is usually the only way to conclude

on the presence of molecular-adatom interactions. Recent experiments15 showed that the

scanning tunneling microscope (STM) can help to reveal the presence of metallic adatoms.

In Ref. 15, an adatom-related electronic state appeared in STM images recorded at elevated

bias voltages. However, large biases are often not suitable when working with molecular

structures because of the many undesirable processes that can be induced. Here, we show

that changes of contrasts at a moderate bias can actually be the sign of the presence of

adatoms.

We designed two similar molecules with a double-decker structure. The lower deck is

the same in both molecules, and contains a naphthalene diimide (NDI) phane that generally

adsorbs on noble-metal surface via dispersion interactions, and an upper deck, with either a

stilbene or an azobenzene moiety. The two subunits are linked via alkyl sulfide groups, cre-

ating a three-dimensional building block. Due to this structure, the upper deck experiences

little interaction with the surface. This type of molecule thus limits the interaction with

the substrate to one of its subunits and is expected to preserve the functional properties

of the other subunit. Di-alkyl sulfides only physisorb on Au while thiols chemisorb23 and

consequently the sulfide functions are not expected to cause the main molecule-substrate in-

teraction. The molecules were adsorbed on a Ag(111) surface and a striking bias-dependent

change of STM images was observed. By performing density functional theory (DFT) calcu-

lations and evaluating the adatom-induced changes of Gibbs free energy, we concluded that

two Ag adatoms are co-adsorbed between adjacent double decker molecule. These adatoms
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are responsible for the unusual contrast changes.

Methods

Both NDI-cyclophanes have been obtained by a high-dillution macrocyclization conditions

as displayed in Scheme 1. The precursor bis-N,N -(2-(methyldisulfanyl)ethyl)naphthalenedi-

imide 1 was obtained by condensing naphthalenetetracarboxylic dianhydride with a fivefold

excess of 2-(methyldisulfanyl)ethan-1-amine, which was synthesized according to a reported

procedure.24 Reducing the disulfides of 1 with tributylphosphine in a methanol/THF mixture

provided the bis-N,N -(2-mercaptoethyl)naphthalenediimide 2, which was used as crude com-

pound without separation from the tributylphosphine oxide. The stilbene and the azoben-

zene subunits functionalized with terminal benzylic bromides 325 and 426 have both been

reported. For the high dilution cyclization reaction, a 500 µmolar solution of 2 and 3 in

1,3-dimethyl-2-imidazolidinone (DMI) was treated with an excess of potassium carbonate

(K2CO3) and heated to 60◦C for 17 hours. The desired NDI-stilbenophane was isolated by

column chromatography (CC) and subsequent gel permeation chromatography (GPC) as

orange solid in 9 % yield. Applying a similar strategy, a 332 µmolar solution of 2 and 3 in

N,N -dimethyl-formamide (DMF) was prepared, treated with an excess of K2CO3 and heated

to 75◦C for 16 hours. Again isolation by CC and GPC provided the NDI-azobenzenophane

as yellow solid in 17 %. Both cyclophanes were fully characterized by 1H- and 13C-NMR

spectroscopy, high resolution mass spectrometry, Infrared and UV/Vis spectrometry and

melting points.

The experiments were carried out with a combined scanning tunneling microscope (STM)

and atomic force microscope (AFM) operated in ultra-high vacuum at ≈ 5 K. Ag(111)

surfaces were cleaned by alternating cycles of Ar+ ion bombardment and annealing. Both

types of NDI-cyclophane were degassed and subsequently sublimated at ≈ 200◦C in ultra-

high vacuum from a Ta crucible onto the Ag(111) substrate, which was kept at ambient
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1 2

3

4

PBu3

CH3OH/THF
r.t., 2h
quant

2 and 3 500 µmolar
in DMI @ 60°C
11 eq. K2CO3

 17h, 9%

2 and 4 332 µmolar
in DMF @ 75°C
13 eq. K2CO3

 16h, 17%

NDI-stilbenophane

NDI-azobenzenophane

Scheme 1: Syntheses of the two target structures NDI-stilbenophaneand NDI-azobenzeno-
phane.

temperature. Sub-monolayer coverages of ≈ 10 % were typically used. Tips were etched

from W wire and prepared in-situ by repeatedly indenting them into the clean areas of the

substrate. To measure dI/dV spectra with a lock-in amplifier a sinusoidal modulation of

5− 10 mVrms at 4 kHz was added to the sample voltage.

Ab-initio calculations have been performed in the framework of density functional theory

as implemented in the VASP code.27 We have used the PBE form of the generalized gradient

approximation for the exchange and correlation functional.28 Dispersion interactions have

been treated using the method by Tkachenko and Scheffler.29 The atomic position of the

two topmost layers, the adatoms, and the molecules were relaxed until forces were smaller

than 0.02 eV/Å. The STM images were simulated using isocontours of the electronic local

density of states.30,31

Results

Figures 1a and b show schemes of the molecules synthesized for this work, NDI-stilbenophane

((E )-1((2,7)-benzo[lmn][3,8]phenanthroline-1,3,6,8-(2H,7H )-tetraona)-6((4,4’)-1,2-diphenyl-

ethena)-4,8-dithiadecanodane) and NDI-azobenzenophane ((E )-1((2,7)-benzo[lmn][3,8]phen-

anthroline1,3,6,8-(2H,7H )-tetraona)-6((4,4’)-1,2-diphenyldiazena)-4,8-dithiadecanodane).32

Their syntheses are detailed in the Methods section. Densely packed islands of these

molecules were prepared by sublimation onto Ag(111) surfaces at ambient temperature.
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STM data recorded at low temperature (5 K) reveal NDI-stilbenophane and NDI-azo-

benzenophane islands with similar electronic and geometric properties on the Ag(111)

surface. The molecules arrange in a nearly rectangular (86◦ ± 5◦) unit cell, the long axis

of which is aligned along a compact direction of the Ag(111) substrate as can be seen

in constant-current STM images in Figures 1c,d. The measured unit cell dimensions of

(1.8 ± 0.2) nm and (1.0 ± 0.2) nm are compatible with a commensurate (6 × 2
√

3)R30◦

molecular lattice on the Ag (111) substrate.

STM topographs recorded at sample voltage V exceeding ≈ 0.6 V exhibit rows of oval

protrusions (Figures 1c,d). At first glance, these predominant features seem to correspond

to the bulky NDI-stilbenophane and NDI-azobenzenophane molecules. However, the ap-

pearance of the islands in topographs critically depends on V . For V below ≈ 0.4 V the

topographs reveal features of submolecular dimensions (Figures 1e,f). Cross-sectional pro-

files of the NDI-stilbenophane data show that the apparent height maxima at low bias fall

onto minima at high bias (Figure 1g). The same effect occurs for NDI-azobenzenophane

(not shown). Moreover, a drastic change in apparent height by approximately 0.2 nm occurs

as the bias is increased from 0.5 to 1.5 V. Figure 1h shows this effect in more detail. The

retraction ∆z of the tip was measured as a function of V in constant-current mode. The

abrupt rise of ∆z signals that an additional state is accessible for tunneling as V increases

beyond ≈ 0.6 V. Below that voltage, the molecules contribute little to the tunneling current

despite their significant dimensions.

Discussion

Changes of intra-layer corrugation with bias have been reported in different situations.33,34

For single molecules, a corrugation change with bias was reported that disappeared when

molecules dimerized.33 This is clearly not the case here, where the corrugation change hap-

pens for the high-coverage case. Another case was due to picking-up oxygen atoms by the

6
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Figure 1: Lewis structures of (a) NDI-stilbenophane and (b) NDI-azobenzenophane.
Constant-current topographs of (c, e) NDI-stilbenophane (I = 70 pA) and (d, f) NDI-azo-
benzenophane islands (I = 20 pA) on Ag(111) measured at characteristic sample voltages
indicated on the images. While the topographs are very similar for NDI-stilbenophane and
NDI-azobenzenophane, they vary drastically with the sample voltage. Rectangles mark unit
cells. Arrows indicate the compact directions of the substrate, which are identical in all
topographs. (g) Cross-sectional profiles along the lines in (c) and (e). (h) Retraction ∆z
of the tip with sample voltage V at constant-current. Black and gray lines show data from
NDI-stilbenophane and NDI-azobenzenophane, respectively, measured above a corner of the
unit cells.
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STM tip.34 In our case, the tips are metallic and no change of the tip composition was

detected. Moreover, all changes were reversible and exhibited no hysteresis with respect to

changes of V . The above facts raise two intriguing questions: (i) where are the molecules in

these images? And (ii) what is the origin of the change of contrast?

g

1 nm1 nm

NDI-stilbenophane

NDI-azobenzenophane

Stilben simulation with two adatoms

0 nm 0 nm

0 nm 0 nm

0.2 nm0.2 nm

aa b

0.11 nm0.11 nm

0.11 nm0.11 nm 0.19 nm0.19 nm -25.7 Hz

b

cc dd

ee

ff

Stilben simulation without adatoms
hh ii

kk ll

0 nm 0.16 nm0.16 nm

-9.4 Hz-9.4 Hz

STM

AFM

jjj

Figure 2: (a, b) Constant-current topographs of a NDI-stilbenophane island recorded at (a)
V = 0.2 V, I = 30 pA and (b) V = 0.7 V, I = 109 pA. Models of the calculated molecular
structure are overlaid. (c, d) Topographs of an NDI-azobenzenophane island measured at (c)
V = 0.2V, I = 59 pA and (d) V = 0.6 V, I = 57 pA. (e) Topograph of a NDI-stilbenophane
island with a defect indicated by a dashed ellipse. V = 0.1 V, I = 30 pA. (f) AFM frequency
shift measured at constant height over the same area as (e) with an oscillation amplitude
A = 0.11 nm. From the initial tip-sample distance defined by the setpoint V = 100 mV and
I = 30 pA the tip was brought closer to the sample by 80 pm. Phenyl rings, which are the
most protruding part of the molecules, cause circular areas of more negative frequency shift.
A minor shift is observed from the defect area. (g) Side view of the optimized geometry of
NDI-stilbenophane with the NDI platform towards Ag(111). (h, i) Simulated topographs of
NDI-stilbenophane at high and low bias without adatoms. (j) Top view of the optimized
geometry of NDI-stilbenophane layer intercalated with two adatoms per molecules. (k, l)
Like (h) and (i) but with adatoms between adjacent molecules.

To address the first question, Figures 2a–d show the voltage-dependent patterns in more

detail. Oval protrusions dominate the topographs at elevated voltage, but are absent at lower

voltage in favor of submolecular features. We suggest that the low-bias structures reflect

8
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the position of the molecules whereas the oval observed at higher V is located between the

molecules. This counter-intuitive interpretation was initially motivated by the image contrast

at occasional defects in the islands. Figure 2e shows a typical example with the defect

appearing as a hole (dashed ellipse). This one and all other hole-type defects were found

at equivalent positions in the molecular pattern, where they replace topographic maxima of

the low-bias pattern.

Non-contact atomic force microscopy (AFM) further corroborates this assignment. Fig-

ure 2f shows AFM frequency-shift data measured at constant tip height above the same area

as Figure 2e. Pairs of well-defined dots with a negative frequency shift are observed on a

submolecular scale. These features occur at the positions of the low-bias maximum in con-

stant current topographs. At the defect (dashed) no significant frequency shift is observed.

In addition, the distance between the dots matches the separation of the phenyl rings of

stilbene as indicated by the overlaid sketch.

The above observations lead to the conclusion that the low-bias protrusions mark the

position of the molecules. Comparison with previous experiments35,36 of a molecule com-

prising two identical NDI subunits, shows constant current images distinctly different from

the present ones, see Supporting Information. With respect to present cases of NDI-stilbeno-

phane and NDI-azobenzenophane, this additional piece of information shows that the NDI

subunit is indeed adsorbed to the substrate rather than facing the STM tip. To confirm

this interpretation and to conclude on the origin of the bias-dependent contrast, density

functional theory (DFT) calculations were performed (see Methods and Supporting Infor-

mation),

We obtained the optimized molecular-surface geometry displayed in Figure 2g. The NDI

subunit binds to the surface mainly via dispersion interactions with some dative contribution

from local interactions.37 Indeed, among the many possibilities to orient the molecule on the

surface, an alignment along the high-symmetry direction is preferred due to a minimization

of the four O-Ag separations. Figure 2g also shows that the O atoms are slightly bent out

9
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Figure 3: Change in Gibbs free energy ∆G as a function of the change in the Ag chemical
potential ∆µ. Black and red lines correspond to the Gibbs free energy for one and two
adatoms co-adsorbed with the molecular layer. Three regions, which are separated by dashed
lines, can be discerned in this graph: Zero adatoms are expected where the change in Gibbs
free energy becomes positive if adatoms are added, a one-adatom region where the change
in free energy minimizes for one adatom, and the two-adatom region where the free energy
minimizes for two adatoms. If we assume that the source of adatoms is single adatoms on
the clean surface, the equilibrium will be reached close to ∆µ ≈ −2.52 eV (blue arrow) as
corresponds to the adsorption energy of single adatoms. However, the chemical potential will
shift to lower (absolute value) energies as soon as the source of adatoms are instead edges
of steps or islands. Hence, the graph shows that the minimun free-energy at the system’s
chemical potential corresponds to the two-adatom phase.

of the NDI plane to approach the Ag surface.

This configuration is further validated by comparison with the experimental STM images.

We approximate the constant-current images by isocontours of local density of states (LDOS)

at finite energies.30,31 Our simulated images compare well with the experimental ones at low

bias (below 0.4 V) when the conformation depicted in Figure 2g is used. However, as the

LDOS are plotted at larger bias (i. e. energy from the Fermi level) the agreement deteriorates

Figure 2i. Moreover, the change in corrugation from the molecules to the interstitial region

at ≈ 0.6 V is not reproduced.

Careful examination of the experimental images (Figures 2a–d) shows some structure

between the molecules whose apparent height increases as V is ramped up. This may suggest

the presence of adatoms between the molecules.

Our total energy calculations predict that adatoms stably coexist with the molecular

layer. We performed a thermodynamic study of the Gibbs free energy as a function of the

chemical potential of metallic atoms. To that end, we assumed that Ag adatoms can exist on

10

Page 10 of 20

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



some part of the surface and that they are in equilibrium with the molecular layer. Hence,

the adatoms will enter the molecular layer for chemical potentials comparable to that of the

adatom. The Supporting Information contains a detailed account of our thermodynamic

calculations. We considered three distinct phases: (i) the molecular layer corresponding to

no adatoms, (ii) the molecular layer with one adatom between the two S atoms of adjacent

molecules, (iii) a second adatom, close to the previous one (see Figure 2j).

Figure 3 shows the resulting phase diagram. For a large set of chemical potentials around

the adatom free energy, the Gibbs free energy of the system is minimal for a phase with two

adatoms. In other words, our calculations predict that the phase with two adatoms is the

most likely one to be found under the experimental conditions. Adding a third adatom leads

to considerable molecular distortion and hence it is not favorable for a large range of chemical

potentials. Ag ions are known to form complexes with macrocyclic thio crowns ethers.38–40

The present case of dialkyl-sulfides appears to be related. On a Ag(111) substrate, the

charges of the substrate and a Ag adatom are redistributed to enhance the bonding of the

adatom.41 As a result, the adatom carries a positive charge mimicking a Ag(I) ion. This

scenario is different from the adatom-thiol binding on gold surfaces9,10 where the thiol ending

presents a radical S atoms due to the loss of the apical H atom from the molecule.

Our calculations thus lead us to conclude that the studied molecular layer is a hybrid

system comprising adatoms and molecules. The driving force for the integration of adatoms

is the affinity of the S-terminated edges of the molecule for electrons that enables a direc-

tional, dative-like bond and the adatom-atom interaction that facilitates the adsorption of

the second adatom.

Finally, we address the peculiar voltage-dependent changes of contrast in constant-current

STM images. More detailed experimental information is available from spectra of the dif-

ferential conductance dI/dV , Figures 4a and b for NDI-stilbenophane and NDI-azobenzeno-

phane, respectively. Spectra were recorded on (orange) and between (black) molecules.

Overall, the results from both molecules are very similar. The on-molecule spectra repro-
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duce the main features of the off-molecule data, namely a sequence of equidistant peaks

starting with a sharp rise at 0.5 V. We attribute these features mainly to vibronic excita-

tions.35 The sharp rise is consistent with the rapid increase of apparent height at this voltage

(Figure 1h).

For further analysis, it is important to keep in mind that the area between molecules

appears ≈ 0.1 nm higher in constant-current images. On molecules, the tip consequently

has to be brought closer by this distance to obtain a comparable conductance. In other

words, the amplitudes of all features observed on the molecules are approximately ten times

smaller than those between molecules. The fact that the molecular spectrum essentially

reproduces the data from interstitial positions may therefore simply reflect the strength and

corresponding lateral extent of the latter signal. The only molecular feature that is not

observed between the molecules is a small peak at ≈ 0.3 eV.

The experimental observations are only partially reproduced by our calculations. This is

largely a consequence of using the LDOS instead of a proper transport calculation to simulate

the STM images. A direct comparison of the calculated density of states reproduces some

of the observed features, however transport effects, e.g. a weak electronic coupling of the

upper subunit to the substrate, are not included in the numerical LDOS. According to the

calculated projected density of states (PDOS), the LUMO is centered slightly above the

Fermi level (Figure 4c, red), in good agreement with the molecular feature observed at

0.3 eV in the dI/dV data. The LUMO is localized to the lower subunit of the molecule,

which is consistent with its low conductance. By contrast, the LUMO+1 (blue) is localized

to the upper subunit. Its energy matches the dominant spectral features in Figures 4a and b

well. By contrast, the pz states of the adatoms (black), which also extend far into vacuum,

are directly coupled to the Ag(111) surface, and become the main conductance channel.

A simulated low-bias STM image of the structure with two Ag adatoms between the S

atoms of adjacent molecules is shown in Figure 2k. It reproduces the observed features (Fig-

ures 2a and c) quite well. A comparison of the image calculated for elevated bias (Figure 2l)
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with the corresponding experimental data (Figures 2b and d) is less favorable. Although fea-

tures develop in the interstitial region, they are much less dominant than in the experimental

images. The contrast in the calculated images is mainly due to the LUMO+1. It is local-

ized to the upper molecular subunit and thus dominates the current in a Tersoff-Hamann

description of the tunneling current. The lack of coupling to the substrate, however, is likely

to drastically reduce its conductance.

Sample Voltage (V)
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Figure 4: (a) dI/dV spectra of a NDI-stilbenophane molecule. Current feedback was opened
at V = 1.5 V and I = 1 nA. Colored dots in the topograph shown as an inset indicate
the positions of measurement. (b) The same type of data as in (a), measured on NDI-azo-
benzenophane with the feedback opened at V = 1.5 V and I = 0.1 nA. Above the molecules
(orange curves), a rapid rise of dI/dV the onset starts near zero bias in agreement with
the calculated energy of the LUMO. At interstial sites (black curves), the rise occurs at
lager voltages that match the adatom-induced states displayed in (c). All spectra exhibit
a series of approximately equidistant vibronic excitations, which are particularly clear at
the interstitial sites. This signal is attributed to the excitation of wagging CH2 modes. (c)
Density of states projected on the indicated molecular orbitals of NDI-stilbenophane (red
and blue) and on two adatoms (black).
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Conclusions

In summary, adatom dimers are intercalated between NDI-stilbenophane and NDI-azo-

benzenophanemolecules adsorbed on Ag(111). Two adatoms are compatible with the balance

of free energies on the surface, whereas three adatoms are unfavorable. The intermolecular

location of these adatoms together with an adatom induced electronic state leads to a fairly

sharp onset at 0.5 V in dI/dV spectra. At this voltages the corrugation maximum shifts

from ontop of the molecules to an interstitial position. The enhance apparent height of the

interstitial area is due to the presence of these intermolecular adatoms and their localized

electronic state.
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