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Abstract 

Most stellate trace fossils of the ichnogenus Asteriacites are attributed to asterozoan producers in 
general and the majority is the result of the work of ophiuroids. The fossil record of asterozoans is 
scarce in South America, particularly for the Mesozoic. Asteriacites specimens found in shallow- to 
marginal-marine Lower Cretaceous (upper Hauterivian-lower Barremian) deposits in the Neuquén 
Basin (Patagonia, Argentina) exhibit sculpture and morphometry typical of asteroid producers. This 
is the second record of asteroids from the Lower Cretaceous of South America. The close 
association between these Asteriacites possibly produced by astropectinids and traces assignable to 
Siphonichnidae are suggestive of a predator-prey interaction, adding palaeo-ecological information 
for community-structure reconstruction of these deposits. For ichno-taxonomic evaluation, 
morphometric parameters of Asteriacites were elaborated using simple photogrammetric procedures 
applied on negative epirelief specimens and undertraces to define edges of the stellate trace fossils. 

 

1. Introduction 

The ichnogenus Asteriacites von Schlotheim, 1820 includes stellate trace fossils (Seilacher, 1953; 
Häntzschel, 1970). Most records of Asteriacites are attributed to asterozoans as producers in general 
and the majority is the result of the work of ophiuroids (Mángano et al., 1999, and references 
therein). Such trace fossils provide a valuable record of asterozoan activities (see recent review by 
Knaust and Neumann, 2016), because the producing organisms tend to disarticulate after death very 
rapidly (e.g., Villier et al., 2004). Especially, for South America, the asterozoan record is scarce for 
both body and trace fossils (e.g., Martin-Medrano and García-Barrera, 2013; Fernández et al., 2014; 
Martínez and del Río, 2015). So far, asterozoan trace fossils are known from two units of the 
Neuquén Basin, the Jurassic Las Lajas Formation, where the presence of Asteriacites has only been 
mentioned (McIlroy et al., 2005), and the Cretaceous Mulichinco Formation where Asteriacites 
lumbricalis has been found, described and attributed to ophiuroids (Rodríguez et al., 2007; 
Fernández, 2013). 

The new finds of Asteriacites in the shallow- to marginal-marine, upper Hauterivian-lower 
Barremian Agua de la Mula Member (Agrio Formation, Neuquén Basin, Patagonia), thus, provides 
new data to the asterozoan record in general and in particular to the community structure of these 
deposits. In addition, excellently preserved primary sedimentary structures help to decipher the 
environmental setting of the Agua de la Mula Member in more detail and the habitat of the 
Asteriacites producers in general. It is the purpose of this paper (i) to describe these specimens in 
detail, (ii) to evaluate their ichnotaxonomy, (iii) to outline their palaeoecological implications, and 
(iv) to refine the palaeobathymetric interpretation of the studied deposits. 

 
2. Geological and palaeontological setting 

The Neuquén Basin is located in west-central Argentina between 34° and 41°S (Fig. 1A). It 
represents an epicontinental basin in back-arc position to the Palaeo-PacificeAndean subduction 
zone (e.g., Howell et al., 2005; Zapata and Folguera, 2005). It contains more than 7000 m thick 
marine and continental deposits being Late Triassic to Palaeogene in age (Vergani et al., 1995; 
Legarreta and Uliana, 1999). Most of the Jurassic and Early Cretaceous deposits formed in marine 
settings while temporarily enhanced subsidence and sea-level fluctuations accentuated the diverse, 
fossiliferous facies (Howell et al., 2005). 

The Agua de la Mula Member (Leanza et al., 2001; Fig. 1B) of the Agrio Formation (Weaver, 
1931) was studied in detail in the Neuquén Province. It is late Hauterivian to early Barremian in age 
(Aguirre-Urreta et al., 2007, 2008, 2015; Aguirre-Urreta and Rawson, 2012). The depositional 
environment of the Agua de la Mula Member has mainly been interpreted as an open marine ramp 
(Spalletti et al., 2001a; Lazo et al., 2005; Ballent et al., 2006). However, marginal-marine intervals 
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are recurrently present, particularly in the upper part of the unit (Pazos and Fernández, 2010; 
Fernández and Pazos, 2012, 2013; Pazos et al., 2012).  

The Agua de la Mula Member was studied in detail at Bajada del Agrio, the type locality of the 
Agrio Formation, located between 38°25'S/70°00'W and 38°26'S/70°01'W (Figs. 1 and 2). There, 
the entire unit is 470 m thick. At Bajada del Agrio, the upper part of the Agrio Formation is 
interpreted to have formed in shallow subtidal to proximal outer ramp sub-environments influenced 
by fair-weather and storm waves (e.g., Spalletti et al., 2001b). The base of the logged section is 
located at GPS coordinates 38°25'23''S/70°00'42''W. The studied interval coincides with the 
uppermost part of the stratigraphic sequence Sq3 and the lowermost part of Sq4 of Guler et al. 
(2013). Within an inner ramp setting, it occupies a transitional position between basically shoreface 
deposits with intervals of upper shoreface sediments (Fernández et al., 2018) and shallow to 
marginal-marine sediments comprising tidal-flat deposits affected by enhanced and/or fluctuating 
salinity (Fernández and Pazos, 2012). Tides influenced the depositional area considerably as 
observed in other localities (Pazos et al., 2012) rather than storms as traditionally proposed (e.g., 
Spalletti et al., 2001b). The marginal-marine, tidally influenced deposits constitute the uppermost 
63 m of the unit. 

 

 
 
Fig. 1. Neuquén Basin and stratigraphic column of the Agua de la Mula Member (Agrio Formation). (A) 

Regional map of the Neuquén Basin in west-central Argentina showing outcrops of the Agrio 
Formation (modified from Aguirre-Urreta et al., 2015). (B) Generalized stratigraphic column of the 
Agua de la Mula Member. Note the studied interval, approximately 340 m above the contact with the 
underlying Avilé Member (Agrio Formation). Modified from Aguirre-Urreta et al. (2007). 
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Figure  2. 
  
Logged section 
beginning 340 m 
above the base of 
the Agua de la 
Mula Member at 
Bajada del Agrio 
and ending at an 
oolitic limestone 
level about 60 m 
below the base of 
the Huitrin Fm. 
(see Fernández 
and Pazos, 2012). 
Depositional se-
quences taken 
from Guler et al. 
(2013). 
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The Agua de la Mula Member contains varied and abundant macrofossils including bivalves, corals, 
ammonoids, gastropods, serpulids, sponges, echinoids, decapods, etc. (e.g., Cichowolski, 2003; 
Lazo et al., 2005, 2009; Rodríguez, 2007; Taylor et al., 2009; Aguirre-Urreta et al., 2011; Cataldo, 
2013; Luci et al., 2013). Some groups are only known through their trace fossils (e.g. xiphosurids; 
Fernández and Pazos, 2013). So far, there is no record of asteroids in the unit. 
 
3. Material and methods 

The logged section begins 340 m above the transgressive base of the Agua de la Mula Member and 
ends in an oolitic-skeletal bar (Figs. 1B and 2). The latter represents the first level of the section 
analyzed in detail by Fernández and Pazos (2012). To provide a sedimentological and 
environmental framework, in total 73 m of over- and underlying strata were logged (Figs. 2 and 3). 
While the Agua de la Mula Member is considered as homoclinal siliciclastic carbonate ramp (e.g. 
Lazo et al., 2005; Guler et al., 2013), the depositional settings were accordingly classified based on 
the scheme of Burchette and Wright (1992). 

Two specimens of stellate trace fossils were studied in detail (see field photographs on Figs. 3D and 
4). Specimens A and B were found at 17.8 m and 18.6 m of the logged section, respectively (Fig. 
2). Because of their occurrence in the field, the specimens were not recoverable. For enhancement 
of certain morphologic characteristics of the trace fossils, the images were processed with the 
photogrammetric software Agisoft PhotoScan Professional 1.0.4 build 1847 (64 bit), using standard 
methodology (e.g. Mallison and Wings, 2014). 3D meshes with texture overprint were used to 
enhance the imprints within each arm (Fig. 4E). 3D surfaces with shaded relief and contour lines as 
well as different profiles perpendicular to the arm axes were created using the software Golden 
Surfer (Fig. 4D). Given the scarcity of specimens the photogrammetric analyses were only 
accessory in the description as visual aid to better define the edge of the trace fossils (Fig. 4E). 
Morphometric analysis and ichnotaxonomic evaluation is based on Knaust and Neumann (2016). 

 
4. Depositional setting 

4.1. Observations 

The studied section is characterized by coarsening- and shallowing-upward packages (Figs. 2 and 
3). They range from 4 to 10 m in thickness (Figs. 2 and 3A) and are considered as parasequences in 
a sequence stratigraphic framework (e.g., Cichowolski et al., 2012). These packages have thin 
bioclastic conglomerates at the base, indicating episodes of reduced siliciclastic input. Above follow 
massive or laminated mudstones, thin lenticular and wavy bedding and finally fine- grained 
sandstones either massive or with wave-ripple lamination. Within the sandstone interval, 
occasionally beds with current-ripple lamination, swaley cross-stratification, and in some cases 
syndepositional deformation structures are present. At the top of a package, sandstone bed surfaces 
may exhibit wrinkle structures (Fig. 3B), interference ripples and parting lineation. Some ripples are 
flat-topped (Fig. 3E and F). 

The Asteriacites specimens were found in two levels with dominant wave-ripple lamination (Fig. 
3C and D) in the package beginning at 14.5 m above the base of the logged section (Fig. 2). Besides 
Asteriacites, other trace fossils occur in the logged section, such as cf. Arenicolites Salter, 1857, 
Bolonia lata Meunier, 1886, Chondrites ?intricatus (Brongniart, 1823), Gyrochorte comosa Heer, 
1865, Rhizocorallium Zenker, 1836, Siphonichnus Stanistreet et al., 1980, tetrapod swimming 
traces, arthropod trackways and invertebrate trails. Chondrites, Gyrochorte and Rhizocorallium are 
also present in the overlying interval on top of the Agua de la Mula Member (Fernández and Pazos, 
2012). 
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Fig. 3.  Examples of sedimentary features of the logged section. (A) Example of coarsening- and shallo-

wing-upward packages. Graphic scale = 1 m. (B) Wrinkle structures. Graphic scale = 1 cm. (C) 
Wave ripples. Graphic scale = 6 cm. (D) Asteriacites, specimen A, and associated ripples. Graphic 
scale = 2 cm. (E) and (F) Flat-topped ripples. Rock pick = 33 cm long. Coin = 2.1 cm in diameter. 
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4.2. Interpretation 

The logged section is interpreted to represent marginal-marine deposits accumulated in a proximal 
mid-ramp to inner ramp setting (cf. Burchette and Wright, 1992). Wave ripples indicate a 
bathymetric range above the fair-weather wave base, while swaley cross-stratification is a 
consequence of storm events in rather shallow water (e.g., Dumas and Arnott, 2006). The massive 
sandstone beds are either the result of intense indistinct bioturbation or rapid deposition from 
decelerating flows or wave pumping in association or not to soft-sediment deformation (e.g., 
Gingras et al., 2014; Liu et al., 2017). Intense bioturbation is the most likely process in intervals 
without syndepositional deformation. The heterolithic deposits are interpreted to have accumulated 
in a shallowing-upward setting characterized by mixed traction and suspension deposition forming 
first lenticular and then wavy bedding with oscillatory ripples that become replaced by current 
ripples (e.g., Reineck and Singh, 1980). The association of wrinkle structures with interference and 
flat-topped ripples suggests a marginal-marine setting. Interference ripples are typical of a very 
shallow depositional setting above the fair-weather wave base, while the flat-topped ripples reflect 
temporary subaerial exposure (e.g., Reineck and Singh, 1980). Although wrinkle structures occur 
within a wide palaeobathymetric range (e.g., Mata and Bottjer, 2009), they are most common in 
marginal-marine environments with shallow water experiencing intermittent exposure, such as tidal 
flats (e.g., Allen, 1984; Hagadorn and Bottjer, 1997). In addition, wrinkle structures have also been 
reported from a marine-marginal setting at the top of the Agua de la Mula Member exposed in 
another locality. There, clear evidence of tidal influence and temporary subaerial exposure have 
been observed (Fernández and Pazos, 2013). Indicators of subaerial exposure are present in three 
levels within the logged section, but not in the Asteriacites-bearing levels. Consequently, these 
intervals were formed under shallow subtidal conditions above fair-weather wave base. 

 
5. Ichnology 

5.1. Ichnogenus Asteriacites von Schlotheim, 1820 

Type ichnospecies. Asteriacites lumbricalis von Schlotheim, 1820; by subsequent designation of 
Seilacher (1953). 
Diagnosis. Star-shaped, commonly pentamerous imprints and shallowly excavated pits with arms 
grading from a central area and continuously tapering distally (modified by Knaust and Neumann, 
2016). 
Remarks. The latest revision of Asteriacites applied hierarchically ordered ichnotaxobases: The 
overall appearance defines the ichnofamily Asteriacitidae, while the basic morphology 
differentiates Asteriacites from related ichnogenera (Knaust and Neumann, 2016). Sculpture was 
commonly applied as an ichnospecific ichnotaxobase (e.g., Seilacher, 1953; Crimes and Crossley, 
1991), but due to its possible taphonomic bias it is now considered to be of subordinate value 
compared with other morphometric data such as the length/width ratio of the arms (Knaust and 
Neumann, 2016). 
Description. Two specimens of pentamerous imprints preserved as negative epirelief (specimens A 
and B; Fig. 4). The sand laminae wherein the imprints are preserved are approximately 2–3 mm 
thick, while the whole bed in both cases is 3–4 cm thick. The arms are mostly straight except a 
slight curvature of one of them (Fig. 4D). The length from the central point to the tip of each 
individual arm is between 54.1 and 64.5 mm in specimen A (Fig. 4A), and 51.2 and 60.7 mm in 
specimen B (Fig. 4C). The largest width of the arms measured at their base varies slightly in each 
arm between 28.8 and 30 mm in specimen A and between 18.1 and 27.5 mm in specimen B. Some 
of the arms appear diffuse at their tips. The cross-sectional geometry of the arms is roughly V-
shaped (Fig. 4D). Within each specimen, two areas are defined. The inner area close to the median 
line of an arm is 2–4.5 mm deep, sculptured, and rather regular in outline, while the outer area is 
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less deep (1–2 mm), unornamented or finely striated, and less regular in outline (Fig. 4B). The 
imprints in both areas are oriented perpendicular to oblique to the arm axes. 
 
5.2. Associated trace fossils 

In the levels where the Asteriacites specimens occur, Bolonia lata and Gyrochorte comosa are 
common (Fig. 2). While Gyrochorte comosa is quite similar to those found further up in the section, 
as described by Fernández and Pazos (2012), Bolonia lata is reported for the first time from this 
unit. However, a detailed description of these trace fossils is beyond the scope of this study. 
Vertical burrows with a circular to oval cross-section, composed of a central core and surrounded 
by a concentric mantle, are assigned to the ichnogenus Siphonichnus (e.g., Knaust, 2015). These 
burrows are found closely associated with the Asteriacites traces (Fig. 4A, D, E). Asteriacites and 
the associated burrows do not cross-cut each other. 

 

 
 
 
Fig. 4. Field photographs of Asteriacites specimens and examples of image analyses used as visual aid for 

the description. Graphic scales = 1 cm in A, C and D, 2 mm in B and E. (A) Asteriacites, specimen A. 
Si = trace fossil assignable to Siphonichnus. Si? = trace fossil assigned to Siphonichnus with doubts. (B) 
Detail of the rectangle in A showing part of the arm imprint; line drawing outlining striation features. 
WS = wide striations, RS = medium-sized striations, FS = fine striations. The first two types of striae 
are restricted to the inner area of the arm imprint (as defined in text), while fine striations are found in 
the outer area. (C) Specimen B. (D) Shaded grey 3D photogrammetric model of specimen A and 
example of a relative morphometric profile (location marked with white line) perpendicular to the arm 
axis. The Xs mark the areas of the profile that helped defined the trace boundary. (E) Detail of the white 
rectangle marked in D showing example of delimitation of the trace boundary. 

 

 



9 
 

5.3. Ichnotaxonomic and preservational discussion 

Three ichnospecies of Asteriacites are regarded as valid (Knaust and Neumann, 2016): A. 
lumbricalis von Schlotheim, 1820, A. stelliformis (Miller and Dyer, 1878), and A. quinquefolius 
(Quenstedt, 1876). A. lumbricalis is characterised by slender arms distinct from a central disc-
shaped area (Knaust and Neumann, 2016), a feature not observed in the studied specimens. A. 
stelliformis presents arms having a length:width ratio >2, while in A. quinquefolius this ratio is <2 
(Knaust and Neumann, 2016). The morphometric analysis of the studied specimens shows that for 
the arms the length:width ratio varies between 1.8 and 2.9. For 7 of the 10 arms the length:width 
ratio matches the value typical of A. stelliformis (>2). In specimen B the length:width ratio is >2 for 
every arm, but for specimen A three arms exhibit a length:width ratio <2 being characteristic for A. 
quinquefolius. In addition, the arm sculpture with respect to morphology and distribution of 
imprints resembles more that of the holotype of A. quinquefolius (Seilacher, 1953, pl. 10, fig. 2), 
while the striae are not continuous as typical of A. lumbricalis (Seilacher, 1953, 2007; Mángano et 
al., 1999; Knaust and Neumann, 2016; Ishida et al., 2017). Based on the morphometric parameters 
of the current ichnospecies diagnoses, specimen A is assigned to A. stelliformis, while specimen B 
could be assigned to A. stelliformis or A. quinquefolius. However, because of the sculpture and 
while the majority of the arms shows a length:width ratio <2, an assignment to A. quinquefolius is 
suggested. It has been found in other Asteriacites that the width:length ratio differs between the 
arms of the same specimen, suggesting two different ichnospecific assignments (Singh et al., 2017). 

The Asteriacites traces are preserved as negative epirelief in two separate sandstone beds showing 
dominance of wave-ripple lamination (Fig. 2). They are covered by thin mudstone layers. In 
neoichnological experiments with burrowing asteroids (astropectinids), rather indistinct depressions 
are formed on the sand surface, while the undertraces exhibit the structures more clearly (Seilacher, 
1953). The outer arm area observed in the studied specimens (Fig. 4B) resembles that of the surface 
impression shown by Seilacher (1953, fig. 1a), while a rather sharp sculpture of the inner area 
resembles that of the undertrace. Furthermore, in aquarium well-preserved surface impressions 
show small mounds of sediment on both sides of the arms (e.g., Ishida et al., 2017). However, such 
structures are not present in the studied traces. They are, therefore, considered to represent an 
intermediate case between the two preservational types described by Seilacher (1953). Because the 
depth of the epirelief (3–5 mm) exceeds the thickness of individual sand laminae (1–2 mm) that 
formed during wave action, it is possible that the upper part (outer area) of the trace was affected by 
sand deposition during trace production and represents the original surface imprint, while the lower 
part (inner area) remained nearly unaffected or even could represent an undertrace. In the parts 
where the outer areas are unornamented, redeposition of sand by wave-pumping effects (Liu et al., 
2017) and/or microavalanches due to originally unstable parts of the flanks cannot be ruled out as 
processes that “smoothed” the original profile and/or sculpture. In other cases, where specimens 
assignable to A. stelliformis are attributed to asteroids (e.g., Ishida et al., 2013, fig. 3, specimen with 
arm length:width ratio >2), preservation as shallow undertrace would explain nicely the high 
length:width ratio of arm imprints, which would be lower for surface imprints of the same 
specimen. 

 

6. Palaeoecological implications 

Asteriacites is attributed to both asteroids and ophiuroids as producers. Usually considered a resting 
trace, it documents shallow burrowing. The movements of arms and tube feet might result in arm 
impressions wider than the producing body parts, and distinctive sculpture inside the trace, 
respectively (Seilacher, 1953, 2007). Asteroids usually have too broad arms to move the sediment 
from one side of the arm to the other by a single tube foot. Seilacher (1953) described the imprints 
of the tube feet of asteroids as discontinuous and irregular while ophiuroids produce transverse and 
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continuous striae. Recent neoichnological experiments focused on tube-feet movement and the 
resultant striations ornamenting the traces of asteroids and ophiuroids (Ishida et al., 2017). 

For example, in the case of asteroids, in particular astropectinids, after forming a shallow burrow 
and starting to move again in a particular direction, the striations differ within each arm depression. 
The striations are wider and more regular in the half of the arm imprint opposite to the direction of 
starfish movement, while they are fine and irregular in the other half. In the case of ophiuroids, the 
striations are fine, regular and continuous from one side of the arm to the other. In both cases, the 
striations are mostly perpendicular to the arm axis (Ishida et al., 2017). 

The sculpture of the studied specimens resembles that resultant from the work of tube feet of 
asteroids. Along each arm, areas with different ornamentation are found (see above). While the 
striations are mostly perpendicular to the arm axis, they are not continuous (Fig. 4B). In 
neoichnological experiments, tube-feet movement was observed on the surface of the substratum as 
well as on the ventral and lateral sides of the glass beaker, and striations form at different depths 
(Ishida et al., 2017). Thus, two areas having different striations are likely to be present in shallow 
undertraces. 

A. stelliformis can be produced by both ophiuroids and asteroids, but A. quinquefolius is interpreted 
to be produced only by asteroids (Knaust and Neumann, 2016). In summary, morphometric data 
and sculpture of the Asteriacites in particular the arm-width:arm-length ratio point to asteroids as 
producers of the studied specimens. They were produced in very shallow marine, subtidal 
environments as recorded in the Asteriacites-bearing levels. 

So far there is only one record of asteroids from the Neuquén Basin from the Mulichinco Formation 
and was assigned to Tethyaster antares Fernández et al., 2014, belonging to the family 
Astropectinidae. Comparison of morphometric data between asteroid body fossils and trace fossils 
has been used as tool for identification of possible producers (Ishida et al., 2013). The 
armlength:arm-width ratio of T. antares is between 2 and 2.26. When compared to the ratio given 
for asterozoan trace fossils by Knaust and Neumann (2016) it mostly coincides with that typical of 
A. stelliformis (>2), but it is also within the range of A. quinquefolius (<2). Therefore, the only 
asteroid species known from the Lower Cretaceous, in particular early Valanginian of the Neuquén 
Basin (Fernández et al., 2014), has a similar arm-length:arm-width ratio as the studied asterozoan 
trace fossils found in the Agrio Formation (late Valanginian-early Barremian). 

Extant astropectinids and paxillosidans in general are semiinfaunal, capable of self-burial in soft 
sandy or muddy substrates and are common in marine settings from intertidal areas to the deep sea 
(Heddle, 1967; Blake and Aronson, 1998; Jagt, 2000; Byrne and O'Hara, 2017). These starfish are 
voracious predators that usually feed on other invertebrates like bivalves and worms. They search 
for prey and shallowly dig into the substrate to get it while extruding the stomach (Ortega et al., 
2011 and references therein). Self-burial of asteroids evolved in relation to the presence of fascioles 
that allow unobstructed water flow near the animals's body (Blake and Aronson, 1998; Blake and 
Reid, 1998). These structures were already present in Valanginian times (Fernández et al., 2014). 
Therefore, the producers of the studied Asteriacites were capable to burrow. Consequently, the 
studied Asteriacites could be associated with different behaviour types: (i) not-sustained resting 
(cubichnia) while shallowly burrowing; (ii) temporally prolonged shallow burial, typical of a 
shallow semi-infaunal life style; (iii) active searching for prey within the uppermost centimeters of 
the substrate; or (iv) combination of (i) to (iii). 

Trace fossils of the ichnofamily Siphonichnidae are common in marginal-marine and shallow-
marine deposits. They are produced by infaunal bivalves adjusting their position within the 
sediment (Knaust, 2015 and references therein). The presence of these trace fossils in close 
association with Asteriacites are suggestive of a behaviour of the Asteriacites tracemaker to burrow 
shallowly to locate prey. This adds information about the epifaunal-infaunal structure of the studied 
deposits and possible ecological interactions. In the modern environments, some starfish do not dig 
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randomly, but accurately locate and capture infaunal bivalves; they produce a pit often marked by 
furrows, which mirror the position of the arms (e.g., Smith, 1961; Doering, 1982). Although a 
possible predator-prey interaction is highly likely for trace fossils of asteroids and infaunal bivalves, 
it has rarely been reported (Quenstedt, 1858; Seilacher, 1953; Mángano et al., 1999). Asteriacites 
produced by asteroids have been usually linked to concealment and hiding activities (e.g., 
Häntzschel, 1970; Seilacher, 2007). Deeper burrows attributed to asterozoan activities are usually 
considered typical of dwelling, escaping or hunting purposes (Knaust and Neumann, 2016). 
Nevertheless, surface trails and shallow burrows produced by modern sea stars have been attributed 
to prey detection (Martin, 2013). 

The latest neoichnological experiments provided additional insights into the morphology of shallow 
asteroid burrows and their sculpture (e.g., Ishida et al., 2017). Future neoichnological studies with 
asteroids and prey such as bivalves might help clarify the resultant morphology of the shallow 
burrows while the tracemaker is involved in prey detection and/or hunting, short-term vs. long-term 
burial, etc. 

 
7. Fossil record of asteroids in South America 

Fossil asteroids are scarce in South America. Body fossils are known from the Lower Devonian of 
Argentina and Brazil (Melo, 1988; Haude, 1995), the Upper Cretaceous of Brazil (Maury, 1930; de 
Castro Manso, 2006), and from Lower Cretaceous deposits in Argentina (Fernández et al., 2014). In 
Chile, Lower Cretaceous Asteriacites have been assigned to A. lumbricalis and ascribed to asteroids 
(Bell, 2004). So far it is the only South American record of trace fossils with asteroids as putative 
producers. Based on the figured material and the latest revision of the ichnogenus by Knaust and 
Neumann (2016), the specimens described by Bell (2004) should be classified as A. stelliformis. 
The arm length:width ratio ranges between 4.4 and 5.5 and hence, it is significantly larger than the 
established threshold value of 2. Furthermore, there is “no evidence of a central disc” (Bell, 2004, p. 
56). Regarding the assignment of producers, when present the striae appear to be continuous from 
side to side, as typical of ophiuroid trace fossils. Therefore, this material needs to be revised, but it 
is currently unavailable (pers. comm. Servicio Nacional de Geología y Minería, Chile). 

 

8. Conclusions 

Stellate trace fossils are described in detail for the first time from the Lower Cretaceous Agrio 
Formation (Neuquén Basin, Patagonia). One specimen is assigned to Asteriacites stelliformis, and 
the other tentatively to A. stelliformis or A. quinquefolius, because three arms match the 
morphometric characteristics of the former ichnospecies and two arms those of the latter. However, 
the sculpture resembles that of A. quinquefolius. The sculpture and morphometric data imply 
asteroids as producers of these Asteriacites. 

The clear definition of the boundary in asterozoan trace fossils, necessary to apply the 
morphometric parameters used in their ichnotaxonomic assignment can be improved in negative 
epirelief specimens through simple photogrammetric procedures. 

The Asteriacites represent the second record of asteroids in the Neuquén Basin, the first evidence of 
this group in the Agrio Formation, and one of the very few finds in South America at all. Until now, 
Astropectinidae is the only family of asteroids known from the Neuquén Basin and individuals 
belonging to it are considered as possible producers. The only astropectinid species described in the 
basin and the studied Asteriacites have a similar arm length:width ratio supporting the attribution to 
astropectinids. These animals are active predators capable of shallow burrowing. The close 
association of Asteriacites with bivalve traces assigned to Siphonichnidae suggests a predator-prey 
interaction between asteroids and bivalves in these deposits, adding information about the 
community structure. 
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The studied interval represents shallow-marine to marginal-marine deposits in a proximal mid-ramp 
and inner ramp setting. Interference and flat-topped ripples and wrinkle structures point to very 
shallow water depth even implying temporary subaerial exposure. Therefore, the depositional 
environment for this part of the Agrio Formation is shallower than previously assumed. 
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