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We theoretically investigate the orbital effects of an in-plane magnetic field on the spectrum of
a quantum dot embedded in a two-dimensional electron gas (2DEG). We derive an effective two-
dimensional Hamiltonian where these effects enter in proportion to the flux penetrating the 2DEG.
We quantify the latter in detail for harmonic, triangular, and square potential of the heterostructure.
We show how the orbital effects allow one to extract a wealth of information, for example, on the
heterostructure interface, the quantum dot size and orientation, and the spin-orbit fields. We
illustrate the formalism by extracting this information from the data measured in Refs. 9 and 11.

I. INTRODUCTION

The two-dimensional electron gas (2DEG) is a versa-
tile platform for a host of devices and applications of
nanotechnology.1 In experiments with spin qubits real-
ized in gated quantum dots based on 2DEGs,2–4 it is
usual to use magnetic fields which are applied parallel to
the 2DEG plane (in-plane fields), and which are large,
of the order of Tesla. The former is because, unless the
quantum Hall effect physics is aimed at, strong orbital
effects of the Lorentz force are undesirable. The second
is because many tasks require an appreciable energy con-
trast (say, with respect to the temperature) of the spin
opposite states, relying on the inherently small Zeeman
splitting.

Necessarily, the assumption of the electron gas be-
ing quasi-two-dimensional breaks down once the in-plane
field becomes too large, roughly when the magnetic
length

√
~/eB becomes comparable to the width of the

2DEG. To give an example, for the 2DEG width of 8
nm, this occurs at about 10 Tesla. The typical field
strengths of a few Tesla are therefore not negligibly small
compared to this crossover field, and one expects siz-
able effects which go beyond the quasi-two-dimensional
model.5,6 Quantification of such orbital effects of an in-
plane field on spectra of quantum dots is what we pursue
here.

We find that these effects are well captured by a renor-
malization (increase) of the effective mass along the axis
which lies within the 2DEG plane and is perpendicular
to the magnetic field. We give the renormalization factor
as a function of the flux corresponding to the in-plane
component of the magnetic field penetrating an area ex-
pressed as a square of an effective 2DEG width. We
relate the latter to the nominal width for 2DEGs with
the most typical confinement profiles, namely harmonic,
triangular, and rectangular.

We propose a two-dimensional effective model which
remains reliable even for very large fields, well beyond
the crossover field. The corresponding Hamiltonian is
given in Eq. (42) and it reduces the presence of the third

dimension to a single parameter, the above mentioned
effective 2DEG width. It gives essentially exact results if
the magnetic field is purely in-plane and the heterostruc-
ture confinement is harmonic, and compares well with a
fully 3D description in other cases, including an apprecia-
ble out-of-plane component of the magnetic field, which
is, for example, typical for designs with micromagnets.7,8

Perhaps the most important point we want to make
in this work is that the orbital effects of in-plane fields
should not be viewed as a nuisance, invalidating the sim-
ple model being a 2DEG with a zero width. Namely, as
the direction of the external magnetic field can be ex-
perimentally well controlled, these effects can reveal the
quantum dot orientation within the 2DEG plane, as well
as its size in all three directions.9 This, so far missing,
spectroscopic tool is essential for a quantitative assess-
ment of, for example, the spin-orbit fields,10 or the hy-
perfine electron-nuclear interaction, and the related lim-
its on the spin relaxation,11,12 dephasing,13 or measure-
ment fidelities.15 To illustrate the power of these tools,
we use them here to fit the strengths of the spin-orbit
interactions in a GaAs quantum dot. We find excellent
agreement with values extracted from an independent fit
based on the directional variation of the spin relaxation
time done in Ref. 11. It demonstrates an unprecedented
level of control over, and understanding of, spin qubits
in quantum dots.

The article is structured as follows. In Section II, we
introduce a three-dimensional effective-mass model of a
quantum dot. In Section III, we derive the effective 2D
Hamiltonian which includes the effects of the in-plane
field in the leading order by a perturbation theory. Here,
we also give details on the effective width for various
2DEG profiles. In Section IV, we discuss the effects ex-
pected in the dot spectra. In Section V, we generalize the
Hamiltonian beyond the perturbative regime of modest
magnetic fields. In Section VI we illustrate the usefulness
of our results by extracting the 2DEG interfacial electric
field from experimental data, with which one can calcu-
late the spin-orbit fields. Several auxiliary results are
given in three appendices. Appendix A contains details
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on the matrix elements needed to convert the spectro-
scopic data to the heterostructure-interface characteris-
tics. Appendix B gives, for reference, the spectrum of a
general quadratic Hamiltonian, which then includes also
our effective 2D Hamiltonian. Appendix C contains the
evaluation of the formulas for the strengths of the linear
spin-orbit interactions.

II. MODEL

We consider a quantum dot defined by gates on top
of a two-dimensional electron gas created by a semicon-
ductor heterostructure. Since we are interested in effects
which go beyond the lowest order approximation, being
that of a quasi-two-dimensional dot, we need a three-
dimensional model to start with. The k · p theory based
on the envelope-function approximation is an established
method to obtain models which are simple enough for
analytical calculations, yet reliable in treating the effects
of the bandstructure and the sharp interface of the het-
erostructure.

A. Zeroth order effective mass Hamiltonian

The leading-order term for the conduction band of a
zinc-blende semiconductor, such as GaAs, is

H =
P2

2m
+ V (R). (1)

It describes particles with a quadratic energy dispersion
which move in the externally imposed confinement po-
tential V (R), created by gates and the heterostructure
composition. Here R is the three-dimensional position
vector, and

P = −i~(∂x, ∂y, ∂z) + eA, (2)

is the canonical momentum, with e the absolute value of
the electron charge, and A the vector potential of the
magnetic field B, through which the orbital effects enter.
On this level, the only effect of the crystal is that the
effective parameter, the mass m, differs from the value of
the electron mass in vacuum.

Before continuing, let us make a comment. Here, we
analyze the magnetic field effects on the orbital energies
of the dot. The magnetic field influences, similarly, the
spin structure of the dot states. The latter effects are
smaller than the former, analogously to the Zeeman en-
ergy being smaller than the orbital energy. We do not
include the spin dependent effects in Eq. (1) and report
on these elsewhere.14

B. In-plane and perpendicular coordinates

We assume that the heterostructure is grown along the
[001] crystallographic axis, which is in further called the

perpendicular direction, with the unit vector ẑ, and the
corresponding coordinate z. The remaining two crys-
tallographic directions are denoted as x̂ = [100] and
ŷ = [010], and we call them in-plane. The separation
to perpendicular and in-plane coordinates is motivated
by strong anisotropy of the three-dimensional confine-
ment. Namely, it is a sum of a harder perpendicular
(heterostructure) part, v(z), and a softer in-plane (quan-
tum dot) part V2D(x, y). Correspondingly, we resolve
the three-dimensional position vector as R = (r, z). For
further convenience, we introduce the in-plane magnetic
field component, b = (Bx, By). If the magnetic field is
constant, what we assume, it is useful to choose the fol-
lowing vector potential,

A = (z − z0)b× ẑ +
1

2
Bz ẑ× r, (3)

corresponding to the in-plane and out-of-plane magnetic
field components, respectively. Dropping the zero z com-
ponent from these two vectors, we introduce

a|| = (z − z0)(By,−Bx), (4)

with the constant z0 specified below, and

a⊥ =
1

2
Bz(−y, x). (5)

Both a|| and a⊥ are in-plane vectors. Finally, we write
the momentum as P ≡ (p + ea||, pz), introducing

p = −i~(∂x, ∂y) + ea⊥

= −i~(∂x, ∂y) +
eBz

2
(−y, x), (6a)

pz = −i~∂z, (6b)

as the in-plane and out-of-plane kinetic-momentum
operator16, respectively. The former includes the effects
of the perpendicular component of the magnetic field,
which is the only way the orbital effects of the magnetic
field enter in the quasi-two-dimensional limit.

C. Mixing due to orbital effects of in-plane field

With the above definitions, the Hamiltonian in Eq. (1)
can be written as

H = H2D +Hz +H ′B . (7)

The first term contains only in-plane coordinates,

H2D =
p2

2m
+ V2D(r), (8)

and the second one only the perpendicular coordinate,

Hz =
p2
z

2m
+ v(z). (9)
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The two sets of coordinates are coupled by the in-plane
magnetic field,

H ′B =
e

m
a|| · p +

e2

2m
a2
|| ≡ H

′
1 +H ′2, (10)

where we denoted separately the term linear and
quadratic in the in-plane magnetic-field components as
H ′1 and H ′2, respectively. Before continuing, it is useful
to note the following identity,

H ′1 =
[ e
i~

a|| · r, H2D

]
, (11)

which can also be written as
e

i~
a|| · r = L−1

2D(H ′1), (12)

using L2D(X) ≡ [X,H2D] as the definition of the Liou-
ville operator L2D corresponding to H2D, the in-plane
Hamiltonian.

D. Symmetries of the confinement potentials

Below, we derive results in a general form which does
not refer to the specifics of the confinement potentials.
However, it is useful to consider certain typical cases.
Concerning the dot, we take an anisotropic harmonic con-
finement,

V2D(r) =
~2

2m

(
x2
d

l4x
+
y2
d

l4y

)
, (13)

parameterized by two confinement lengths, lx and ly, or,
alternatively, the associated energies ~ωx,y = ~2/ml2x,y.
If the two are equal, the quantum dot has rotational sym-
metry in the plane and the eigenstates of H2D form the
Fock-Darwin spectrum. If lx 6= ly, the dot has two re-
flection axes x̂d, ŷd which are in general misaligned from
the crystallographic axes x̂, ŷ by angle δ. Apart from
symmetry, the in-plane excitation energies are of inter-
est. We denote them by E∗x and E∗y . For the harmonic
confinement at zero magnetic field, E∗x,y = ~ωx,y, and
we denote the energy of this order as ~ω. A finite per-
pendicular magnetic field will change the value of this
energy compared to its Bz = 0 value,17–19 but we will
not consider cases where this effect would be substantial.

Concerning the heterostructure confinement, we will
include three typical choices. The first is a harmonic
confinement,

vH(z) =
~2

2ml4z
z2, (14)

It represents structures with ẑ-reflection symmetry.
Though it might be realized by modulating the het-
erostructure composition,20 rather than being microscop-
ically faithful, its advantage is that it results in an an-
alytically solvable model (see Appendix B). The second

one is a rectangular confinement,

vR(z) =

{
0, if z ∈ 〈−lz/2, lz/2〉,
V0, if z /∈ 〈−lz/2, lz/2〉.

(15)

It is a more realistic microscopic description than Eq. (14)
for a symmetric quantum well. Here, V0 is the offset of
the conduction bands of the two materials defining the
quantum well and lz is its nominal width. The third
choice is a triangular potential,

vT (z) =

{
V0, if z < 0,
eEextz, if z > 0, (16)

which represents asymmetric cases, for example a single
interface heterostructure with the band offset V0, and the
interface electric field Eext, which typically arises from a
remote doping layer. With this choice, the eigenfunctions
can be expressed by Airy functions. They are given, to-
gether with several matrix elements which will be needed
below, in Appendix A. Unlike for previous choices, there
is no nominal length lz in Eq. (16). It is, however, useful
to define it by eEext ≡ ~2/2ml3z [see Eq. (A8) in Ap-
pendix A].

To allow for comparison of confinements with differ-
ent shapes, we use the following common notation. The
“nominal” length lz is considered as a parameter defin-
ing the confinement, which is fixed by the fabrication,
and therefore does not change (for example, upon the
application of the magnetic field). This fixed length de-
fines an associated energy scale ~ωz = ~2/ml2z . These
nominal parameters are usually not directly accessible.
Instead, spectroscopy can reveal the excitation energies.
We denote by E∗z the energy difference of the lowest two
subbands—the subband excitation energy—and we asso-
ciate the length l∗z to it by E∗z ≡ ~2/ml∗2z . These quan-
tities will change with the magnetic field. Also, at zero
magnetic field, even though for the harmonic potential
l∗z = lz, these two lengths differ by factors of order one
for the other two potentials (see Appendix A).

The ratio of the in-plane and perpendicular confine-
ment energies, η = ~ω/~ωz, quantifies how much the dot
deviates from the idealized, purely quasi-two-dimensional
case (for which η = 0). We call this parameter the as-
pect ratio. As we are interested in quantum dots that
are at least approximately two-dimensional, we will treat
this ratio as a small parameter. The importance of the
orbital effects of the in-plane field, which are the content
of this work, are proportional to η. A typical value in
gated dots is η = 1/10, or smaller. The geometry of the
structure is summarized in Fig. 1.

III. GAUGE INVARIANT PERTURBATION
THEORY

We now perform a perturbative calculation of the or-
bital effects of the in-plane magnetic field. We will use
the second order degenerate perturbation theory and pay
special attention to the gauge invariance.
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FIG. 1. Geometry of the setup. The quantum dot is de-
fined at the heterostructure interface which is perpendicular
to the ẑ = [001] axis, and has nominal width lz. In the in-
terface plane, the main axis of the quantum dot confinement
x̂d makes angle δ with the crystallographic axis x̂ = [100].
The magnetic field has an out-of-plane component Bz, and
the in-plane component b, the latter making angle φ with x̂.

A. Basis

The orbital effects of the in-plane field arise through
H ′B , Eq. (10). This term is treated as a perturbation,
so that the rest of the Hamiltonian defines the basis. It
spans a linear space defined by basis states

|αi〉 = |α〉 ⊗ |i〉, (17)

with the corresponding energy Eαi. The basis state is
a tensor product of an eigenstate of the heterostructure
Hamiltonian Hz, Eq. (9), with the corresponding wave
function

ψα(z) = 〈z|α〉, (18)

and an eigenstate of the 2D quantum dot Hamiltonian
H2D, Eq. (8), with the corresponding wave function

Ψi(r) = 〈r|i〉. (19)

We will use the Greek and Roman letters, respectively, as
labels of the two sets. Also, we use the standard nomen-
clature and call a subset of Eq. (17) with a fixed α a
subband.

We note that it might be tempting to include H ′2,
which is a function of z only, into Eq. (9). Especially
for the harmonic potential, it is simple to find the spec-
trum of such a redefined Hamiltonian Hz analytically,
and find immediately, for example, the expected diamag-
netic energy shifts of the subbands. This choice would,
however, make the basis gauge dependent, and this not
only for the wave functions but also the energies. The
gauge invariance of the total Hamiltonian eigenenergies
would then be reinstated order by order from the effects
of H ′1. We therefore find it natural to keep H ′2 as a part
of the perturbation, making the gauge invariance much
more transparent, as we show shortly below.

B. Second order perturbation theory

Once the basis has been set, we are ready to evaluate
the effects of H ′B . We use the degenerate perturbation

theory of Ref. 21, which derives an effective Hamilto-
nian describing a quasi-degenerate subspace.1 For us,
this subspace is the subband α. Up to the second order
in the in-plane magnetic field, the matrix elements of the
effective Hamiltonian for the α-th subband are

H
(α)
ij = 〈αi|H ′1 +H ′2|αj〉+

1

2

∑
βk

′
〈αi|H ′1|βk〉

× 〈βk|H ′1|αj〉
(

1

Eαi − Eβk
+

1

Eαj − Eβk

)
.

(20)

The sum runs over all values of the indexes β and k except
the following two pairs, (βk) 6= (αi) and (βk) 6= (αj).

We now split the sum over the subband index β to the
term β = α and the rest, β 6= α. Adding the former
to the first term of Eq. (20) gives, with the help of the
identity in Eq. (11), the following operator

H
(α)
intra = H ′1

α
+H ′2

α
+

1

2

[
H ′1

α
, L−1

2D(H ′1)
α]
. (21)

It contain terms with the z-dependent operators averaged
over the given subband profile, X

α ≡ 〈α|X|α〉. The first
term in the previous equation is

H ′1
α

=
e

m
a||α · p. (22)

This term can be added to Eq. (8) and removed by a
convenient gauge choice for the vector potential. Specifi-
cally, choosing z0 = zα, it becomes zero. Note, however,
that in general the gauge removal of this term can be
done only within a single subband. This is natural, since
if wave functions of two subbands differ in their center of
mass along the z-coordinate [which is the case, for exam-
ple, for the triangular potential in Eq. (16)], the in-plane
field has to result in phases upon intersubband transi-
tions. If these phases are of relevance,23,24 H ′1

α
should

be included in Eq. (8) and kept track of explicitly (in
another words, a single choice for z0 has to be made for
all subbands). On the other hand, in a symmetric het-
erostructure potential all subbands have the same center
of mass and a single choice removes H ′1

α
for all subbands.

For the symmetric confinements given in Eqs. (14) and
(15) this would be the choice z0 = 0.

1 The method is known under several names. Our Eq. (20) is
taken from Ref. 21 [see formula (15.46) on page 138 therein],
which calls it the “method of successive transformations [of the
degenerate perturbation theory]”. Ref. 22 calls it a “method of
infinitesimal basis transformations” (see page 11 therein), and
points out a difference to the “Löwdin” perturbation theory (see
App. A page 233 therein): while both of these are perturbation
theories for the effective Hamiltonian, they relate similarly as
the Rayleigh-Schroedinger to the Brillouin-Wigner perturbation
theory. Namely, the former results in a linear eigenvalue equa-
tion with an involved structure of the higher order terms. In the
latter, it is simple to generate higher order terms in the perturba-
tion expansion, on the expense of getting a non-linear equation
with the unknown energy in the denominators.
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We also note that such gauge removal is not possible
for H ′1 itself, where z is still an operator. The difference
is illustrated by the following. The remaining two terms
from Eq. (21) produce the subband diamagnetic shift,25

E
(α)
dia =

e2

2m
b2 varα(z). (23)

Here, the variance is defined by

varα(z) = (z − z0)2
α
−
(

(z − z0)
α
)2

, (24)

and is clearly independent on z0, that is, gauge invari-
ant. The second term, required for the expression to be
invariant to the choice of z0, comes from the H ′1 term.

C. Recipe

We summarize the above in the following recipe. Inter-
ested in the in-plane field effects on the lowest subband
α, the choice z0 = zα reduces the effective Hamiltonian
for this subband to the sum of three terms. A purely
2D quantum dot Hamiltonian, Eq. (8), the diamagnetic
shift (an overall constant) E(α)

dia , Eq. (23), and the follow-
ing correction

〈i|H(α)
inter|j〉 =

1

2

∑
β 6=α

∑
k

〈αi|H ′1|βk〉〈βk|H ′1|αj〉

×
(

1

Eαi − Eβk
+

1

Eαj − Eβk

)
.

(25)

The latter is a sum of contributions from all subbands β
other than α, and is expressed through

〈α|H ′1|β〉 =
e

m
zαβ (b× ẑ) · p, (26)

an operator in the in-plane coordinates only. It depends
on the dipole matrix elements of the z-coordinate

zαβ = 〈α|z|β〉, (27)

and is therefore also explicitly independent of z0, the
choice of the gauge.

D. Small aspect-ratio approximation

The expression for the inter-subband correction in
Eq. (25) can be further simplified by using pertubation
theory in the aspect ratio η = ~ω/~ωz. In leading order,
neglecting the in-plane excitation energies with respect
to the subband excitation energies in the denominators,
we get

H
(α)
inter = −Φ2 [p · (b̂× ẑ)]2

2m
+O (η) , (28)

� � � � � � � � �� ��
�
�

��

��
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���

λ� [��]

�
�
�
�
[�
]

FIG. 2. The magnitude of the in-plane magnetic field at
which the flux Φ, Eq. (29), reaches unity. For fields smaller,
corresponding to Φ < 1, the expansion in H ′1 is convergent
and Eq. (28) is the leading correction. For larger magnetic
field, this expression is still of use, if it is corrected by the
phenomenological replacement given in Eq. (41).

where we denoted b̂ as the unit vector along the in-plane
component of the magnetic field b. Finally,

Φ =
e

~
bλ2
z, (29)

is the dimensionless flux due to the in-plane magnetic
field through the 2DEG effective width λz squared.2 The
latter is defined by26

λ4
z = 2

∑
β 6=α

~2

m

|zαβ |2

Eβ − Eα
, (30)

as a sum of contributions from all subbands except α.
The result in Eq. (28) is worth commenting. It states

that the dominant effect of the in-plane field is a renor-
malization of the particle mass along the direction per-
pendicular to the in-plane component of the magnetic
field. In the lowest subband, the particle becomes heav-
ier along this direction. The effect is proportional to Φ2,
the second power of the flux due to the in-plane mag-
netic field through the area defined as the square of the
effective 2DEG-width λz.3 This flux plays also the role
of the small parameter for the perturbation in H ′1, and
the condition Φ � 1 is the condition for Eq. (25) to be
the dominant term. Fig. 2 shows the magnetic field at
which the flux becomes one. Finally, all the details of
the heterostructure confinement are reduced to a single
parameter, λz, the effective width of the 2DEG.

E. The effective 2DEG width

We calculate λz in Appendix A for the three confine-
ment choices as a function of their respective natural pa-

2 The dimensionless flux is usually defined using a flux quantum
h/e, instead of ~/e which appears in Eq. (29). We opt for this
choice to prevent factors 2π appearing either in Eq. (28) or (30).

3 It also means that the kinetic energy is still time-reversal sym-
metric. One has to go to the next order in the perturbation
theory to obtain an asymmetric term, which has importance, for
example, for weak localization effects.28
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confinement effective width lowest exc. energy
shape λz/lz λz/l

∗
z exc. sub. E∗z/~ωz

harmonic 1 1 100% 1
rectangular 0.257 0.99 99.9% 14.8
triangular 1.01 0.943 94.3% 0.875

TABLE I. The parameters related to the 2DEG effective
width for various confinements. The confinement shape is
given in the first column. The second column gives the ef-
fective width λz, Eq. (30), in units of the nominal width lz,
defined for each potential shape individually [see Eqs. (14)–
(16)]. This equation is therefore to be used if the microscopic
parameters of the confinement are known. The third column
gives the effective width in the units of a length scale de-
rived from the subband excitation energy E∗z ≡ ~2/ml∗2z and
is therefore useful if the later is known. The fourth column
gives the relative weight of the lowest excited subband con-
tribution to the effective width. The last column gives the
energy distance to this subband in units of ~ωz. The results
for the triangular and rectangular potentials are given in the
limit V0 → ∞, and would change very little upon using a
typical value of V0 in GaAs, such as 300 meV, instead.

rameters, and summarize the results in Tab. I. From the
latter one can see that for the choices that we considered,
Eqs. (14)–(16), there is little variation among different
confinements, if the effective length is related to the sub-
band excitation energy E∗z or, equivalently, l∗z . Within
the typical precision of Eq. (28), one can therefore set

λz ≈
~√
mE∗z

, (31)

irrespective of the perpendicular confinement shape.
For completeness, for each confinement we now ex-

press it in its natural parameters given in Eqs. (14)–
(16). For the harmonic confinement, the length lz is
defined through the potential curvature, which results
in the exact relations, λz = lz = l∗z and E∗z = ~ωz. Only
the lowest excited subband contributes in Eq. (30), the
dipole matrix elements for all other subbands are zero.
Next, the rectangular potential can also be solved ana-
lytically in the limit V0 → ∞, resulting in the expres-
sions given in Tab. I. We have checked in Appendix A
that this limit is a very good approximation for realis-
tic values of the offset V0. Finally, the triangular po-
tential is the only one for which the contributions from
the higher subbands are sizable, though still small com-
pared to the lowest one. We conclude that concerning
the effective length, the heterostructure shape is of little
relevance, determined mostly by the subband excitation
energy, and contributed to mostly by the lowest excited
subband. Choosing the triangular potential, we illustrate
the relations between the effective length, the microscopic
parameters (being here the interface electric field and the
conduction band offset), and the subband excitation en-
ergy in Fig. 3. To conclude this section, Eqs. (28)–(31)
allow one to grasp the leading orbital effects of an in-
plane field in a very simple way.
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FIG. 3. The 2DEG effective width λz (left y axis) and
the subband excitation energy E∗z (right y axis) for the tri-
angular confinement potential, Eq. (16), as a function of the
interface electric field. The thick colored lines are obtained
from numerical solutions for the confinement with a typical
value for the conduction band offset V0 = 300 meV, while the
thin black lines are analytical results in the limit V0 → ∞.
The two sets of lines are indistinguishable on the figure res-
olution, illustrating that one can safely use the infinite offset
approximation when evaluating the two quantities of interest.

IV. EFFECTS ON SPECTRUM:
FINGERPRINTS OF QUANTUM DOT

ORBITALS

The orbital effects of the in-plane field can be exploited
as a tool to characterize the quantum dot. To demon-
strate the principle, we first assume that the magnetic
field is purely in-plane, Bz = 0, and that the correspond-
ing flux is small, Φ � 1. The effects of H(α)

inter, Eq. (28),
can then be treated perturbatively. The eigenstates of
the unperturbed subband-Hamiltonian, H2D, with the
anisotropic harmonic confinement given in Eq. (13), can
be labeled by a pair of non-negative integers nx, ny. They
correspond to the quantum numbers of two harmonic os-
cillators with energies ~ωx, and ~ωy, respectively. The
expectation value of H(α)

inter in such an eigenstate is

δEnx,ny
= −Φ2

2

[
~ωx sin2(δ − φ)

(
nx +

1

2

)

+ ~ωy sin2(δ + π/2− φ)

(
ny +

1

2

)]
.

(32)

As an example, the ground state energy correction is

δE0,0 = −Φ2

4

(
~ωx + ~ωy

2
− ~ωx − ~ωy

2
cos(2δ − 2φ)

)
.

(33)
The correction oscillates upon changing the in-plane field
direction with period π. The magnitude of the variation
reveals the anisotropy of the confinement potential, as
the difference of the two characteristic energies ~ωx −
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~ωy. The energy minimum corresponds to a magnetic
field being aligned along the soft confinement axis.

Alternatively, one can look at the changes of the two
excitation energies (that is, the energy offsets of the two
lowest excited states with respect to the ground state),

δE∗x = −Φ2

2
~ωx sin2(δx − φ), (34a)

δE∗y = −Φ2

2
~ωy sin2(δy − φ). (34b)

The excitation energy for a given orbital also oscillates
with the same period π, reaching its maximum when the
in-plane magnetic field is aligned with the corresponding
“excitation axis”. Here, it is x̂d, with δx ≡ δ, and ŷd,
with δy ≡ δ + π/2, for the two orbitals, respectively.

We note that the subband Hamiltonian H2D +H
(α)
inter,

with the second term approximated by Eq. (28) can be
diagonalized analytically without any further approxima-
tions. However, the full formulas give little insight, and
we give them only in Appendix B. One might be inter-
ested in the limit where the dot is so close to being circu-
larly symmetric that H(α)

inter is larger than the difference
~ωx−~ωy. In this, nearly-degenerate, case we need to go
beyond the non-degenerate perturbation theory used in
deriving Eq. (32). We instead get, in this limit and again
for Bz = 0, the renormalization of the two excitation
energies as

δE∗1 = ~ω+ − ~ω− cos(2δ − 2φ), (35a)

δE∗2 =
√

1− Φ2 [~ω+ + ~ω− cos(2δ − 2φ)] , (35b)

where ~ω± = (~ωx ± ~ωy)/2. The magnitude of the os-
cillation is proportional to the potential anisotropy, ~ω−,
and disappears for a circularly symmetric dot, as ex-
pected.

Additional useful information about the quantum dot
can be extracted from the dependence of the energy
corrections on the in-plane magnetic field magnitude.
Namely, it follows from Eq. (29) and Eq. (34) that

λ4
z = − 1

sin2(δi − φ)

~2

e2

1

E∗i

∂2E∗i
∂b2

∣∣∣∣
b=0

, (36)

with i ∈ {x, y}. The effective width of the 2DEG can
be found from the curvature of the excitation energy as a
function of the in-plane magnetic field evaluated at b = 0.
The shift is largest if the field is applied along the direc-
tion given by φ = δi + π/2, where the angle δi denotes
the orientation of the excitation axis of the corresponding
orbital. We point out that it is important that the dot is
empty, so that there are no electron–electron interaction
effects. These interaction effects make the extraction of
the width from analogous measurements in 2DEGs much
more involved.29–33

We note that one could in principle also use the dia-
magnetic shift, Eq. (23), to find the effective 2DEG-
width. Using the flux variable, the shift is

E
(α)
dia =

1

2
Φ2~ωzvarα(lzz/λ

2
z), (37)
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FIG. 4. The spectrum as a function of φ, the direction of
the in-plane magnetic field. Unless stated otherwise, we adopt
the following parameters (chosen in line with the experiment
in Ref. 11, see Fig. 7 below) ~ωx = 2.34 meV, ~ωy = 2.61
meV, λz = 6.5 nm, m = 0.067me, in-plane field B = 3 T,
and δ = 50◦. (a) The ground state (black) and the two low-
est excited states (red and blue). (b) The corrections to the
three eigenenergies (their value at B = 0 subtracted). (c)
The two lowest excitation-energy corrections. (d) The two
lowest excitation-energy corrections for a highly anisotropic
dot, ~ωy = 10 meV.

where the constants varα(lzz/λ
2
z) are of order one (see

Appendix A). Therefore, the change is larger, by a fac-
tor 1/η, compared to the changes of the in-plane excita-
tion energies. However, the issue with trying to measure
directly, for example, the lowest subband shift, is that
Eq. (37) gives the “bare” shift of the given 2DEG sub-
band. With the chemical potential fixed, such a subband
shift would change the 2DEG density resulting in ad-
ditional electrostatic contributions. In other words, the
bare shift of the band bottom is partially screened by
the 2DEG. The actual shift can be anywhere between
zero and 100% of the bare shift,34 with the ratio (the
screening efficiency) given by the 2DEG capacitances to
the gates and the self-capacitance.35 If this ratio is not
known, the measured shift gives only the upper limit for
the bare shift, and thus for λz. This problem does not oc-
cur for the excitation energies, where the overall subband
shift cancels. One could therefore instead consider the
diamagnetic renormalization of the subband excitation
energy (the equation is valid for the triangular potential)
given by

E∗dia = E
(α=2)
dia − E(α=1)

dia ≈ 1

2
Φ2~ωz. (38)

However, due to its relatively large value, the subband
excitation energy is not easily accessible; see Ref. 36 for
an example of its determination in a transport measure-
ment.

We illustrate these points in Fig. 4, plotting the en-
ergies and their variations as a function of the in-plane
field orientation described by the angle φ. We first take
a slightly anisotropic dot, with the difference of the two
harmonic-oscillator energies approximately 10% of their
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FIG. 5. The excitation energies as a function of the in-
plane magnetic-field (a)–(b) orientation and (c)–(d) magni-
tude. The parameters are the same as those in Fig. 4 unless
stated otherwise. In (a)–(b), the changes of the two lowest
(in red and blue, respectively) excitation energies are plotted
for a field of a constant magnitude, as given in the figures,
corresponding to (a) Φ ≈ 0.2, and (b) Φ ≈ 0.4. In (c)–(d),
the two lowest excitation energies are plotted as a function of
the field magnitude for a fixed direction, (c) φ = δ and (d)
φ = δ+π/2. In all panels, the solid lines are the exact results
from the 3D model, the dashed lines are the exact results
of the 2D model using Eq. (28), without the replacement in
Eq. (41). Once this replacement is made, the results of the
2D model become identical to those of the 3D model. See
Appendix B for details on the models.

average [though still in the limit |〈H(α)
intra〉| . ~ω−, so that

Eq. (32) is valid]. Fig. 4(a) shows the energies them-
selves. The magnitude of the oscillations of the ground
state is smaller than that of excited states, as follows
from Eqs. (32) and (33). One can see it more clearly
in Fig. 4(b), which shows only the variations of the en-
ergies, subtracting a constant from each of them. The
orientation of the soft and hard axes of the confinement
potential is revealed as the angle at which the second and
the third energy, respectively, becomes maximal. A very
similar behavior is displayed by the variations of the two
excitation energies, plotted in Fig. 4(c). This behavior
can be contrasted with the variations of a much more
anisotropic dot, plotted in Fig. 4(d). Here, the two low-
est excited states vary in phase (and their oscillations
magnitudes ratio is 2), as they belong to the same or-
bital. This characteristic fingerprint can therefore distin-
guish different types of dots (1D versus 2D), and allows
one to determine the spatial orientation of each orbital
individually.9

V. ACCURACY OF THE PERTURBATIVE
RESULT

We now discuss the range of validity and precision of
the energy corrections calculated using Eq. (28). To this
end, we consider the harmonic heterostructure confine-
ment, Eq. (14). In this case, the full three-dimensional

model has an analytical solution for arbitrary magnetic
field (see Appendix B), which we can use as a bench-
mark for the effective two-dimensional model. We obtain
the energies of the latter by solving for the spectrum
of H2D + H

(α)
intra exactly (see Appendix B). We plot the

two sets of excitation energies as solid (3D model) and
dashed (2D model) lines in Fig. 5. Panel (a) shows the
directional variation of the energy corrections in an inter-
mediate magnetic field of a few Tesla. Since the chosen
parameters correspond to a flux Φ ≈ 0.2 < 1, the ef-
fective 2D model is an excellent approximation to the
full 3D model, as expected. Panel (b) shows the energy
variations for a larger flux. Even though the directional
dependence becomes quite different from a simple sine
function, the variations are still correctly reproduced by
the 2D model. This model becomes unreliable only when
the flux is close to unity. The reason for this is that for
Φ = 1, the correction term Eq. (28) is so large that the
in-plane mass tensor becomes non-positive and the corre-
sponding excitation energy becomes zero [see Fig. 5(c)–
(d)]. The exact results of the 3D harmonic model suggest
a remedy for this unphysical behavior. Namely, one finds
(see Appendix B) that the renormalization of the mass
in the direction perpendicular to the in-plane field,

1

m⊥(Φ2 � 1)
≈ 1

m⊥(0)

(
1− Φ2

)
, (39)

which we derived by arriving at Eq. (28), is in the oppo-
site limit replaced by

1

m⊥(Φ2 � 1)
≈ 1

m⊥(0)

(
1

1 + Φ2

)
. (40)

Since Eq. (39) is the Taylor expansion of Eq. (40) for
Φ2 � 1, replacing the former by the latter will improve
the overall accuracy of the effective 2D model. Explicitly,
the replacement in Eq. (28) should be

Φ2 →
(

1− 1

1 + Φ2

)
. (41)

We find that, interestingly, with this substitution the en-
ergies of the 2D model become exactly equal to the ener-
gies of the full 3D model if the magnetic field is purely in-
plane and the confinement potential is harmonic. Once
one of these conditions is not valid, the energies of the two
models are no more identical (see Fig. 6 for an illustra-
tion). Nevertheless, we expect that the two-dimensional
effective model with the replacement in Eq. (41) is a
quantitatively reliable representation of the energy effects
of the in-plane magnetic field of arbitrary direction and
magnitude and for a general heterostructure profile.4

4 It is conditioned on the assumption that the out-of-plane com-
ponent of the magnetic field is not very large, meaning it does
not destroy the hierarchy of the energies E∗z � E∗x ∼ E∗y , which
is the regime of interest for us.
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FIG. 6. The excitation energies as a function of the in-plane
magnetic-field (a) orientation and (b) magnitude. The figure
is analogous to Fig. 5, with the magnetic field deflected out of
the plane by 5◦. The solid lines are the exact results from the
3D model, the dashed (dotted) lines are the exact results of
the 2D model using Eq. (28), without (with) the replacement
in Eq. (41). In (b), the divergence of the dashed line towards
zero happens at flux Φ = 1.

VI. DISCUSSION

We have derived an effective two-dimensional model
which quantitatively describes the orbital effects of the
in-plane field on the spectra of quantum dots created in
a 2DEG. The corresponding Hamiltonian reads

Heff
2D =

(p · b̂)2

2m
+

[p · (b̂× ẑ)]2

2m (1 + Φ2)
+ V2D(r), (42)

where the kinetic momentum p is given in Eq. (6a), the
flux Φ in Eq. (29), and the in-plane unit vectors b̂ and
b̂× ẑ are parallel and perpendicular, respectively, to the
in-plane component of the magnetic field b. For Φ2 → 0
Eq.(42) reduces to Eq. (8), corresponding to a quasi-two-
dimensional electron gas description.

The use of this Hamiltonian is two-fold. If the ap-
plied fields are such that the orbital effects can not be
neglected and have to be incorporated into the descrip-
tion, it is a substantial simplification if one can still use
a 2D model, compared to a fully 3D description. On the
other hand, and certainly more importantly, these effects
should be taken as a tool to probe quantum dot and its
single-particle orbitals. As we have demonstrated, the
directional variation of the eigenstate energy gives direct
access to the corresponding orbital shape, that is the size
and the orientation with respect to the crystallographic
axes. In addition, looking at the same variation as a
function of the field magnitude allows one to find the ef-
fective width of the 2DEG, and in turn the microscopic
parameters of the interface. For example, for the tri-
angular confinement of a heterostructure, this would be
the interface electric field, which in turn allows one to
determine the spin-orbit constants.

We illustrate these possibilities on the data measured
in the experiment of Refs. 9 and 11. We fit the data to
the model in Eq. (42) and plot the result in Fig. 7. Panel
(a) shows the directional variations of the excitation en-
ergies at B = 8 T. The data clearly demonstrate that the
dot was modestly anisotropic and its main confinement-
potential axis was along δ ≈ 25◦ with respect to the crys-
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FIG. 7. The two lowest excitation energies measured in the
experiment of Ref. 11, fitted to the exact eigenvalues of Heff

2D,
Eq. (42), see Appendix B. The values of the fitting parame-
ters are given with the error of the last digit in brackets. (a)
The directional variation at B = 8 T resulted in λz = 7.19(5)
nm, δ = 25(2)◦, δE∗x = 2.51(1) meV, δE∗y = 2.71(1) meV. The
red (black) denotes the excitation from the ground state to
the lowest orbital without (with) a spin flip. Similarly for the
blue and green for the second excited orbital. Here a constant
Zeeman energy is included in the fit for the spin-flip terms, re-
sulting in the g-factor |g| = 0.33(2). (b) The field magnitude
dependence at φ = δ+π/2 gave λz = 6.49(5) nm, δ = 51(3)◦,
δE∗x = 2.338(6) meV, δE∗y = 2.611(6) meV. Converting the
value of λz to electric field using Fig. 3 gives Eext = 2.14(4)
V/µm. Here each point is the average of a Zeeman split pair.
We note that the data in panel (a) and (b) were obtained in
different cooldowns, which might be the reason for the differ-
ence in the extracted parameters, especially δ.

tallographic [100] axis. Panel (b) shows the excitation
energies as a function of the magnetic field magnitude.
Compared to panel (a), this is a more suitable measure-
ment to determine the effective 2DEG-width. The fitted
value λz ≈ 6.5 nm gives, using Fig. 3 (or Tab. I), appro-
priate for a heterostructure with a triangular potential,
the interface electric field Eext ≈ 2.14 V/µm. With this
value specified, we now use the standard results of the
k · p theory for the spin-orbit strengths (using the nota-
tion of Ref. 38; see Appendix C for details),

~2

2mlbr
≡ αbr = α0eEext + (βB − βA)δ(z)

α
, (43a)

~2

2mld
≡ αd =

γc
~2
p2
z

α
. (43b)

Using α0 = −4.7Å2, βB − βA = −1.22 eVÅ2, and γc =
−10.6 eVÅ3 gives the spin-orbit lengths lbr ≈ 2.64 µm,
and ld ≈ 3.63 µm (ignoring the overall minus sign for
both interactions). This translates into the spin-orbit
mixing angle ϑ = 36◦, and the overall scale lso = 2.14 µm.
Here, ϑ is defined by tanϑ = αd/αbr. An independent fit
based on the spin relaxation time anisotropy gave ϑ =
31◦ and lso = 2.13 µm.11 Alternatively, assuming that
the relaxation data give a reliable value for the angle
ϑ = 31◦, while the interface electric field is extracted
reliably by the fit shown in Fig. 7(b), we can estimate
the value for the parameter γc from these two values and
Eqs. (43). This procedure results in γc = −8.8 eVÅ3, in
good agreement with typical values in GaAs obtained by
alternative methods.39
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VII. CONCLUSIONS

We have analyzed the orbital effects of the magnetic
field applied in the plane of a 2DEG, observable in the
spectrum of a gated quantum dot. In the leading order,
these effects can be succinctly described as an anisotropic
renormalization of the electron mass tensor. The renor-
malization arises due to the finite width of the 2DEG,
and depends on the flux corresponding to the magnetic
field penetrating the area given as the square of the effec-
tive 2DEG width. We have related this width to common
types of heterostructure-interface potentials in detail nec-
essary for a quantitative analysis. Most importantly, the
effects allow one to extract the size and orientation of the
quantum dot single-particle orbitals, as well as the 2DEG
width, thus providing new characterization methods for
gated quantum dots. We illustrated the usefulness of the
method by fitting the strengths of the spin-orbit inter-
actions, the linear Rashba, the linear Dresselhaus, and
the cubic Dresselhaus terms, from the data measured in
Ref. 11.
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Appendix A: Heterostructure potential eigenstates
and matrix elements

We give here, for reference, the energies and some ma-
trix elements of the heterostructure eigenstates which are
needed in the main text.

1. Triangular confinement

We consider the potential shape as drawn by the black
line in Fig. 8(a). It represents the spatial dependence of
the bottom of the conduction band of a heterostructure.
It displays a finite offset at z = 0, due to a different ma-
terial composition to the left and right of this point, and
a linear slope (an electric field) possibly due to remote
doping by impurities. In solving for the eigenstates, we
neglect the potential variation for z < 0 and assume that
the linear growth for z > 0 extends to infinity, by which
we arrive at Eq. (16). These simplifications lead to small
effects on the quantities of our interest.

With this, the Schrödinger equation is(
− ∂

∂z

~2

2m(z)

∂

∂z
+ vT (z)− E

)
ψ(z) = 0, (A1)
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FIG. 8. Illustrations and parameters of the triangu-
lar confinement potential model. The band offset is V0 =
300 meV, the interface electric field is Eext = 2.14 V/µm,
A=AlxGa1−xAs with x = 0.3, and B=GaAs, unless stated
otherwise. (a) The potential profile (black) and the ampli-
tudes of the three lowest wave functions. (b) The function
f(ε), roots of which define the allowed energies. (c) The nom-
inal length lz and the factor ξ as a function of the interface
electric field. (d) The effective length and the subband excita-
tion energy in their natural units as a function of the interface
electric field. (e) The ground state wave function density at
the interface and its weight in the half space z < 0. (f) The
expectation value of p2

z and ψ(z)2 in the ground state.

where we allow for a position dependence of the effective
mass, which takes different values on the two sides of the
interface,

m(z) =

{
mA, if z < 0,
mB , if z > 0.

(A2)

We solve Eq. (A1) in the left and right half of the space
separately using the ansatz

ψ(z) = NAψA(z) +NBψB(z), (A3)

with the matching conditions

NAψA(0) = NBψB(0), (A4a)
m−1
A NA∂zψA(0) = m−1

B NB∂zψB(0). (A4b)

For z < 0 the potential is constant, so that

ψA(z) = exp

[
z

(
2mA(V0 − E)

~2

)1/2
]
. (A5)

For z > 0 the equation is(
− ~2

2mB

∂2

∂z2
+ eEextz − E

)
ψ(z) = 0. (A6)
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Introducing a dimensionless length s = z/lz, we get(
− ∂2

∂s2
+

2mBeEextl
3
z

~2
s− 2mBl

2
zE

~2

)
ψ(s) = 0. (A7)

We choose lz such that the linear term prefactor is 1,40

lz =

(
~2

2mBeEext

)1/3

, (A8)

and introduce the dimensionless energies ε = 2E/~ωz,
and ξ = 2V0/~ωz, with ~ωz = ~2/mBl

2
z . With one more

dummy variable, x = s − ε, the Schrödinger equation
takes the form of the Airy differential equation,

∂2

∂x2
y(x)− xy(x) = 0. (A9)

The solutions are the Airy functions Ai(x). Using the
solutions normalizable at x→∞, we have

ψB(z) = Ai(s− ε). (A10)

Using explicit formulas, the matching conditions read

NA = NBAi(−ε), (A11a)

NA

√
mB

mA
(ξ − ε) = NBAi′(−ε), (A11b)

and can be written as the quantization condition for the
allowed energy values,

f(ε) ≡
√
mB

mA
(ξ − ε)Ai(−ε)−Ai′(−ε) = 0. (A12)

This function is plotted in Fig. 8(b), with each root ε < ξ
corresponding to a subband. Once the energy is specified,
the normalization constant follows as

N−2
B = lz

(√
mB

mA

Ai2(−ε)
2
√
ξ − ε

+

∫ ∞
−ε

Ai2(x)dx

)
. (A13)

For parameters typical for GaAs/AlGaAs heterostruc-
tures, for example, V0 = 300 meV and Eext several Volts
per micrometer, the parameter ξ � 1. In this case, one
can find useful results in the limit ξ → ∞ (which also
makes the value of mA irrelevant): ε1 ≈ 1.17 ~ωz, ε2 ≈
2.04 ~ωz, λz ≈ 1.03 lz (the lowest excited subband con-
tributing by 94.3%), varα=1(z) ≈ 0.486 l2z , varα=2(z) ≈
1.485 l2z , E∗z ≈ 0.875 ~ωz, and p2

z

α=1
≈ 0.78~2/l2z .

2. Rectangular confinement

We obtain the eigenstates in a way analogous to the
previous section. Since now the potential is piecewise
constant, we skip the details being a textbook quantum
mechanics and only give results. The solutions have def-
inite inversion symmetry with respect to z = 0. Inside
the well they take form of the trigonometric functions,
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FIG. 9. Rectangular confinement potential model. The
band offset is V0 = 300 meV and the nominal quantum-well
width is lz = 12 nm. (a) The potential profile (black) and
the amplitudes of the three lowest wave functions. (b) The
function f(k), roots of which define the allowed energies for
the symmetric solutions (red) and antisymmetric ones (blue).

cos(kz/lz) and sin(kz/lz), respectively. Fig. 9(b) shows
two functions, the roots of which specify the allowed
wavevectors k and the corresponding energies E(k) =
~2k2/2m. For mA = mB and in the limit V0 → ∞, the
solutions become k = (2n + 1)π for the symmetric sub-
bands and k = 2nπ for the antisymmetric subbands, with
n an integer. It leads to E∗z/~ωz = 3π2/2, the dipole mo-
ment between the lowest two subbands equal to 16lz/9π

2,
λ4
z = l4z(15 − π2)/12π4, varα=1(z) = (1/12 − 1/2π2) l2z ,

varα=2(z) = (1/12 − 1/8π2) l2z , and p2
z

α=1
= π2~2/l2z .

Some of these values are given in Tab. I.

3. Harmonic confinement

The matrix elements of the eigenstates of a harmonic
potential are obtained from the standard representation
of the operators

z =

√
~

2mωz
(a† + a), (A14a)

pz = i

√
~mωz

2
(a† − a), (A14b)

with ~ωz = ~2/ml2z . The results are given in Tab. I.

Appendix B: Exact spectrum of a bilinear
Hamiltonian

There are several methods to diagonalize a Hamil-
tonian which is a quadratic function of coordinates
r1, r2, . . . , rd and momenta p1, p2, . . . , pd in any dimen-
sion d.17,18,41 We follow the method used in Refs. 17,19,
which is based on solving for the unknown operator L,
linear in r’s and p’s, which fulfills the equation [H,L] =
εL. This can be formulated as an eigenvalue problem, by
constructing a 2d by 2dmatrix composed of 2 by 2 blocks,
where the (ij)-th block for i, j = 1, 2, . . . , d is defined as

Ωij = i~

(
∂2H
∂pi∂rj

∂2H
∂pi∂pj

− ∂2H
∂ri∂rj

− ∂2H
∂ri∂pj

)
. (B1)
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The eigenvalues of matrix Ω come in pairs,
{+εi,−εi}i=1,...,d and give the d characteristic en-
ergies εi, the excitation energies of the d linear harmonic
oscillators.

1. Exact spectrum of the 2D effective model

Here we are interested in using the above described
procedure for the effective 2D model, which treats the in-
plane magnetic-field effects perturbatively. This means
that d = 2, and the Hamiltonian is the sum of H2D,
Eq. (8), and H(α)

inter, Eq. (28). It results in the following
matrix Ω,

Ω = i~



0 1−Φ2 cos2(δ−φ)
m −ωc

2 −Φ2 sin(2δ−2φ)
2m

−m(ω2
x +

ω2
c

4 ) 0 0 −ωc

2

ωc

2 −Φ2 sin(2δ−2φ)
2m 0 1−Φ2 sin2(δ−φ)

m

0 ωc

2 −m(ω2
y +

ω2
c

4 ) 0


, (B2)

where we denoted ~ωc = ~eBz/m. The characteristic
equation for the eigenvalues ε of Ω is

ε4 − bε2 + c = 0, (B3)

where

b = ~2ω2
x + ~2ω2

y + ~2ω2
c − Φ2(A2 + ~2ω2

c/4), (B4a)

c = (1− Φ2)~4ω2
xω

2
y − Φ2A2~2ω2

c/4, (B4b)

and we introduced a confinement anisotropy related pa-
rameter

A2 = ~2ω2
x cos2(δ − φ) + ~2ω2

y sin2(δ − φ). (B5)

The two solutions for the energies are given by

ε21,2 =
b±
√
b2 − 4c

2
. (B6)

By Taylor expanding the previous equation in parameter
Φ2, and setting Bz = 0, we obtain

ε1 = ~ωx[1− Φ2 cos2(δ − φ)] +O(Φ4), (B7a)
ε2 = ~ωy[1− Φ2 sin2(δ − φ)] +O(Φ4), (B7b)

which gives Eqs. (34). Similarly, doing a Taylor expan-
sion in (~ωx − ~ωy), gives Eqs. (35).

2. Exact spectrum of the 3D harmonic model

We now consider the 3D model with a harmonic con-
finement in all three directions, that is the one described
by Eqs. (13) and (14). The energies can be obtained by
a straightforward analogy of the previous subsection ap-
plied for d = 3. We do not repeat the explicit formulas,
as they were given in Ref. 42 as Eqs. (6), (14), (17), and

parameter E0 ∆0 P0 m Ec

unit eV eV eVÅ me eV
GaAs 1.519 0.341 9.88 0.067 0

AlGaAs 3.13 0.3 8.88 0.150 1.12

TABLE II. The bandstructure parameters used in App. C
(see Ref. 43 p.688). The band gap E0, the split-off energy
∆0, the interband matrix element P0, the effective mass m,
the conduction band offset Ec. We interpolate the parameters
for Al1−xGaxAs by linear interpolation using the doping x =
0.3, except for the bandstructure offset, where we use the
approximation Ec(Al1−xGaxAs) ≈ 0.773x meV (see App. 3,
p. 412, in Ref. 45).

(18) therein. Using these, we derive the in-plane energies
for a symmetric in-plane potential ωx = ωy and a purely
in-plane field. In the limit Φ2 � 1 we get

ε1 = ~ωx, (B8a)

ε2 = ~ωx
√

1− Φ2, (B8b)

while in the opposite limit Φ2 � 1 we have

ε1 = ~ωx, (B9a)

ε2 = ~ωx
1√

1 + Φ2
. (B9b)

This gives Eqs. (39) and (40).

Appendix C: Spin-orbit strengths

To estimate the strengths of the Rashba spin-orbit in-
teractions, we use formulas from Ref. 43 (see p. 679–
681 therein). The heterointerface electric field Eext con-
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tributes by

α
(1)
br = α0eEext, (C1)

with (Ref. 43 Eq. III.105)

α0 =
P 2

0

3

(
1

(E0 + ∆0)2
− 1

E2
0

)
. (C2)

For the parameters of GaAs, see Tab. II, and the electric
field Eext = 2.14 V/µm, it gives

α
(1)
br ≈ −1.0meVÅ. (C3)

Using a slightly different prefactor, α0 = −5.15 Å2, from
Ref. 44, we would get

α
(1)
br ≈ −1.1meVÅ. (C4)

The abrupt change in the bandstructure parameters at
the heterostructure interface contributes by (Ref. 43,
Eq. III.106)

α
(2)
br = (βB − βA)〈δ(z)〉, (C5)

where (Ref. 43, Eq. III.98)

β =
P 2

0

3

(
1

E0 + ∆0 − Ec
− 1

E0 − Ec

)
. (C6)

Using the model described in Appendix A, for Eext =
2.14 V/µm we get the wave function density at the in-
terface |ψα=1(0)|2 ≈ 0.06/lz, out of which approximately
25% is contributed by the difference in the effective mass
(not shown). With this

α
(2)
br ≈ −1.15meVÅ. (C7)

The Dresselhaus term is given by

αd =
γc
~2
〈p2
z〉. (C8)

Using again Appendix A we have 〈p2
z〉 ≈ 0.61/l2z which,

together with γc = −10.6 eVÅ3, finally gives

αd ≈ −1.57meVÅ. (C9)

This value, together with αbr = −2.15 meV obtained
from Eqs. (C3) and (C7), was used in Eq. (43) in Section
VI.
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