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ABSTRACT: Indoor air pollution can be a major health risk because urban
populations spend up to 90% of their time in closed rooms. Gaseous elemental
mercury (GEM) has not been measured as routinely as other indoor air pollutants
due to the high costs and limited mobility of active Hg analyzers. However, household
GEM concentrations may exceed Hg air quality guidelines as a result of potential
indoor GEM sources like broken Hg thermometers. Here we deploy novel low-cost
mercury passive air samplers (MerPAS) in 27 households (7 days) and at 14 outdoor
locations (29−31 days) in Basel, Switzerland. Average Hg concentrations ranged from
2.0 to 10.8 ng m−3 indoors and from 1.8 to 2.5 ng m−3 outdoors. These results reveal
that households are a net source of Hg to the urban atmosphere and exceed outdoor
Hg levels by a factor of 2 on average. We estimated an average weekly intake rate of
0.01 μg of Hg/kg of body weight for adult residents in Basel, which is usually lower
than Hg exposure of people with dental amalgam fillings. Our campaign demonstrates that air monitoring programs can easily be
complemented by straightforward Hg measurements using MerPAS.

■ INTRODUCTION
Air pollution is one of the greatest environmental risks to
human health, causing ∼7 million deaths globally each year.1

In Europe, the health of urban populations is particularly
affected by the major air pollutants, including particulate
matter (PM) largely from combustion, dust from construction
and natural sources, and nitrogen dioxide (NO2) derived
mainly from road traffic.2 Indoor sources of these pollutants
include smoking, cooking, and burning wood or candles.3

Emissions of toxic metals (arsenic, cadmium, nickel, lead, and
mercury) add to the atmospheric burden of air pollutants.
Mercury (Hg) is a global pollutant that is emitted to the

atmosphere and subject to long-range global transport.4

Atmospheric Hg is either emitted from anthropogenic Hg
sources (∼2.5 × 106 kg year−1), mobilized naturally from the
Earth’s crust through volcanic eruptions and rock weathering
(∼0.5 × 106 kg year−1), or re-emitted from ocean and land
surfaces.5,6 Urban centers contribute to the global atmospheric
Hg burden mainly through fossil fuel combustion (e.g., coal
combustion in power plants and residential heaters7,8), waste
incineration, hospitals/dental facilities, and cremation.9−11

Mean urban atmospheric Hg concentrations have been found
to range from 1.46 ng m−3 in Toronto, Canada,9 to 9.72 ng
m−3 in Guiyang, China7 (see Table S1 in section S1). The
northern hemispheric background concentration is approx-
imately 1.5 ng m−3.12

Indoor Hg air concentrations can be elevated due to Hg
evaporating from past spills of liquid Hg contained in
thermometers or fluorescent light bulbs and Hg switches13

or from Hg-containing biocide added to paint employed in

buildings between 1950 and 1990.14 A previous study
estimated that the level of gaseous Hg in 10% of U.S.
households exceeds the U.S. EPA reference concentration of
300 ng m−3.15 Previous studies of Hg pollution of indoor air,
largely conducted in workplaces, revealed maximum Hg levels
of 28.5 ng m−3 in Toronto,16 522 ng m−3 in New York,15 and
1293 ng m−3 in Chongqing.17 Chronic exposure to elevated
ambient Hg concentrations may produce harmful effects on
the nervous, digestive, and immune systems, the lungs, and the
kidneys.18

While a few studies reported indoor Hg levels at
workplaces,15−17,19 Hg concentrations in households are
usually not systematically investigated. Comprehensive studies
of household Hg pollution are lacking because of the high costs
and limited mobility of active measurement systems, which
require a power supply and in some cases compressed carrier
gas. Active systems are therefore ill-suited for Hg measure-
ments in multiple households simultaneously.9 An alternative
approach to measuring gaseous elemental mercury (GEM) in
households is deploying novel mercury passive air samplers
(MerPAS), which provide the necessary accuracy and precision
for atmospheric Hg monitoring.20,21 The MerPAS can be
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exposed indoors or outdoors for extended periods (1 week to 1
year) without maintenance work and are therefore well suited
for large-scale and long-term GEM measurement campaigns.
The objective of this study was to determine the average

GEM exposure of residents in the city of Basel. To achieve this
goal, we deployed MerPAS to study GEM concentrations in
indoor air of multiple households and urban outdoor air
simultaneously. In both indoor and outdoor settings, potential
GEM sources were examined. We tested the potential of
MerPAS to complement short-term air monitoring campaigns
of major air pollutants with GEM measurements.

■ MATERIALS AND METHODS
We measured indoor and outdoor GEM concentrations using
commercially available MerPAS.20,21 MerPAS almost exclu-
sively collect GEM because only ≤6% of the gaseous oxidized
Hg (GOM) can pass through the diffuse barrier,22 and GEM is
the dominant atmospheric Hg species (typically >90% of total
atmospheric Hg: GEM, GOM, and particulate Hg).12 MerPAS
are thus considered to collect GEM22,23 (see section S2 for
details). We determined the level of GEM in 27 households
along with major air pollutants (PM2.5 and NO2) and at 14
outdoor sites in Basel, Switzerland (Figure 1). The greater
triborder region of Basel has a population of about 852000
inhabitants and is located at the southern end of the Upper
Rhine Valley.24 The location of the 27 households was
determined on the basis of recruitment into the EU Horizon
2020 project ICARUS (Integrated Climate forcing and Air
pollution Reduction in Urban Systems) that aims to assess air
pollution in nine European cities.25 Recruitment of households
did not follow a formal sampling design. Rather, households
were recruited via advertisement on social media and the
institute Web site, and flyers were distributed to households on
selected streets in an attempt to broadly capture areas with
both higher and lower ambient air pollution and socio-
economic status. For the indoor GEM measurements, we
followed a previously described setup21,26 of a sulfur-
impregnated activated carbon (AC) sorbent with a white

Radiello diffusive barrier. The white Radiello was screwed onto
a wooden platform without a protective shield. Subsequently,
MerPAS were deployed at heights of 1−1.5 m in 27 living
rooms for 7 days. The average indoor air temperature was 21.3
°C. Along with GEM concentrations, major air pollutants were
monitored in households using the commercial uHoo indoor
air quality sensor (uHoo Limited, Hong Kong). See details
about the uHoo sensor in AQMD27 and in section S6. The
NO2 and PM2.5 measurements from one household were not
included due to device malfunction.
Outdoor GEM concentrations were measured at 14 sites

using MerPAS with white Radiello with a protective shield20,21

between November 5 and December 7, 2018. The average
outdoor air temperature during this period was 6.6 °C. Data
from simultaneous temperature and wind speed monitoring
were available from eight outdoor MerPAS sites. Ten MerPAS
were installed in the vicinity of possible Hg point sources, and
four MerPAS in city outskirts and residential areas (see
photodocumentation of the outdoor MerPAS setup in Figure
S2 in section S8).
The total mass of Hg in the sulfur-impregnated activated

carbon sorbent (AC) of each MerPAS was measured by
thermal desorption, amalgamation, and atomic absorption
spectroscopy using a DMA-80 instrument (Milestone Inc.).
Sections S3 and S4 give details about the GEM analysis and
respective quality control. The mean replicate precision and
overall uncertainty of MerPAS outdoor deployments are 4%
and 9%, respectively, which were determined through the
analysis of hundreds of replicated samples deployed around the
globe.20 This is similar to the uncertainty of active sampling
instruments.28,29 The uncertainty of indoor deployments has
been estimated to be double that of outdoor deployments
because indoor deployments are predominantly subject to
wind speeds of <1 m s−1; wind speeds in this range are known
to result in increased variability on the MerPAS sampling rate
compared to wind speeds of >1 m s−1 typical of outdoor
deployments.26 We estimate the replicate precision and overall

Figure 1. Sampling locations of air pollution measurements in the Basel metropolitan area. Indoor (circles) and outdoor (triangles) GEM
concentrations (nanograms per cubic meter) are given in 25 percentile bins. The Basel city limits are indicated by the brown contour line. Base map
reproduced with permission under a Creative Commons CC BY-SA 2.0 license from OpenStreetMap (accessed February 26, 2020).
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uncertainty of the indoor measurements to be 8% and 18%,
respectively (see section S5).
We calculated GEM concentrations (nanograms per cubic

meter) by dividing the quantified mass of Hg (nanograms) on
the AC sorbents by the product of the corresponding
deployment time (days) and sampling rate (SR, cubic meters
per day). Indoor air concentrations were calculated using a SR
of 0.156 m3 day−1.21 The SR was not adjusted for temperature
or wind speed for these deployments.21 Outdoor GEM
concentrations are based on a SR of 0.111 m3 day−1. The
base sampling rate is recommended for commercially
distributed MerPAS by Tekran Inc.30,31 Sampling rates depend
on the MerPAS configuration and are listed under the
following link that will be updated over time: https://www.
tekran.com/files/MerPAS-Config-Options.pdf (accessed
March 13, 2020). At sites where temperature and wind
speed data were available (B01−B08 and LH4), the SR was
changed according to experimentally determined adjust-
ments.26 Adjustment of the SR using sampling site specific
meteorological data increased the GEM concentration between
2% and 9%. For sites at which wind speed (LHA01−LHA03)
and both temperature and wind speed data were missing (RFH
and KVA), the sampling site specific SR was estimated by using
site elevation and a linear interpolation between temperatures
or wind speeds recorded at the other sites.32 The higher SR for
indoor deployments was attributed to the absence of the
protective shield, which is expected to increase the diffusive
path length of the samplers.21,26 The protective shield was not
used indoors for the following reasons. (i) There is no
precipitation. (ii) There is no benefit from reducing wind
speeds that are already typically <1 m s−1 indoors.26 (iii) Given
the short-term nature of the deployments, a higher sampling
rate was desirable to maximize the mass of sorbed Hg in the
sampler.

■ RESULTS AND DISCUSSION
The average indoor GEM concentration was 4.2 ± 2.0 ng m−3

(range of 2.0−10.8 ng m−3) and significantly higher than the
average outdoor concentration of 2.21 ± 0.20 ng m−3 (range of
1.83−2.52 ng m−3) [Wilcoxon two-sample t test; p < 0.01
(Figure 2)]. Thus, GEM diffusion occurs from higher indoor
to lower outdoor GEM levels. Consequently, households were
a net source of Hg to the urban atmosphere. Mean indoor
concentrations of simultaneously monitored PM2.5 and NO2
were 15.5 ± 10.3 and 25.4 ± 9.0 μg m−3, respectively (Figure
2), with higher levels measured in homes where the survey
revealed known sources such as smoking or burning candles.
Indoor air pollution levels from the other case study cities in
ICARUS, using the same protocol and measurement equip-
ment, were not yet available for comparison. Average indoor
PM2.5 concentrations in Basel, however, were previously
measured (21.0 ± 16.7 μg m−3) in 41 households from
October 1996 to March 1998.33 Compared to those of other
cities measured in the same study, the average PM2.5
concentrations were considered moderate in Basel, low in
Helsinki (9.5 μg m−3), and remarkably higher in Prague (34.4
μg m−3) and Athens (35.6 μg m−3). Average indoor NO2
concentrations, measured during a similar earlier time period,
were 8.3 ppb (∼15.6 μg m−3) in Geneva, with levels among the
15 countries worldwide ranging from 10.3 to 117.9 μg m−3.34

Both of these earlier studies33,34 used passive samplers
deployed for 48 h, which may in part contribute to the
lower values.

The highest household GEM concentration (10.8 ng m−3)
was 5-fold elevated compared to the average outdoor
concentration (2.21 ng m−3) (see Table S2 in section S6).
The absolute difference between the average indoor and
average outdoor GEM levels (2.0 ng m−3) was smaller
compared to those of studies in Chongqing (3.5 ng m−3 in
winter), Toronto (13.5 ng m−3), and New York (18.6 ng m−3,
difference between median indoor and outdoor GEM).15−17

Variations in indoor and outdoor total gaseous mercury
(TGM) concentrations at nine residential locations in
downtown Chongqing, China, were measured to identify
possible sources and evaluate diurnal and seasonal fluctua-
tions.17 Indoor TGM concentrations (eight buildings in
summer and two in winter) were significantly elevated over
outdoor concentrations. Overall, TGM concentrations were
highly variable, likely as a result of changes in anthropogenic
emissions (e.g., coal combustion, mobile sources, and iron
refinery), fluctuations in atmospheric variables, and unique
events (e.g., use of mercury-containing skin cream, presence of
Hg-based dental amalgams, thermometer spill, etc.). Elevated
indoor GEM concentrations are likely the result of current or
past indoor use of Hg-containing appliances like thermom-
eters, barometers, florescence tubes, or paints. A survey
conducted among ICARUS residents to identify potential
indoor Hg sources revealed that the average GEM concen-
tration was not statistically different between households where
Hg thermometers had been broken (2 yes, 17 no), where walls
were painted within the last 3 years before measurements (11
yes, 11 no), or with residents having dental amalgam fillings (8
yes, 16 no) [Wilcoxon two-sample t test; p > 0.01 (see Figure
S1 in section S7)]. Despite the fact that we could not identify
specific household Hg sources, elevated indoor GEM
concentrations still indicated the presence of diffuse sources
(e.g., past spills or appliances containing Hg) of which
residents might not be aware.35

Figure 2. Summary of average (a) indoor (27 households) and
outdoor (14 locations) gaseous elemental mercury (GEM) concen-
trations and average indoor concentrations of (b) particulate matter
(PM2.5) and (c) nitrogen dioxide (NO2). PM2.5 and NO2 were
measured in 26 households.
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Outdoor GEM levels were ∼50% higher than northern
hemispheric background concentrations (1.5 ng m−3) (see
Table S3 in section S8). Outdoor GEM concentrations can be
elevated during heating season in the winter when the extent of
vertical mixing of air masses is reduced during high-pressure
periods.36 The average GEM concentration measured in this
study (2.21 ± 0.20 ng m−3) was lower than the GEM
concentration measured 39 m above ground in the center of
Basel in February 2012 (4.1 ng m−3).37 GEM concentrations
were slightly elevated compared to GEM concentrations
determined in downtown Zurich (median of 1.81 ng m−3)
from December 2013 to December 2015 as well as at the
Zurich zoo on the outskirts of the city (median of 1.62 ng m−3)
over a period from January to February 2016.36 Concurrent
MerPAS deployments were also made across Toronto, Canada,
and the average summertime GEM concentration (1.77 ± 0.28
ng m−3) was lower than in the current study.9 The spatial Hg
concentration variability in Basel ranged from 1.83 ng m−3 in
the Hörnli cemetery area (RFH) close to the crematory to 2.52
ng m−3 at a residential area (B07). GEM concentrations were
not elevated close to potential emission sources such as the
crematory, the waste incineration plant, dental offices, the
Basel University Hospital, or the industrial area Schweizerhalle
(see Table S3 in section S8).
The total Hg emission to the atmosphere in Basel was

estimated by the Swiss Pollutant Release and Transfer Register
(PRTR). In 2017, the city of Basel reportedly emitted 14 kg of
Hg to the atmosphere. This results in a per capita Hg emission
of 0.08 g year−1. Basel per capita Hg emissions were
comparable to per capita emissions in Zurich (0.06−0.10 g
year−1) quantified by active measurements using a Tekran
2537X instrument from December 2013 to December 2015.36

Mercury emissions in Basel, Zurich, or Toronto mainly
originated from both diffuse and point sources.9,36 Ambient
GEM concentrations in cities are likely more variable, at least
over short periods of time compared to background sites due
to re-emission from buildings19 and other artificial surfaces,15

exhaust from heating,38 and sinks (e.g., vegetation cover39).
The complex vertical and horizontal transport mechanism
caused by urban structures like surface type or building height
and micrometeorological conditions further contribute to the
variability of GEM concentrations in urban environ-
ments.16,40,41 MerPAS in this study were installed within the
broad vicinity but not directly next to potential Hg point
sources. It is thus likely that MerPAS did not catch GEM
exclusively from potential site specific Hg sources but rather
from mixed sources. GEM concentrations from background
sites at the city outskirts (2.34 ng m−3 at B01 and 2.10 ng m−3

at B02) were similar to the average outdoor GEM
concentration of 2.21 ng m−3.
The average GEM exposure of ICARUS residents was

calculated on the basis of average outdoor (2.21 ng m−3) and
indoor (4.2 ng m−3) as well as average workplace Hg
concentrations of 15 ng m−3 (estimated for laboratory and
office facilities).42 On average, ICARUS residents (n = 46 in
the full ICARUS sample) spent 14.9% of their time outdoors
or in transit, 57.6% at home, 16.4% at an indoor workplace,
and 11.2% at other indoor locations. The resulting intake of
GEM was calculated as 0.01 μg kg−1 of body weight per week
for adults (respiration rate of 20 m3 day−1, body weight of 70
kg). Such an exposure is small compared to exposure from
dental amalgam of ∼2−16 μg per adult and week.43,44

We conclude that indoor and outdoor air Hg concentrations
in the city of Basel were clearly below the reference value given
by Carpi and Chen15 (300 ng m−3) at least during 1 week in
late autumn when the GEM concentrations are expected to be
elevated compared to summertime. Consequently, the average
inhalation exposure to GEM for Basel ICARUS residents is of
no concern. However, the assessment of chronic toxic effects
on local residents remains ambiguous. Our study demonstrates
that low-cost MerPAS are suitable to complement measure-
ment campaigns of GEM with other air pollutants. Indoor and
outdoor GEM monitoring with MerPAS offers great potential
to locate unknown Hg sources and to assess the contribution
of indoor Hg sources to total urban emissions. Additionally,
MerPAS can help to identify indoor Hg vapor exposure at the
workplace or at home.
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