
  

Crystals 2020, 10, 255; doi:10.3390/cryst10040255 www.mdpi.com/journal/crystals 

Article 

Extended π-Systems in Diimine Ligands in 
[Cu(P^P)(N^N)][PF6] Complexes: From 2,2'-Bipyridine 
to 2-(Pyridin-2-yl)Quinoline 

Sarah Keller, Murat Alkan-Zambada, Alessandro Prescimone, Edwin C. Constable and  

Catherine E. Housecroft * 

Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, CH-4058 Basel, Switzerland; 

sarah.keller@chimieparistech.psl.eu (S.K.); murat.alkan@epfl.ch (M.A-Z.); alessandro.prescimone@unibas.ch 

(A.P.); edwin.constable@unibas.ch (E.C.C.) 

* Correspondence: catherine.housecroft@unibas.ch; Tel: +41 61 207 1008 

Received: 9 March 2020; Accepted: 26 March 2020; Published: 27 March 2020 

Abstract: We describe the synthesis and characterization of [Cu(POP)(1)][PF6], [Cu(POP)(2)][PF6], 

[Cu(xantphos)(1)][PF6], and [Cu(xantphos)(2)][PF6] in which ligands 1 and 2 are 2-(pyridin-2-

yl)quinoline and 2-(6-methylpyridin-2-yl)quinoline, respectively. With 2,2'-bipyridine (bpy) as a 

benchmark, we assess the impact of the extended π-system on structural and solid-state 

photophysical properties. The single crystal structures of [Cu(POP)(2)][PF6], [Cu(xantphos)(1)][PF6], 

and [Cu(xantphos)(2)][PF6] were determined and confirmed a distorted tetrahedral copper(I) 

coordination environment in each [Cu(P^P)(N^N)]+ cation. The xanthene unit in 

[Cu(xantphos)(1)][PF6] and [Cu(xantphos)(2)][PF6] hosts the quinoline unit of 1, and the 6-

methylpyridine group of 2. 1H NMR spectroscopic data indicate that these different ligand 

orientations are also observed in acetone solution. In their crystal structures, the [Cu(POP)(2)]+, 

[Cu(xantphos)(1)]+, and [Cu(xantphos)(2)]+ cations exhibit different edge-to-face and face-to-face π-

interactions, but in all cases, the copper(I) centre is effectively protected by a ligand sheath. In 

[Cu(POP)(2)][PF6], pairs of cations engage in an efficient face-to-face -stacking embrace, and we 

suggest that this may contribute to this compound having the highest photoluminescence quantum 

yield (PLQY = 21%) of the series. With reference to data from the Cambridge Structural Database, 

we compare packing effects and PLQY data for the complexes incorporating 2-(pyridin-2-

yl)quinoline and 2-(6-methylpyridin-2-yl)quinoline, with those of the benchmark bpy-containing 

compounds. We also assess the effect that Cu⋯O distances in the {Cu(POP)} and {Cu(xantphos)} 

domains of [Cu(P^P)(N^N)][X] compounds have on solid-state PLQY values. 

Keywords: single crystal structure; copper; 2-(pyridin-2-yl)quinoline; bis(phosphane); heteroleptic 

complex; photoluminescence; Cu⋯O distance analysis 

 

1. Introduction 

Heteroleptic [Cu(P^P)(N^N)]+ coordination complexes in which P^P is a wide bite-angle 

bisphosphane [1] and N^N is a derivative of 2,2'-bipyridine (bpy) or 1,10-phenanthroline (phen) are 

gaining in popularity as the emissive component in the active layer in light-emitting electrochemical 

cells (LECs) [2,3]. McMillin and coworkers first recognized that copper(I) coordination compounds 

with PPh3 or P^P ligands and phen or bpy possess low-lying metal-to-ligand charge transfer (MLCT) 

excited states [4,5]. More recently, it has been demonstrated that many [Cu(PP)(NN)]+ complexes 

exhibit thermally activated delayed fluorescence (TADF) [6,7]. Fast intersystem crossing from the 

lowest-lying singlet excited state to the triplet excited state (which is at only slightly lower energy) 

occurs. The long lifetime of the excited triplet state and its relatively slow phosphorescence permits 
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thermal repopulation of the singlet excited state with concomitant fluorescence. Thus, harvesting of 

the emission from both the excited singlet and triplet states significantly increases the 

photoluminescent quantum yield (PLQY). From a synthetic standpoint, the design of suitable P^P 

and N^N ligands to optimize the emission properties of [Cu(P^P)(N^N)]+ complexes remains 

challenging. Typically, P^P is bis(2-(diphenylphosphanyl)phenyl)ether (POP, IUPAC PIN oxydi(2,1-

phenylene)]bis(diphenylphosphane)) or 4,5-bis(diphenylphosphanyl)-9,9-dimethyl-9H-xanthene 

(xantphos, IUPAC PIN (9,9-dimethyl-9H-xanthene-4,5-diyl)bis(diphenylphosphane)), both of which 

are commercially available. 

Although the emissive behaviours of [Cu(P^P)(N^N)]+ complexes containing a large variety of 

diimine ligands have been investigated, it is often the case that 'simpler is better' [8−11]. Some of the 

highest PLQY values and best-performing LECs have been observed for [Cu(P^P)(N^N)]+ emitters in 

which N^N comprises 6-alkyl-2,2'-bipyridines and 6,6'-dialkyl-2,2'-bipyridines [8,9], 6-alkyloxy-2,2'-

bipyridines and 6,6'-bis(alkyloxy)-2,2'-bipyridines [10,11], and 6-thioalkyl-2,2'-bipyridines [10]. One 

structural feature that appears to be important is π-stacking of ligands within the coordination sphere 

of the copper atom which hinders flattening of the structure in the excited state [12]. It has also been 

reported that short Cu⋯Oxantphos contacts are detrimental to emission [13,14]. However, as long as 

POP and xantphos (Scheme 1) remain popular choices for the wide bite-angle bisphosphanes, the 

close approach of the O to Cu atom in a [Cu(P^P)(N^N)]+ complex is difficult to avoid. 

Given the emissive behaviour of 6-alkyl-2,2'-bipyridines and the knowledge that π-stacking is 

beneficial, we decided to investigate the effects of extending the π-framework of the N^N domain by 

replacing the bpy scaffold by 2-(pyridin-2-yl)quinoline. Here, we report the preparation and 

characterization of [Cu(P^P)(N^N)][PF6] in which P^P is POP or xantphos and N^N is 2-(pyridin-2-

yl)quinoline (1) or 2-(6-methylpyridin-2-yl)quinoline (2) (Scheme 1), and compare the properties and 

structures of these complexes with those of [Cu(POP)(N^N)]+ and [Cu(xantphos)(N^N)]+ in which 

N^N = bpy and 6-methyl-2,2'-bipyridine (6-Mebpy) [8,9,15–17]. 

 

Scheme 1. Structures of the N^N and P^P ligands with atom labelling for the NMR assignments. In 

POP and xantphos, the phenyl rings are labelled D. 

2. Materials and Methods 

2.1. General 

1H, 13C{1H} and 31P{1H} NMR spectra were recorded at 298 K on a Bruker Avance III-500 NMR 

spectrometer (Bruker BioSpin AG, Fällanden, Switzerland), and 1H and 13C NMR chemical shifts were 

referenced to residual solvent peaks with respect to (TMS) = 0 ppm and 31P NMR chemical shifts 

with respect to (85% aqueous H3PO4) = 0 ppm. Shimadzu LCMS-2020 (Shimadzu Schweiz GmbH, 

4153 Reinach, Switzerland) and Bruker esquire 3000plus instruments (Bruker BioSpin AG, Fällanden, 

Switzerland) were used to record electrospray ionization (ESI) mass spectra with samples introduced. 

Solution absorption and emission spectra were recorded using Shimadzu UV-2600 

spectrophotometer and Shimadzu RF-5301PC spectrofluorometer (Shimadzu Schweiz GmbH, 4153 

Reinach, Switzerland), respectively. 

Quantum yields were measured using a Hamamatsu absolute photoluminescence quantum 

yield spectrometer C11347 Quantaurus-QY. Emission lifetimes and powder emission spectra were 

measured with a Hamamatsu Compact Fluorescence lifetime Spectrometer C11367 Quantaurus-Tau, 

using an LED light source with exc = 365 nm. 

POP and xantphos were purchased from Acros Fisher Scientific AG, 4153 Reinach Switzerland) 

and Fluorochem (Chemie Brunschwig AG, 4052 Basel, Switzerland), respectively. [Cu(MeCN)4][PF6] 
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was prepared following the reported method [18]. 2-(Pyridin-2-yl)quinoline and (6-methylpyridin-2-

yl)zinc(II) bromide were purchased from Sigma-Aldrich (Sigma Aldrich Chemie GmbH, 89555 

Steinheim, Germany). 

2.2. 2-(6-Methylpyridin-2-yl)quinoline (2) 

We found the following procedure more convenient that the previously reported method [19]. 

Tetrakis(triphenylphosphine)palladium (58 mg, 0.05 mmol, 0.02 eq) and 2-chloroquinoline (411 mg, 

2.51 mmol, 1.0 eq) were dissolved in dry THF (15 mL) and (6-methylpyridin-2-yl)zinc(II) bromide 

(9 mL, 0.5 M, 4.5 mmol, 1.8 eq.) was added. The mixture was stirred overnight at room temperature. 

The reaction was quenched by addition of aqueous NaHCO3/H4EDTA. The aqueous layer was 

washed with Et2O (3 × 50 mL) and the combined organic layers dried over Na2SO4. The solvent was 

removed under reduced pressure and the crude product was purified by flash chromatography 

(CH2Cl2/n-pentane, 1:1, alumina) to obtain the product as a white solid (421 mg, 1.91 mmol). The 1H 

NMR spectrum matched that reported [19,20] and also showed traces of residual 2-chloropyridine. 

The ligand was used without further purification. 

2.3. [Cu(POP)(1)][PF6] 

POP (134 mg, 0.25 mmol, 1.0 eq) was added to a solution of [Cu(MeCN)4][PF6] (93 mg, 0.25 mmol, 

1.0 eq) in CH2Cl2 (20 mL) and the colourless mixture was stirred for 2 h at room temperature. A 

solution of 1 (52 mg, 0.25 mmol, 1.0 eq) in CH2Cl2 (10 mL) was added, resulting in a yellow-orange 

solution which was stirred for another 2 h. The mixture was filtered, and the solvent was removed 

under reduced pressure. The crude product was redissolved in CH2Cl2 and layered with Et2O to 

precipitate [Cu(POP)(1)][PF6] (90 mg, 0.094 mmol, 38 %) as an orange microcrystalline solid. 1H NMR 

(500 MHz, acetone-d6) 8.92 (ddd, J = 5.2, 1.6, 0.8 Hz, 1H, HA6), 8.77 (d, J = 8,7 Hz, 1H, HB4), 8.68 (dt, J = 

8.3, 1.0 Hz, 1H, HA3), 8.63 (d, J = 8.7 Hz, 1H, HB3), 8.34 (m, 1H, HB8), 8.16 (m, 1H, HA4), 8.05 (dd, J = 8.2, 

1.4 Hz, 1H, HB5), 7.58–7.53 (overlapping m, 2H, HA5+B6), 7.46 (overlapping m, 2H, HC5), 7.38 (t, J = 7.4 

Hz, 2H, HD4/D4’), 7.33-7.20 (overlapping m, 13H, HC6+B7+D2/D2’+D3/D3’+D4/D4’), 7.14 (td, J = 7.5, 1.1 Hz, 2H, 

HC4), 7.07 (t, J = 7.6 Hz, 4H, HD3/D3’), 6.92 (m, 2H, HC3), 6.87 (m, 4H, HD2/D2’). 13C{1H} NMR (126 MHz, 

acetone-d6): 159.2 (t, J = 6 Hz, CC1), 153.3 (CA2/B2), 153.1 (CA2/B2), 150.9 (CA6), 146.7 (CB4a), 140.4 (CB4), 139.8 

(CA4), 135.1 (CC3), 134.3 (t, J = 8 Hz, CD2/D2’), 133.4 (t, J = 8 Hz, CD2/D2’), 133.3 (CC5), 131.9 (t, J = 16 Hz, 

CD1+D1’), 131.2 (C8a), 130.7 (CB7+D4/D4’), 130.4 (CD4/D4’), 129.9 (CB8), 129.8 (t, J = 5 Hz, CD3/D3’), 129.5 (t, J = 5 

Hz, CD3/D3’), 129.3 (CB6), 128.9 (CB5), 127.4 (CA5), 126.1 (t, J = 2 Hz, CC4), 124.9 (t, J = 16 Hz, CC2), 124.6 

(CA3), 121.3 (t, J = 2 Hz, CC6), 119.9 (CB3). 31P{1H} NMR (202 MHz, acetone-d6): δ /ppm = −12.1 (br), −144.4 

(sept, JPF = 710 Hz). ESI-MS: m/z 807.1 [M–PF6]+ (base peak, calc. 807.2). Found C 62.76, H 4.25, N 3.16; 

C50H38CuF6N2OP3 requires C 63.00, H 4.02, N 2.94%. 

2.4. [Cu(xantphos)(1)][PF6] 

Compound 1 (52 mg, 0.25 mmol, 1.0 eq) and xantphos (145 mg, 0.25 mmol, 1.0 eq.) were 

dissolved in CH2Cl2 (20 mL) and the solution was stirred for 15 min. [Cu(MeCN)4][PF6] (93 mg, 0.25 

mmol, 1.0 eq.) was dissolved in CH2Cl2 (20 mL) and stirred for 15 min after which the solution of 

xantphos and 1 was added. The reaction mixture turned yellow-orange and was stirred for 4.5 h. 

Then, it was filtered, and the solvent removed under reduced pressure. After recrystallization from 

CH2Cl2/Et2O, [Cu(xantphos)(1)][PF6] was obtained as a yellow-orange microcrystalline solid (242 mg, 

0.244 mmol, 97%). 1H NMR (500 MHz, acetone-d6): δ/ppm: 8.92 (d, J = 5.1 Hz, 1H, HA6), 8.83 (d, J = 8.7 

Hz, 1H, HB4), 8.76 (d, J = 8.1 Hz, 1H, HA3), 8.71 (d, J = 8.7 Hz, 1H, HB3), 8.22 (td, J = 7.9, 1.6 Hz, 1H, HA4), 

8.07 (d, J = 8.1 Hz, 1H, HB5), 7.92 (dd, J = 7.8, 1.4 Hz, 1H, HC5), 7.67 (m, 1H, HA5), 7.52 (overlapping, 2H, 

HB6+B8), 7.39 (m, 2H, HD4’), 7.31–7.25 (overlapping m, 10H, HD4+D2’+D3’), 7.23 (t, J = 7.8 Hz, 2H, HC4), 7.08 

(t, J = 7.6 Hz, 4H, HD3), 6.89 (m, 1H, HB7), 6.74 (m, 4H, HD2), 6.55 (m, 2H, HC3), 2.09 (s, 3H, HMe-xantphos), 

1.68 (s, 3H, HMe-xantphos). 13C{1H} NMR (126 MHz, acetone-d6): 156.2 (CC2), 153.7 (CA2/B2), 153.2 (CA2/B2), 

150.6 (CA6), 146.9 (CB4a), 140.5 (CB4), 140.0 (CA4), 135.0 (CC6), 133.8 (t, J = 8 Hz, CD2), 133.5 (t, J = 8 Hz, 

CD2’), 132.7 (m, CD1), 131.7 (CC3), 131.4 (CB8a), 131.2 (CB7), 131.1 (CD4/D4’), 131.0 (CD4/D4’), 129.9 (t, J = 5 Hz, 
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CD3’), 129.7 (t, J = 5 Hz, CD3), 129.5 (CB6/B8), 129.3 (CB6/B8), 129.1 (CB5), 128.6 (CC5), 127.9 (CA5), 126.4 (CC4), 

124.9 (CA3), 121.5 (CC2), 120.2 (CB3), 37.6 (Cxantphos bridge), 30.9 (CMe-xantphos), 25.6 (CMe-xantphos). 31P{1H} NMR 

(202 MHz, acetone-d6): δ/ppm = −12.3 (br), −144.4 (sept, JPF = 707 Hz). ESI MS: m/z 847.1 [M–PF6]+ (base 

peak, calc. 847.2). Found: C 63.55, H 4.55, N 3.23 (C53H42CuF6N2OP3∙0.5H2O requires C 63.51, H 4.32, 

N 2.79%). 

2.5. [Cu(POP)(2)][PF6] 

A solution of POP (106 mg, 0.197 mmol, 1.0 eq) and 2 (52mg, 0.236 mmol, 1.2 eq.) in CH2Cl2 (20 

mL) was added to a solution of [Cu(MeCN)4][PF6] (73.4 mg, 0.197 mmol, 1.0 eq) in CH2Cl2 (20 mL) 

and the mixture was stirred for 3 h at room temperature. The mixture was filtered, and the solvent 

was removed under reduced pressure. The crude product was redissolved in CH2Cl2 and layered 

with Et2O to yield [Cu(POP)(2)][PF6] (158 mg, 0.163 mmol, 83%) as an orange microcrystalline solid. 
1H NMR (500 MHz, (CD3)2CO, 298 K): δ/ppm 8.66 (d, J = 8.7 Hz, 1H, HB4), 8.42 (overlapping d, 2H, 

HA3+B3), 8.29 (d, J = 8.9 Hz, 1H, HB8), 8.10 (t, J = 7.8 Hz, 1H, HA4), 8.04 (dd, J = 8.2, 1.2 Hz, 1H, HB5), 7.57 

(ddd, J = 8.4, 6.9, 1.1 Hz, 1H, HB6), 7.54 (d, J = 7.6 Hz, 1H, HA5), 7.51 (m, 2H, HC5), 7.37–7.27 (overlapping 

m, 6H, HC3+C4+D4/D4’), 7.25–7.14 (overlapping m, 9H, HC6+B7+D4/D4’+D3/D3’), 7.08 (m, 4H, HD2/D2’), 7.03–6.92 (m, 

8H, HD2/D2’+D3/D3’), 2.41 (s, 3H, HMe). 13C{1H} NMR (126 MHz, acetone-d6, 298 K): δ/ppm 160.1 (CA6), 159.5 

(t, JPC = 6 Hz, CC1), 154.1 (CA2/B2), 152.9 (CA2/B2), 146.4 (CB4a), 140.2 (CB4), 140.0 (CA4), 134.8 (CC3), 133.9 (t, 

JPC = 8 Hz, CD2/D2’), 133.6 (t, JPC = 8 Hz, CD2/D2’), 133.4 (CC5), 132.6  (overlapping d, JPC = 18 Hz, CD1+D1’), 

131.0 (CB7), 130.9 (CD4/D4’), 130.6 (overlapping CD4/D4’+B8), 129.8 (C8a), 129.6 (t, JPC = 5 Hz, CD3/D3’), 129.3 (t, 

JPC = 5 Hz, CD3/D3’), 129.1 (CB6), 129.0 (CB5), 127.7 (CA5), 126.3 (t, JPC = 2 Hz, CC4), 125.9 (overlapping d, 

JPC = 15 Hz, CC2), 122.1 (CA3/B3), 121.1 (t, JPC = 2 Hz, CC6), 120.1 (CA3/B3), 27.2 (CMe). 31P{1H} NMR (202 

MHz, CD2Cl2): δ /ppm = −13.2 (br.), −144.4 (sept, JPF = 710 Hz). ESI-MS: m/z 821.11 [M–PF6]+ (base peak, 

calc. 821.19), 601.00 [M–2–PF6]+ (calc. 601.09). Found C 62.92, H 4.21, N 2.96; C51H40CuF6N2OP3 

requires C 63.32, H 4.17, N 2.90. 

2.6. [Cu(xantphos)(2)][PF6] 

A solution of [Cu(MeCN)4][PF6] (73 mg, 0.197 mmol, 1.0 eq) in CH2Cl2 (10 mL) was stirred for 5 

min and was then added to a solution of xantphos (114 mg, 0.197 mmol, 1.0 eq) and 2 (52 mg, 0.236 

mmol, 1.2 eq) in CH2Cl2 (20 mL) which had previously been stirred for 15 min. The mixture was 

stirred for 5.5 h at room temperature, after which time it was filtered. The solvent was removed from 

the filtrate under reduced pressure and the crude product was redissolved in CH2Cl2 and. The 

product was precipitated by layering with Et2O and the solid was washed with n-hexane and after 

filtration, was redissolved in CH2Cl2. Layering with Et2O yielded [Cu(xantphos)(2)][PF6] (110 mg, 

0.109 mmol, 55 %) as orange crystals. 1H NMR (500 MHz, acetone-d6, 298 K): δ/ppm 8.68 (d, J = 8.8 Hz, 

1H, HB4), 8.52 (overlapping d, 2H, HA3+B3), 8.13 (t, J = 7.8 Hz, 1H, HA4), 8.06‒8.01 (overlapping m, 2H, 

HB5+B8), 7.88 (dd, J = 7.8, 1.3 Hz, 2H, HC5), 7.61 (m, 1H, HB6), 7.49 (d, J = 7.7 Hz, 1H, HA5), 7.40 (t, J = 7.4 

Hz, 2H, HD4’), 7.35 (t, J = 7.4 Hz, 2H, HD4), 7.28 (t, J = 7.8 Hz, 2H, HC4), 7.28‒7.21 (overlapping m, 5H, 

HB7+D3’), 7.18‒7.12 (overlapping m, 8H, HD2’+D3), 7.03 (m, 4H, HD2), 6.82 (m, 2H, HC3), 2.03 (s, 3H, HMeA), 

1.88 (s, 3H, HMe-xantphos), 1.80 (s, 3H, HMe-xantphos). 13C{1H} NMR (126 MHz, acetone-d6, 298 K): δ/ppm = 

159.9 (CA6), 155.9 (t, JPC = 6 Hz, CC1), 154.0 (CA2/B2), 152.7 (CA2/B2), 146.2 (CB4a), 140.3 (CA4/B4), 140.2 (CA4/B4), 

135.0 (t, JPC = 2 Hz, CC6), 134.2 (t, JPC = 8 Hz, CD2), 133.7 (t, JPC = 7 Hz, CD2’), 132.4 (t, JPC = 16 Hz, CD1/D1’), 

132.1 (t, JPC = 16 Hz, CD1/D1'), 131.2‒131.1 (overlapping, CB7+C3+D4), 130.8 (CD4’), 130.6 (CB5/B8), 129.8 (CB8a), 

129.7 (t, JPC = 5 Hz, CD3/D3'), 129.6 (t, JPC = 5 Hz, CD3/D3'), 129.5 (CB6), 129.2 (CB6), 129.1 (CB5/B8), 128.6 (CC5), 

127.5 (CA5), 126.5 (t, JPC = 2 Hz, CC4), 122.4 (CA3), 122.2 (t, JPC = 13 Hz, CC2), 120.3 (CB3), 37.2 (Cxantphos-

bridge), 30.1 (CMe-xantphos), 27.1 (CMe-xantphos), 26.6 (CMeA). 31P{1H} NMR (202 MHz, acetone-d6): δ/ppm = −12.9 

(br), −144.3 (sept, JPF = 707 Hz). ESI MS: m/z 861.2 [M–PF6]+ (base peak, calc. 861.2). Found C 64.19, H 

4.52, N 2.76; C54H44CuF6N2OP3 requires C 64.38, H 4.40, N 2.78. 

2.7. Crystallography 
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Single crystal data were collected on a Bruker APEX-II diffractometer (CuK radiation) with 

data reduction, solution and refinement using the programs APEX [21] and CRYSTALS [22], or using 

a STOE StadiVari diffractometer equipped with a Pilatus300K detector and with a Metaljet D2 source 

(GaK radiation) and solving the structure using Superflip [23,24] and Olex2 [25]. Structure analysis 

including the ORTEP representations, used Mercury CSD v. 4.1.1 [26,27]. 

2.8. [Cu(xantphos)(1)][PF6] 

C53H42CuF6N2OP3, Mr = 993.38, yellow block, triclinic, space group P–1, a = 10.9132(6), b = 

14.9862(9), c = 15.3881(9) Å,  = 83.394(3),  = 73.300(3), γ = 72.099(3)o, V = 2292.9(2) Å3, Dc = 1.439 g 

cm–3, T = 123 K, Z = 2, (CuK) = 2.228 mm–1. Total 26,926 reflections, 8415 unique (Rint = 0.034). 

Refinement of 7317 reflections (721 parameters) with I > 2(I) converged at final R1 = 0.0471 (R1 all 

data = 0.0551), wR2 = 0.1118 (wR2 all data = 0.1182), gof = 0.9938. CCDC 1987595. 

2.9. [Cu(xantphos)(2)][PF6]  

C54H44CuF6N2OP3, Mr = 1007.41, yellow block, orthorhombic, space group Pbca, a = 19.3693(2), b 

= 20.3282(2), c = 23.2111(2) Å, V = 9139.21(15) Å3, Dc = 1.464 g cm–3, T = 130 K, Z = 8, (GaK) = 

3.604 mm–1. Total 2,93,975 reflections, 9298 unique (Rint = 0.044). Refinement of 8499 reflections (604 

parameters) with I > 2(I) converged at final R1 = 0.0563 (R1 all data = 0.0607), wR2 = 0.0500 (wR2 all 

data = 0.0502), gof = 0.9997. CCDC 1987597. 

2.10. [Cu(POP)(2)][PF6] 

C54H44CuF6N2OP3, Mr = 1007.41, yellow block, triclinic, space group P–1, a = 11.7667(3), b = 

12.4566(3), c = 16.3117(4) Å,  = 105.010(2),  = 93.514(2), γ = 108.465(2)o, V = 2163.43(10) Å3, Dc = 1.485 

g cm–3, T = 130 K, Z = 2, (GaK) = 3.790 mm–1. Total 87292 reflections, 42829 unique (Rint = 0.058). 

Refinement of 7415 reflections (577 parameters) with I > 2(I) converged at final R1 = 0.0957 (R1 all 

data = 0.1080), wR2 = 0.0735 (wR2 all data = 0.0738), gof = 0.8927. CCDC 1987596. 

3. Results and Discussion 

3.1. Characterization of Copper(I) Complexes 

The base peak in the ESI mass spectrum of each [Cu(P^P)(N^N)][PF6] compound corresponded 

to the [M–PF6]+ ion, and mass spectra are presented in Supplementary Figures S1–S4. In the 31P{1H} 

NMR spectrum of each complex, a broadened peak around δ −12 ppm (see Sections 2.3–2.6) was 

observed for the P^P ligand in addition to the septet for the [PF6]– counterion. The 1H and 13C{1H} 

NMR spectra were assigned using 2D methods and the HMQC and HMBC spectra are shown in 

Figures S5–S12 in the Supporting Information. Figure 1 displays a comparison of the 1H NMR spectra 

of [Cu(POP)(1)][PF6] and [Cu(POP)(2)][PF6], and a similar comparison is made for the xantphos-

containing compounds in Figure 2. In each complex, signals for HB3 and HB4 were distinguished using 

the NOESY cross-peak between HA3 and HB3. The phenyl rings of the PPh2 groups split into two sets, 

labelled D and D’. In the xantphos-containing compounds, the rigidity of the xanthene backbone 

leads to a ligand conformation in which two phenyl rings face towards the N^N ligand and two 

phenyls point away. A NOESY cross-peak between HA6 (on the N^N ligand) and HD2 (on xantphos) 

allows the D and D’ rings to be distinguished. In contrast, in the POP-containing complexes, the 

NOESY spectrum evidences conformational exchange (EXSY) peaks between pairs of signals for 

HD2/D2’, HD3/D3’, and HD4/D4’ (Figure 3). This is readily rationalized in terms of the conformational 

flexibility of the POP ligand.  
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Figure 1. Comparison of the aromatic regions of the 1H NMR spectra (500 MHz, acetone-d6, 298 K) of 

(a) [Cu(POP)(1)][PF6] and (b) [Cu(POP)(2)][PF6]. See Scheme 1 for atom labelling. Scale: δ/ppm. 

The major difference between Figures 1a and 1b is the disappearance of the resonance for proton 

HA6 corresponding to the introduction of the 6-methyl substituent in ligand 2. In contrast, inspection 

of Figure 2 reveals that, in addition to the loss of the HA6 signal on going from [Cu(xantphos)(1)][PF6] 

to [Cu(xantphos)(2)][PF6], the signals for the quinoline protons HB7 and HB8 undergo significant 

movement to higher frequencies. The tetrahedral geometry of the copper atom (confirmed in the 

single crystal structures discussed later) leads to the mean planes through the P^P and N^N ligands 

being approximately orthogonal to one another. The N^N ligand can adopt one of two orientations 

with the quinoline unit pointing towards or away from the xanthene unit. As Figure 4 shows, this 

places protons HB7 and HB8 in very different environments. In the structural discussion that follows, 

we confirm that in the solid state, the N^N ligands in [Cu(xantphos)(1)]+ and [Cu(xantphos)(2)]+ adopt 

different orientations, and the 1H NMR spectroscopic data are consistent with the retention of this 

difference in solution. 

 

Figure 2. Comparison of the aromatic regions of the 1H NMR spectra (500 MHz, acetone-d6, 298 K) of 

(a) [Cu(xantphos)(1)][PF6] and (b) [Cu(xantphos)(2)][PF6]. See Scheme 1 for atom labelling. Scale: 

δ/ppm. Note the movement of the signals for quinoline protons HB7 and HB8 (see text). 
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Figure 3. Part of the NOESY spectrum (500 Hz, 298 K, acetone-d6) of [Cu(POP)(1)][PF6] showing 

exchange (EXSY) cross-peaks. 

 

Figure 4. Modelled (Molecular Mechanics using Spartan '18 (v. 1.3) [28]) of two possible conformers 

of [Cu(xantphos)(1)]+ illustrating the different environments of quinoline protons HB7 and HB8 in the 

two conformers. 

3.2. Crystal Structures of [Cu(xantphos)(1)][PF6], [Cu(xantphos)(2)][PF6] and [Cu(POP)(2)][PF6] 

Yellow single crystals of [Cu(xantphos)(1)][PF6], [Cu(xantphos)(2)][PF6] and [Cu(POP)(2)][PF6] 

were grown from CH2Cl2 solutions layered with Et2O. All compounds crystallize without lattice 

solvent, thereby allowing meaningful comparisons of the structures, including packing interactions. 

[Cu(xantphos)(1)][PF6] and [Cu(POP)(2)][PF6] crystallize in the triclinic space group P–1, while 

[Cu(xantphos)(2)][PF6] crystallizes in the orthorhombic space group Pbca. ORTEP representations of 

the [Cu(P^P)(N^N)]+ cations are shown in Figure 5 and selected bond lengths and angles are 

summarized in Table 1. Table 1 also includes values of Houser's 4 parameter which is used to 

quantify distortion at the copper centre along a path from Td (τ4 = 1.00) towards C3v symmetry (τ4 = 

0.85) [29]. The τ4 values in Table 1 indicate distorted C3v symmetries, with larger distortions for 

[Cu(xantphos)(2)]+ and [Cu(POP)(2)]+ than for [Cu(xantphos)(1)]+. In both [Cu(xantphos)(2)]+, and 

[Cu(POP)(2)]+, there is one large P–Cu–N bond angle (125.94(6)o and 129.07(11)o, Table 1) that 

contributes to the value of τ4 = 0.79 and this is associated with a phenyl–2-(pyridin-2-yl)quinoline -

stacking contact (see later discussion). 
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Table 1. Bond lengths and angles in the coordination sphere of each [Cu(P^P)(N^N)]+ cation. 

Parameter [Cu(xantphos)(1)]+ [Cu(xantphos)(2)]+ [Cu(POP)(2)]+ 

Cu–N / Å 2.070(2), 2.083(2) 2.094(2), 2.096(2) 2.129(4), 2.043(4) 

Cu–P / Å 2.2641(7), 2.2702(7) 2.2562(8), 2.3153(8) 2.3032(12), 2.2597(13) 

P–Cu–P / o 112.24(3) 119.38(3) 117.59(5) 

N–Cu–N / 
o 

79.24(8) 79.05(9) 79.53(15) 

P–Cu–N / 
o 

118.13(6), 117.32(6), 

115.99(6), 110.11(6) 

122.31(6), 102.51(6), 

125.94(6), 98.99(6) 

129.07(11), 104.52(10), 

119.73(11), 98.76(10) 

τ4 1 0.88 0.79 0.79 
1 τ4 parameter, see reference [29]. 

 

Figure 5. ORTEP representations of the structures of the complex cations in (a) [Cu(xantphos)(1)][PF6], 

(b) [Cu(POP)(2)][PF6], and (c) [Cu(xantphos)(2)][PF6]. Ellipsoids are plotted at 40% probability level 

and H atoms are omitted for clarity. 

A search of the Cambridge Structural Database (CSD) v. 5.41 [30] revealed that 

[Cu(xantphos)(1)][PF6], [Cu(POP)(2)][PF6], and [Cu(xantphos)(2)][PF6] are the first examples of 

structurally characterized 2-(pyridin-2-yl)quinoline-containing [Cu(xantphos)(N^N)][PF6] and 

[Cu(POP)(N^N)][PF6] compounds. In each complex, the 2-(pyridin-2-yl)quinoline moiety is close to 

planar. The angles between the least squares planes of the pyridine and quinoline units are 6.5° in 

[Cu(xantphos)(1)]+, 9.2° in [Cu(xantphos)(2)]+, and 9.9° in [Cu(POP)(2)]+. These values lie in the typical 

range for [Cu(POP)(N^N)]+ and [Cu(xantphos)(N^N)]+ complexes in which N^N is restricted to a bpy 

(excluding phen derivatives) or a 2,2’-biquinoline-based ligand (Figure 6). Interestingly, within this 

dataset, the deviation from planarity is quite severe in some cations, with the largest angle of 31.6° 

occurring in [Cu(xantphos)(N^N)][PF6] in which N^N is 6,6'-dimethyl-4,4'-diphenyl-2,2'-bipyridine 

[31]. The biquinoline (biq) ligand may also undergo significant twisting, with angles of 15.5° in 

[Cu(xantphos)(biq)][PF6] [32], 16.6° in [Cu(POP)(biq)][PF6] [33] and 19.8° in [Cu(POP)(4,4’-

Ph2biq)][PF6] [34]. Thus, the small twist angles in coordinated ligands 1 and 2 are not a consequence 

of the extended -system on going from bpy to 2-(pyridin-2-yl)quinoline. 
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Figure 6. Distribution of angles between the planes of the pyridine rings in bpy or quinoline units in 

biquinoline ligands in [Cu(POP)(N^N)]+ and [Cu(xantphos)(N^N)]+ complexes. Data from the 

Cambridge Structural Database (CSD), version 5.41 [30], searched using Conquest version 2.0.4 [35]. 

As discussed in Section 3.1, there are two possible orientations of the N^N ligand in the 

xantphos-containing compounds. The xanthene unit possesses a ‘bowl’-like conformation which, in 

many [Cu(P^P)(N^N)]+ cations, hosts a substituent attached to the N^N ligand, see for example [9,10]. 

In [Cu(xantphos)(1)][PF6] and [Cu(xantphos)(2)][PF6], ligands 1 and 2 adopt different orientations as 

is shown in Figures 7a and 7b. Ligand 1 is oriented with the quinoline over the xanthene unit, in 

contrast to 2 which has the 6-methylpyridine group facing the xanthene ‘bowl’. Figures 7c and 7d 

display space-filling representations of the complex cations, looking towards the xanthene unit. The 

arene ring of the quinoline (Figure 7c) and the methyl group of the 6-methylpyridine ring (Figure 7d) 

are neatly accommodated within the cavity of the xanthene unit. An additional difference between 

the structures concerns the intra-cation interactions between the phenyl rings (one from each PPh2 

group) and the N^N ligand. In [Cu(xantphos)(1)]+, one ortho-H atom of each phenyl ring points 

towards the centre of the Cu(N^N) chelate ring with C–H⋯centroid distances of 2.67 Å and 2.89 Å 

(Figure 7a and 7c). In [Cu(xantphos)(2)]+, ligand 2 is tilted so as to engage in a -stacking interaction 

with one phenyl ring (Figure 7d); the angle between the planes of the rings containing C21 and N2 is 

16.5° and the centroid⋯centroid distance is 3.90 Å. In [Cu(xantphos)(1)]+, a face-to-face -stacking 

contact is observed between the phenyl rings containing C21 and C42 (Figures 5a and 7a). The rings 

adopt a favourable offset arrangement, with a centroid⋯centroid separation of 3.84 Å and an inter-

plane angle of 17.5°. In both [Cu(xantphos)(1)][PF6] and [Cu(xantphos)(2)][PF6], therefore, a 

combination of edge-to-face and face-to-face intra-cation contacts are observed and the copper centre 

is efficiently protected by the ligand sheath. We note that the Cu⋯O non-bonded distances are 

3.199(2) Å in [Cu(xantphos)(1)]+, and 3.075(2) Å in [Cu(xantphos)(2)]+. For comparison, the Cu⋯O 

separation is 3.162(3) Å in [Cu(POP)(2)]+. We return to the relevance of these distances in Section 3.4. 

 

Figure 7. Views of the (a) [Cu(xantphos)(1)]+ and (b) [Cu(xantphos)(2)]+ cations illustrating the 

different orientations of 1 and 2 with respect to the xanthene unit. Spacefilling representations of (c) 

[Cu(xantphos)(1)]+ and (d) [Cu(xantphos)(2)]+ looking towards the xanthene ‘bowl’ (top of the 

figures). 

The POP-containing complex exhibits only one -stacking interaction for which the arrangement 

of the participating phenyl and pyridine rings (Figure 8a,b) is not optimal. The angle between the 
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ring planes is 20.4°, and the centroid⋯centroid distance is 4.03 Å. However, this weak contact is 

augmented by inter-cation packing interactions involving a centrosymmetric -stacking embrace 

between the rings in ligands 2 containing N2 and N2i (symmetry code i = –x, 2–y, 1–z) (Figure 8c). 

The separation of the ring planes is 3.24 Å and the centroid⋯centroid distance is 3.73 Å. These 

parameters are consistent with an efficient interaction [36]. No analogous intermolecular interactions 

are observed in [Cu(xantphos)(1)][PF6] and [Cu(xantphos)(2)][PF6]. We note that in the solid state, 

[Cu(POP)(phen)][BF4] also shows the assembly of centrosymmetric dimers through -stacking of 

pairs of phen ligands [37]. 

 

Figure 8. (a) and (b) Each [Cu(POP)(2)]+ cation offers only one, non-optimal -stacking interaction. (c) 

Pairs of cations engage in a centrosymmetric -stacking embrace. 

3.3. Photophysical Properties 

Figure 9 illustrates the solution absorption spectra of the four copper(I) compounds and 

absorption maxima are given in Table 2. Bands below ca. 350 nm arise from ligand-centred π*π 

transitions, and the broad absorption band at ca. 420–430 nm is assigned to MLCT. The latter shifts 

to higher energy (Table 2) on introducing the 6-methyl substituent into the pyridyl unit in keeping 

with observations for analogous compounds containing bpy and 6-Mebpy ligands [8,9,16]. The 

MLCT bands for all four compounds are red-shifted with respect to those for [Cu(POP)(bpy][PF6] 

(388 nm) [16], [Cu(xantphos)(bpy][PF6] (383 nm) [16], [Cu(POP)(6-Mebpy][PF6] (380 nm) [8], and 

[Cu(xantphos)(6-Mebpy][PF6] (379 nm) [9], consistent with the extended π-system in ligands 1 and 2. 

 

Figure 9. Solution absorption spectra of the copper(I) compounds in CH2Cl2 (2.5  10–5 mol dm–3 for 

complexes with ligand 1 and 2.1  10–5 mol dm–3 for those containing 2.). 
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Table 2. Solution absorption maxima for the copper(I) compounds (CH2Cl2, 2.5  10–5 or 2.1  10–5 mol 

dm–3). 

Compound λmax / nm ( / dm3 mol–1 cm–1) 

 Ligand-Centred π*π MLCT 

[Cu(POP)(1)][PF6] 
257 (39,800), 273 sh (28,600), 314 sh (15,800), 330 (11,200), 344 

(8,500) 

429 

(3,200) 

[Cu(xantphos)(1)][PF6] 
258 (42,800), 270 (36,500), 275 sh (35,000), 293 sh (19,600), 329 

(10,950), 344 (8,800) 

429 

(3,200) 

[Cu(POP)(2)][PF6] 
250 (46,500), 275 sh (33,600), 318 sh (15,000), 336 (12,950), 348 

(13,000) 

416 

(3,400) 

[Cu(xantphos)(2)][PF6] 
251 (43,200), 258 sh (39,300), 278 (33,700), 332 (11,800), 338 sh 

(10,400), 347 (11,500) 

419 

(2,900) 

In CH2Cl2 solution, the compounds are weak emitters and we focus only on the solid-state 

properties. Emission data for powdered samples of the compounds are summarized in Table 3 and 

normalized emission spectra are depicted in Figure 10. The introduction of the 6-methyl group into 

the pyridine ring on going from 1 to 2 leads to a blue-shift in the emission maximum. Similar trends 

in values of λemmax are observed on going from [Cu(POP)(bpy)][PF6] (581 nm) [16] to [Cu(POP)(6-

Mebpy)][PF6] (567 nm) [8], and from [Cu(xantphos)(bpy)][PF6] (587 nm) [16] to [Cu(xantphos)(6-

Mebpy)][PF6] (547 nm) [9]. Introducing the methyl group to the N^N ligand leads to an enhancement 

of the PLQY (Table 3), and follows trends previously reported for bpy-based ligands [8,9]. A small 

enhancement in PLQY is observed when the bpy ligand in [Cu(POP)(bpy)][PF6] and 

[Cu(POP)(bpy)][PF6] is replaced by 2-(pyridin-2-yl)quinoline (1); compare PLQY values of 3.0% and 

1.7% for powdered [Cu(POP)(bpy)][PF6] and [Cu(xantphos)(bpy)][PF6], respectively [16], with the 

data in Table 3. However, while a similar improvement is observed on going from [Cu(POP)(6-

Mebpy)][PF6] (PLQY = 9.5% [8]) to [Cu(POP)(2)][PF6] (PLQY = 21%), the opposite is true for the 

xantphos-containing compounds. For [Cu(xantphos)(6-Mebpy)][PF6], the PLQY = 34% [9] compared 

to 17% for [Cu(xantphos)(2)][PF6]. The excited state lifetimes increase on going from ligand 1 to ligand 

2 for both P^P ligands. This is consistent with less flattening of the coordination environment at the 

copper centre in the excited state upon introduction of the methyl group at the pyridyl ring. The 

excited state lifetime values are roughly doubled for the complexes with xantphos in comparison to 

those with POP. Lifetime decay plots are presented in Supplementary Figures S13–S24, including 

fitting curves (mono- and biexponential decay) and decay functions. The complexes were found to 

exhibit first-order decay of their excited state lifetimes. 

 

Figure 10. Normalized solid-state emission spectra of the compounds (exc = 365 nm). 
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Table 3. Solid-state emission data (298 K) for the copper(I) compounds. 

Compound λexc / nm λemmax / nm PLQY / % τ / μs 

[Cu(POP)(1)][PF6] 365 610 6 2.9 

[Cu(xantphos)(1)][PF6] 365 602 9 5.0 

[Cu(POP)(2)][PF6] 365 583 21 5.6 

[Cu(xantphos)(2)][PF6] 365 580 17 10.7 

3.4. Comments on Structure–Property Relationships 

One of the key challenges in improving the photoluminescence properties of [Cu(P^P)(N^N)]+ 

species is the design of the N^N ligands, and selecting an appropriate combination of N^N and P^P 

ligands. In a light-emitting device such as a LEC, electroluminescence (EL), rather than 

photoluminescence (PL), becomes the critical phenomenon. Although it does not necessarily follow 

that high PLQY leads to high EL, it is usually true that low PL indicates a poor candidate for EL. In a 

LEC, the [Cu(P^P)(N^N)][X] emitters in the active layer are usually present in the form of thin films, 

for example, in an ionic liquid with a typical ratio of emitter:ionic liquid of 4:1. Thus, structural 

information obtained from single crystal structures becomes relevant for gaining insight into 

interactions both within the coordination sphere of the copper(I) centre and between the 

[Cu(P^P)(N^N)]+ cations. 

For the series of compounds investigated here, the highest solid-state PLQY was observed for 

[Cu(POP)(2)][PF6]. Based on the work of Armaroli, Nierengarten, Delavaux-Nicot and coworkers 

[12], we asked whether π-stacking of ligands plays a role. While each of [Cu(xantphos)(1)]+, 

[Cu(POP)(2)]+, and [Cu(xantphos)(2)]+ exhibits C–H⋯π and face-to-face intra-cation contacts, only 

[Cu(POP)(2)]+ presents a supramolecularly assembled dimeric motif (Figure 8c). In the related 

compound [Cu(POP)(6-Mebpy)][PF6], there is again a centrosymmetric dimeric motif in the solid-

state involving the unsubstituted pyridine ring of 6-Mebpy (Figure 11a). This has not previously been 

described [8], and analysis of the packing (CSD refcode BOSVAI) reveals an inter-plane separation of 

3.35 Å and a centroid⋯centroid distance of 3.74 Å. The tighter association of the cations in 

[Cu(POP)(2)][PF6] (Figure 11b) may contribute to the enhanced PLQY of [Cu(POP)(2)][PF6] (21%) 

compared to [Cu(POP)(6-Mebpy)][PF6] (9.5% [8]). We note that [Cu(POP)(bpy)]+ also assembles into 

dimeric motifs in the crystal structures of [Cu(POP)(bpy)][PF6].Et2O  (CSD refcode CAPZEZ) [17], 

and [Cu(POP)(bpy)][PF6].CHCl3 (CSD refcode OYUKID) [15] as shown in Figure 11c. Analysis of the 

data from the CSD gives inter-plane and centroid⋯centroid distances of 3.62 Å and 3.86 Å, 

respectively, in [Cu(POP)(bpy)][PF6].Et2O, and 3.45 Å and 3.97 Å, respectively, in 

[Cu(POP)(bpy)][PF6].CHCl3. The similarities in the packing motifs in [Cu(POP)(bpy)]+ (Figure 11c) 

and [Cu(POP)(6-Mebpy)]+ (Figure 11b, top) are striking, and it is interesting to note that the solid-

state PLQY values are of the same orders of magnitude (3.0% and 9.5%, respectively [8,16]).  

 

Figure 11. (a) Dimeric motif in the solid-state structure of [Cu(POP)(6-Mebpy)][PF6] (CSD refcode 

BOSVAI), and (b) the same motif viewed from above, compared with the analogous packing unit in 
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[Cu(POP)(2)][PF6] (H atoms omitted). (c) Centrosymmetric packing motif in the solid-state structure 

of [Cu(POP)(bpy)][PF6].Et2O (CSD refcode CAPZEZ). 

Finally, we return to the question of the effects of close Cu⋯O contacts in [Cu(POP)(N^N]+ and  

[Cu(xantphos)(N^N]+ complexes. The detailed investigations of Viciano-Chumillas, Costa and Cano 

focused on a series of xantphos-containing compounds [13,14]. We decided to attempt to correlate 

solid-state PLQY values of [Cu(POP)(N^N][X] and [Cu(xantphos)(N^N][X] complexes in which N^N 

is bpy or a derivative of bpy, and X– is any anion, with the Cu⋯O distances in the cations. A search 

of the CSD [30] using Conquest, version 2.0.4 [35], was used to generate the results given in Table S1 

in the supporting information. Only compounds for which solid-state PLQY data are available are 

included. Figure 12 presents a scatter plot of the data, with POP- and xantphos-containing 

compounds delineated by blue and orange markers, respectively. Data for [Cu(xantphos)(1)][PF6], 

[Cu(POP)(2)][PF6], and [Cu(xantphos)(2)][PF6] (see Table 3 for the PLQY values) are shown in black. 

Although there are large deviations among the PLQY values for a given Cu⋯O distance, there is a 

general trend for increased PLQY values with longer Cu⋯O separations. The larger spread of Cu⋯O 

distances for [Cu(POP)(N^N][X] compounds reflects the greater flexibility of the POP ligand with 

respect to xantphos. With a couple of exceptions ([Cu(xantphos)(2)][PF6] being one of them), 

photoluminescence is generally weak when Cu⋯O < 3.10 Å. In general, the longest Cu⋯O distances 

and highest PLQY values appear in [Cu(xantphos)(N^N]+ cations. Interestingly, however, the highest 

PLQYs are for complexes containing the POP ligand in which N^N = 4,4’-bis(4-fluorophenyl)-6,6’-

dimethyl-2,2’-bipyridine (CSD refcode EVAFAK and PLQY = 74% [31]), 4,4’,6,6’-tetramethyl-2,2’-

bipyridine (CSD refcode COYHEF and PLQY = 55% [38]), and 6,6’-dimethyl-2,2’-bipyridine (CSD 

refcode BOSYUF and PLQY = 43.2% [8]). 

 

Figure 12. Solid-state PLQY values as a function of crystallographically determined Cu⋯O distances 

for [Cu(POP)(N^N)]+ (blue markers) and [Cu(xantphos)(N^N)]+ (orange markers) in which N^N is 

bpy or a functionalized bpy, compared with data for [Cu(POP)(2)][PF6], [Cu(xantphos)(1)][PF6], and 

[Cu(xantphos)(2)][PF6] (black markers). 

4. Conclusions 

We prepared and characterized the compounds [Cu(POP)(1)][PF6], [Cu(POP)(2)][PF6], 

[Cu(xantphos)(1)][PF6], and [Cu(xantphos)(2)][PF6] in which ligands 1 and 2 contain an extended π-

system with respect to the commonly employed bpy domain. Single crystal structures of 

[Cu(POP)(2)][PF6], [Cu(xantphos)(1)][PF6], and [Cu(xantphos)(2)][PF6] were determined and 

confirmed a distorted copper(I) coordination environment in each complex. In the xantphos-

containing complexes, ligand 1 is positioned with the quinoline over the xanthene unit, while ligand 
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2 is oriented with the 6-methylpyridine group facing the xanthene unit. 1H NMR spectroscopic data 

are consistent with this difference persisting in solution. The [Cu(POP)(2)]+, [Cu(xantphos)(1)]+, and 

[Cu(xantphos)(2)]+ cations present different edge-to-face and face-to-face π-interactions. In 

[Cu(POP)(2)][PF6], pairs of cations associate through an efficient -stacking embrace. This possibly 

contributes to a PLQY value of 21% for powdered [Cu(POP)(2)][PF6], this being the highest PLQY of 

the four compounds. The design of new ligands to enhance the PL properties of [Cu(P^P)(N^N)]+ 

complexes is critical for the advancement of LEC technology, and we have offered some thoughts on 

the role of π-stacking interactions and on Cu⋯O distances in the {Cu(POP)} and {Cu(xantphos)} 

domains. 

Supplementary Materials: The following are available online at www.mdpi.com/2073-4352/10/4/255/s1, Figures 

S1–S4: mass spectra of the copper(I) compounds; Figures S5–S12: HMQC and HMBC spectra of the copper(I) 

compounds; Figures S13–24: Solid-state lifetime decay and first-order fitting curves, and IRF; Table S1: summary 

of data from the CSD used for Figure 12. 
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