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Dedication to Prof. François Diederich on the occasion of his retirement celebration. 

A macrocyclic oligothiophene with an integrated pseudo-para substituted [2.2]paracyclophane has been achieved. The synthetic sequence relies 

on alternating steps of halogenation- and Suzuki-coupling conditions. By employing  a modified Eglinton reaction under high dilution conditions, 

the macrocycle is closed and the obtained diacetylene is efficiently transferred to the corresponding thiophene. The molecule is fully characterized 

and its dynamic racemization is analysed by variable temperature NMR experiments. The racemization barrier hints with 38 kJ/mol at rapid 

enantiomerization at room temperature by Mislow’s “Euclidian rubber glove” enantiomerization process. Macrocycle formation results in red-

shifted absorption and emission spectra, hinting at increased conjugation through the oligothiophene versus the trough space conjugation 

through the [2.2]paracyclophane. 
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Introduction 

The ongoing miniaturization of electronic components approaches the 

nanometer scale, and novel concepts to fabricate objects in this range 

are a topic of high interest. One of the fabrication principles can be the 

bottom-up synthesis of molecules, profiting from the impressive 

achievements reported in the synthetic and macromolecular 

community. This assembly of tailor-made macromolecules from small 

reactive building blocks is approaching the nanoscale form the 

opposed direction than the scaling down of bulk materials in 

conventional inorganic silicon-based technology[1] and promising new 

research directions develop at the interface between both approaches.  

Over the past decades, conjugated macrocycles have attracted 

high interest due to both, their structural integrity offering well-

defined shapes and diameters, and their role as model compounds for 

infinitely conjugated π-systems.[2,3] Furthermore their physical and 

chemical features like their optical, electrochemical, and encapsulation 

properties moved into the focus of interest.[4–7] A synthetic milestone 

in the field of conjugated aromatic compounds was the synthesis and 

investigation of Kekulene by the young François Diederich in the labs 

of Heinz Staab.[8,9] 

Various molecular motifs have been reported as subunits of 

conjugated macrocyclic compounds, like e.g. pyridines, benzenes, 

acetylenes as well as five-membered aromatic heterocycles, like furans 

and thiophenes.[10,11] We reported the assembly and investigation of a 

variety of macrocycles consisting of aromatic subunits in the past, 

among others structures comprising functional subunits like redox 

chromophores[12,13] or optically addressable azo-benzenes,[14] macro-

cycles designed as single molecule switches[15–17] or with pronounced 

π-stacking features,[18,19] and giant macrocycles as model compounds 

for persistent ring currents.[20] More recently, our focus moved to axial 

chiral systems like bicyclic “Geländer”-type structures[21] or the macro-

cyclization of the ligands assembled in a M(II) terpyridine complex 

resulting in a helical macrocycle with an arrangement resembling a 

propeller.[22] 

 

 

 

Cyclo[n]thiophenes are an interesting class of conjugated 

macrocycles; they are model compounds for polythiophenes, with 

well-defined self-assembling and electronic features.[23] Initially, the 

synthesis of macrocyclic oligothiophenes was performed by reacting 

on both sides ethynyl-terminated ter- and quinquethiophenes under 

oxidative acetylene coupling conditions in the presence of a copper 

catalyst.[3] The resulting diethynyl linkers in the macrocycles were 

converted to thiophenes with sodium sulfide to form the 

corresponding cyclo[n]thiophenes. In this way, a library of macrocycles 

was obtained, where the smallest member of the series contained 

twelve thiophenes. In a later approach, strained oligothiophenic 

macrocycles were assembled, where only one diacetylene was formed 

oxidatively.[24] Bäuerle and coworkers also reported on catenanes, 

where the synthesis of the target structure was achieved through 

complexation of platinum followed by reductive elimination to obtain 

the corresponding catenanes, comprising the diethynyl link in their 

oligothiophene macrocycles.[25]  

 

Figure 1. Series of oligothiophene macrocycles 2 a-c (left side) developed 

by Bäuerle et al. as basis for the design of the target structure 1 (right side). 

The eleven thiophene subunits of the macrocycle are separated by a step 

due to the pseudo-para substituted PC subunit (top) which disturbs the 

conjugation. The four peripheral bis-3,5-(tert-butyl)phenyl substituents 

provide the solubility required for wet chemical processing. 
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The here presented structure is inspired by a split-ring resonator (SRR). 

This is the smallest possible realization of a circuit comprising a coil 

and a capacitor and thus displays interesting interactions with electro-

magnetic fields of suitable wavelength.[26] As an example, a negative 

refractive index at microwave frequencies was reported for a large 

array of equally micrometer sized metallic SRRs.[27,28]  

The design of molecule 1 (Fig. 1) combines the conjugated 

periphery of an oligothiophene macrocycle with the conjugation 

altering pseudo-para [2.2]paracyclophane (PC). Using again the inspi-

ring picture of a SRR, the macrocycle consisting of 2,5-interlinked 

thiophenes represent the “ring”, while the PC acts as the “split”. A parti-

cular appealing feature from the molecular design perspective is the 

helical chirality introduced by the step-like PC in the macrocycle, which 

might result in intriguing structural and chiroptical properties.[29] 

The step in the macrocycle is realized due to the 3D-structure of 

pseudo-para [2.2]paracyclophane (PC).[30] It has attracted considerable 

attention due to the face-to-face orientation of its benzene rings, 

which are considerably closer than twice their individual van-der-

Waals radii (typical ring distance: 3.09 Å), resulting in unusual optical, 

electronical and through-space charge-delocalization properties.[31–34] 

For example the comparison of annulene-PC hybrids with their 

benzannulene analogues displays typically a bathochromic shift in 

their absorption spectra, indicating an electronic conjugation through-

out the PC building block.[35] Also, electrochemical investigations of 

dithienyl-substituted PC point at electronic coupling, as the oxidation 

wave is separated documenting the interdependence of both redox 

chromophores.[34,36] Self assembled molecular rods comprising a 

central PC unit displayed very comparable electronic transport features 

compared with their benzene analogues, such that the limited control 

over the number of molecules in the crossed-wire junctions did not 

allow to trace the origin of the observed subtle variations.[32] Very 

recent single molecule experiments with molecular rods comprising a 

central PC subunit in a mechanically controlled break junction 

experiment even displayed mechanically triggered quantum inter-

ference in the junctions transport behavior.[37]  

Symmetrical disubstitution of PC leads to four different region-

isomers.[38] Pseudo-para and geminal disubstitution leads to derivate-

ives that are achiral due to internal symmetry elements.[39] However, 

pseudo-ortho and meta disubstitution leads to chiral products, 

separation of enantiomers of PCs with different substitution pattern 

have been accomplished.[40] Notably, pseudo-ortho disubstituted PC 

derivatives were incorporated in chiral thiophene-PC macrocycles, 

which showed pronounced chiroptical behavior.[41]  

Here we report a novel approach making the pseudo-para 

disubstituted PC chiral by integrating it in the macrocyclic structure 1. 

In 1 the macrocycle is complemented by eleven 2,5-diyl-thiophene 

subunits, which are introduced pairwise in a sequential synthetic 

strategy at both ends of the open oligomer in order to identify the 

number of thiophene subunits required for a successful macro-

cyclization. In addition, four bis-3,5-(tert-butyl)phenyl substituents 

provide the solubility in organic solvents required to enable wet 

chemical processing of both, the precursors and the target structure. 

The unique integration of the PC substitution pattern in the macro-

cyclic structure 1 leads, to the best of our knowledge, to the first chiral 

pseudo-para symmetrically disubstituted PC, as the introduction of the 

macrocycle leads to decreased symmetry. Interesting is the enantio-

merization of 1, which due to its 3D PC building block follows Mislow’s 

“Euclidean rubber glove” mechanism.[42,43] In other words, the molecule 

becomes its mirror image by rotations around single bonds without 

ever adapting a flat achiral conformation. The enantiomerization 

mechanism thus resembles the inversion of the chirality of a rubber 

glove, which is achieved by the complex movement of turning the 

glove inside out.  

In this paper the stepwise assembly of the macrocycle 1 is 

reported together with its full characterization. The molecular 

dynamics of 1 are investigated by variable temperature NMR (VT-

NMR) experiments shining light on its unique racemization behavior. 

The extent of electronic conjugation through macrocycle 1 and its 

precursors is qualitatively investigated by UV-Vis absorption and 

emission spectroscopy. 

 

Results and Discussion 

The synthesis of a complex structure as macrocycle 1 requires 

repetitive synthetic steps; mainly alternating halogenation and Pd-

catalyzed carbon-carbon coupling reactions.  

The linear and sequential synthetic strategy for macrocycle 1 involves 

a late stage macrocyclization and formation of a thiophene from the 

Scheme 1. Synthetic strategy for the assembly of racemic macrocycle 1. 
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corresponding diacetylene, based on the linear protected intermediate 

3. Precedence for this strategy exists, as the cyclization of alkyne 

substituted oligothiophenes under oxidative acetylene coupling 

conditions[44] was employed by Bäuerle et al. for the synthesis of 

phenanthroline containing cyclic oligothiophenes of similar ring 

diameters.[24] Based on this concept, chiral carbon-rich macrocycles 

were also obtained in the labs of François Diederich, who produced 

alleno-acetylenic macrocycles with outstanding chiroptical proper-

ties.[45,46] The open-ring intermediate 3 is divided into two building 

blocks 4 and 5 which can be coupled in a Sonogashira reaction. This 

linear synthetic strategy allows for a step-by-step buildup of structure 

4 through a series of halogenation and Suzuki coupling reactions 

without the need of excessive protecting-group strategies. Subunit 4 

was assembled from highly functionalized building blocks 6, 7 and 8 

in a repetitive halogenation, Pd-catalyzed coupling chemistry se-

quence. Building block 7 and 8 were introduced to achieve reasonable 

solubility for all relevant intermediates during the course of the 

synthesis. While building blocks 6 and 8 are already literature-known, 

a strategy to form 7 had to be developed.[36,47] 

The synthesis of building block 7, that is introduced to increase 

the solubility, started from commercially available 3-bromothiophene 

(9) and literature-known 2-(3,5-di-tert-butylphenyl)-4,4,5,5-tetra-

methyl-1,3,2-dioxaborolane (10).[48]  

The Suzuki coupling of both compounds afforded 11 in 88% yield and 

multigram amounts of 11 could be isolated after purification by silica 

gel chromatography. Next, 11 was reacted with one equivalent of N-

bromosuccinimide (NBS) to selectively afford 12. Excess of NBS lead 

to bromination also in the 5-position of the thiophene. Compound 12 

was, after isolation by column chromatography (CC) in 77% yield, 

reacted with n-butyllithium (n-BuLi) and 2-isopropoxy-4,4,5,5-

tetramethyl-1,3,2-dioxaborolane to yield 7. During the course of the 

lithiation it is crucial that the temperature is kept at -78 °C, as at higher 

temperatures, deprotonation of 12 at the 5-position was observed, 

leading to the corresponding 2-bromo-5-pinacolboronato thiophene 

after work up. After addition of 2-isopropoxy-4,4,5,5-tetramethyl-

1,3,2-dioxaborolane and aqueous workup, 7 was isolated without 

purification in 90% yield as a yellow solid. 

Having solubilizing building block 7 in hand, our focus moved 

towards the assembly of precursor 6. While its synthesis is already 

literature known, we aimed to develop a higher yielding procedure 

than the one published previously. Collard et al. reported a procedure 

relying on a Stille coupling which was efficient yet difficult to purify.[36] 

More recently, a procedure developed by Martin et al. was reported 

which utilized Suzuki coupling conditions, however working with 5-

alkyl-thiophene boronic acids.[34] Therefore, a procedure utilizing 

Kumada reaction conditions as developed by Rozenberg et al. was 

adapted.[49] Commercially available 2-thienyl magnesium bromide (13) 

was added dropwise to a suspension of pseudo-para-dibromo-PC (14) 

and Pd(dppf)Cl2 in tetrahydrofuran (THF). After heating to 60 °C for 

two hours, building block 6 started to precipitate from the reaction 

mixture. Following aqueous workup and removal of the solvent, 6 

could be isolated by washing the crude product with cyclohexane and 

cooled dichloromethane. Compound 6 was isolated in a yield of 87% 

as a white solid.  

Subsequently, 6 was dibrominated with NBS in dimethylform-

amide (DMF), and after aqueous workup and filtration through a plug 

of celite, 15 was obtained as a white solid. 15 could only be dissolved 

in substantial amounts of toluene after heating the suspension to 

60 °C. Thus, compounds 15 and 7 were reacted in a Suzuki reaction 

with Pd-PEPPSI-IPrTM (PEPPSI: pyridine-enhanced precatalyst prepar-

ation stabilization and initiation, IPr: isopropyl) and K2CO3 in methanol 

(MeOH) and toluene in a procedure adapted from Nilsson et. al.[50] The 

Scheme 3. Synthesis of fragment 20. Reagents and conditions: (a) Pd(dppf)Cl2, THF, 60 °C, 2 h, 87%. (b) NBS, CHCl3, DMF, room temp., 20 h, 91%. (c) 7, Pd-

PEPPSI-IPrTM, K2CO3, toluene, MeOH, 70 °C, 15 min, 95%. (d) NBS, DMF, room temp., 20 h, 92%. (e) 8, Pd-PEPPSI-IPrTM, K2CO3, toluene, MeOH, 70 °C, 20 min, 

82%. (f) NIS, CHCl3, AcOH, room temp., 1.5 h, 99%. (g) 7, Pd-PEPPSI-IPrTM, K2CO3, toluene, MeOH, 70 °C, 30 min, 83%. 

Scheme 2. Synthesis of building block 7. Reagents and conditions:  

(a) Pd(PPh3)4, Na2CO3, DMF, H2O, 120 °C, 2 h, 88% (b) NBS, CHCl3, AcOH, 

40 °C, 1 h, 77%. (c) n-BuLi, 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxa-

borolane, THF, -78 °C to room temp., 20 h, 90%. 
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reaction proceeded over the course of 15 minutes and 16 was 

obtained after CC in excellent yield as an off-white solid. To elongate 

the chain of thiophenes, 16 was brominated with NBS in DMF under 

exclusion of light. Aqueous work up and CC provided 17 as a yellow 

solid in 92% yield. Initial attempts to react 17 with thienyl boronic acid 

led to the hexathiophenic building block of very limited solubility that 

prevented its separation from the byproducts of the synthesis. 

Therefore, 17 was reacted in a Pd-PEPPSI-IPrTM catalyzed Suzuki 

reaction with trimethyl(5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)thien-2-yl)silane (8) to ensure improved solubility due to the 

presence of TMS groups, that can be easily transferred to an iodine 

with N-iodosuccinimide (NIS).[47] 

After reacting 17 and 8 in a Pd-PEPPSI-IPrTM catalyzed Suzuki 

reaction for 20 minutes, 18 could be isolated after aqueous workup 

and CC as a yellow amorphous solid. Next, 18 was readily 

interconverted to compound 19 by dissolving it in a 1:1 mixture of 

chloroform and acetic acid and treatment with NIS. During the reaction, 

compound 19 precipitated from the solution, but was soluble enough 

to be purified by CC and was isolated in quantitative yield as a yellow 

wax. Subsequently, 19 was reacted with building block 7 with Pd-

PEPPSI-IPrTM and K2CO3 in toluene and MeOH. After a reaction time of 

30 minutes, followed by aqueous work up, 20 was isolated in good 

yield of 83% after CC as a yellow amorphous solid. 

 Compound 20 was dibrominated with NBS in CHCl3 under the 

exclusion of light. After reacting the mixture for 20 hours, aqueous 

workup and CC lead to compound 21 in excellent yield as a yellow 

amorphous solid. Subsequently, 21 was reacted with building block 8 

under the established Suzuki coupling conditions. Chromatography on 

silica gel and automated gel permeation chromatography (GPC) lead 

to the isolation of 4 in 72% yield. Unfortunately, all attempts to convert 

the TMS functionality of 4 to the corresponding dibromide or -iodide 

lead to a complex product mixture, which according to their MALDI-

ToF MS analyses also contained mono- and trihalogenated species 

besides the desired material. Attempts to isolate the desired 

compound from those mixtures, either by silica gel chromatography 

or GPC were unsuccessful. Therefore, the mixture of bromides was 

directy reacted with CPDIPS acetylene in a Sonogashira reaction. The 

use of the polar protecting group introduced by Höger et al. lead to 

facile isolation of the desired protected diyne 3 by silica gel 

chromatography in toluene in 63% yield over two subsequent steps.[51] 

Deprotection of 3 to diyne 22 with tetrabutylammonium fluoride in 

THF proceeded in excellent yield.  

The macrocyclization of 22 to 23 was achieved through a 

modified Eglinton coupling as published by Scott et al.[52] To facilitate 

selective formation of 23, a 0.55 mM solution of 22 in pyridine was 

added by a syringe pump over the course of 48 hours to a solution of 

15 equivalents CuCl and 21 equivalents Cu(OAc)2 in 60 mL of pyridine. 

After aqueous workup, CC and size exclusion chromatography 

(BioBeads, SX-3) in toluene, the key intermediate 23 was isolated as a 

red amorphous solid in 33% yield. We also observed the twofold 

closed cyclic dimer of 22, which was removed easily by size exclusion 

chromatography. It is noteworthy that the macrocyclization of a similar 

molecule with eight thiophenes instead of ten exclusively resulted in 

the formation of its twofold closed dimer. The final cyclization step to 

form the target compound 1 was performed using a procedure of 

Bäuerle et al., where 23 was reacted with Na2S · 9 H2O in a 1:1 mixture 

of DMF and 2-methoxyethanol.[25] To our delight, MALDI-TOF analysis 

of the reaction mixture after 1.5 hours showed only the mass of the 

target compound 1. After acidic workup to remove excess reagent and 

solvent, and subsequent purification by CC, target compound 1 was 

isolated as a red amorphous solid in quantitative yield.  

Scheme 4. Synthesis of target molecule 1. Reagents and conditions: (a) NBS, CHCl3, room temp., 20 h, 90%. (b) 8, Pd-PEPPSI-IPrTM, K2CO3, toluene, MeOH, 70 °C, 

30 min, 72%. (c) NBS, CHCl3, AcOH, room temp., 15 min; then CPDIPS acetylene, Pd(PPh3)4, CuI, toluene, diisopropylamine, 100 °C, 20 h, 63% (two steps). (d) TBAF, 

THF, room temp., 20 h, 97%. (e) CuCl, Cu(OAc)2, pyridine, room temp., 48 h, 33%. (f) Na2S · 9 H2O, DMF, 2-methoxyethanol, 120 °C, 1.5 h, quant. 
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The identity of macrocycle 1 was fully corroborated by 1H and 13C NMR, 

as well as by 2D NMR spectroscopy, which enabled us to fully assign 

the observed resonances to the corresponding proton and carbon 

atoms. All recorded spectra of 1 are available in the supporting 

information (SI); its 1H NMR spectrum recorded at 600 MHz is 

displayed in figure 2 to demonstrate both, purity and identity of the 

isolated target structure. The elemental formula of 1 was confirmed by 

high-resolution matrix-assisted laser desorption/ionization time-of-

flight mass spectrometry (HR MALDI-TOF MS, displayed in figure S57 

in the SI). The signal observed for 1 showed an isotopic pattern 

matching the one expected for its elemental composition ([M]+ 

C116H116S11). 

The macrocyclization of 22 to 23 yields the product as a racemic 

mixture. Both enantiomers for macrocycles 23 and 1 can readily 

interconvert through a concerted rotation around the C-C bonds 

between the benzene rings of the PC and the thiophene building 

blocks on each adjacent side (see figure 3). We investigated the 

racemization dynamics for macrocycle 1. The rotation proceeds rapidly 

at room temperature, separation of the enantiomers by means of HPLC 

on a chiral stationary phase was not possible. It is worth to note that 

the racemization does not proceed through an achiral transition state, 

unlike in the cases of helicenes, twistacenes or banister- like molecules 

because the pseudo-para substituted PC does not allow for a 

symmetry element along the reaction coordinate that renders the 

transition state to be achiral .[53,54]  

To further investigate the dynamics of the racemization, 1 was 

subjected to VT-NMR experiments in CD2Cl2. The most instructive 

picture of the dynamics is obtained when the resonances of the four 

CH2-groups of the PC unit are analyzed at different temperatures. For 

the static, chiral structure of 1, these eight protons are all magnetically 

inequivalent, and, hence, eight resonances are expected. At room 

temperature, however, only four distinct complex multiplets are 

observed in the range between 2.5 and 4.0 ppm. This clearly 

demonstrates racemization kinetics that is fast on the 1H-NMR time 

scale. Depending on the concentration of the sample, the resonances 

appear as sharp resolved signals (c.f. figure 2) or, at higher concen-

tration, stacking of the extended aromatic ring systems leads to 

broadening which is not related to a dynamic process originating in 

the racemization. When the temperature was lowered to 218 K, severe 

line broadening occurs and after coalescence at approximately 213 K 

a splitting into eight, partially overlapping signals was observed 

indicating slow interconversion of the enantiomers by the rubber 

glove mechanism (see figure 4). The activation barrier for the 

racemization was determined from the shift difference of 417 Hz for 

H-41/H-41a and the coalescence temperature (213 K) to be 38 kJ mol-1. 

The barrier for racemization is considerably lower than the barrier for 

similar ferrocene-based macrocycles with smaller ring sizes.[55] Further 

cooling of the sample to 183 K revealed a second dynamic process 

that is most likely related to rotational restrictions in the di-tert-

butylphenyl units. 

To investigate the change in through-space vs. through-bond con-

jugation by the introduced macrocycle, the optoelectronical properties 

of macrocycles 23 and 1 were investigated by UV/Vis absorption and 

emission spectroscopy and compared to linear building block 22 

(figure 5). The terminal alkyne substituted oligothiophene with a 

central PC subunit 22 has its absorption maximum at 438 nm. After 

macrocyclization, the absorption maxima of 23 and 1 are hypso-

chromically shifted with respect to 22. The absorption maximum of 23 

is found at 413 nm and the absorption maximum of 1 is at 420 nm. 

Both absorption spectra of the macrocyclic compounds display 

additional shoulders, one is found around 450 nm, which is more 

pronounced in the case of 23, the other appears at wavelengths higher 

than 500 nm. The comparison of the absorption spectrum of 22 with 

reported electronic data from linear oligothiophenes points at 

through-space conjugation in the central PC subunit. Penta- and 

heptathiophenic oligomers have absorption maxima at 386 and 409 

nm, respectively.[56] The absorption maximum of 22, consisting of two 

pentathiophenes interlinked by PC, is at 438 nm. The bathochromic 

shift compared to the reported oligothiophenes confirms the through-

space conjugation in the central PC subunit, as already reported for 

similar compounds.[34–36] Macrocyclic thiophenes of a given size have 

absorption maxima that correspond in energy to the absorption 

maxima of linear oligothiophenes of approximately half the number of 

thiophene subunits.[56] The hypsochromic shift of the absorption 

maxima of the macrocycles 23 and 1 compared to linear 22 was thus 

not surprising. Also, the rather small values of 25 nm and 18 nm of the 

recorded shifts for 23 and 1 respectively can be rationalized by the 

 

Figure 3. Graphical representation of both enantiomers of macrocycle 1 

together with a transition state of the enantiomerization process. Rotation 

around the bonds between the oligothiophene-belt and the [2.2]paracyclo-

phane interconverts one enantiomer into the other. 

Figure 4. VT-NMR spectra of the resonances, corresponding to the 

benzylic protons of 1. 

 

Figure 2. 1H NMR spectrum of macrocycle 1 in CD2Cl2 at room temperature. 

Inlet: aromatic (top) and benzylic (bottom) protons of 1. 
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through-space conjugation in the central PC unit of the linear 

precursor 22. Compared with an oligomer of comparable length 

consisting exclusively of 2,5-interlinked thiophenes, the through-space 

conjugation is less effective than the delocalization in a thiophene, 

resulting in a larger separation of the frontier orbitals. The batho-

chromic shift of 7 nm of the absorption maximum of 1 compared to 

the signal of macrocycle 23 points at the increased delocalization 

through the sp2 carbon atoms of the 2,5-diyl-thiophene linker in 1 

(through-bond conjugation) compared with the sp centers of the 

diacetylene connection in 23.  

The emission spectra of all three samples 22, 23, and 1 have an 

intense maximum with a more or less pronounced shoulder at about 

648-649 nm in common. While the maximum of the emission of 22 is 

at 537 with a Stokes’ shift of 99 nm, the one of 23 is at 573 nm with a 

Stokes’ shift of 160 nm and the emission maximum of 1 is at 588 nm 

with a Stokes’ shift of 168 nm. Again, a bathochromic shift with increas-

ing conjugation in the macromolecules’ subunits is observed in the 

order of the emission signals.  

Initial attempts to measure the HOMO-LUMO gap electro-

chemically failed due to irreversible behavior of 1 in the cyclic 

voltammetry experiment. As approximations of the HOMO-LUMO 

gaps, the electronic transitions between the vibrational ground states 

of the absorption and emission spectra were compared. For the linear 

precursor 22, the absorption and emission bands intersect at 500 nm, 

corresponding to a transition energy of 2.48 eV. The intersection is 

bathochromically shifted to 528 nm (2.35 eV) for the cyclized 23 and 

shifts further to 542 nm (2.29 eV) upon replacing the diacetylene 

linkage with a thiophene subunit in 1. The decrease of transition 

energies further corroborates the trend of increasing conjugation in 

the subunits of the investigated series.  

 

Conclusions 

We present an efficient synthesis of chiral macrocycle 1 and its full 

characterization by 1H, 13C and 2D NMR spectroscopy as well as high 

resolution mass spectrometry. Suitable precursors to incorporate PC 

as a key building block to break the conjugation of the macrocycle 

were designed and synthesized. The assembly of the achiral linear 

precursors is based on Pd- catalyzed coupling chemistry combined 

with halogenation sequences of the corresponding thiophenes. A 

linear synthetic strategy allowed to determine the required length of 

the precursor for a successful macrocyclization. The ring closing as key 

step of the synthesis provided the target molecule in reasonable yields, 

considering both its size and structural flexibility. The macrocyclization 

yielded a racemic mixture that could not be resolved due to the low 

racemization barrier at room temperature. The racemization barrier 

was investigated with VT-NMR experiments and was found to be 38 kJ 

mol-1, indicating unhindered rotation of the central PC unit versus the 

oligothiophenic chain at room temperature. Investigation of the 

optical properties of the obtained macrocycles and comparison with 

the open-ring precursor allowed to determine the change of electronic 

features upon macrocyclization. All spectra of the macrocycles were 

considerably red-shifted compared to the open-ring precursor. We 

obtained rare insights into the through-space versus through-bond 

conjugation through the comparison of the considerable lowered 

transition energies between vibrational ground states.  

In summary, two unique conjugated macrocycles have been 

prepared and investigated, elucidating the influence of a prochiral 

building block with broken conjugation on structural and electronical 

properties.  

We are currently advancing the concept of helical chiral oligo-

thiophene macrocycles comprising a PC subunit by designing model 

compounds of increased stability due to sterically hindered enantio-

merization processes. 

 

Experimental Section 

General 

Instruments, materials and methods are described in detail in the 

Supporting Information. 

Previously Described Compounds 

4,16-Dibromo[2.2]paracyclophane, trimethyl(5-(4,4,5,5-tetramethyl-

1,3,2-dioxaborolan-2-yl)thien-2-yl)silane, 2-(3,5-di-tert-butylphenyl)-

4,4,5,5-tetramethyl-1,3,2-dioxaborolane and CPDIPS-acetylene were 

prepared according to reported procedures.[47,48,51,57] 

Experimental 

3-(3,5-Di-tert-butylphenyl)thiophene (11): 2-(3,5-Di-tert-butyl-

phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane[48] (12.9 g, 40.7 mmol, 

1.05 eq.), 3-bromothiophene (3.64 mL, 38.8 mmol, 1.00 eq.), Na2CO3 

(20.5 g, 194 mmol, 5.00 eq.) and Pd(PPh3)4 (1.12 g, 970 µmol, 

2.5 mol%) were suspended in a mixture of DMF (54 mL) and H2O 

(6 mL). The reaction mixture was degassed by bubbling a stream of 

argon through the solution and was heated to 120 °C for two hours. 

The reaction was allowed to reach room temperature, toluene was 

added, and the organic phase was washed with 2 M HCl and dried over 

MgSO4. The solvent was removed under reduced pressure and the 

crude was purified by column chromatography (pentane), yielding 11 

as a colorless oil (9.35 g, 34.3 mmol, 88%). 1H NMR (250 MHz, CD2Cl2) 

δ = 7.47 – 7.38 (m, 6H), 1.37 (s, 18H) ppm. 13C NMR (101 MHz, CD2Cl2) 

δ = 151.88, 135.76, 127.89, 127.29, 126.52, 122.00, 121.49, 120.56, 

35.39, 31.79 ppm. MS (EI, 70 eV): m/z (%) = 272.20 (48.90), 257.20 (100), 

57.10 (73.16). HRMS (EI): m/z calcd. for: C18H24S+ [M+]: 272.1594; found 

272.1598. 

2-Bromo-3-(3,5-di-tert-butylphenyl)thiophene (12): 3-(3,5)-Di-

tert-butylphenyl)thiophene (11) (9.33 g, 34.3 mmol, 1.00 eq.) was 

Figure 5. Absorption spectra of 22 (green line), 23 (blue line) and 1 (red line) 

and emission spectra (dotted lines of corresponding color). All spectra were 

recorded in dichloromethane at room temperature. The emission spectra 

were exited at 438 nm (22), 413 nm (23), and 420 nm (1). 
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dissolved in CHCl3 (100 mL) and AcOH (100 mL). To this was added, 

under exclusion of light, NBS (6.11 g, 34.3 mmol, 1.00 eq) and the 

reaction was heated to 40 °C for one hour. The reaction was allowed 

to reach room temperature, CH2Cl2 was added and the reaction was 

neutralized with sat. aq. NaHCO3. It was dried over MgSO4 and the 

solvent was removed in vacuo. The crude was purified by column 

chromatography (cyclohexane), yielding 12 as a colorless oil (9.27 g, 

26.4 mmol, 77%). 1H NMR (400 MHz, CD2Cl2) δ = 7.45 (t, 4J = 1.8 Hz, 

1H), 7.41 (d, 4J = 1.8 Hz, 2H), 7.35 (d, 3J = 5.6 Hz, 1H), 7.08 (d, 3J = 5.6 

Hz, 1H), 1.37 (s, 18H) ppm. 13C NMR (101 MHz, CD2Cl2) δ = 151.48, 

142.81, 134.60, 129.88, 126.45, 123.63, 122.27, 108.62, 35.45, 31.77 

ppm. MS (EI, 70 eV): m/z (%) = 352.20 (28.89), 350.15 (28.84), 337.15 

(75.23), 335.15 (72.64), 57.10 (100). C18H23BrS (351.346): calcd. C 61.53 

H 6.60; found C 61.65 H 6.87. 

2-(3-(3,5-Di-tert-butylphenyl)thien-2-yl)-4,4,5,5-tetramethyl-

1,3,2-dioxaborolane (7): 2-Bromo-3-(3,5-di-tert-butylphen-

yl)thiophene (12) (3.45 g, 9.83 mmol, 1.0 eq.) was dissolved in THF 

(60 mL) and was degassed with argon. The reaction mixture was 

cooled to -78 °C and n-BuLi (1.6 M in hexane, 6.14 mL, 9.83 mmol, 

1.0 eq.) was added dropwise. The reaction was stirred for two hours 

and 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2.21 mL, 

10.8 mmol, 1.10 eq.) was added dropwise. The reaction was allowed to 

reach room temperature and 2 M HCl was added. The crude was taken 

up in toluene and filtered through a plug of celite. The solvent was 

removed, and 7 was obtained as brown oil, which solidified upon 

standing (3.51 g, 8.86 mmol, 90%). M.p.: 69 – 71 °C. 1H NMR (400 MHz, 

CDCl3) δ = 7.60 (d, 3J = 4.8 Hz, 1H), 7.47 (d, 4J = 1.8 Hz, 2H), 7.40 (t, 4J 

= 1.8 Hz, 1H), 7.31 (d, 3J = 4.8 Hz, 1H), 1.39 (s, 18H), 1.31 (s, 12H) ppm. 
13C NMR (101 MHz, CDCl3) δ = 153.02, 149.96, 136.33, 131.64, 131.36, 

123.82, 121.37, 83.99, 35.05, 31.69, 24.94 ppm. The carbon, to which 

the boron is bound is not observed. HRMS (EI): m/z calcd. for: 

C24H35BO2S+ [M+]: 398.2450; found 398.2452. 

4,16-Dithienyl[2.2]paracyclophane (6): 4,16-Dibromo[2.2]paracy-

clophane (4.58 g, 12.5 mmol, 1.0 eq.) and Pd(dppf)Cl2 (229 mg, 

313 µmol, 2.5 mol%) were suspended in THF (100 mL) and degassed 

with argon. To this was added thienyl magnesium bromide (1.0 M in 

THF,50.0 mL 50.0 mmol, 4.0 eq.) and the reaction was heated to 60 °C 

for two hours. The reaction was allowed to reach room temperature 

and sat. aq. NH4Cl was added. The organic phase was diluted with 

CH2Cl2 and was washed with 2 M HCl. The solvent was removed under 

reduced pressure and the crude was washed with cyclohexane and 

cold CH2Cl2 and dried. 6 was obtained as a white solid (4.06 g, 

10.9 mmol, 87%). The analytical data agreed with the values reported 

in literature.[36] 1H NMR (400 MHz, CDCl3) δ = 7.39 (dd, 3J = 4.9 Hz, 4J = 

1.4 Hz, 2H), 7.16 – 7.11 (m, 4H), 6.74 (dd, 3J = 7.8 Hz, 4J = 2.0 Hz, 2H), 

6.66 (d, 4J = 2.0 Hz, 2H), 6.59 (d, 3J = 7.8 Hz, 2H), 3.77 – 3.69 (m, 2H), 

3.01 – 2.85 (m, 4H) ppm. 13C NMR (101 MHz, CD2Cl2) δ = 144.35, 140.26, 

137.35, 135.08, 135.05, 133.66, 129.77, 127.74, 126.13, 125.38, 34.54, 

34.17 ppm. MS (EI, 70 eV): m/z (%) = 373.20 (13.43), 372.25 (48.76), 

187.10 (100), 185.10 (68.51), 171.10 (48.12), 141.15 (24.68), 115.15 

(14.17). 

4,16-Di-(5-bromothienyl)[2.2]paracyclophane (15): 4,16-Dithien-

yl[2.2]paracyclophane (6) (4.06 g, 10.9 mmol, 1.00 eq.) was suspended 

in CHCl3 (75 mL) and DMF (75 mL) and under exclusion of light NBS 

(3.98 g 22.3 mmol 2.05 eq.) was added. The reaction was allowed to 

proceed for 20 hours and 2 M HCl was added. The organic layer was 

washed with 2 M HCl and dried over MgSO4. The solvent was removed 

under reduced pressure, the crude was taken up in toluene and filtered 

through a plug of celite. 15 was obtained as a white solid after solvent 

removal (5.23 g, 9.86 mmol, 91%). M.p.: 240 – 242 °C. 1H NMR (400 

MHz, CDCl3) δ = 7.09 (d, 3J = 3.8 Hz, 2H), 6.86 (d, 3J = 3.8 Hz, 2H), 6.74 

(dd, 3J = 7.8 Hz, 4J = 2.0 Hz, 2H), 6.57 – 6.53 (m, 4H), 3.72 – 3.64 (m, 2H), 

3.00 – 2.86 (m, 6H) ppm. 13C NMR (101 MHz, CDCl3) δ = 145.83, 140.36, 

137.30, 135.13, 134.40, 133.39, 130.64, 130.06, 126.39, 111.80, 34.47, 

34.03 ppm. HRMS (EI): m/z calcd. for: C24H18Br2S2
+ [M+]: 527.9212; 

found 527.9216. 

4,16-Di-(3’-(3,5-di-tert-butylphenyl))-[2,2’-bithien]-5-yl-[2.2]pa-

racyclophane 16: 4,16-Di-(5-bromothienyl)[2.2]paracyclophane 15 

(340 mg, 640 µmol, 1.00 eq.), boronic ester 7 (770 mg, 1.93 mmol, 

3.00 eq.) and K2CO3 (532 mg, 3.85 mmol, 6.00 eq.) were suspended in 

toluene (10 mL) and MeOH (10 mL). The reaction mixture was 

degassed with argon and Pd-PEPPSI-IPrTM (22.2 mg, 32.1 µmol, 

5 mol%) was added. The reaction mixture was placed in a preheated 

oil bath and the reaction was stirred at 70 °C for 15 minutes. The 

reaction was allowed to reach room temperature and the organic layer 

was washed with 2 M HCl. It was dried over MgSO4 and the solvent was 

removed under reduced pressure. The crude was purified by column 

chromatography (cyclohexane/CH2Cl2 4:1) and 16 was obtained as an 

off-white solid (557 mg, 610 µmol, 95%). M.p.: >250 °C. 1H NMR (400 

MHz, CD2Cl2) δ = 7.44 (t, 4J = 1.9 Hz, 2H), 7.34 (d, 3J = 5.2 Hz, 2H), 7.32 

(d, 4J = 1.8 Hz, 4H), 7.16 (d, 3J = 5.2 Hz, 2H), 7.00 (d, 3J = 3.7 Hz, 2H), 

6.93 (d, 3J = 3.7 Hz, 2H), 6.61 (dd, 3J = 7.8 Hz, 4J = 1.9 Hz, 2H), 6.51 (d, 
4J = 1.9 Hz, 2H), 6.43 (d, 3J = 7.8 Hz, 2H), 3.69 – 3.60 (m, 2H), 2.92 – 2.78 

(m, 6H), 1.33 (s, 36H) ppm. 13C NMR (101 MHz, CD2Cl2) δ = 151.47, 

144.82, 140.77, 140.69, 137.69, 136.65, 135.89, 135.48, 135.22, 133.65, 

132.11, 131.21, 130.17, 127.64, 126.66, 124.40, 124.29, 121.92, 35.40, 

34.77, 34.48, 31.80 ppm. HRMS (MALDI TOF, DCTB): m/z calcd for 

C60H64S4
+ [M+]: 912.3885, found: 912.3882. 

4,16-Di-(5’-bromo-3’-(3,5-di-tert-butylphenyl))-[2,2’-bithien]-5-

yl-[2.2]paracyclophane 17: Tetrathiophene 16 (400 mg, 440 µmol, 

1.00 eq) was dissolved in DMF (25 mL) and to this was added in the 

dark NBS (160 mg, 900 µmol, 2.05 eq.). The reaction was stirred at 

room temperature for 20 hours and toluene was added to the reaction 

mixture. The organic layer was washed with 2 M HCl and was dried over 

MgSO4. The solvent was removed under reduced pressure and the 

crude product was purified by column chromatography 

(CH2Cl2/cyclohexane 1:9). 17 was isolated as a yellow solid (432 mg, 

400 µmol, 92%). M.p.: 250 – 252 °C. 1H NMR (400 MHz, CD2Cl2) 

δ = 7.44 (t, 4J = 1.9 Hz, 2H), 7.27 (d, 4J = 1.9 Hz, 4H), 7.14 (s, 2H), 6.98 

(d, 3J = 3.8 Hz, 2H), 6.92 (d, 3J = 3.8 Hz, 2H), 6.58 (dd, 3J = 7.8 Hz, 4J = 

1.9 Hz, 2H), 6.48 (d, 4J = 1.9 Hz, 2H), 6.40 (d, 3J = 7.8 Hz, 2H), 3.65 – 3.57 

(m, 2H), 2.91 – 2.78 (m, 6H), 1.32 (s, 36H) ppm. 13C NMR (101 MHz, 

CD2Cl2) δ = 151.64, 145.36, 141.13, 140.70, 137.72, 135.48, 135.05, 

134.82, 133.86, 133.65, 133.56, 131.92, 130.26, 127.99, 126.67, 124.17, 

122.36, 110.97, 35.41, 34.75, 34.43, 31.77 ppm. HRMS (MALDI TOF, 

DCTB): m/z calcd for C60H62Br2S4
+ [M+]: 1068.2096, found: 1068.2095. 

4,16-Di-(3’-(3,5-di-tert-butylphenyl))-5’’-trimethylsilyl-

[2,2’:5’,2’’-terthien]-5-yl-[2.2]paracyclophane 18: Dibromide 17 

(800 mg, 750 µmol, 1.00 eq.), boronic ester 8 (845 mg, 2.99 mmol, 

4.00 eq.) and K2CO3 (619 mg, 4.48 mmol, 6.00 eq.) were suspended in 

toluene (25 mL) and MeOH (25 mL). The reaction mixture was 

degassed with argon and Pd-PEPPSI-IPrTM (25.9 mg, 37.4 µmol, 

5 mol%) was added. The reaction mixture was placed in a preheated 

oil bath and the reaction was stirred at 70 °C for 20 minutes. The 

reaction was allowed to reach room temperature and the organic layer 

was washed with 2 M HCl. It was dried over MgSO4 and the solvent was 

removed under reduced pressure. The crude was purified by column 

chromatography (cyclohexane/CH2Cl2 9:1) and 18 was obtained as a 

yellow wax (744 mg, 610 µmol, 82%). 1H NMR (400 MHz, CD2Cl2) 

δ = 7.27 (t, 4J = 1.9 Hz, 2H), 7.14 (d, 4J = 1.9 Hz, 4H), 7.12 (d, 3J = 3.5 Hz, 

2H), 7.03 (s, 2H), 7.00 (d, 3J = 3.5 Hz, 2H), 6.82 (d, 3J = 3.8 Hz, 2H), 6.72 

(d, 3J = 3.8 Hz, 2H), 6.39 (dd, 3J = 7.8 Hz, 4J = 1.9 Hz, 2H), 6.29 (d, 4J = 

1.9 Hz, 2H), 6.21 (d, 3J = 7.8 Hz, 2H), 3.48 – 3.38 (m, 12H), 2.71 – 2.60 

(m, 6H), 1.14 (s, 36H), 0.15 (s, 18H) ppm. 13C NMR (101 MHz, CD2Cl2) 

δ = 151.63, 144.83, 142.34, 141.37, 141.00, 140.68, 137.70, 136.37, 

135.70, 135.53, 135.49, 135.17, 133.65, 131.13, 130.20, 127.79, 127.77, 

127.42, 126.70, 125.69, 124.27, 122.23, 35.44, 34.75, 34.51, 31.82, 0.12 

ppm. HRMS (MALDI TOF, DCTB): m/z calcd for C74H84S6Si2+ [M+]: 

1220.4430, found: 1220.4422. 

4,16-Di-(3’-(3,5-di-tert-butylphenyl))-5’’-iodo-[2,2’:5’,2’’-terthi-

en]-5-yl-[2.2]paracyclophane 19: TMS-thienyl derivative 18 (752 mg, 

620 µmol, 1.00 eq.) was dissolved in CHCl3 (50 mL) and AcOH (50 mL). 

After degassing the reaction mixture with argon, NIS (314 mg, 

1.35 mmol, 2.20 eq.) was added in one portion. It was stirred at room 
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temperature for 1.5 hours and to the crude was added sat. aq. NaHCO3. 

The organic layer was washed with sat. aq. NaHCO3 and brine and was 

dried over MgSO4. The solvent was removed under reduced pressure 

and the crude was purified by column chromatography 

(cyclohexane/CH2Cl2 4:1) and 19 was obtained as a yellow wax (812 mg, 

610 µmol, 99%). 1H NMR (500 MHz, CD2Cl2) δ = 7.48 (t, 4J = 1.8 Hz, 2H), 

7.33 (d, 4J = 1.8 Hz, 4H), 7.23 (d, 3J = 3.7 Hz, 2H), 7.18 (s, 2H), 7.03 (d, 3J 

= 3.7 Hz, 2H), 6.95 (d, 3J = 3.8 Hz, 2H), 6.92 (d, 3J = 3.8 Hz, 2H), 6.59 (dd, 
3J = 7.8 Hz, 4J = 1.9 Hz, 2H), 6.49 (d, 4J = 1.9 Hz, 2H), 6.41 (d, 3J = 7.8 

Hz, 2H), 3.66 – 3.61 (m, 2H), 2.90 – 2.77 (m, 6H), 1.35 (s, 36H) ppm. 13C 

NMR (126 MHz, CD2Cl2) δ = 151.10, 144.46, 142.86, 140.74, 140.09, 

138.00, 137.12, 135.47, 134.91, 134.90, 134.53, 133.57, 133.07, 131.12, 

129.64, 127.62, 127.01, 126.13, 125.21, 123.67, 121.76, 72.07, 34.86, 

34.16, 33.92, 31.24 ppm. HRMS (MALDI TOF, DCTB): m/z calcd for 

C68H62I2S6
+ [M+]: 1328.1573, found: 1328.1570. 

4,16-Di-(3’,3’’’-bis(3,5-di-tert-butylphenyl))-[2,2’:5’,2’’:5’’,2’’’-

quarterthien]-5-yl-[2.2]paracyclophane 20: Diiodo compound 19 

(800 mg, 620 µmol, 1.00 eq). boronic ester 7 (982 mg, 2.46 mmol, 

4.00 eq.) and K2CO3 (511 mg, 3.70 mmol, 6.00 eq.) were suspended in 

toluene (30 mL) and MeOH (30 mL). The reaction mixture was 

degassed with argon and Pd-PEPPSI-IPrTM (42.6 mg, 61.6 µmol, 

5 mol%) was added. The reaction mixture was placed in a preheated 

oil bath and the reaction was stirred at 70 °C for 30 minutes. The 

reaction was allowed to reach room temperature and the organic layer 

was washed with 2 M HCl. It was dried over MgSO4 and the solvent was 

removed under reduced pressure. The crude was purified by column 

chromatography (cyclohexane/CH2Cl2 4:1) and 20 was obtained as a 

yellow wax (827 mg, 511 µmol, 83%). 1H NMR (500 MHz, CD2Cl2) 

δ = 7.52 (t, 4J = 1.8 Hz, 2H), 7.48 (t, 4J = 1.8 Hz, 2H), 7.38 – 7.34 (m, 

10H), 7.20 (d, 3J = 5.2 Hz, 2H), 7.12 – 7.10 (m, 4H), 7.06 (d, 3J = 3.8 Hz, 

2H), 7.04 (d, 3J = 3.8 Hz, 2H), 6.97 (d, 3J = 3.8 Hz, 2H), 6.65 (dd, 3J = 7.8 

Hz, 4J = 1.9 Hz, 2H), 6.54 (d, 4J = 1.9 Hz, 2H), 6.46 (d, 3J = 7.8 Hz, 2H), 

3.67 – 3.62 (m, 2H), 2.96 – 2.82 (m, 6H), 1.39 (s, 36H), 1.38 (s, 36H) ppm. 
13C NMR (126 MHz, CD2Cl2) δ = 151.62, 151.43, 144.88, 141.31, 141.01, 

140.68, 137.70, 137.27, 136.28, 136.11, 135.58, 135.48, 135.45, 135.29, 

135.15, 133.65, 131.47, 131.32, 131.07, 130.20, 127.98, 127.51, 127.49, 

126.72, 124.71, 124.35, 124.30, 124.22, 122.23, 121.99, 35.44, 35.40, 

34.75, 34.51, 31.82, 31.76 ppm. HRMS (MALDI TOF, DCTB): m/z calcd 

for C104H112S8
+ [M+]: 1616.6524, found: 1616.6526. 

4,16-Di-(5’’’-bromo-3’,3’’’-bis(3,5-di-tert-butylphenyl))-

[2,2’:5’,2’’:5’’,2’’’quarterthien]-5-yl-[2.2]paracyclophane 21: 

Octathiophene 20 (385 mg, 240 µmol, 1.00 eq) was dissolved in CHCl3 

(70 mL) and to this was added in the dark NBS (84.7 mg, 480 µmol, 

2.00 eq.). The reaction was stirred at room temperature for 20 hours. 

The organic layer was washed with 2 M HCl and was dried over MgSO4. 

The solvent was removed under reduced pressure and the crude 

product was purified by column chromatography (CH2Cl2/cyclohexane 

1:9). 21 was isolated as a yellow wax (381 mg, 210 µmol, 90%). 1H NMR 

(400 MHz, CD2Cl2) δ = 7.46 (t, 4J = 1.8 Hz, 2H), 7.43 (t, 4J = 1.8 Hz, 2H), 

7.30 (d, 4J = 1.8 Hz, 4H), 7.25 (d, 4J = 1.8 Hz, 4H), 7.12 (s, 2H), 7.09 – 

7.08 (m, 4H), 7.00 (d, 3J = 3.7 Hz, 2H), 6.96 (d, 3J =3.8 Hz, 2H), 6.91 (d, 
3J = 3.7 Hz, 2H), 6.58 (dd, 3J = 7.8 Hz, 4J = 1.9 Hz, 2H), 6.48 (d, 4J = 1.9 

Hz, 2H), 6.40 (d, 3J = 7.8 Hz, 2H), 3.66 – 3.60 (m, 2H), 2.90 – 2.74 (m, 

6H), 1.33 (s, 36H), 1.31 (s, 36H) ppm. 13C NMR (101 MHz, CD2Cl2) 

δ = 151.64, 151.60, 144.94, 141.36, 141.33, 140.67, 137.85, 137.69, 

136.20, 135.51, 135.47, 135.12, 135.00, 134.70, 134.37, 133.94, 133.63, 

132.86, 131.31, 130.20, 128.33, 127.70, 127.52, 126.72, 124.25, 124.21, 

124.20, 122.42, 122.26, 111.30, 35.43, 35.41, 34.74, 34.50, 31.80, 31.71 

ppm. HRMS (MALDI TOF, DCTB): m/z calcd for C104H110Br2S8
+ [M+]: 

1772.4734, found: 1772.4743. 

4,16-Di-(3’,3’’’-bis(3,5-di-tert-butylphenyl))-5’’’’-trimethylsilyl-

[2,2’:5’,2’’:5’’,2’’’:5’’’,2’’’’qinquethien]-5-yl-[2.2]paracyclophane 

4: Dibromide 21 (160 mg, 90.0 µmol, 1.00 eq), boronic ester 8 (153 mg, 

540 µmol, 6.00 eq.) and K2CO3 (74.8 mg, 540 µmol, 6.00 eq.) were 

suspended in toluene (10 mL) and MeOH (10 mL). The reaction 

mixture was degassed with argon and Pd-PEPPSI-IPrTM (6.15 mg, 

9.02 µmol, 10 mol%) was added. The reaction mixture was placed in a 

preheated oil bath and the reaction was stirred at 70 °C for 30 minutes. 

The reaction was allowed to reach room temperature and the organic 

layer was washed with 2 M HCl. It was dried over MgSO4 and the 

solvent was removed under reduced pressure. The crude was purified 

by column chromatography (cyclohexane/CH2Cl2 4:1) as well as GPC. 4 

was obtained as a yellow wax (125 mg, 65.0 µmol, 72%). 1H NMR (500 

MHz, CD2Cl2) δ = 7.46 (t, 4J = 1.8 Hz, 2H), 7.45 (t, 4J = 1.8 Hz, 2H), 7.32 

– 7.30 (m, 10H), 7.21 (s, 2H), 7.20 (d, 3J = 3.5 Hz, 2H), 7.10 – 7.08 (m, 

4H), 7.01 – 6.99 (m, 4H), 6.92 (d, 3J = 3.7 Hz, 2H), 6.59 (dd, 3J = 7.8 Hz, 
4J = 1.9 Hz, 2H), 6.49 (d, 4J = 1.9 Hz, 2H), 6.41 (d, 3J = 7.8 Hz, 2H), 3.66 

– 3.61 (m, 2H), 2.90 – 2.77 (m, 6H), 1.34 – 1.33 (m, 72H), 0.35 (s, 18H) 

ppm. 13C NMR (126 MHz, CD2Cl2) δ = 151.61, 151.56, 142.16, 142.15, 

141.59, 141.58, 141.31, 141.14, 140.67, 137.69, 137.22, 137.21, 136.25, 

135.82, 135.74, 135.53, 135.52, 135.46, 135.22, 135.12, 133.63, 130.40, 

130.19, 127.83, 127.71, 127.51, 127.49, 126.71, 125.80, 124.29, 124.28, 

124.20, 122.28, 122.23, 35.43, 35.42, 34.73, 34.49, 31.80, 31.75, 0.10 

ppm. HRMS (MALDI TOF, DCTB): m/z calcd for C118H132S10Si2+ [M+]: 

1924.7069, found: 1924.7068. 

4,16-Di-((3’,3’’’-bis(3,5-di-tert-butylphenyl))-5’’’’-((4-

cyanopropyl)diisopropyl)silylethynyl-[2,2’:5’,2’’:5’’,2’’’:5’’’,2’’’’-

qinquethien]-5-yl)-[2.2]paracyclophane 3: Decathiophene 4 

(125 mg, 65.0 µmol, 1.00 eq.) was suspended in CHCl3 (5 mL) and 

AcOH (5 mL) and was degassed with argon. NBS (24.3 mg, 137 µmol, 

2.10 eq.) was added in one portion and the reaction was stirred at 

room temperature for 15 minutes. The crude was poured into sat. aq. 

NaHCO3 and the organic layer was washed with brine. The solvent was 

removed under reduced pressure and the crude was passed through 

a plug of silica gel in toluene. After removal of the solvent, the crude 

was dissolved in toluene (5 mL) and diisopropylamine (2 mL). To this 

was added CPDIPS acetylene (27.3 mg, 131 µmol, 3.00 eq.) and the 

mixture was degassed with argon. Pd(PPh3)4 (2.53 mg, 2.20 µmol, 

5.0 mol%) and CuI (0.21 mg, 1.10 µmol, 2.5 mol%) were added to the 

reaction mixture and it was heated to 100 °C for 20 hours. After 

completion of the reaction, it was diluted with toluene, and the organic 

layer was washed with 2 M HCl. It was dried over MgSO4 and the 

solvent was removed under reduced pressure. The crude was purified 

by column chromatography in toluene and 3 was obtained as an 

orange wax (92.6 mg, 43.8 µmol, 63%). 1H NMR (400 MHz, CD2Cl2) 

δ = 7.48 – 7.46 (m, 4H), 7.32 (d, 4J = 1.8 Hz, 8H), 7.22 (s, 2H), 7.20 (d, 3J 

= 3.8 Hz, 2H), 7.12 (d, 3J = 3.8 Hz, 2H), 7.10 – 7.09 (m, 4H), 7.02 – 7.00 

(m, 4H), 6.92 (d, 3J = 3.8 Hz, 2H), 6.60 (dd, 3J = 7.8 Hz, 4J = 1.9 Hz, 2H), 

6.49 (d, 4J = 1.9 Hz, 2H), 6.41 (d, 3J = 7.8 Hz, 2H), 3.67 – 3.61 (m, 2H), 

2.92 – 2.77 (m, 6H), 2.44 (t, J = 7.0 Hz, 4H), 1.91 – 1.81 (m, 4H), 1.35 (s, 

72H), 1.12 – 1.09 (m, 24H), 0.89 – 0.83 (m, 4H). ppm. 13C NMR (101 MHz, 

CD2Cl2) δ = 151.66, 151.64, 144.94, 141.66, 141.35, 140.68, 138.95, 

137.70, 137.54, 136.23, 135.54, 135.49, 135.43, 135.14, 135.02, 134.75, 

134.41, 133.65, 131.36, 131.24, 130.21, 128.47, 127.94, 127.61, 127.53, 

126.73, 124.30, 124.21, 124.16, 122.50, 122.44, 122.265, 122.258, 

120.30, 100.36, 96.66, 35.46, 35.44, 34.75, 34.51, 31.82, 31.77, 30.28, 

21.86, 21.27, 18.55, 18.32, 12.32, 10.15 ppm. Two aliphatic carbon 

signals do not correspond to a signal from compound A. HRMS 

(MALDI TOF, DCTB): m/z calcd for C136H154N2S10Si2+ [M+]: 2190.8852, 

found: 2190.8816. 

4,16-Di-((3’,3’’’-bis(3,5-di-tert-butylphenyl))-5’’’’-ethynyl-

[2,2’:5’,2’’:5’’,2’’’:5’’’,2’’’’qinquethien]-5-yl)-[2.2]paracyclophane 

22: Compound 3 (150 mg, 70.0 µmol, 1.00 eq.) was dissolved in wetted 

THF (25 mL). The reaction mixture was degassed with argon and TBAF 

(1.0 M in THF, 0.21 mL, 210 µmol, 3.00 eq.) was added dropwise. The 

reaction was stirred at room temperature for 20 hours and the reaction 

mixture was diluted with toluene. The organic layer was washed with 

brine and dried over MgSO4. After column chromatography 

(cyclohexane/CH2Cl2 4:1), 22 was received as an orange wax (124 mg, 

68.0 µmol, 97%). 1H NMR (400 MHz, CD2Cl2) δ = 7.47 – 7.45 (m, 4H), 

7.31 (d, J = 1.8 Hz, 8H), 7.23 (d, 3J = 3.9 Hz, 2H), 7.22 (s, 2H), 7.12 (d, 3J 

= 3.8 Hz, 2H), 7.10 – 7.08 (m, 4H), 7.01 – 7.00 (m, 4H), 6.92 (d, 3J = 3.8 

Hz, 2H), 6.59 (dd, 3J = 7.8 Hz, 4J = 1.9 Hz, 2H), 6.49 (d, 4J = 1.9 Hz, 2H), 

6.40 (d, 3J = 7.8 Hz, 2H), 3.66 – 3.60 (m, 2H), 3.50 (s, 2H), 2.91 – 2.76 (m, 

6H), 1.35 – 1.33 (m, 72H) ppm. 13C NMR (101 MHz, CD2Cl2) δ = 151.47, 

151.45, 144.74, 141.98, 141.45, 140.48, 138.96, 137.50, 137.35, 136.03, 

135.33, 135.21, 134.93, 134.81, 134.55, 134.39, 133.44, 133.07, 131.25, 
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131.04, 130.03, 128.37, 128.33, 127.74, 127.42, 127.33, 126.53, 124.09, 

124.00, 123.91, 122.25, 122.06, 121.19, 120.85, 82.83, 76.95, 35.25, 

35.24, 34.55, 34.31, 31.61, 31.56 ppm. HRMS (MALDI TOF, DCTB): m/z 

calcd for C116H116S10
+ [M+]: 1828.6279, found: 1828.6274. 

Macrocycle 23: Diyne 22 (60.0 mg, 32.8 µmol, 1.00 eq.) was dissolved 

in pyridine (60 mL) and degassed with argon. CuCl (48.7 mg, 490 µmol, 

15.0 eq.) and Cu(OAc)2 (125 mg, 690 µmol, 21.0 eq.) were dissolved in 

pyridine (60 mL) and degassed with argon. The solution of diyne 22 

was added dropwise via syringe pump over the course of 48 hours. 

After completed addition, the crude was diluted with toluene, and 2 M 

HCl was added. The organic layer was washed with 2 M HCl and brine 

and the solvent was removed under reduced pressure. The crude was 

filtered through a plug of celite and purified by size exclusion 

chromatography (BioBeads SX-3, toluene) and column 

chromatography (pentane/CH2Cl2 4:1). 23 was obtained as a red wax 

(19.8 mg, 10.8 µmol, 33%). 1H NMR (600 MHz, CD2Cl2) δ = 7.47 – 7.40 

(m, 4H), 7.40 (d, 4J = 1.8 Hz, 4H), 7.37 (d, 4J = 1.8 Hz, 4H), 7.29 (s, 2H), 

7.25 (d, 3J = 3.8 Hz, 2H), 7.22 – 7.21 (m, 4H), 7.05 (d, 3J = 3.8 Hz, 2H), 

6.90 (d, 3J = 3.7 Hz, 2H), 6.76 (d, 3J = 3.7 Hz, 2H), 6.73 – 6.72 (m, 2H), 

6.69 – 6.68 (m, 4H), 6.66 (d, 3J = 3.9 Hz, 2H), 3.90 – 3.86 (m, 2H), 3.04 – 

2.98 (m, 6H), 1.36 (s, 36H), 1.35 (s, 36H) ppm. 13C NMR (151 MHz, 

CD2Cl2) δ = 151.66, 151.50, 143.75, 141.07, 141.03, 140.82, 140.52, 

136.89, 136.26, 135.68, 135.65, 135.48, 135.40, 134.78, 134.75, 134.16, 

134.13, 133.05, 131.66, 131.14, 129.99, 129.98, 128.18, 126.91, 126.47, 

126.27, 125.24, 123.87, 123.77, 123.69, 123.07, 122.16, 121.98, 121.01, 

80.05, 78.62, 35.29, 35.28, 34.93, 34.85, 31.59, 31.58 ppm. HRMS 

(MALDI TOF, DCTB): m/z calcd for C116H114S10
+ [M+]: 1826.6122, found: 

1826.6110. 

Macrocycle 1: Macrocycle 23 (4.00 mg, 2.19 µmol, 1.00 eq.) was 

suspended in DMF (2 mL) and 2-methoxyethanol (2 mL). It was 

degassed with argon and Na2S · 9 H2O (5.26 mg, 21.9 µmol, 10.0 eq.) 

was added to the reaction mixture. The reaction was placed in a 

preheated oil bath and was stirred for 1.5 hours at 120 °C. It was 

allowed to reach room temperature, diluted with toluene and washed 

with 2 M HCl, repeatedly. The solvent was removed under reduced 

pressure and the crude was purified by column chromatography 

(pentane/CH2Cl2 4:1). 1 was obtained as a red wax (4.00 mg, 2.18 µmol, 

99%).  

1H NMR (600 MHz, CD2Cl2) δ = 7.47 (t, 4J = 1.9 Hz, 2H, H-28/H-28a), 

7.46 (t, 4J = 1.8 Hz, 2H, H-14/H-14a), 7.42 (d, 4J = 1.9 Hz, 4H, H-26/H-

26a), 7.37 (d, 4J = 1.8 Hz, 4H, H-12/H-12a), 7.34 – 7.30 (m, 8H, H-1/H-

1a, H-4/H-4a, H-5/H-5a, H-8/H-8a), 7.21 (s, 2H, H-22/H-22a), 7.05 (d, 
3J = 3.8 Hz, 2H, H-19/H-19a), 6.90 (d, 3J = 3.7 Hz, 2H, H-33/H-33a), 6.79 

(d, 3J = 3.7 Hz, 2H, H-32/H-32a), 6.76 – 6.72 (m, 4H, H-36/H-36a, H-

39/H-39a), 6.68 (dd, 3J = 7.9 Hz, 4J = 1.8 Hz, 2H, H-40/H-40a), 6.62 (d, 
3J = 3.9 Hz, 2H, H-18/H-18a), 3.91 – 3.86 (m, 2H, H-41/H-41a), 3.03 – 

2.98 (m, 2H, H-41/H-41a), 2.92 – 2.88 (m, 2H, H-42/H-42a), 2.85 – 2.80 

(m, 2H, H-42/H-42a), 1.37 (s, 36H, H-30/H-30a), 1.35 (s, 36H, H-16/H-

16a) ppm. 13C NMR (151 MHz, CD2Cl2) δ = 151.77 (2 C, C-13/ C-13a), 

151.64 (2 C, C-27/C-27a), 143.90 (2 C, C-34/C-34a), 143.75, (2 C, C-

37/C37a), 141.43 (2 C, C-9/C-9a), 140.47 (2 C, C-23/C-23a), 138.00 (2 

C, C-38/C-38a), 137.19 (2 C, C-31/C-31a), 136.58 (2 C, C-2/C-2a), 

136.55 (2 C, C-7/C-7a), 136.45 (2 C, C-3/C-3a), 136.23 (2 C, C-20/C-20a 

or C-21/C-21a), 135.88 (2 C, C-17/C-17a), 135.68 (2 C, C-24/C-24a), 

135.54 (2 C, C-39/C-39a), 135.40 (2 C, C-11/C-11a), 135.16 (2 C, C-6/C-

6a), 135.15 (2 C, C-36/C-36a), 134.97 (2 C, C-20/C-20a or C-21/C-21a), 

134.92 (2 C, C-35/C-35a), 131.14 (2 C, C-25/C-25a), 130.70 (2 C, C-

10/C-10a), 130.09 (2 C, C-40/C-40a), 128.02 (2 C, C-8/C-8a), 126.94 (2 

C, C-22/C-22a), 126.79 (2 C, C-18/C-18a), 126.24 (2 C, C-33/C-33a), 

125.18 (2 C, C-5/C-5a), 125.16 (2 C, C-1/C-1a), 125.01 (2 C, C-4/C-4a), 

124.87 (2 C, C-32/C-32a), 124.03 (2 C, C-19/C-19a), 123.93 (2 C, C-

12/C-12a), 123.91 (2 C, C-26/C-26a), 122.17 (4 C, C-28/C-28a and C-

14/C-14a), 35.46 (2 C, C-29/C-29a), 35.43 (2 C, C-15/C-15a), 35.29 (2 C, 

C-41/C-41a), 35.16 (2 C, C-42/C-42a), 31.76 (2 C, C-30/C-30a), 31.75 (2 

C, C-16/C-16a) ppm. HRMS (MALDI TOF, DCTB): m/z calcd for 

C116H116S11
+ [M+]: 1860.5999, found: 1860.5977.  
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