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Abstract:  

Conceptually and experimentally, a new set of helical model compounds is presented herein that allow to 

investigate correlations between structural features and their expression in the secondary structure. As 

model system serves a cross-linked oligomer with two strands of mismatching lengths that are connected 

in a ladder-type fashion. Compensation of the dimensional mismatch leads to the adoption of a helical 

arrangement. A strategically placed relay ensures the continuity and uniformity of the helix. Upon 

exchanging of the heteroatomic linkage, the helix responds by increasing or decreasing the torsion of the 

backbone. Inversion of the relay’s substitution pattern causes a distortion of the structure, while 

maintaining the directionality of the helix. Based on a short synthetic protocol with a modular precursor, 

four closely related “Geländer” oligomers (“Geländer” is the German word for bannister) were accessed 

and fully characterized. X-ray diffraction analysis for one representative of each helical arrangement and 

complementary computational studies for the remaining derivatives allowed studying the impact of the 

alterations on the secondary structures. Isolation of pure enantiomers of all the new “Geländer”-

oligomers provided insight into the racemization kinetics and the racemization barrier. In silico simulation 

of the electronic circular dichroism spectra of the model compounds enabled to assign the helicity to the 

isolated samples. 

 

Introduction 

Circular staircases, propellers and screws are fundamental examples of helical structures that have 

fascinated designers, architects and researchers alike. The formation of these chiral structures on a 

microscopic scale has been key to relate chirality to structure and structure to function.[1–10] Among the 

most prominent examples for such stereocenter-free, chiral molecules are the polyaromatic helicenes. 

Exclusively due to steric interactions, the annulated rings adopt a spring-like configuration that resemble 

the steps of a helical staircase. Their exceptional optical properties, their stability and versatility in 

combination with their structural beauty and simplicity, have made them into important model systems 

for both chemists and physicists. An excellent representation of these fascinating structures can be found 

in the recent reviews celebrating 100 years of helicenes.[11-13] 

Fritz Vögtle and coworkers designed and investigated a fundamentally different polyaromatic system 17 

years ago which he labeled “Geländer”-molecules (Geländer is the German word for bannister).[14,15] While 

helicenes and their related structures consist of rings which are arranged perpendicular to the 
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propagation axis of the helix, “Geländer”-oligomers are axially chiral – here the orientation of the rings is 

along the propagation axis. The fundamental characteristics are already present in bridged biphenyls: An 

alkyl linker bridges the phenyl rings, locking them in a specific conformation (M or P).[16-22] Adding a third 

ring (also conformationally locked by an alkyl bridge) results in Vögtle's terphenylic “Geländer”-oligomers. 

The obtained structures show very similar chiroptical properties and conformational stability to the 

shorter helicenes. However, due to the molecules symmetry both biphenyl-junctions are equivalent and 

can adopt either a M or P conformation, resulting in three possible stereoisomers: MM and PP which are 

enantiomeric and the achiral meso compound (MP/PM). If the formation of the bridges is unspecific and 

independent of the other, the resulting distribution of conformers is statistical (MM and PP each 25 %, 

meso 50 %). And indeed, in the classical bannister oligomers, 50 % of the adopted conformers are achiral, 

making these systems less suited as model compounds for extensive chiroptical studies – especially as 

their interconversion is dynamic, resulting in degrading of chiroptically pure samples. To date, these 

delicate studies require storage and investigations of the samples at sufficiently low temperatures and 

within narrow time windows. 

 

Figure 1: Overview of bannister-oligomers. a) Helical staircase with continuous bannister (green). b) Single crystal 
structure of the helical oligomer 5, which exhibits a continuous, bannister-like arrangement. c) Schematic 
representation of the bannister oligomers 1, 3 and 5 containing various heteroatoms. 
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We have recently addressed this issue by developing a related, ladder-like system,[23] which can exclusively 

adopt either an M or P conformation (Figure 2). With Vögtle's systems in mind, the terphenylic backbone 

is connected to a longer oligomer with individual linkages to each ring of the backbone. The extended 

oligomer then induces helicity due to spatial constraints. The sense of twist induced by one part of the 

bridge is communicated across the entire structure with the midsection of the longer oligomer acting as 

a relay. Accessing the desired structure required a time-consuming development of the synthetic strategy 

and was finally obtained in 12 steps.[23,24] The purification steps of the target structure were particularly 

demanding, resulting in significant deviations in the isolated yield. To our surprise, the isolated yield did 

not exceed 28 % and the fate of the remaining starting material remained ambiguous. The obtained 

purified structure showed high temperature, air and moisture stability once isolated. Detailed 

investigations by 1D and 2D NMR, Electronic Circular Dichroism (ECD) spectroscopy and X-Ray diffraction 

analysis demonstrated the viability of the concept. Two enantiomeric helices were found with a very well 

defined stereodynamic behavior, which allowed not only to follow the racemization by CD spectroscopy 

but also to determine the racemization barrier to be 97.6 kJ/mol at 25 °C. 

 

Figure 2: Conceptual representation of a helical ladder structure (left) and the concepts for induction, elongation 
and distortion of the original helix (middle and right). Induction of helical chirality is achieved by elongation of the 
segments on one side of the ladder while keeping the length on the other (green). Rotation of the longer segment 
around the shorter leads to a helical arrangement. Elongation of the helix is obtained by increasing the length of 
both longer segments (blue) while inversion of the substitution pattern of the relay leads to discriminated ring sizes 
(purple) resulting in distortion of the helix. 
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Motivated by these preliminary results, we wondered to what extent the chemical nature of the bridge 

determines the molecule’s physical properties like the structural stability of the helix. From a synthetic 

point of view, we were still curious concerning the fate of the remaining material in the final cyclization 

step. The new focus was set towards chemically altering the bridging structure in order to investigate its 

effect on chemical features like integrity and stability, but also on physical-chemical properties like the 

extent of structural twist in the helix and its influence on the racemization barrier. To answer these, and 

related questions, we devised several strategies to overcome the limitations of the initial diether 

structure. Ideally suited to precisely alter the extent of twist in the helix is the linking heteroatom in the 

bridging structure and we became thus interested in exchanging the oxygen for the larger sulfur or 

selenium. Consequently, we aimed for a modular approach, incorporating the heteroatom at a late stage 

of the synthesis. 

Herein we like to present our new versatile synthetic approach to various polycyclic ladder systems and 

the study of their properties and stereodynamics. The assembly of a nonspecific tetrabrominated 

precursor allowed to efficiently introduce other chalcogens as heteroatoms at the last stage of the 

synthesis. Exchanging oxygen for the significantly larger and softer sulfur and selenium allowed fine-

tuning of the helical structures (Figure 2, blue). In addition, the variation in the connection of the middle 

ring gave access to distorted helical structures with different twists in both junctions (purple). The impact 

of these variations on the structure, especially on the degrees of twist and the racemization dynamics are 

studied and reported in detail.  

 

Results and Discussion 

Synthesis of precursor 11 

The projected incorporation of a range of heteroatoms required a modular approach. A common 

denominator of the heteroatoms sulfur and selenium is their occurrence as simple sodium salts (Na2S and 

Na2Se). Contrary to the corresponding sodium oxide, these salts are relatively stable and safe to handle 

while showing excellent nucleophilicity. In the context of possible synthetic pathways, the employment 

of these salts as source of the heteroatom allows to share the same precursor (11 in Scheme 1). After 

incorporation of the chalogen by a nucleophilic displacement of a suitable leaving group, the heteroatom 

remains nucleophilic enough to initiate the desired subsequent macrocyclization without an intermediary 
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workup. Besides, using a versatile leaving group allows the incorporation of other promising linkages (e.g. 

amines or metals).  

 

Scheme 1: Modular strategy based on a tetrabromo precursor (11) to incorporate the desired heteroatom and 
subsequently initiate macrocyclization in situ. 

In principle the required terabromo precursor is accessible by expanding on the strategy previously 

described.[24] However, precursor 11 showed potential for the development of more efficient 

methodologies. A careful disconnection of the target structure revealed that in any case at least three 

borylations are necessary to keep the overall amount of required orthogonal functionalities minimal. 

Borylations are often challenging and can result in fragile intermediates, especially with sterically more 

evolved structures. A possible starting point would be the symmetric, commercially available, diborylated 

benzene 6 (Scheme 2) that features two of the three boronic moieties. Statistically attaching fragment A 

then gives the mono coupled intermediate 7 featuring the third boronic moiety for a subsequent cross-

coupling of the next fragment (B in that case). At that stage we became interested whether we could use 

the boronic ester as a directing group to introduce the next handle at the ortho position. According to 

literature, boronic esters are generally only weakly directing functionalities. Wang and coworkers[25,26] 

impressively demonstrated that under mild Lewis acidic conditions regioselective halogenations of 

borylated aromatic systems is possible - and that any other substituents (even methyls) will define the 

location of the halogen. System 7 features three rings suitable for halogenation. However, we reasoned 

that under the described conditions the boronic moiety will define the chemoselectivity in the 
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halogenation step, while the adjacent phenyl ring will determine its exact position (para over ortho). 

Introducing a bromine would still allow to subsequently cross-couple first the boronic moiety with 

fragment B bearing the more reactive iodine leading to intermediate 9 which is the first fragment en route 

as previously described. We can then follow the route to intermediate 10 using the remaining bromine as 

a handle to attach fragment C before converting 10 into the precursor 11. Indeed, we found that the 

statistical cross-coupling of 6 with A gave the desired mono coupled intermediate 7 along with the twofold 

coupled derivative (60:40 by GC-MS). While the conversion was excellent for a statistical reaction the 

purification was usually accompanied by loss in yield due to the metastability of 7 towards column 

chromatography. The subsequent bromination proceeded in conversions typically round 75 % (isolated 

yield: 49%) at the predicted position as determined by GC-MS. Only minor amounts of the second ortho 

derivative was observed and overbromination was efficiently prevented by slow addition of solid NBS. 

Due to the tendency of 8 to undergo deborylation – even more than 7, possibly resulting from the 

increased steric strain – the subsequent attachment of commercially available B was best carried out 

without extensive purification. Pleasingly, the cross-coupling underwent a complete transition to 9. Our 

own, previously published methodology[24] gave access to 10 which was efficiently transformed to 11 by 

Appel-type bromination (61 %). 
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Scheme 2: Synthesis of target precursor 11. Reaction conditions: a) A, Pd(PPh3)2Cl2, K2CO3, 1,4-

dioxane/MeOH 10:1, 60 °C, 2 h, 32 %; b) NBS, AuCl3, DCE, 60 °C, 15 h, 31-49 %; c) B, Pd(PPh3)2Cl2, 1,4-

dioxane/MeOH 4:1, 60 °C, 15 h, >99 %; d) C, SPhos Pd G2, K2CO3, toluene/H2O 4:1, reflux, 1-3 d, 50 %; e) 

NBS, DBP, CCl4, 75 °C, 1 h, 87 % to >99 %; f) DIBAL-H, DCM, room temperature, 30 min, >99 %; g) PBr3, 

DCM, room temperature, 1 h, 61 %; Bpin=4,4,5,5,-tetramethyl-1,3,2-dioxaborolane, 

DBP=dibenzoylperoxide, NBS=N-bromosuccimide, DCE=dichloroethane.  
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Synthesis and characterization of the oligomers 1-4 

With 11 in hand we first turned to the sulfur derivative 1. Much to our delight the macrocyclization was 

both fast and selective. The direct transformation into the twofold cyclized target structure allowed for 

the first time to observe the formation of the constitutional isomer 2 as direct consequence of the 

rotational equilibrium in 11 (Scheme 3). Due to the high similarities of the structures a conventional 

separation of 1 and 2 was not possible giving a 1:1 mixture in very satisfying yield (76 %; diether 5: 28 %). 

In the oxygen derivative 5[23] the heteroatom was present as a hydroxy group which required 

deprotonation by a strong base (NaH) before cyclization occurred. We found that the second cyclization 

would only proceed to a satisfying extend if the structure was purified after the first cyclization. However, 

only one of the four possible mono-cyclized intermediates was stable enough to be isolated resulting in 

the observed deviations in yield and prevented to isolate the constitutional isomer. In the case presented 

here for 1 and 2 the heteroatoms initiate the macrocyclization without the need of an external base 

directly after incorporation. The isolation of any intermediate becomes obsolete and results in the 

improved yield of both isomers. From the distribution of the constitutional isomers we conclude that the 

relay undergoes fast rotation round the central aryl-aryl bond.  
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Scheme 3: Synthesis of target compounds 1 - 4. Reaction conditions: a) Na2S, EtOH/toluene 1:1, room temperature, 
4.5 h, 76 % as 4 isomers; b) Na2Se, EtOH/toluene 3:2, room temperature, 2.5 h, 50 % as 4 isomers. The numbers in 
the square boxes correspond to the number of atoms in each macrocycle. 
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While conventional purifications were unsuitable, the isolation of the four isomers (2 pairs of 

enantiomers) was possible by chiral HPLC (Chiralpak IA, 2 mL/min, 99:1 hexane/iPrOH, 18 °C, Figure 3, a-

d) separation directly after a preliminary workup to remove the ionic byproducts. Indeed, all four isomers 

were observed, while two of them (1b/2b) did not show baseline separation and required subsequent 

chromatography (chiral HPLC). Conveniently, the addition of 1 % of DCM allowed to reasonably resolve 

the mixed peak. The protocol was reliable enough that upscaling to a semi- preparative column was 

possible, which allowed to obtain all isomers in amounts suitable for subsequent unambiguous 

characterization by 1D- and 2D-NMR spectroscopy and High Resolution ESI Mass Spectrometry (HR-ESI-

MS). As expected for constitutional isomers, all obtained masses were identical but required addition of 

a sodium source to be detected by ESI-MS. The well ordered, helical oligomer pair 1a,b showed NMR 

spectra that were similar to those obtained for the oxygen derivative 5, and were suitable for full 

assignment by 2D-NMR spectroscopy. The mismatched helix 2, on the contrary, gave broad signals 

especially for the benzylic hydrogens (see SI S25) and to lesser degrees also for the aromatic hydrogens 

of the bridge, pointing towards the presence (and interconversion into) more than one species with 

related chirality. It is important to note, that a broadening of NMR signals points at fast structural changes 

on the NMR timescale and is very likely not an indicator of an accelerated racemization process. We 

suspect that the deformed helix profits from higher degrees of freedom and can adopt multiple 

conformations of the bridge with similar overall energies. The sharp signals of the aromatic protons of the 

backbone indicate that interconversion of the helices is present on a timescale much larger than the one 

observed by 1H-NMR which was confirmed by kinetic studies at a later stage. By incrementing the 

temperature, adoption of all the different conformations should be facilitated resulting in an averaged 

structure. Indeed, variable temperature (VT) NMR spectroscopy of rac-2 in d2-tetrachloroethane (TCE) at 

105 °C (see SI S25) revealed a well resolved spectrum with sharp, well defined peaks. This eventually 

allowed to record 2D-NMR spectra and fully assign all observed peaks and confirming the predicted 

constitution of 2. Furthermore, we observed for one aromatic hydrogen of 2 a pronounced high-field shift 

(5.61 ppm at 378 K). Most likely this proton is facing an aromatic ring directly in a reasonably rigid 

arrangement and is subjected to a high ring current. This signal is comparably well resolved above room 

temperature with a stable shift – further supporting a slow racemization process on the NMR timescale, 

which would move that hydrogen out of the ring current during the transition of one enantiomer to the 

other. Once purified, both 1 and 2 were found to be stable towards air and moisture and even reasonably 

towards silica.   
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Figure 3: Traces of the chiral HPLC separations (Chiralpak IA, 18 - 19 °C, 1 - 2 mL/min). a) Separation of 1 and 2 in a 

mixture of 99:1 hexanes and iPrOH. All four isomers (1a,b in blue and 2a,b in orange) can be observed. The middle 

peak is a mixture of 1b and 2a; b) the addition of 1 % DCM allowed to separate 1b from 2a; c) resolution of 1a and 

1b; d) resolution of 2a and 2b; e) reversed phase separation (Reprosil C18, MeCN, 1mL/min) of the obtained reaction 

mixture of 3 (brown)and 4 (purple); f) chiral resolution of 3a and 3b (98:2 hexanes and iPrOH); g) resolution of 4a 

and 4b.   
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Encouraged by the transition of 11 into the sulfur targets 1 and 2 we aimed at accessing the selenium 

bridged derivative 3 (and potentially 4) which we expected to show diminished stabilities to the well 

documented ease of oxidation and thermal liability of the selenium atoms. For the cyclization of the sulfur 

oligomers, we used the highly nucleophilic Na2S as sulfur source, which is comparably stable and can be 

used without excessive precautions. However, the corresponding selenium salt Na2Se is much more 

reactive (both towards the desired nucleophilic substitutions as well as oxygen and water) and toxic and 

has to be handled in a glove box. Drop-wise addition of Na2Se in EtOH/toluene (4:1) to a diluted solution 

of the precursor 11 in EtOH/toluene (1:1) at RT over 2 h resulted in full consumption of the starting 

material. Due to the instability of the formed products towards conventional chromatography, the 

reaction was monitored by DART-MS and reversed phase HPLC (Reprosil C18, MeCN, 1 mL/min). By HR-

ESI-MS the two most intense peaks were attributed to the desired oligomers 3 and 4. To our surprise and 

in contrast to the sulfur derivatives, the desired oligomers did no longer form in a 1:1 ratio – one of the 

constitutional isomers was preferably formed (about 4:3 on average – in one case a ratio of 5:1 was 

observed). Reversed phase silica (Reprosil C18, MeCN, 1 mL/min) proved to be ideal to separate the 

constitutional isomers 3 and 4 (Figure 3b) in 50 % yield.[25] To identify which peak corresponds to which 

isomer, 1D and 2D-NMR spectroscopy were performed with the samples obtained from both peaks. 1H-

NMR spectroscopy gave a strong indication as to which isomer is which: For the first eluting peak (purple) 

the signals were again very broad and we quickly suspected it to be the analogous structure of 2, that is 

the mismatched helix 4. The spectra obtained for the second peak (brown) were well defined and sharp 

at room temperature making it a likely candidate for the uniform analogue 3. The preliminary assignment 

was confirmed by 2D-NMR spectroscopy, which allowed explicitly identifying and fully characterizing both 

rac-3 and rac-4. As with the sulfur derivative 2, 4 needed to be heated to 105 °C for deconvolution of the 

broad signals into an averaged, precise spectrum. The subsequent chiral resolution of rac-3 and rac-4 into 

the corresponding enantiomers 3a, 3b, 4a, and 4b under slightly modified conditions (Chiralpak IA, 98:2 

hexanes/iPrOH, 19 °C) is shown in Figure 3, f-g. The peaks were baseline separated in all cases and the 

protocol readily up-scaled. 
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In contrast to the very stable sulfur derivatives 1 and 2, especially the mismatched selenium oligomer 4 

was prone to decompose after several days under oxygen atmosphere at room temperature. 

Decomposition of the sample was as well observed during the extended periods of measuring variable 

temperature NMR spectroscopy (VT-NMR) at elevated temperatures – even under oxygen-free 

conditions. While the quality of the obtained spectra allowed full assignment, the sample could not be 

recovered after the extensive measurements (approx. 1 week).  

 

Uniform and distorted helices 

The previously described structure of diether 5 as elucidated by X-Ray crystallography revealed the 

expected, ladder like assembly of the six phenyl rings.[23] A highly uniform helix along the terphenylic 

backbone was found with an overall torsion of 147° and C-O bonds lengths of 1.43 Å. The torsion was 

determined by measuring the angle between the bottom and top ring of the backbone. One way to explain 

the high uniformity of the helix is to describe 5 and its new analogues 1 and 3 as a twofold bridged biaryl. 

The two rings in the middle can be thought of a single biphenyl with all other structural elements being a 

part of one of the two bridges (top and bottom). Each of the bridges (or better, each ring containing one 

heteroatom) features 13 atoms, which are similarly arranged (see numbering in Scheme 3) – and hence 

both rings prefer a similar spatial arrangement. Indeed, the secondary structure of 5 shows a very smooth 

and continuous helix. In the case of the new model compounds 2 and 4, the substitution pattern of the 

relay is reversed and the overall connections of the longer oligomer strand changes from a meta-ortho-

meta-ortho to a meta-meta-ortho-ortho arrangement (see Figure 2, purple). From a similar viewpoint as 

before the rings are no longer containing an equal amount of atoms (bottom: 14, top: 12, see boxes in 

Scheme 3) nor do they show the same arrangement. Hence each of the rings will prefer a very different 

spatial arrangement which is expected to translate directly into a distortion of the helix.  

While NMR spectroscopy gave indications about some aspects of the adopted structures of 1-4 and their 

relationship to the oxygen analogue, it was fundamentally important to obtain crystals for the sulfur and 

selenium analogues. Since we expected the halftimes of the enantiopure samples to be in a similar range 

as for 5 (approximately 9 hours[23]) the racemic mixtures were directly subjected to crystallization. To our 

great delight suitable conditions for two of the four structures (1 and 4) were found after extensive 

screening of solvent mixtures and crystallization conditions. Both crystallized from hexanes by slow 

evaporation of the solvent. With all other crystallization attempts we observed exclusive formation of 
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amorphous material. The recorded diffraction data were excellent for 1 and the obtained structure for 

the enantiomer 1a is shown in Figure 4 (left). Eventually single crystals suitable for solid state analysis of 

one of the distorted, more delicate structures (4) were obtained. The extremely small, adhered needles 

made the diffraction analysis demanding but data of suitable quality to determine the solid state structure 

could be recorded with one of the crystals. 

 

Figure 4: Obtained racemic X-ray structures for 1 and 4 from slow evaporation from hexanes. a) Side-view 

and b) front-view of 1a and 4a. Color code: bridge/blue or purple, backbone/gray, hydrogen atoms/white, 

sulfur atoms/yellow, selenium atoms/orange. The red circle and dashed line highlight the aromatic proton 

pointing into the neighboring aromatic ring. 
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The unit cells are racemic for both 1 and 4 with the enantiomers being present in a 2:2 ratio (see SI S11). 

The structures were found to be well ordered with a continuous twist of the longer oligomer around the 

shorter backbone. Only M and P enantiomers were observed with the twist being relayed from one end 

of the molecule to the other. The unit cell of 4 revealed a very plausible reason for the challenges we 

faced when growing and measuring crystals. While the crystallization occurred in pure hexanes, residual 

trace amounts of ethyl acetate (4 molecules per unit cell) from the previous workup were found in the 

cell. This finding not only clarifies challenges we faced during attempts to reproduce their crystallization, 

it also explains why the crystals are so small and fragile: The solvent molecules are arranged within the 

cells such that they form pores throughout the crystal. These pores presumably facilitate migration and 

their motion is expected to trigger degradation of the crystal upon temperature alterations. 

For the sulfur derivative 1 (Figure 4, right), the direct analogue of 5, considerably increased bond lengths 

(C-S) were found compared to 5 (1.82 Å vs 1.43 Å). As expected, the targeted increase of the bond lengths 

had exclusively an impact on the degree of twist (from 147 to 178° when compared to 5) while maintaining 

all other aspects of the initial structure like linearity of the backbone and continuity of the helix. In 

contrast, the selenium containing oligomer 4 shows increased C-Het bond lengths of 1.98 Å in average 

(1.43 and 1.82 Å for 5 and 1, respectively) in accordance with the non linear change in size of the 

heteronuclei. The change of the substitution pattern in the midsection of the wrapping selenoether 

caused significant changes in the secondary structure. The helix was still found to be continuous with the 

helicity being transmitted from end to end. However, not only decreased the overall torsion to 121.3 ° 

(more than 20° less than for 5), the top and bottom rings of the backbone now deviate about 10° of the 

relaxed molecular axis. This bending of the backbone is most likely related to the change in ring size (12 

and 14 atoms instead of 13 each) and reflects the importance of the original design concept to obtain a 

stable, continuous helix. A closer look at the individual atoms revealed a rationalization for the high shift 

of one of the aromatic hydrogens. Only that particular hydrogen points directly into an aromatic ring with 

a distance of approximately 2.6 Å (Figure 4, highlighted in red). As already discussed during the 

interpretation of the NMR spectra above, it is therefore strongly affected by the ring current of the 

neighboring aromatic ring resulting in a strong up-field shift to 5.61 ppm. 

It is important to note that despite considerable efforts, we were so far not able to grow suitable crystals 

from mixtures of rac-2 or rac-3. Possible reasons include that the structures are subjected to fast 

conformational changes with related chirality and the apparent strong dependence of crystal growth 

factors like trace amounts of co-solvents. 
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CD spectra and racemization barriers of 1-4 

Chiral HPLC allowed the separation of the formed isomers of rac-1-4 (four for sulfur, and four for selenium, 

consisting of two constitutional isomers each consisting of a pair of enantiomers). In other words, for each 

oligomer the corresponding M and P helices were isolated in high enantiomeric purities (>95 % ee). As 

enantiomers show complementary electronic circular dichroism (ECD) spectra,[27] we recorded ECD and 

UV/Vis spectra for each isomer, 1a, 1b, 2a, 2b, 3a, 3b, 4a and 4b (Figure 5) in 99:1 hexanes/iPrOH (for 1 

and 2) and 98:2 hexanes/iPrOH (3 and 4) immediately after separation by chiral HPLC under air saturated 

conditions at 10 °C. The reduction of temperature was important to prevent racemization over the 

timescale of the measurements. Indeed complementary Cotton effects were observed in each case (1a,b: 

244, 224, and 205 nm; 2a,b: 278, 270, 232, 206 nm; 3a,b: 288, 254, 232, 206 nm; 4a,b: 280, 241, 225, 206 

nm). The recording of the corresponding UV/Vis allowed to determine the concentrations of the samples 

in order to normalize the spectra. ECD spectroscopy is routinely used to determine structural similarities 

between systems. While it is very challenging to deduce a specific arrangement in space based on ECD 

alone, it is often the case that structural similarities lead to characteristic bands. Once the arrangement is 

known, it is possible to identify the same arrangement in another, remotely similar system as represented 

by the importance of ECD spectroscopy in protein characterization and dynamics.[28] High similarities 

between the spectra of the uniform and the distorted helices were found. For example, 2 and 4 each show 

a strong band at approx. 280 nm. The same band is, while still present, diminished in the case of 1 and 3. 

Similar observations were made for most other bands, pointing at very similar secondary structures of 1 

and 3 (and consequently also 2 and 4). It is therefore likely that the arrangement in space that we have 

deduced for 1 and 4 by X-Ray diffraction analysis can be transferred to 3 and 2. 
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Figure 5: UV/Vis (dashed) and CD plots (full) for the sulfur oligomers (a) 1a,b (b) 2a,b in 99:1 hexanes/iPrOH at 10 °C 
and the selenium oligomers (c) 3a,b and (d) 4a,b in 98:2 hexanes/iPrOH at 10 and 5 °C, respectively.   
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Both samples 1 and 4 crystallized with racemic unit cells and thus the solid state analysis did not allow to 

determine the absolute configuration. The arrangement of the chromophores in space can in some cases 

be determined directly from the obtained ECD spectra but this requires well resolved exciton coupling 

bands, which was not the case for any of the systems presented here. However, the strong, distinct Cotton 

bands in the ECD spectra offered an opportunity to determine the absolute conformation in silico, 

especially as we could profit from the single crystal structures as starting points for the calculations. Also 

the mainly carbon based scaffold of the structures simplified the calculations significantly. To take the 

softer heteroatoms into account, calculations were performed with the B3LYP/6-31G** basis set, which 

already demonstrated its accuracy for systems involving heteroatoms.[29] Structure optimizations and 

subsequent time dependent calculations (TD-B3LYP/6-31G**, 150 states) with 75 triplet und 75 singlet 

excitations were performed and the obtained signs of the Cotton bands compared with the experimental 

spectra (Figure 6). In spite of the rather rudimentary approach, good enough agreement between 

predicted and recorded ECD spectra were observed in all cases, enabling the assignment of 1a - 4a and 1b 

- 4b to the P and M helices, respectively.  

Based on this assignment of the absolute configurations the recorded HPLC traces were re-evaluated. For 

the uniform cases (1 and 3), the P helices are eluting before their enantiomeric counterpart, while in the 

case of the distorted helices 2 and 4 the order is reversed. We thus conclude that the secondary structure 

of the constitutional isomers is considerably different such that the interaction with the chiral stationary 

phase leads to inversion of the elution order. 
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Figure 6: Experimental and calculated ECD spectra of 1a - 4a using TD-B3LYP/6-31G** with 75 triplet und 75 singlet 
excitations; total: 150 states; width 0.4 eV. The calculated spectra are based on the conformer with minimal energy. 
Colored: experimental spectra; black: calculated spectra, bars: calculated transitions.   
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Dynamics of the helices 1-4 

ECD spectroscopy not only allows the investigation of chiral phenomena as such but also enables the 

observation of racemization and enantiomerization processes.[30-33] We were interested to compare the 

racemization barriers with the already known ether analogue 5. Of particular interest was the impact of 

the elongated bridges (1 and 3) and the mismatched ring sizes in 2 and 4 on the racemization process. A 

racemic sample of each derivative 1 - 4 (~0.2 mg/mL) in the eluent was prepared. 300 µL of that solution 

were injected and the enantiomers separated by chiral HPLC (Chiralpak IA, 4 mL/min, 99:1 hexanes/iPrOH, 

18 °C for 1 and 2, 1 mL/min, 98:2 hexanes/iPrOH, 19 °C for 3 and 4). A sample of the P conformer (1a – 

4a) was collected after chiral HPLC and immediately subjected to ECD spectroscopy. Over a set amount of 

time, 50 points were recorded at the most intense Cotton band (1a: 222 nm; 2a: 230 nm, 3a: 230, 4a: 241 

nm) at 25 °C until complete disappearance of the CD signal displayed that the racemate was reached.[34] 

Figure 7 shows the exponential decay for both 1a and 2a. As the racemization process is not mediated by 

another molecule, the kinetics are expected to be of 1st order. If valid, linearization of the data by plotting 

time vs ln(A) gives direct access to the rate constant of racemization 𝑘𝑟𝑎𝑐 and eventually to the 

racemization barrier ∆𝐺𝑟𝑎𝑐
‡  at 25 °C. The data was found to be linear (and hence 1st order) resulting in 

excellent fits in all cases. The obtained values are summarized in Table 1.  

 

  link C-Het [Å] Torsion [°] ∆𝑮𝒓𝒂𝒄
‡  [kJ mol-1] 

uniform 5 O 1.43 147 97.6 ± 0.1 

 1a S 1.82 178 97.2 ± 0.1 

 3a Se 1.98a 146 90.4 ± 0.1 

      

distorted 2a S 1.86a 126 96.0 ± 0.1 

 4a Se 1.98 121 96.2 ± 0.1 

Table 1: The measured racemization barriers at 25 °C for 1a - 4a from the corresponding linear fits including the 
value for the diether 5 (P helices). The corresponding bond lengths and torsions of the backbone are given for 
comparison. aComputed values  
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Figure 7: Decay of the CD signals for the oligomers 1-4. After isolation of one corresponding enantiomer the loss of 
CD signal was observed at ∆𝐴𝑚𝑎𝑥  at 25 °C over time. Linear fitting of ln(A) vs time allowed to access the rate constant 

of racemization 𝑘𝑟𝑎𝑐  and with that the racemization barrier ∆𝐺𝑟𝑎𝑐
‡  at 25 °C.  
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Particularly interesting was to see changes in the values of ∆𝐺𝑟𝑎𝑐
‡  for the well ordered helices 1 and 3. The 

thioether 1 gives a racemization barrier which is very similar to the (oxygen)ether bridged oligomer 5 

(∆∆𝐺𝑟𝑎𝑐
‡  = 0.4 kJ mol-1). Apparently, the length of the bond (1.43 vs 1.82 Å for 5 and 1, respectively) which 

translates directly into an increased twist (147° vs 178°) as obtained by X-Ray diffraction analysis has 

almost no impact on the rate of racemization. We thus rationalize that the larger and softer sulfur atoms 

allow the adaption of a greater variety of angles, compensating for the increased twist. As for 5 the 

transition from the M to the P conformer (and vice versa) is smooth without any observable intermediate 

on the timescale of the experiments. The selenium analogue 3 is the key structure to deduce which of the 

opposing trends will dominate. Exchanging oxygen for sulfur and selenium means a continuous increase 

in the atomic radius and further elongated bonds (and thus presumably an even higher overall torsion). 

On the other hand, the larger and softer atom results in an even less defined angle at the heteroatom, 

which is expected to further reduce the racemization barrier. If a further increased value of ∆𝐺𝑟𝑎𝑐
‡  is found, 

the increased torsion helps to stabilize the helix while a reduced racemization barrier might indicate that 

the softer nucleus allows the interconversion to proceed more readily. As for both 5 and 1, the observed 

racemization is well behaved and undergoes a direct interconversion. Strikingly, the obtained barrier is 

significantly decreased (∆∆𝐺𝑟𝑎𝑐
‡  about 7 kJ mol-1) clearly deviating from the other two model compounds. 

As it was not possible to obtain a crystal structure for the selenium derivative 3 we relied on the B3LYP 

optimized in silico geometry (Figure 8) that we used to calculate the CD spectra. We based the structure 

on the solid state structure of 1 and exchanged sulfur for selenium. The obtained structure revealed 

significantly reduced torsion angles compared to 1 (146° instead of 178°). However, the found average C-

Se bond length (1.98 Å) was identical to that of the distorted selenodiether 4. As the calculated CD spectra 

is in very good agreement to the experimental data we have strong reason to assume the calculated 

structure to be accurate. We surmise that the further elongation of the C-Het bond does no longer 

increase the overall torsion. Contrary to the sulfur helix 3, where the elongation leads to an increase of 

torsion and that in turn compensates the enhanced flexibility of the heteroatom, these trends are no 

longer counteracting and very likely the reason for the significantly reduced racemization barrier.  

We next turned our attention to the two mismatched helices. As outlined before, both 2 and 4 show broad 

NMR signals for the protons of the bridge which indicates the presence of multiple, rapidly interchanging 

conformers. However, we do not consider them to be racemization processes but rather fast, small 

conformation changes of the bridge as the protons on the backbone are well defined and sharp. That the 

racemization processes are generally much slower than the NMR timescale is clearly supported by the 
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successful separation of the enantiomers by chiral HPLC. Again, the clear doublet in the HPLC trace and 

the resulting complementary CD spectra strongly suggest that only two types of long-lived helices are 

present. Furthermore, heating the samples resulted in averaged, well defined spectra, indicating that the 

barrier for these small conformation changes is low. It is thus not surprising that the observed CD decays 

and the subsequent plot of ln(A) vs time showed excellent linear behavior and very well defined values of 

∆𝐺𝑟𝑎𝑐
‡  (96.0 ± 0.1 mol-1 for 2 and 96.2 ± 0.1 kJ mol-1 for 4). Neither the uniformity of the helix nor the 

enlarged ring size has a significant impact on the racemization barrier the measured values are only 

marginally lower than that of the uniform helices (∆∆𝐺𝑟𝑎𝑐
‡  ~1 kJ mol-1). Furthermore, the mismatched 

helices do not follow the trend set by the matched derivatives upon exchanging of the heteroatom. The 

torsion angle (2, calculated: 126°; 4, measured: 121°) changes only marginally while the barrier increased 

by ∆∆𝐺𝑟𝑎𝑐
‡  = 0.1 kJ mol-1 which is smaller than the accuracy of the method. Based on these findings we 

conclude that either the racemization process of these distorted oligomers does not rely on the size or 

nature of the incorporated heteroatom, or there are two competing features at work which compensate 

each other perfectly in the two model compounds. In similarity to the model compounds 1, 3 and 5, we 

currently favor the second hypothesis. 
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Figure 8: Solid states structures by X-ray diffraction analysis(5a, 1a, 4a) and calculated structures (2a and 3a) using 
Gaussian and B3LYP/6-31G**. The top row depicts the matched helices with a smooth helical wrapping of the longer 
oligomer. The lower row shows the mismatched, distorted helices. In all cases continuous wrapping of the longer 
oligomer was determined (or predicted) giving only one pair of enantiomers (M and P) each. 

 

Conclusion 

In this work new types of chiral ladder systems that show induced, elongated or distorted helicity are 

assembled via an efficient synthetic route. The studies demonstrate conceptually and experimentally that 

elongation of the bridge alters mainly the degree of twist while changes in ring size leads to distortion of 

the helix. More accurately, the modulation of the overall torsion with the alteration of the heteroatoms 

and the distortion of the helices by a targeted change in the substitution pattern of the relay are 

demonstrated. Accessing of the new derivatives was possible due to a short synthetic route, which 

includes minimal amounts of borylations, precise regioselective halogenation mediated by a neighboring 

boronic ester and Appel-type substitution of two benzylic hydroxy groups to a versatile, modular 

precursor. This precursor allowed for two consecutive macrocyclizations and the successful integration of 

either two sulfur or selenium atoms in a single synthetic step. The flexibility of the precursor gave access 
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to two further (constitutional) isomers with an inverted substitution pattern on the relay. The total of 

eight structures - for each type of heteroatom two structural isomers which exist as enantiomeric pairs – 

were accessed in high yields and separated into the individual isomers by a multitude of chromatographic 

protocols (both achiral and chiral). Extensive NMR spectroscopy and High Resolution-MS allowed to 

unambiguously identify each structure while ECD spectroscopy of the purified isomers allowed to confirm 

similar secondary structures and identify the enantiomeric pairs. In silico ECD-calculations allowed to 

assign the absolute stereochemistry of the enantiomers and project the arrangement of the helices in 

space. The structural arrangements of two of the four structural isomers was confirmed by X-Ray 

diffraction analysis revealing alteration of the secondary structure upon changing of the substitution 

pattern (uniform and distorted helix). Elongation of the heteroatomic bonds increased the torsion angle 

in the case of the sulfur system while decreased torsion was observed for the selenoether. Two dynamic 

processed were investigated: VT-NMR spectroscopy for the distorted helices and the racemization 

processes of all four model compounds by ECD decay spectroscopy. VT-NMR demonstrated that the 

bridge of the distorted helix derivatives is flexible and can undergo small structural changes on the NMR 

timescale as indicated by the broad signals at 25 °C that coalesce at elevated temperatures. The protons 

of the backbone are sharp at room temperature which is consistent with a racemization process on a 

larger timeframe. The observation of decay of the most prominent Cotton band by ECD lead to precise 

values for the racemization barrier and allowed to relate the racemization to the spatial arrangement of 

the structures. Two main trends were found: The length of the heteroatomic bonds (increased torsion) 

and the size of the heteronucleus (softer nuclei with less defined bond angles) are compensating each 

other in the case of sulfur. The much larger selenium shows a highly reduced racemization barrier in the 

case of the uniform helix due to a reduced torsion angle and a softer nucleus. In both cases the distorted 

helices do not respond to the change in heteroatom. The prevention of an achiral meso form, the 

continuity of the induced helices and the observed uniform racemization pathways made the study of 

these fascinating structures possible. 

The prospect of introducing a variety of linkages is an important step towards stable “Geländer” type 

helices. As the ring size was found to play a crucial role in the stereodynamics and spatial arrangement of 

the oligomer, a more constrained helix with decreased ring sizes becomes desirable. Especially sulfur is 

an ideal entry point to access all carbon based, tighter derivatives. A further option towards long term 

stable helices is the elongation of the helix leading to longer ladders with increased overall torsions. These 

studies are currently ongoing and will be reported in due course. 
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Graphical Abstract 

Evolution of a twisted ladder: A ladder oligomer adopts a helical conformation due to the size mismatch 

of the rails. Upon elongation of the chain-length between neighboring rings, the system responds by an 

increased twist. Changing the substitution pattern of the relay results in the distortion of the helix. 
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