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An application of Q-curvature to an embedding of critical type

Luca Martinazzi

Let Ω ⊂ R2m be open, bounded and with smooth boundary, and let a sequence
λk → 0+ be given. Consider a sequence (uk)k∈N of positive smooth solutions to

(1)

{
(−∆)muk = λkuke

mu2
k in Ω

uk = ∂νuk = . . . = ∂m−1
ν uk = 0 on ∂Ω.

Problem (1) arises from the Adams-Moser-Trudinger inequality [1, 10, 13]:

(2) sup
u∈Hm

0 (Ω), ‖u‖2
Hm

0
≤Λ1

1

|Ω|

∫

Ω

emu
2

dx = c0(m) < +∞,

where c0(m) is a dimensional constant, Λ1 := (2m − 1)!vol(S2m), and Hm
0 (Ω) is

the Beppo-Levi space defined as the completion of C∞
c (Ω) with respect to the

norm

(3) ‖u‖Hm
0

:= ‖∆m
2 u‖L2 =

(∫

Ω

|∆m
2 u|2dx

) 1
2

,

where ∆
m
2 u := ∇∆

m−1
2 u for m odd. In fact critical points of (2) under the

constraint ‖u‖2Hm
0

= Λ1 solve (1). Then we have the following concentration-

compactness result:

Theorem 1 ([9]). Let (uk) be a sequence of solutions to (1) such that

(4) lim sup
k→∞

‖uk‖2Hm
0

= lim sup
k→∞

∫

Ω

λku
2
ke
mu2

kdx = Λ <∞.

Then up to a subsequence either

(i) Λ = 0 and uk → 0 in C2m−1,α(Ω), or

(ii) There exists a positive integer I such that Λ ≥ IΛ1, and there is a finite set
S = {x(1), . . . , x(I)} such that

uk → 0 in C2m−1,α
loc (Ω\S),

and

λku
2
ke
mu2

k ⇀
I∑

i=1

αiδx(i) , αi ≥ Λ1,

weakly in the sense of measures.

Theorem 1 was proven by Adimurthi and M. Struwe [3] and Adimurthi and O.
Druet [2] in the case m = 1, and by F. Robert and M. Struwe [11] for m = 2.
Recently O. Druet [6] for the case m = 1, and M. Struwe [12] for m = 2 improved
the previous results by showing that in case (ii) of Theorem 1 we have Λ = LΛ1

for some positive L ∈ N. Whether the same holds true for m > 2 is still an open
question.
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Part (ii) of the theorem shows an interesting threshold phenomenon: below the
critical energy level Λ1 we always have compactness. Moreover Λ1 is the total
Q-curvature of the sphere (see [8] for a short discussion of Q-curvature). We shall
briefly explain how this remarkable connection with Riemannian geometry arises.
It is easy to see that if we are not in case (i) of the theorem, then supΩ uk → ∞
as k → ∞. Then one can blow up, i.e. define the scaled functions

ηk(x) := uk(xk)(uk(xk + rkx)− uk(xk)) for x ∈ r−1
k Ω− xk,

where xk is such that uk(xk) = maxΩ uk and rk → 0 is a suitably chosen scaling
factor. Then it turns out that

(5) ηk(x) → η0(x) in C2m−1
loc (R2m), as k → ∞,

where η0 is a solution of the Liouville-type equation

(6) (−∆)mη = (2m− 1)!e2mη on R
2m,

∫

R2m

e2mηdx <∞.

We recall (see e.g. [8]) that if η solves (−∆)mη = V e2mη on R2m, then the confor-
mal metric gη := e2η|dx|2 has Q-curvature V , where |dx|2 denotes the Euclidean
metric. Now the problem is to understand what is the solution η0 or (equivalently)
what is the conformal metric gη0 .

A bunch of solution to (6) is given by the so-called standard solutions

ηλ,x0(x) = log
2λ

1 + λ2|x− x0|2
, λ > 0, x0 ∈ R

2m.

These are “spherical” solutions, as the metric e2ηλ,x0 |dx|2 can be obtained by
pulling-back the metric of the round sphere S2m onto R2m via the stereographic
projection and a Möbius diffeomorphism.

While Chen and Li [5] proved that in the case m = 1 the only solutions to
(6) are the standard solutions, Chang and Chen [4] showed that for m > 1 (6)
possesses many other solutions. Therefore the problem of understanding η0 starts
to appear quite subtle, and the following classification result, due to the author
[8], turns out to be crucial.

Theorem 2. Let η be a solution to (6) and set

v(x) :=
(2m− 1)!

γm

∫

R2m

log

( |y|
|x− y|e

2mu(y)

)
dy,

where γm is such that (−∆)m
[

1
γm

log 1
|x|

]
= δ0. Then η = v + p, where p is a

polynomial of degree at most 2m− 2 and

lim
|x|→∞

∆jv(x) = 0, 1 ≤ j ≤ m− 1.

Moreover the following are equivalent:

(i) η is a standard solution,
(ii) p is constant.
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Finally if η is not a standard solution there exist 1 ≤ j ≤ m − 1 and a constant
α 6= 0 such that

(7) lim
|x|→∞

∆jη(x) = α.

Now the idea is to use Theorem 2 to prove the following proposition.

Proposition 3. The function η0 given by (5) is a standard solution to (6).

Proposition 3 yields

lim
k→∞

∫

Ω

λku
2
ke
mu2

kdx ≥ (2m− 1)!

∫

R2m

e2mη0dx

= (2m− 1)!

∫

R2m

QS2mdvolgS2m = Λ1,

This is the basic reason why αi ≥ Λ1 in case (ii) of Theorem 1.
In order to apply Theorem 2, one has to have a better understanding of the

asymptotic behavior of the functions ηk and their derivatives. This is achieved in
the following proposition, which is central to our argument.

Proposition 4. For any R > 0, 1 ≤ ℓ ≤ 2m− 1 there exists k0 such that

(8) uk(xk)

∫

BRrk
(xk)

|∇ℓuk|dx ≤ C(Rrk)
2m−ℓ, for all k ≥ k0.

Equivalently

(9)

∫

BR(0)

|∇ℓηk|dx ≤ CR2m−ℓ, for all k ≥ k0.

Observe that taking the limit in (9) one gets

(10)

∫

BR(0)

|∇ℓη0|dx ≤ CR2m−ℓ, k ≥ k0(R),

and η0 has to be a standard solution because (10) is not compatible with (7).

Finally, let us also comment on the proof of Proposition 4. The key idea is to
prove that

(11) ‖∆m(u2k)‖L1(Ω) ≤ C.

This is an easy consequence of the following Lorentz-space estimate.

Proposition 5. For every 1 ≤ ℓ ≤ 2m − 1, ∇ℓuk belongs to the Lorentz space
L(2m/ℓ,2)(Ω) and

‖∇ℓuk‖(2m/ℓ,2) ≤ C.

This can be proven by interpolation observing that (4) implies that ∆muk is

bounded in the Zygmund space L(logL)
1
2 . Interestingly if we decide to be a bit

sloppy and consider that (4) gives bounds for ∆muk in L1(Ω), then we get the
bounds ‖∇ℓuk‖(2m/ℓ,∞) ≤ C (here L(p,∞) is the Marcinkievicz space). On the
other hand these bounds are too weak to prove (11), hence Proposition 4. This
also shows that (8), (9) and (10) are in some sense “sharp”.
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Gradient estimates via non-linear potentials

Giuseppe Mingione

For the Poisson equation −△u = µ , here considered in the whole Rn and where
µ is in the most general case a Radon measure with finite total mass, it is well-
known that it is possible to get pointwise bounds for solutions via the use of Riesz
potential

(1) Iβ(µ)(x) :=

∫

Rn

dµ(y)

|x− y|n−β , β ∈ (0, n]

such as

(2) |u(x)| ≤ cI2(|µ|)(x) , and |Du(x)| ≤ cI1(|µ|)(x) .
Similar local estimates ca be obtained using the localized version of the Riesz
potential Iβ(µ)(x) is given by the linear potential

(3) I
µ
β(x0, R) :=

∫ R

0

µ(B(x0, ̺))

̺n−β
d̺

̺
, β ∈ (0, n]

with B(x0, ̺) being the open ball centered at x0, with radius ̺. A question is now,
is it possible to give an analogue of estimates (2) in the case of general quasilinear


