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Abstract

Waves are useful for probing an unknown medium by illuminating it with a source.
To infer the characteristics of the medium from (boundary) measurements, for in-
stance, one typically formulates inverse scattering problems in frequency domain as
a PDE-constrained optimization problem. Finding the medium, where the simulated
wave field matches the measured (real) wave field, the inverse problem requires the
repeated solutions of forward (Helmholtz) problems. Typically, standard numerical
methods, e.g. direct solvers or iterative methods, are used to solve the forward prob-
lem. However, large-scaled (or high-frequent) scattering problems are known being
competitive in computation and storage for standard methods. Moreover, since the
optimization problem is severely ill-posed and has a large number of local minima,
the inverse problem requires additional regularization akin to minimizing the to-
tal variation. Finding a suitable regularization for the inverse problem is critical to
tackle the ill-posedness and to reduce the computational cost and storage require-
ment.

In my thesis, we first apply standard methods to forward problems. Then, we
consider the controllability method (CM) for solving the forward problem: it instead
reformulates the problem in the time domain and seeks the time-harmonic solution
of the corresponding wave equation. By iteratively reducing the mismatch between
the solution at initial time and after one period with the conjugate gradient (CG)
method, the CMCG method greatly speeds up the convergence to the time-harmonic
asymptotic limit. Moreover, each conjugate gradient iteration solely relies on stan-
dard numerical algorithms, which are inherently parallel and robust against higher
frequencies. Based on the original CM, introduced in 1994 by Bristeau et al., for
sound-soft scattering problems, we extend the CMCG method to general boundary-
value problems governed by the Helmholtz equation. Numerical results not only
show the usefulness, robustness, and efficiency of the CMCG method for solving the
forward problem, but also demonstrate remarkably accurate solutions.

Second, we formulate the PDE-constrained optimization problem governed by
the inverse scattering problem to reconstruct the unknown medium. Instead of a
grid-based discrete representation combined with standard Tikhonov-type regular-
ization, the unknown medium is projected to a small finite-dimensional subspace,
which is iteratively adapted using dynamic thresholding. The adaptive (spectral)
space is governed by solving several Poisson-type eigenvalue problems. To tackle
the ill-posedness that the Newton-type optimization method converges to a false lo-
cal minimum, we combine the adaptive spectral inversion (ASI) method with the
frequency stepping strategy. Numerical examples illustrate the usefulness of the ASI
approach, which not only efficiently and remarkably reduces the dimension of the
solution space, but also yields an accurate and robust method.
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CHAPTER 1
Introduction

In recent years, numerical simulations of wave phenomena has been successfully
applied to both computational sciences and engineering applications such as seismic
reflection used in geophysical exploration [129, 94, 120, 118, 27, 84], tomography in
medical imaging [1, 113, 115], and in many other fields.

The goal of exploration of an unknown in a bounded medium is to determine
physical properties and position of the unknowns, the scatterer, with less a pri-
ori knowledge. While waves propagate through the entire medium, in particular
through the penetrable scatterer, one attempts to gather information from the scat-
tered wave field measured near to the boundary. From the scatterer the speed of
propagation varies in inhomogeneity. Once the inhomogeneity of the scatterer is
known, the simulated wave field is identically equal to the measured data (or the
observation) when there is no noise in the observation [4, 43, 77, 84, 132].

However, the scatterer is in general unknown. Hence, one is looking for the
(exact) inhomogeneity of the scatterer so that the simulated wave field and the ob-
servation are identical, which describes the so-called inverse scattering problem.

In physics, the wave mentioned above can be classified into two main types of
waves: mechanical and electromagnetic waves. Mechanical waves including acous-
tic waves such as the sound or water wave.

In this work we focus on both time-dependent and time-independent acous-
tic waves, which are described by the (acoustic) wave equation. Here the time-
independent wave equation coincides with the Helmholtz equation resulted from
Fourier transformation of the wave equation to the frequency domain. It is well-
known that it is difficult to solve the Helmholtz equation in the high-frequency
regime [55, 20, 61], which is still an active research area. In recent years, parallel
methods have become more popular in computational sciences due to efficiency and
rise of technology in massively parallel machines [104, 55, 20, 27, 21, 75].

1.1 Model problems

The time-independent scattering problems are modeled by the Helmholtz equation

−∇ ⋅ (a(x)∇u(x))− k2
(x)u(x) = f (x). (1.1)

It is well-known that (1.1) has a unique solution for certain choices of wave numbers
k = ω/c, wave frequency ω, wave speed c, a(x) = 1/ρ(x), the density ρ, source term f ,
and boundary conditions; e.g. for homogeneous scattering problems (c ≡ const) with
a Sommerfeld-type impedance boundary condition [95, 93]. Based on the unique
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continuation principle [98, 136], Sauter et al. recently extended this result to the
variable coefficient case [74, 125].

The discrete Helmholtz problems resulting from finite element (FE) [24, 122] or
finite difference (FD) discretizations are equivalent to solving the linear system of
equations,

Ahuh = Fh. (1.2)

Here Ah and Fh result from the discretization with mesh size h of the partial differ-
ential equation and uh is the discrete solution of (1.1). The N × N system matrix Ah
is sparse, structured, complex symmetric, but not Hermitian, and with

N ∼ h−d, d = 1, 2, 3, (1.3)

where d is the spatial dimension.
For a reasonably accurate numerical solution one typically sets at least “10 grid

points per wave length” [6, 7, 20, 110, 134], that is

kh ≈
2π

10
. (1.4)

However, the discrete error eh = u − uh of the FE solution uh grows with k and
(1.4) due to the numerical dispersion. In [14, 6], for the quasioptimality of the FE
solution,

∥eh∥H1 ≤ Chr,
∥eh∥L2 ≤ Chr+1,

with C > 0 independent of h, one requires

hk2
≈ const.

Hence one needs a finer mesh and requires e.g. for the Pr-FE solution uh

N ∼ h−d
∼ kd r+1

r (1.5)

– see [6, 7, 110, 134]. Consequently, the restriction (1.5) in comparison to (1.3) with
(1.4) makes the problem (1.2) harder to solve for k ≫ 1 (see further Section 2.4).

Here we consider some typical class of numerical methods for solving (1.1): (i)
direct solvers, (ii) classical splitting or multigrid methods, (iii) Krylov iterative meth-
ods

(i) Direct solver. A classical direct solver akin to the LU decomposition method
for solving (1.2). Here one instead considers

Ahuh = Lh(Uhuh) = Fh, (1.6)

where Lh is lower triangular and Uh upper triangular,

Lhvh = Fh (forward substitution),
Uhuh = vh (backward substitution).

The decomposition of the dense matrix Ah, e.g., from boundary element or spectral
discretization, requires a computational work of O(N3) and the two-phase substitu-
tion steps requires a computational work ofO(N2) [41, 55, 61]. For the sparse matrix
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Ah, e.g., from finite element or finite difference discretizations on regular meshes,
the elimination and decomposition requireO(N3/2) on two-dimensional meshes and
O(N2) on three-dimensional meshes [61]. For scattering problems with m multiple
source terms, (1.2) splits into m linear equations, where the system matrix Ah remains
the same for all source terms and the LU decomposition needs only be computed
once.

Direct solvers based on Gauss elimination are robust with respect to the condi-
tion number of Ah. However, for higher frequencies (1.2) leads to a large system of
equations due to (1.5). As a consequence, (1.2) typically becomes too expensive in
computational cost and storage requirement. Moreover, direct solvers typically are
hard to parallelize on distributed memory architectures.

(ii) Classical splitting or multigrid methods. Instead of solving (1.2) directly,
classical matrix splitting methods consider

Ahuh = (Mh +Nh)uh = Fh (1.7)

with
Ah = Mh +Nh,

where Mh is regular, e.g. (damped) Jacobi, Gauss-Seidel (GS) or, successive over
relaxation (SOR). One then solves the iterative problem

Mhum+1
h = Fh −Nhum

h . (1.8)

Nowadays, classical splitting iterations are only used as smoothers and as pre-
conditioner in multigrid and Krylov iterative methods, respectively.

The damped Jacobi iteration effectively removes the error of the high-frequency
modes (oscillation part). However, the error of the low-frequency modes (smooth
part) converges slowly [55]. Therefore, the damped Jacobi iteration, the smoother, is
then used in the smoothing process. Next, the smooth part can be solved efficiently
on the coarse grid. In the coarse grid correction, each multigrid iteration first restricts
the solution um

h to a coarse grid (restriction step) and solves the linear system on
the coarse grid. After that the solution is prolungated back to the finer grid via
interpolation (prolongation step).

(iii) Krylov iterative methods. Here (the system matrix) Ah in (1.2) is sparse
and complex symmetric, however indefinite and not Hermitian. As a consequence,
the classical conjugate gradient (CG) method cannot directly be applied to (1.2).
Instead one typically uses iterative methods such as generalized minimal residual
(GMRES) [124], biconjugate gradient stabilized (BiCGSTAB)[133], or quasi-minimal
residual (QMR)[60] methods, because they require less computational storage than
the direct solver. However, it is well-known that the convergence of these methods
is very sensitive to the condition number of Ah. Moreover, the convergence deteri-
orates the higher frequency, and thereby it is also very sensitive depending on the
frequency [55]. Consequently, the problem (1.2) is hard for iterative methods. There-
fore, one requires “good” and efficient preconditioners. Again, instead of (1.2), one
considers the equivalent modification,

P−1Ahuh = P−1Fh, (left preconditioning) (1.9a)

AhP−1vh = Fh, Puh = vh, (right preconditioning) (1.9b)

where P is an invertable matrix.
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In recent years, a growing number of increasingly sophisticated precondition-
ers has been proposed for the iterative solution of the Helmholtz equation: alge-
braic preconditioners derived from matrix splittings e.g. Jacobi or incomplete LU
(ILU) decomposition; shifted Laplacian by adding a complex-valued damping ze-
roth term [54, 55, 107, 2, 63], which leads to modern multigrid methods [30, 31, 20];
domain decomposition methods based on Schwarz decomposition are first proposed
by Miller in 1965 and then by e.g. [65, 62, 64, 75]; algebraic multilevel or sweeping
preconditioners using approximate LDL⊺ factorization [53].

In particular, a rigorous theory providing rates of convergence for the Helmholtz
problem with absorption has been developed in [75] and extended to the absorptive
Maxwell equations in [21]. While some of those preconditioners may achieve a de-
sirable frequency independent convergence behavior in special situations [53], that
optimal behavior is often rapidly lost in the presence of strong heterogeneity. More-
over, they are typically tied to a particular discretization or fail to achieve optimal
scaling on massively parallel architectures.

1.2 Controllability methods

In [25, 26], Glowinski et al. proposed an alternative approach to solve the Helmholtz
equation in the time domain instead of in frequency domain, which corresponds to
the time-dependent wave equation,

1
c2(x)

∂2y(x, t)
∂2t

−∇ ⋅ (a(x)∇y(x, t)) = Re{ f (x) e−iωt
} (1.10)

with the initial conditions

y(x, 0) = y0(x),
∂y(x, 0)

∂t
= y1(x). (1.11)

It is well-known that (1.10) has a unique solution y, which continuously depends
on the (unknown) initial value (y0, y1) [56]. For sound-soft scattering problems, if
y is a time-periodic solution of (1.10) with the known period T = (2π)/ω, then y
corresponds to

y(x, t) = Re{u(x) e−iωt
}, (1.12)

where u is the unique solution of (1.1) [11]. It is clear that (1.12) immediately yields

u(x) = y(x, 0)+
i
ω

∂y(x, 0)
∂t

= y0(x)+
i
ω

y1(x). (1.13)

Following [11], for arbitrary initial value (y0, y1), the asymptotic limit of the cor-
responding solution of the wave equation converges to the time-harmonic solution
Re{u(x) e−iωt} as t tends to +∞. Hence, simply integrating (1.10) for a long time
eventually yields the time-periodic solution y. Moreover, Mur suggested in [114]
that convergence of the time-harmonically forced wave equation (1.10) to the time-
harmonic asymptotic regime can be accelerated by pre-multiplying the time-harmonic
sources in (1.10) with a smooth transient function. For scattering from non-convex
obstacles with ray trapping, simply solving the time-harmonically forced wave equa-
tion over a very long time fails to reach the long-time asymptotic final time-harmonic
state because of trapped modes.
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In [25, 26], Glowinski et al. reformulated the problem using the exact controlla-
bility method (CM) [104] as a least-squares problem with the cost functional

J(y0, y1) =
1
2
∥
√

a ∇(y(x, T)− y0(x))∥
2

+
1
2
∥

1
c(x)

(yt(x, T)− y1(x))∥
2

, (1.14)

which penalizes the periodic misfit of the solution y of (1.10) with the initial value
(y0, y1) after one time period T = 2π

ω . Clearly, J is non-negative and once J is zero, y
is T-periodic and the solution of (1.1) is given by (1.13). Hence, (y0, y1) is a (global)
minimizer of J. Since J is convex and quadratic, they proposed to use the conjugate
gradient (CG) method to find a global minimizer of J, which requires the Fréchet
derivative J′ of J in each CG iteration. While J′ only lies in the dual space H−1 × L2,
it needs the Riesz representative in the correct space [108] to ensure that the solu-
tion remains sufficiently regular and in H1 × L2, which coincides with a Poisson-like
strongly elliptic problem. In contrast to simply integrating the wave equation for a
long-time, the CMCG method always accelerates the convergence to the long-time
asymptotic time-harmonic limit and yields a judicious solution of (1.1).

The CMCG method in [25, 26] relied on a piecewise linear finite element (FE)
discretization in space and the second-order leapfrog scheme in time. Low-order
FE discretizations, however, are notoriously prone to the pollution effects [7, 50].
Moreover, local mesh refinement imposes a severe CFL stability constraint on explicit
time integration, as the maximal time-step is dictated by the smallest element in the
mesh.

Recently, Heikkola et al. [91, 92] combined higher-order P3 spectral FE with
the classical fourth-order Runge-Kutta (RK) method to mitigate the pollution ef-
fect. To avoid inverting the mass matrix, they used the mass-lumping based on the
order-preserved Gauss-Legendre-Lobatto quadrature nodes. In contrast to [25, 26],
they followed the discretize-then-optimize approach rather than the optimize-then-
discretize approach. Moreover, they also used an algebraic multigrid preconditioner
for solving the (strongly) elliptic problem to remove mesh dependence of the con-
vergence at fixed frequency.

In scattering problems, one requires a boundary condition at infinity to ensure
the well-posedness of the problem. In [25, 26, 91, 92], they considered scattered wave
fields satisfying the first-order absorbing boundary condition, which is inaccurate at
higher frequency due to numerical reflections. To reduce undesired numerical reflec-
tions, one uses higher-order absorbing boundary conditions on the artificial bound-
ary [52, 12, 76]. Following [102], the CMCG method can immediately be applied to
scattering problems satisfying these higher-order boundary conditions.

In [70, 68], Glowinski et al. derived an equivalent first-order (or mixed) formula-
tion for sound-soft scattering problems, where the solution instead lies in (L2)d+1.
Moreover, the gradient of the corresponding cost function J in (1.14) operates in
(L2)d+1, and hence all CG iterates automatically lie in the correct solution space
(L2)d+1. Therefore, the solution of a strongly elliptic problem is no longer needed.
They proposed to use Ravier-Thomas (RT) elements for the discretization in space [97,
69]. Following [15, 69], there is mass-lumping for RT quadrilateral elements akin to
mass-lumping for classical finite elements; however, so far there is no mass-lumping
for RT triangular elements. Thus each time step needs solving a linear equation sys-
tem, which is very costly in computational time and is not perfectly parallelizable.

So far the controllability method has always been applied to sound-soft scatter-
ing problems [25, 26, 91, 92], where both Dirichlet and impedance conditions are
imposed at the boundary. However, for boundary value problems governed by the
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Helmholtz equation with any other combination of boundary conditions, the origi-
nal CMCG method will generally fail, because the minimizer of J is no longer unique.
An alternative functional J∞ proposed in [11] recovers the uniqueness of the mini-
mizer in all those problem settings, but it requires storing the entire history of the
solution of the wave equation, which may be prohibitive for large-scale problems.

1.3 Inverse scattering problems

In the inversion of the scattering problems the squared propagation speed u of the
wave field is unknown. One typically considers two classes of numerical methods
to determine the unknown u (or the scatterer) from measurements yobs: qualitative
and quantitative methods.

In general, qualitative methods [101, 29] require less a-priori knowledge about
the scatterer u. These methods return a qualitative estimation of the location and
the shape of the scatterer. In contrast, quantitative methods such as full waveform
inversion are applied to recover more physical details of the scatterer [130, 115].

The time-dependent full waveform inversion (FWI) was originally formulated by
Lailly [103] and Tarantola [129]. Later, Gauthier, Tarantola, and Virieux first applied
the FWI method to the two-dimensional seismic problems [66]. In [119, 121], the FWI
approach was proposed to solve frequency-domain FWI problems. This is typically
formulated as a PDE-constrained nonlinear least-squares (NLS) problem [104, 130,
132, 32, 27],

min
u∈V

J[u], J[u] =
1
2
∥y − yobs

∥
2
L2(D)

, (1.15)

s.t. y = y(u) solves (1.1),

where V is a Banach space and either D ⊂ Ω or D ⊂ ∂Ω. It minimizes the misfit be-
tween simulated y and measured yobs data with respect to the L2-norm. Other norms
for the misfit such as L∞-norm or L1-norm are discussed in [130]. However, the mea-
sured data in general is perturbed by (additive or multiplicative) noise, and thus the
optimal control u∗ in (1.15) and the exact scatterer u may not coincide. Moreover, the
NLS problem is ill-posed. To obtain well-posedness, one adds a-priori information
of various nature to the (original) NLS problem in the regularization procedure [32].
It is crucial to choose the optimization and regularization method to have the desired
regularization property.

1.3.1 Optimization methods

To minimize J[u], one typically uses a standard Newton-type iteration: classical (or
full) Newton, truncated Newton, quasi-Newton such as Broyden-Fletcher-Goldfarb-
Shanno (BFGS), or Gauss-Newton optimization methods [94, 117, 43, 113, 27, 77, 79,
115]. This leads to an update process

H`d` = g`, (1.16)

where H` is a symmetric positive definite matrix (e.g. an approximation of the Hes-
sian matrix of J), d` is the unknown new search direction, and g` is a known vector
(e.g. the gradient of J). The matrix H` or its inversion H−1

` are usually not computed
due to lack of storage and the amount of computational work.

In [94], Hicks et al. proposed applying the full Newton method to the optimiza-
tion problem (1.15). To compute the exact Hessian matrix, they presented a new
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efficient strategy using a “backpropagation” approach, which is similar to that used
to compute the derivative of J. However, it still involves a large number of repeated
solutions of (1.1).

For the Gauss–Newton method, one typically uses the CG method to compute
the approximated Hessian matrix H`. Since each CG iteration also involves a large
number of repeated solutions of linear systems [94, 115], one requires a suitable stop-
ping criterion to reduce the number of CG iterations. In [51], Eisenstat et al. proposed
to impose the Eisenstat-Walker stopping criterion for the CG method. Although it
does not solve (1.16) exactly, it still returns a judicious solution.

In contrast to the full Newton or the Gauss–Newton method, the approximated
(inverse) Hessian matrix in the quasi-Newton method follows immediately from the
derivative of J, and hence no several repeated solutions of (1.1) are required. How-
ever, the approximated Hessian matrix may be dense, and thus one instead uses the
limited memory BFGS (L-BFGS) method [106, 34].

1.3.2 Regularization strategies

Here we introduce some important classical regularization methods.

(i) Regularization with penalty term. It is well-known that the inverse problem
is ill-posed, since the problem may have several local (or global) minima. Hence
optimization methods may fail to converge to the exact solution u. Moreover, the
perturbations in the observation may impede the convergence. To overcome the
problem of getting stuck in a local minimum, the problem needs to be regularized,
which is usually done by adding, for instance, a total variation [58, 16, 100, 3] or
Tikhonov-type regularization term [131, 71] such as

R[u] = ∫
Ω
∣∇u(x)∣ dx (total variation), (1.17)

R[u] =
1
2 ∫Ω

∣∇u(x)∣2 dx (H1-penalty), (1.18)

R[u] =
1
2 ∫Ω

u2
(x) dx (L2-penalty). (1.19)

Instead of minimizing J in (1.15), one minimizes J[u] + αR[u]. Since the additional
regularization term α involves additional parameters, an adaptive strategy is pro-
posed to determine α [58, 86, 115].

(ii) Regularization by parameterization. Instead of minimizing the cost func-
tional J in V, one seeks a minimizer

β = argmin
β̂∈W

J[ψ(β̂)], (1.20)

where ψ is the parameterization map with ψ(W) ⊂ V. The parameterization is per-
formed to reduce the number of unknown parameters. The choice of parameteriza-
tion map generally depends on the inverse problem [32].

(iii) Regularization by size reduction. To reduce the number of unknown pa-
rameters, one instead considers the candidate of u in W ⊂ V and seeks

w = argmin
ŵ∈W

J[ŵ]. (1.21)

One approach to define the subset W is to add new constraints from a-priori infor-
mation to the control [32].
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(iv) Regularization by filtering or denoising. Another regularization approach
by filtering or denoising [72, 85] is proposed to remove noise and extract useful data
from the inverse problem. One reduces the space of the admissible parameter with
the low-rank approximation based on the singular value decomposition (SVD) of a
matrix. For a large ill-posed matrix, however, one typically cannot determine the
SVD due to computational cost and storage requirement [72, 85].

1.3.3 Adaptive spectral decomposition

In [43], de Buhan and Kray presented a new approach based on [44] for viscoelastic-
ity to solve the inverse scattering problem for wave equations. They first considered
the series

u =
∞

∑
`=1

β`ϕ`, (1.22)

where ϕ` are eigenfunctions satisfying the eigenvalue problem

B[ϕ`, v] ∶= −(∇ ⋅ (µ[u]∇ϕ`), v) = λ`(ϕ`, v) (1.23)

with
µ =

1
max{∣∇u∣, ε}

, ε > 0. (1.24)

Here {λ`} denotes the monotonically increasing sequence of eigenvalues. To ensure
that µ is well-defined and the denominator does not vanish, they added a small ε > 0.

Now, to regularize the solution u in (1.22), they truncated the sum by a finite
number K,

u ≈
K
∑
`=1

β`ϕ`. (1.25)

It results

min
v∈V

{J[v]+ αR[v]}, (1.26)

where V = span{ϕ`}
K
`=1 is the corresponding adaptive spectral (AS) space (or adap-

tive eigenspace).
In [77, 79], Grote et al. applied the adaptive spectral decomposition to the inverse

scattering problem in frequency domain. Instead of adding an additional penalty
term αR, they proposed only to regularize the unknown parameter u in discretization
(α = 0). Then they combined the AS approach with the optimal control problem [104,
132] for the cost functional (1.15) with either the Gauss-Newton or truncated Newton
method [94, 117, 84]. In addition, they proposed to use the frequency continuation
strategy from [35, 10, 94] to prevent that the optimization procedure converges to
a false local minimum. This approach requires solving a series of inverse scattering
problems with growing frequencies, known as frequency stepping. The optimization
procedure for each frequency starts with the initial guess from the solution of the
previous lower frequency. By starting at the lowest frequency, it avoids converging to
a false local minimum. By ending at the highest frequency, it allows to capture more
detailed properties of the scatterer. While increasing the frequency, they imposed
that the number K of eigenfunctions should grow proportionally with the frequency;
hence K ∼ ω, e.g. K = 4ω.
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In [77], Grote et al. stated the connection of total variation (TV) R given by (1.17)
to µ with ε = 0, namely

⟨R′
[u], v⟩ = (

∇u
∣∇u∣

,∇v) = (µ[u]∇u,∇v), v ∈ H1
0(Ω). (1.27)

Later, in [79, 115], Grote and Nahum extended the AS approach based on the total
variation regularization to other regularizations based on the following penalty term:
Gaussian penalty term, Lorentz penalty term, and the Tikhonov L2-penalty term.

The numerical examples showed that for profiles u consisting of a sum of m char-
acteristic functions {χ`}m

`=1, each eigenfunction ϕ` of (1.23) based on the TV regular-
ization term, 1 ≤ ` ≤ m, remarkably matches the characteristic function χ`. As a con-
sequence, the adaptive spectral space for u only requires m eigenfunctions; namely
K = m (independent of ω) and V = span{ϕ`}

m
`=1.

1.4 Outline of the thesis

This thesis consists of two parts: forward problem (Part I) and inverse problem (Part
II).

In the first part we introduce the model problem, the Helmholtz equation, more
precisely the source term, the boundary conditions, the solution space, and its vari-
ational formulation. Moreover, we consider some theoretical preliminaries about
the uniqueness and regularity of the solution. Then, we consider the discrete model
problem with FE method and a list of some theorems about the convergence in space.
Next, we reformulate the Helmholtz equation as an optimal control or least-squares
problem with exact controllability. We first derive a family of time periodic solutions
of the wave equation, which immediately shows that the CMCG method exactly
solves the Helmholtz equation. However, the original CMCG method may fail for
Helmholtz equations with general boundary conditions, since the solution may not
be unique. We thus extend the original CMCG method to more general cases and
present some approaches to recover the uniqueness [83].

In the presence of local mesh refinement, the CFL stability constraint on explicit
time integration leads to a small time-step. To overcome the bottleneck from the
CFL restriction due to local mesh refinement, we combine the CMCG method with
high-order explicit local time-stepping (LTS) methods [78, 81].

It is known that the (first-order) absorbing boundary condition is inaccurate due
to numerical reflections. We consider two approaches. We first replace the ab-
sorbing boundary condition by more accurate boundary condition such as Bayliss-
Gunzburger-Turkel (BGT) condition [12, 76]. Secondly, we add a damping perfectly
matched layer (PML) surrounding the propagation region of interest [19, 82, 99, 81,
8]. Here the solution in this layer, outside the physical domain, is damped exponen-
tially, and as a consequence, no reflections return from the layer.

In addition, we illustrate that the CMCG approach also yields the superposition
of waves of different modes when all source terms are superposition of different
modes. Then we show that we obtain all modes separately after a simple frequency
filtering procedure.

At the end of this part, we consider the CM based on the wave equation in first-
order form. We again show the extension of the CMCG approach for solving ar-
bitrary boundary value problems governed by the Helmholtz equation. In addi-
tion, we combine the CMCG method with the recent hybrid discontinuous Galerkin
(HDG) method [37, 38], which not only inherits the block diagonal mass-matrix from
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the discontinuous Galerkin discretization, but also the superconvergence in space af-
ter a simple local post-processing step.

We present a series of numerical examples and experiments which confirms the
usefulness of the CMCG method. In addition, we also consider the CMCG method
on a massively parallel architecture [80].

In the second part of my thesis, we introduce the inversion of the scattering prob-
lem and formulate this problem as a nonlinear optimal control problem. Instead of
minimizing the cost functional with a penalty TV-like regularization term, we for-
mulate the solution as a linear combination of the (adaptive) spectral basis, obtained
from the eigenvalue problem (1.23). The truncation of the linear combination then
leads to regularization of the solution. Here we describe the adaptive spectral (AS)
decomposition and present some approximation theory of the AS space [9]. Since
the accuracy of the solution and the performance of the regularization using the AS
approach depend on the truncation, we introduce a dynamic thresholding strategy
to truncate the sum (1.22) of the solution. Following [10, 77, 79], we use a frequency
continuation strategy to reconstruct the solution correctly. As the AS space is up-
dated adaptively for each frequency and the AS spaces may not span the entire space
RN , the current solution may not lie in the new eigenspace after the update. To en-
sure that the solution is represented correctly in the new eigenspace, we apply the
singular value decomposition (SVD) and modified Gram-Schmidt method to merge
all AS spaces. Finally, we present a series of numerical experiments to show the
efficiency of the adaptive eigenspace and the usefulness of this approach to solve
inverse scattering problems.
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Part I

Time-harmonic wave equations
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CHAPTER 2
Model problems: Helmholtz equation

In this chapter we introduce the model problem, the Helmholtz equation, and con-
sider the existence, uniqueness, and regularity of the solution, as well as the varia-
tional and discrete formulation.

We always assume that the computational domain Ω ⊂ Rd, d ≤ 3, is bounded,
connected, and open with a Lipschitz boundary Γ = ΓS ∪ ΓN ∪ ΓD, which generally
consists of physical and artificial boundaries, see Figure 2.1. Moreover, we impose
a Dirichlet boundary conditions on ΓD, Neumann boundary conditions on ΓN , and
impedance or Sommerfeld-like absorbing boundary conditions on ΓS.

Ω

D

ΓD ∪ ΓN

ΓS

(a) unbounded domain with obstacle D, truncated by an
artificial boundary ΓS

ΩΓS

ΓS

ΓD ∪ ΓN

ΓS

(b) (unbounded) half-plane, truncated by artificial
boundaries ΓS

ΩΓN

ΓN

ΓN

ΓD

(c) physically bounded domain with Dirichlet and
Neumann boundary conditions

Figure 2.1: Typical bounded computational domain Ω

2.1 Analytical background

Here we summarize important definitions, notations, and theorems without any
detailed proofs. More detailed explanations and proofs can be found in the litera-
ture [135, 57, 56, 116].

Definition 1. Let f ∶ Ω →K, K = R or C, be a (Lebesgue)-measurable function.



14 Chapter 2. Model problems: Helmholtz equation

• The function f is αth-weakly differentiable with the multiindex α = (α1, . . . , αd) ∈ Nd
≥0,

if there exists a measurable function g such that

∫
Ω

f (x)Dα ϕ(x) dx = (−1)∣α∣∫
Ω

g(x)ϕ(x) dx, ∀ϕ ∈ C∞
c (Ω), (2.1)

where ∣α∣ = α1 +⋯+ αd and

Dα
=

∂α1

∂α1 x1
⋯

∂αd

∂αd xd
.

If g exists, then the derivative denoted by Dα f is unique up to a zero measure set.

• The function f is in Lp(Ω) for some p ∈ [1,+∞], if

∥ f ∥Lp(Ω)
∶=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(∫
Ω
∣ f (x)∣p dx)

1
p

< +∞, 1 ≤ p < +∞,

ess supx∈Ω ∣ f (x)∣ < +∞, p = +∞.

(2.2)

• The function f is in the Sobolev space Wr,p(Ω), if Dα f , ∣α∣ ≤ r ∈ N0, exists and

Dα f ∈ Lp
(Ω). (2.3)

The Sobolev space Wr,p(Ω) is a Banach space for p ∈ [1,+∞] equipped with the
norm

∥ f ∥Wr,p(Ω)
∶= ( ∑

∣α∣≤r
∥Dα f ∥p

Lp(Ω)
)

1
p

, f ∈ Wr,p
(Ω). (2.4)

For non-integer r > 0 and p ∈ [1,+∞], Wr,p(Ω) denotes the Sobolev-Slobodeckij space
equipped with the norm

∥ f ∥Wr,p(Ω) ∶= (∥ f ∥p
W⌊r⌋,p(Ω)

+ ∑
∣α∣=⌊r⌋

∫
Ω

∣Dα f (x)−Dα f (y)∣p

∣x − y∣d+(r−⌊r⌋)p dx)
1
p

, (2.5)

see [135, Definition §3.1] and [116, §2.3.8].
We write Hr(Ω) = Wr,2(Ω) for p = 2 and r ≥ 0, where Hr(Ω) is a Hilbert space

equipped with the (standard) inner product

( f , g)Hr(Ω) ∶= ∑
∣α∣≤r

∫
Ω
(Dα f (x))(Dαg(x)) dx, (2.6)

for r ∈ N0, f , g ∈ Hr(Ω), and

( f , g)Hr(Ω) ∶= ( f , g)H⌊r⌋(Ω) + ∑
∣α∣=⌊r⌋

∫
Ω

(Dα f (x)−Dα f (y))(Dαg(x)−Dαg(y))
∣x − y∣d+2(r−⌊r⌋) dx (2.7)

for r /∈ N0, f , g ∈ Hr(Ω).
It is well-known that C∞

c (Ω) is dense in Wr,p(Ω) [56]. Let Wr,p
0 (Ω) denote the

closure of C∞
c (Ω) in Wr,p(Ω), in particular Hr

0(Ω) denotes the closure of C∞
c (Ω) in

Hr(Ω). Then, the dual space of Hr
0(Ω) is denoted by H−r(Ω); in particular the dual

space L2(Ω) is self-dual.
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Next, for f ∈ Hr(Ω), r ≥ 1
2 , we characterize the trace of f on the boundary Γ =

∂Ω by the trace operator T. The existence of T follows from the trace theorem in
[135, 57, 56, 116]:

Theorem 1 (Trace extension). There exists T ∶ Hr(Ω) → Hr− 1
2 (Γ), 1

2 < r ≤ 3
2 , and a

constant C > 0 such that

(i) T f = f ∣Γ if f ∈ C∞(Ω), and

(ii) ∥T f ∥
Hr− 1

2 (Γ)
≤ C∥ f ∥H1(Ω).

Theorem §5.5.2 in [56] implies that

H1
0(Ω) = { f ∈ H1

(Ω) ∣ f = 0 on ∂Ω}.

Theorem 2 (Poincaré–Wirtinger inequality). Let Ω be a bounded, connected, and open
Lipschitz domain. Then there exists a constant C > 0, depending only on d and Ω, such that

∥ f −
1
L(Ω)

∫
Ω

f dx ∥
L2(Ω)

≤ C∥∇ f ∥L2(Ω), f ∈ Hr
(Ω).

Theorem 3 (Poincaré inequalty). Let Ω ⊂ Rd, d = 1, 2, 3, be an open, bounded and con-
nected domain, which satisfies the cone property. Then there exists C > 0 such that

∥ f ∥L2(Ω) ≤ C (∥∇ f ∥L2(Ω) +
1

√
Hd−1(Γ)

∣∫
Γ

f (x) ds∣). (2.8)

for any u ∈ H1(Ω) and Lipschitz hypersurface Γ ⊂ ∂Ω,Hd−1(Γ) > 0.

The proof of Theorem 2 and 3 can be found in [42, 22].

Remark 1. (i) Here Hd−1(Γ) denotes the (d − 1)-dimensional Hausdorff measure of Γ ⊂

Rd, and L(U) the d-dimensional Lebesgue measure of U ⊂ Rd [57, §2].

(ii) Theorem 3 immediately implies that for Γ ⊂ ∂Ω,Hd−1(Γ) > 0, there is C > 0 such that

∥ f ∥L2(Ω) ≤ C∥∇ f ∥L2(Ω) ∀ f ∈ H1
(Ω), f ∣Γ = 0.

2.2 Helmholtz equation

Let u denote the wave field satisfying the Helmholtz equation

−∇ ⋅ (a(x)∇u(x)) − k2
(x) u(x) = f (x), x ∈ Ω, (2.9a)

a(x)
∂u(x)

∂n
− i

√
a(x)k(x)u(x) = gS(x), x ∈ ΓS, (2.9b)

a(x)
∂u(x)

∂n
= gN(x), x ∈ ΓN , (2.9c)

u(x) = gD(x), x ∈ ΓD. (2.9d)

Here k(x) = ω/c(x) denotes the wave number, ω > 0 the frequency, c ∈ L∞(Ω) the
propagation speed of the medium with c(x) ≥ cmin > 0, ρ ∈ L∞(Ω) the density with
ρ(x) ≥ ρmin > 0, and a(x) = 1/ρ(x). Moreover, n denotes the unit outward normal
and f ∈ L2(Ω), gN ∈ L2(ΓN), gS ∈ L2(ΓS), and gD ∈ H1/2(ΓD) are known sources,
which may vanish.
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Next, we consider the variational formulation of (2.9): find a (weak-) solution
u ∈ H1(Ω) satisfying u = gD on ΓD and

A[u, v] = F[v], ∀v ∈ H1
D, (2.10)

where

A[u, v] = ∫
Ω

a∇u ⋅ ∇v dx −∫
Ω

k2uv dx − i∫
ΓS

√
a kuv ds, (2.11)

F[v] = ∫
Ω

f v dx +∫
ΓN

gNv ds +∫
ΓS

gSv ds, (2.12)

H1
D = {w ∈ H1

(Ω) ∣ w = 0 on ΓD}. (2.13)

Since A[u, v] is in general not coercive, one cannot use the the Lax-Milgram Theorem
to show that (2.10) is well-posed.

2.3 Existence and uniqueness

The solution of (2.9) in general may neither exist nor be unique in H1(Ω) when the
homogeneous Helmholtz equation with f ≡ gS ≡ gN ≡ gD ≡ 0 has a non-trivial solu-
tion in H1(Ω).

For space dimension d = 1, the well-posedness of (2.9) has been discussed in
[14, 5, 49]. For d = 2, 3, a ≡ 1, c constant (e.g. c = 1), k = ω, and Γ = ΓS, (2.9) (or
(2.10)) has a unique (weak-) solution for any f ∈ H−1(Ω), gS ∈ H− 1

2 (Γ) depending
continuously on the data [109, Proposition §8.1.3]. Later Cummings et al. showed
in [40] the stability for a star-shaped Ω with respect to a ball. In [93], Hetmaniuk
showed that the Helmholtz equation (2.9) with a ≡ 1 and gD ≡ gN ≡ 0 has a unique
weak solution u ∈ H1(Ω) which satisfies the stability condition: there is a constant
C > 0 independent of u, f , and gS such that

k∥u∥L2(Ω) + ∥∇u∥L2(Ω) ≤ C (∥ f ∥L2(Ω) + ∥gS∥L2(ΓS)
).

For a ≡ 1 and k ∈ L∞(Ω) with 0 < kmin ≤ k(x) ≤ kmax, Dörfler et al. proved the
uniqueness and existence of sound-soft scattering problems [48, Proposition §3.2].
Recently, Graham et al. extended the theorem in [73] to an exterior Dirichlet problem,
where they assumed that a, c are Lipschitz. In [74], Sauter and Graham proved, using
the unique continuation principle, the existence and uniqueness of (2.9) with variable
coefficients a, c ∈ L∞(Ω), which are bounded away from zero, for d ≤ 2; however, for
d ≥ 3, they required that a is in addition Lipschitz continuous.

Now, we summarize the result in the following theorem (see [74, Theorem 2.1]
and [125, Theorem 1]):

Theorem 4. Let Ω ⊂ Rd, d = 1, 2, 3, be a bounded Lipschitz domain and a, c ∈ L∞(Ω) with
0 < amin ≤ a(x) ≤ amax and 0 < cmin ≤ c(x) ≤ cmax. In addition, a ∈ C0,1(Ω) for d ≥ 3.
Then, (2.9) has a unique weak solution in H1(Ω).

In this thesis we assume that the solution of (2.9) (or (2.10)) exists. Again, it
is known that the solution of (2.9) is not unique if, and only if, the homogeneous
Helmholtz equation with f ≡ gS ≡ gD ≡ gN ≡ 0, which coincides with the eigenvalue
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problem (2.14), has a non-trivial solution v:

L[v] ∶= −∇ ⋅ (a(x)∇v(x)) = k2
(x)v(x) =

ω2

c2(x)
v(x), x ∈ Ω, (2.14a)

√
a(x)

∂v(x)
∂n

= ik(x)v(x) = i
ω

c(x)
v(x), x ∈ ΓS, (2.14b)

∂v(x)
∂n

= 0, x ∈ ΓN , (2.14c)

v(x) = 0, x ∈ ΓD. (2.14d)

Assume that a non-trivial solution v of (2.14) exists. Then ω2 is called an eigenvalue
of L and v a corresponding eigenfunction of L in H1

D(Ω). The spectrum ΣL of L
denotes the set of all eigenvalues. The theory of Fredholm in [56, §6.2] implies that
ΣL is real, nonnegative, and at most countable. If ΣL = {ω2

`}
∞
`=0 is infinite, then ω2

`
tends to +∞ as ` → +∞.

Let us consider (2.14) with ω = 0. Then (2.14) becomes a Laplacian-type elliptic
equation,

∇ ⋅ (a(x)∇v(x)) = 0, in Ω, (2.15a)
v(x) = 0, x ∈ ΓD, (2.15b)

∂v(x)
∂n

= 0, x ∈ ΓN ∪ ΓS. (2.15c)

A function v ∈ H1(Ω) satisfies (2.15) if, and only if, v is constant almost everywhere.
That immediately follows from the fact that ∇v is identically zero in Ω, since

0 = B[v, v] = ∫
Ω

a ∣∇u∣2 dx ≥ amin∫
Ω
∣∇u∣2 dx

and amin > 0. Moreover, v is also identically zero whenHd−1(ΓD) > 0.
Now, we summarize the result in the following proposition.

Proposition 1. Let v ∈ H1
D be a (weak-) solution of (2.15). Then v is constant a.e. in Ω.

Furthermore, ifHd−1(ΓD) > 0, v vanishes throughout Ω.

2.4 Finite element discretization

Here we apply the standard H1-conforming finite element (FE) method on (2.10)
based on the references [24, 122].

Let {Th}h>0 be a family of shape-regular grids of the domain Ω with h = maxK∈Th hK,
where hK is the diameter of the element K in Th. Then we define

P
r
h = {v ∈ C0

(Ω) ∣ v∣K ∈ Pr,∀K ∈ Th},

where Pr denotes the space of polynomials with degree lower than or equal to r.
Next, we consider

Vh = Span{ϕj}
ndo f s
j=1 ⊂ P

r
h, ndo f s = dim(Vh) < +∞.

For gD = 0 on ΓD or Hd−1(ΓD) = 0, we now look for a discrete solution uh ∈ Vh
which satisfies

A[uh, vh] = F[vh], ∀vh ∈ Vh ∩ H1
D. (2.16)
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Remark 2. In practice, for gD ≠ 0 and Hd−1(ΓD) > 0, we first find a lifting function
RD ∈ H1(Ω) of boundary data [122, §3.3.3], with

RD = gD on ΓD.

Then instead of the solution u of (2.9), we consider the solution u0 = u−RD of the “modified”
Helmholtz equation

−∇ ⋅ (a∇u0) − k2 u0 = f +∇ ⋅ (a∇RD) + k2 RD, x ∈ Ω, (2.17a)

a
∂u0

∂n
− i

√
a ku0 = gS − a

∂RD

∂n
+ i

√
akRD, x ∈ ΓS, (2.17b)

a
∂u0

∂n
= gN − a

∂RD

∂n
, x ∈ ΓN , (2.17c)

u0 = 0, x ∈ ΓD. (2.17d)

As a consequence, the solution u of (2.9) is given by

u = u0 + RD.

For simplicity, we shall henceforth assume that gD = 0 on ΓD whenHd−1(ΓD) > 0.

Next, we define

(Mh)j,` = ∫
Ω

1
c2(x)

ϕ`(x)ϕj(x) dx, (Sh)j,` = ∫
ΓS

√
a(x)

c(x)
ϕ`(x)ϕj(x) ds,

(Kh)j,` = ∫
Ω

a(x)∇ϕ`(x) ⋅ ∇ϕj(x) dx, (Fh)j = F[ϕj].

(2.18)
Then the discrete linear operator of A[⋅, ⋅] is given by

Ah = −ω2Mh +Kh − iωSh,

and (2.16) becomes a linear system

Ahuh = Fh, (2.19)

where the solution uh ∈ Pr
h of (2.19) represents the coefficients of uh with respect to

the basis functions {ϕj}. From [6, 7, 111, 48], when the numerical error between uh
and u is bounded by the constant C > 0 so that the (quasi-) optimal estimate

∥u − uh∥L2(Ω) ≤ Chr+1 (2.20)

holds true, the constant C depends continuously on the constant wave number k
with

C ∼ kr+2, (2.21)

in particular, for r = 1 in [14],
C ∼ k3.

In practice, for a reasonably accurate solution using P1-FE one requires the rule-of-
thumb [87, 20] of

kh ≈
2π

10
(2.22)
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coinciding with at least 10 grid points per wave length,

λ =
2π

k
.

However, the numerical error (2.20) with hk ∼ const increases with growing k due to
(2.21). To avoid the so-called wave phase or pollution error arising from increasing
k, one instead needs the (stricter) condition

k(hk)r+1
∼ const (2.23)

for a large wave number k or low-order r [13, 6]. Moreover, to obtain quasi-optimal
convergence, one requires

k(hk)r
∼ const, (2.24)

see [6, 7].

2.5 Standard numerical methods

In compare to iterative methods, a classical direct solver akin to the LU decomposi-
tion (or factorization) method based on Gauss elimination is of advantage to solve
linear system of non-Hermitian, ill-conditioned matrix. It decomposes the system
matrix Ah, resulting from (2.19), into a lower triangular Lh and an upper triangular
Uh matrix [72, §3.2], namely

Ah = LhUh. (2.25)

One solves (2.19) in two substitution steps:

Lhvh = Fh (forward substitution),
Uhuh = vh (backward substitution).

For a large frequency k with (2.24), solving (2.19), resulting e.g. from Pr-FE, with
the direct solver typically becomes too expensive in both computational cost and
storage requirement [55, 20, 61]:

• computational cost ofO(N3/2) and storage requirement ofO(N log N) for d = 2

• computational cost of O(N2) and storage requirement of O(N4/3) for d = 3

Moreover, classical direct solvers are hard to parallelize.
One instead uses e.g. iterative methods, which require less storage requirement,

with an efficient preconditioner such as the “shifted-Laplacian”, “incomplete LU de-
composition”, and “domain decomposition”.

The Schwarz based domain decomposition (DD) method gained popularity in
the last decades as a preconditioner for solving elliptic problems. The alternating
Schwarz procedure,

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−∆um
1 = f in Ω1,

um
1 = g on ∂Ω1/Γ,

um
1 = um−1

2 on Γ,

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−∆um
2 = f in Ω2,

um
2 = g on ∂Ω2/Γ,

um
2 = um

1 on Γ,

was originally proposed by Schwarz in 1870 [126] at the continuous level to prove
the solvability of the Dirichlet equation. Here he decomposed the physical domain
Ω into two subdomains Ω1 and Ω2 with overlaps – see Figure 2.2a.
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Ω1 Ω1 ∩ Ω2 Ω2

Γ2

Γ1

(a) Overlapping domain decomposition

Ω1

Γ

n1n2

Ω2

(b) Domain decomposition without overlapping

Figure 2.2: (Overlapping) domain decomposition

In 1965, Miller first proposed in [112] to use the alternating Schwarz iteration as
a numerical method to solve Poisson-like problems. Later, in [105], Lions introduced
a parallel Schwarz approach for parallel computing.

In the recent years, a growing number of domain decomposition based precon-
ditioners has been proposed for the iterative solution of the Helmholtz equation [55,
47],

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−(∆ + k2)um
1 = f in Ω1,

um
1 = g on ∂Ω1/Γ1,

um
1 = um−1

2 on Γ1,

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−(∆ + k2)um
2 = f in Ω2,

um
2 = g on ∂Ω2/Γ2,

um
2 = um

1 on Γ2.

However, this DD method without overlaps and with the Dirichlet (or Neumann)
transmission conditions at the interfaces Γ, shown Figure 2.2b, will not converge.
Therefore, a new Robin transmission conditions were proposed for the DD method
for solving the Helmholtz [17, 65]. Then the corresponding algorithm is given by

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

−(∆ + k2)um
1 = f in Ω1,

um
1 = g on ∂Ω1 ∩ ∂Ω,

(
∂

∂n1
+ α)(um

1 ) = (
∂

∂n1
+ α)(um−1

2 ) on Γ,

and
⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

−(∆ + k2)um
2 = f in Ω2,

um
2 = g on ∂Ω2 ∩ ∂Ω,

(
∂

∂n2
+ α)(um

2 ) = (
∂

∂n2
+ α)(um−1

1 ) on Γ,

for a positive number α.
To achieve a convergence rate independent of the number of subdomains, one

combines the DDM method with a coarse grid correction [64, 47].

In this thesis, we apply the direct solver based on the LU decomposition (2.25)
to solve (2.19) when N > 0 is sufficiently small. Otherwise, we use the generalized
minimal residual (GMRES) method [124], combined with the one- or two-level Op-
timized Restricted Additive Schwarz (ORAS) preconditioner [47] with overlap, to
solve (2.19).
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CHAPTER 3
Controllability methods for solving Helmholtz problems

Here we consider an alternative method using the controllability technique [104] for
the Helmholtz problem. The approach is to solve the Helmholtz equation (2.9) in the
time domain instead of the frequency domain, which indicates the (time-harmonic)
wave equation (1.10) Then, the corresponding time-harmonic wave field y is given
by

y(x, t) = Re{u(x) e−iωt
}, (3.1)

which directly yields the solution u of the Helmholtz equation, namely

u(x) = y(x, 0)+
i
ω

∂

∂t
y(x, 0) = y0(x)+

i
ω

y1(x).

However, the initial values (y0, y1) of (1.10) are unknown. To find a time-harmonic
solution, Bristeau et al. showed in [25, 26] that for sound-soft scattering problems
one only requires the (unique) time-periodic solution of the wave equation with

y(x, T) = y(x, 0),
∂

∂t
y(x, T) =

∂

∂t
y(x, 0), x ∈ Ω,

and the known period T = 2π/ω. The uniqueness implies that y fulfills (3.1). To
determine the unknown initial values, they formulated the scattering problem as a
PDE-contrained least-squares problem.

First, we introduce some preliminaries about functions in the time-dependent
(Sobolev) space and some references to the analytic background. Second, we con-
sider the wave equation and some fundamental analysis for the CM approach such
as the uniqueness of the solution. For solving the time integration of a wave equa-
tion, we derive the semi-discrete problem of the wave equation using a Galerkin
approach and the finite element (FE) discretization. Then, we precisely describe
some classical numerical methods for solving the semi-discrete time dependent wave
equation. In the presence of local mesh refinement, we combined the CM with high-
order explicit local time-stepping (LTS) methods [78, 81] to overcome the bottleneck
due to an overly stringent CFL stability constraint. Third, we provide some ana-
lytical theory about time-periodic solutions of the wave equation, which directly
yields the time-harmonic solution with additional conditions or post-processing.
The analysis is based on the Fourier theory, which shows that a time-periodic so-
lution is a superposition of various eigenmodes. We will discuss how to recover
the solution from the superposition. Next, for solving the Helmholtz equation, we
formulate the quadratic least-squares problem and finally apply the conjugate gra-
dient (CG) method to the optimization problem. Following [11, 83, 80], the origi-
nal CM approach, which was proposed for solving sound-soft scattering problems,
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however, may fail for solving general boundary value problems governed by the
Helmholtz equation. Therefore, we will discuss how to extend the CMCG method
for Helmholtz problems in more general settings [83, 80]. To accelerate the conver-
gence of the CG method, based on [114], we show how to find an accurate ini-
tial guess for the CG method. Finally, we show a series of numerical experiments,
obtained with the CMCG method, to verify the usefulness and robustness of the
method. To illustrate the accuracy and efficiency of both the original and the modi-
fied (or extended) CMCG method, we compare the original CMCG method with the
extended CMCG method and with the direct solver. Then, we present series of nu-
merical results to demonstrate the parallel performances of the HPC controllability
method.

3.1 Analytical background

Here we introduce some analytical backgrounds based on §5.9.2 in [56], which are
essential to describe Sobolev spaces involving time and to prove the existence and
uniqueness of the solution. We first consider function spaces, which include func-
tions mapping the time into Banach or even Hilbert spaces.

Definition 2. Let V be a Banach space equipped with the norm ∥ ⋅ ∥V . Then

(i) the function space
Cr

([0, T]; V), r ≥ 0, (3.2)

consists of all r-times continuously differentiable functions y ∶ [0, T]→ V with

∥y∥Cr([0,T];V) ∶= max
t∈[0,T]

∥y(⋅, t)∥V < +∞,

(ii) and the (Sobolev) function space

Lp
([0, T]; V), p ≥ 0, (3.3)

consists of all measurable functions y ∶ [0, T]→ V, with

∥y∥L2([0,T];V) ∶= (∫

T

0
∥y(t)∥2

V dt)
1/2

< +∞.

Definition 3. Let y, z ∈ Lp([0, T]; V). Then z is the weak derivative of y, written yt = z or
∂
∂t y = z, provided

∫

T

0
y(⋅, t)ψ′

(t) dt = −∫
T

0
z(⋅, t)ψ(t) dt, ∀ψ ∈ C1

c ([0, T]).

Moreover, y belongs to the Sobolev space

H1
([0, T]; V), (3.4)

if yt exists and

∥y∥H1([0,T];V) ∶= (∥y∥2
L2([0,T];V)

+ ∥yt∥
2
L2([0,T];V)

)
1/2

< +∞.
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Lemma 1. Let y ∈ H1([0, T]; H1(Ω)) ∩ L2([0, T]; L2(Ω)) and V ⊂ H1(Ω) be a subset.
Then, for a fixed ϕ ∈ V, the mapping,

t ↦ ∫
Ω

y(x, t)ϕ(x) dx,

is absolutely continuous in time t ∈ [0, T] after possibly being redefined on a set of measure
zero. For t = 0 (or t = T) we take the left (or right) limit.

Proof. According to Theorem 2 (i)-(ii) from [56, §5.9.2] and the fundamental theorem
of Lebesgue integral calculus (see [57, Theorem §1.30]), the mapping

t ↦ y(⋅, t)

is absolutely continuous with respect to the L2-norm after possibly being redefined
on a set of measure zero. Let ϕ ∈ V and {t`}∞`=1 ⊂ [0, T] with

t` → t ∈ [0, T], ` → +∞.

Then the continuity of the mapping t ↦ y(⋅, t) and the Cauchy-Schwarz inequality
yield

∣∫
Ω
(y(x, t`)− y(x, t))ϕ(x) dx∣ ≤ ∥y(⋅, t`)− y(⋅, t)∥L2(Ω)∥ϕ∥L2(Ω) → 0, ` → +∞,

which shows the continuity of (y(⋅, t), ϕ)L2(Ω) and proves the first assertion.
Following Theorem 2 in §5.9.2 in [56] by replacing ∥y(⋅, t)∥2 with (y(⋅, t), ϕ), it

holds

∫
Ω

y(x, t)ϕ(x) dx −∫
Ω

y(x, s)ϕ(x) dx = ∫
Ω
(y(x, t)− y(x, s))ϕ(x) dx

= ∫
Ω
∫

t

s

∂y(x, τ)

∂t
ϕ(x) dτ dx

= ∫

t

s

∂

∂t
[∫

Ω
y(x, τ)ϕ(x) dx] dτ.

This yields the absolute continuity and completes the lemma.

3.2 Time-dependent wave equation

Let y denote the solution of the wave equation,

1
c2(x)

∂2y(x, t)
∂2t

− ∇ ⋅ (a(x)∇y(x, t)) = Re{ f (x) e−iωt
}, x ∈ Ω, t > 0, (3.5a)

a(x)
∂y(x, t)

∂n
+

√
a(x)

c(x)
∂y(x, t)

∂t
= Re{gS(x) e−iωt

}, x ∈ ΓS, t > 0, (3.5b)

a(x)
∂y(x, t)

∂n
= Re{gN(x) e−iωt

}, x ∈ ΓN , t > 0, (3.5c)

y(x, t) = Re{gD(x) e−iωt
}, x ∈ ΓD, t > 0, (3.5d)

y(x, 0) = y0, x ∈ Ω, (3.5e)
yt(x, 0) = y1, x ∈ Ω, (3.5f)
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Figure 3.1: Long-time behavior: initial values z0 and z1 of (3.5)
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Figure 3.2: Long-time behavior: snapshots of z(⋅, t) in Ω = (0, L), L = 4, at time t = 0, 2, 4,
6, 8, and 12.

for the (unknown) initial values (y0, y1).
Suppose that y is time-harmonic, namely y(x, t) = Re{u(x)e−iωt}. Then

y0(x) = Re{u(x)}, y1(x) = ω Im{u(x)} (3.6)

which implies that

u(x) = y0(x)+
i
ω

y1(x). (3.7)

3.2.1 Asymptotic solution of the time-harmonic wave equation

Here we consider the second-order hyperbolic differential equation (3.5) in Ω, Γ = ∂Ω
smooth, with a ≡ c ≡ 1 in the first-order formulation

∂

∂t
Y(t) = F e−iωt

+B Y(t), (3.8)
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with the linear operator

B = (
0 id
∆ 0

)

and
Y(t) = (y, yt)

⊺
, F = (0, f )⊺ , Y(0) = Y0 ∈ H1

(Ω)× L2
(Ω).

Following [11, 96],

Y(x, t) = U(x) e−iωt
+Z(t)(U0(x)−U(x))

solves (3.8), where

Z(t) = exp(tB), U(x) = (iω − B)
−1F(x).

Furthermore, Z(t) tends to zero when t tends to infinity. Consequently, we obtain
the asymptotic behavior

y(x, t) ∼ u(x) e−iωt, t → +∞,

and hence

y(x, mT)+
i
ω

yt(x, mT) ∼ u(x) e−iωmT
= u(x), m → +∞,

where u solves (2.9). We write y(x, t) = u(x) e−iωt +z(x, t). Here z denotes a per-
turbation, which satisfies (3.5) with f = gS = gN = gD = 0 and tends to zero when
t → +∞.

Let us consider a one-dimensional solution z of (3.5) with a = c = 1, f = 0 in
Ω = (0, L), L > 0, and

z(x, 0) = z0(x), zt(x, 0) = z1(x), x ∈ Ω.

Here we impose that ΓD = {0}, ΓS = {L}, z0, z1 ∈ C∞(R) with supp(z0) , supp(z1) ⊂

(0, L). Following [56], the formula of D’Alembert with the extension

z0(−x) = −z0(x), z1(−x) = −z1(x), x ≤ 0,

implies that

z(x, t) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1
2
(z0(x + t)+ z0(x − t))+

1
2 ∫

x+t

x−t
z1(τ) dτ, 0 ≤ t ≤ x,

1
2
(z0(x + t)− z0(t − x))+

1
2 ∫

x+t

−x+t
z1(τ) dτ, 0 ≤ x ≤ t.

Clearly, z(x, t) = 0 for t ≥ 2L and x ∈ Ω.
To illustrate how the perturbation z vanishes identically, we consider the example

in Ω = (0, L), L = 4, with

z0(x) =
⎧⎪⎪
⎨
⎪⎪⎩

e10 e
40

x(x−4) , x ∈ (0, 4),
0, otherwise,

z1(x) =
⎧⎪⎪
⎨
⎪⎪⎩

− e10

5
∂2

∂2x( e
40

x(x−4) ), x ∈ (0, 4),
0, otherwise,

where z0 is a "Gaussian“-like and z1 a “Ricker wavelet”-like function – see Figure 3.1.
Figure 3.2 monitors the solution z of (3.5) at the time step t = 0, 2, 4, 6, 8, and 12. The
solution splits into two parts. One moves to the left and is reflected back at x = 0.
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The other propagates to the right and leaves the medium at x = L = 4. As expected,
the wave vanishes identically the latest at t = 2L = 8.

3.2.2 Law of dissipation of energy and uniqueness

Let E ∶ C0([0, T]; H1(Ω)) ∩ C1([0, T]; L2(Ω)) → R denote the energy of the wave
equation with

E[y0, y1](t) =
1
2 ∫Ω

a(x) ∣∇y0(x, t)∣2 dx +
1
2 ∫Ω

1
c2(x)

y1(x, t)2 dx. (3.9)

It is well-known that the energy of the solution of a homogeneous wave equation
is either monotonically decreasing or constant in time, which is summarized in the
following proposition.

Proposition 2. Let y be the solution of the homogeneous wave equation (3.5) with f ≡ gS ≡

gN ≡ gD ≡ 0. Then the energy function E[y, yt] in (3.9) is conservative in time t when
Hd−1(ΓS) = 0. Otherwise, the energy E[y, yt] is dissipative whenHd−1(ΓS) > 0.

Proof. Green’s formula and (3.5) yield

∂E[y, yt](t)
∂t

= ∫
Ω

a(x)∇y(x, t) ⋅ ∇yt(x, t) dx +∫
Ω

1
c2(x)

ytt(x, t)yt(x, t) dx

= ∫
Ω

a(x)∇y(x, t) ⋅ ∇yt(x, t) dx +∫
Ω

yt(x, t)(∇ ⋅ (a(x)∇y(x, t)) dx

= −∫
ΓS

√
a(x)

c(x)
yt(x, t)2 ds ≤ 0,

which clearly shows the proposition.

Proposition 2 immediately yields the uniqueness of the solution of (3.5):

Lemma 2. Assume that the solution y ∈ C0([0, T]; H1(Ω))∩C1([0, T]; L2(Ω)) of the wave
equation (3.5) exists. Then y is unique (up to a zero measure).

Proof. Let y1, y2 ∈ C0([0, T]; H1(Ω)) ∩ C1([0, T]; L2(Ω)) be solutions of (3.5). Then
z ∶= y1 − y2 ∈ C0([0, T]; H1(Ω)) ∩ C1([0, T]; L2(Ω)) solves the homogeneous wave
equation, where f , gD, gS, gN and the initial values z0, z1 are identically zero. Follow-
ing Proposition 2, we obtain

0 ≤ E[z, zt](t) ≤ E[z, zt](0) = 0, ∀t > 0.

This implies, together with the definition (3.9) and the fact that a, c are positive and
bounded away from zero, that ∇z, zt are identically zero in Ω; hence z is constant
almost everywhere in Ω × [0, T]. In particular, for t = 0, we obtain

z(x, t) = z(x, 0) = 0, ∀x, t ∈ Ω × [0, T],

which proves the lemma.

3.2.3 Variational formulation and discretization of the wave equations

Here we seek y(t) ∈ {w ∈ H1(Ω) ∣ w(x) = Re{gD(x) e−iωt}, x ∈ ΓD}, t ∈ [0, T], such
that

Ã[y, z; t] ∶=
∂2

∂t2 ∫Ω

1
c2 y(t)z dx +∫

Ω
a∇y(t)∇z dx +

∂

∂t ∫ΓS

√
a

c
y(t)z ds = Re{F e−iωt },
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for any z ∈ H1
D in (2.13), where F from Equation (2.12). Recalling the definition of

(2.18), the semi-discrete wave equation of (3.5) is given by

Mh
∂2

∂2t
y(t)+Khy(t)+ Sh

∂

∂t
y(t) = Re{Fh e−iωt

}. (3.10)

Mass-lumping approach

Usually we avoid inverting the mass-matrix Mh in (3.10) at each time step via or-
der preserving mass-lumping [122, §10] which, however, introduces an additional
spatial discretization error. Here we use the bubble function technique described
in [36, 39, 67] for Pr-FE discretizations (see Figures 3.3 and 3.4). The lumped mass
matrix Mh is diagonal and positive definite.

Remark 3. Alternatively, one can instead use the Pr-spectral element (SE) method, com-
bined with Gauss-Legendre-Lobatto (GLL) integration formula [122, §10 Spectral methods],
for the spatial discretization. For nonconforming FE discretizations, one typically instead
uses the discontinuous Galerkin (DG) finite element discretization [123].

Figure 3.3: Nodes for linear (r = 1, left), quadratic (r = 2, center), and cubic (r = 3, right)
polynomials on a triangle

Figure 3.4: Nodes for linear (r = 1, left), quadratic (r = 2, center), and cubic (r = 3, right)
polynomials on a tetrahedron

3.2.4 Numerical methods for time integration

Now, we list a series of numerical method for solving the time integration of (3.5).

Leap-Frog (LF) method

By using centered differences to approximate the first and second derivatives in
(3.10), we obtain the Leap-Frog time integration,

Mh
ym+1 − 2ym + ym−1

∆t2 +Khym
+ Sh

ym+1 − ym−1

2∆t
= Re{Fh e−iωtm} (3.11)
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for solving (3.10), where ym denotes the discrete approximation of y(tm). The initial
variables are given by

(y0
)j = y(xj), (y0

t )j = yt(xj), xj ∈ Ωh, 1 ≤ j ≤ ndofs.

Next, we determine y1 with the Taylor expansion and (3.10) with t = 0, namely

y1
= y0

+∆t
∂

∂t
y∣

t=0
+

∆t2

2
∂2

∂2t
y0

∣
t=0

= y0
+∆ty0

t +
∆t2

2
M−1

h (Re{Fh}−Khy0
− Shy0

t ).

Classical Runge-Kutta (RK4) method

Here we transform the second-order wave equation (3.10) into a first-order system
of ordinary differential equations:

∂

∂t
Yh(t) = Φ(t, Yh(t)), Yh = [ y ∂

∂t y ]
⊺

, (3.12)

Φ(t, Yh) = BYh + (
0

Re{Fh e−iωt}
) , B = (

0 I
−M−1

h Kh −M−1
h Sh

) . (3.13)

By using the RK4 method for the numerical time integration of (3.12), we have:

K1,m = Φ(tm, Ym
h ) = BYm

h +Rm

K2,m = Φ(tm +
∆t
2 , Ym

h +
∆t
2 K1,m) = B(Ym

h +
∆t
2 K1,m)+Rm+ 1

2

K3,m = Φ(tm +
∆t
2 , Ym

h +
∆t
2 K2,m) = B(Ym

h +
∆t
2 K2,m)+Rm+ 1

2

K4,m = Φ(tm +∆t, Ym
h +∆tK3,m) = B(Ym

h +∆tK3,m)+Rm+1

Ym+1
h = Ym

h +
∆t
6

(K1,m + 2K2,m + 2K3,m +K4,m) (3.14)

Local Time-Stepping based on explicit Runge-Kutta methods

(a) full mesh (b) zoom on the refined part of the mesh

Figure 3.5: Computational mesh with local refinement near the open wedge obstacle; “fine part”
is indicated by darker (green) triangles.

Here we consider the local time-stepping methods based on the classical Runge-
Kutta scheme – see [78, 81]. The triangular mesh Th from the spatial domain Ω has
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Algorithm 1: Local Time-Stepping based on RK4

Input: Y0 ∶= Ym
h initial values, q refinement ratio, ∆t time-steps, ∆τ = ∆t

q
wm

0 = B[I − P]Y0 + [I − P]Rm

wm
1 = B[I − P][BY0 +Rm]+ 1

∆t [I − P][−3Rm + 4Rm+ 1
2
−Rm+1]

wm
2 = B[I − P][B2Y0 +BRm +

1
∆t [−3Rm + 4Rm+ 1

2
−Rm+1]]+

4
∆t2 [I − P][Rm − 2Rm+ 1

2
+Rm+1]

wm
3 = B[I − P][B3Y0 +B2Rm +

1
∆t B[−3Rm + 4Rm+ 1

2
−Rm+1]+

4
∆t2 [Rm − 2Rm+ 1

2
+Rm+1]]

for ` = 0, . . . , q − 1 do

K1, `+1
q

=
3

∑
j=0

(`∆τ)j

j! wm
j +BPY `

q
+ PRm,`

K2, `+1
q

=
3

∑
j=0

((`+ 1
2 )∆τ)j

j! wm
j +BP[Ỹ `

q
+ ∆τ

2 K1, `+1
q
]+ PRm,`+ 1

2

K3, `+1
q

=
3

∑
j=0

((`+ 1
2 )∆τ)j

j! wm
j +BP[Ỹ `

q
+ ∆τ

2 K2, `+1
q
]+ PRm,`+ 1

2

K4, `+1
q

=
3

∑
j=0

((`+1)∆τ)j

j! wm
j +BP[Ỹ `

q
+∆τK3, `+1

q
]+ PRm,`+1

Y `+1
q

= Y `
q
+ ∆τ

6 [K1, `+1
q
+ 2K2, `+1

q
+ 2K3, `+1

q
+K4, `+1

q
]

return Ym+1
h = Y1

some local refinements. The idea of this method is to decompose the spatial domain
into fine and coarse parts. We denote the diagonal P as the refinement matrix, where
P`` ∈ {0, 1} and P``=1 if, and only if, x` lies in the fine part (see Figure 3.5):

Z = (I − P)Z + PZ = YC
h +YF

h ,

where YC
h and YF

h are computed separately with different local time steps, ∆τ and
∆t = q∆τ, and different techniques based on the Runge-Kutta scheme.

Let hcoarse be the smallest mesh size from all coarse elements and hfine is the cor-
responding smallest mesh size from the fine part. The number of local steps is equal
to the local refinement ratio

q ≈
hcoarse

hfine . (3.15)

We impose ∆τ = ∆t/q, the local time-steps. The LTS Algorithm 1 can be found in [78,
Section 3.3].

3.3 Time-periodic and time-harmonic solutions of the wave
equation

In the controllability approach, we seek an initial value of the wave equation (3.5)
such that its solution is time-periodic with a known time period T. For certain sit-
uations, a time-periodic solution immediately yields the time-harmonic solution of
(2.9). Therefore, we first present some definition and analytical proposition for peri-
odic functions based on the Fourier theory.
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Definition 4 (Time periodic function). Let y ∈ C(R; H) and H be a Hilbert space. We
say y is T-time periodic (or just T-periodic) if

y(⋅, T + t) = y(⋅, t), ∀t ∈ R. (3.16)

Now, let y ∈ C0([0, T]; H1(Ω))∩C1([0, T]; L2(Ω)) be a solution of (3.5) with

y(⋅, T) = y(⋅, 0) = y0,
∂y(⋅, T)

∂t
=

∂y(⋅, 0)
∂t

= y1. (3.17)

Then y is T-time periodic in sense that y satisfies (3.5) in Ω ×R and (3.16). To show
that, we consider the solution y of (3.5) in [T, 2T] and write

ỹ(⋅, t) = y(⋅, T + t), t ∈ [0, T].

The definition and the condition (3.17) immediately imply that

ỹ(⋅, 0) = y(⋅, T) = y(⋅, 0),
∂ỹ(⋅, 0)

∂t
=

∂y(⋅, T)

∂t
=

∂y(⋅, 0)
∂t

.

Furthermore, ỹ solves the same wave equation (3.5) as y in [0, T], since all source
terms in (3.5) are also T-periodic. The uniqueness lemma 2 yields

y(⋅, T + t) = ỹ(⋅, t) = y(⋅, t), ∀t ∈ [0, T].

Therefore, we conclude with a simple “bootstrap argument” that y is T-periodic as
its initial value is equal to itself after one period. Now, we summarize this result in
the following proposition.

Proposition 3. The solution y ∈ C0(R; H1(Ω))∩C1(R; L2(Ω)) of the wave equation (3.5)
is T-periodic if, and only if, (3.17) is fulfilled.

3.3.1 Time-harmonic and time-periodic wave equation

Here we consider the relation between the time-harmonic solution Re{u(x) e−iωt}

and the time-periodic solution y(x, t) of the wave equation (3.5). We will see that
both solutions are indeed equivalent for sound-soft scattering problems, where we
impose both Dirichlet and impedance boundary conditions in (2.9).

We first introduce some basic preliminaries of Fourier series for periodic func-
tions in C0([0, T]). Let

⨏

T

0
v dt =

1
T ∫

T

0
v dt (3.18)

denote the mean of a function v over the interval [0, T].

Theorem 5 (Fourier’s Theorem). Suppose f ∈ C0([0, T]) is a T-periodic function. Then
there is a complex sequence γ` such that

gm → f in L2-norm, as m → +∞,

where
gm(t) = ∑

∣`∣≤m
c` exp(iω`t), c` = ⨏

T

0
f (t) exp(−iω`t) dt. (3.19)

Proof. See Theorem 3.2 in Chapter 4 [127].
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Corollary 1. Let f ∈ C1([0, T]). Suppose that f , f ′ are T-periodic and that gm is the partial
Fourier series of f given by (3.19) with the Fourier coefficients c`. Then

f ′(t) = lim
m→+∞

g′m(t), t ∈ [0, T].

Proof. Let {d`} ⊂ C be the Fourier coefficients of f ′ and

hm(t) = ∑
∣`∣≤m

d` exp(iω`t), m ≥ 0.

Then
f ′(t) = lim

m→+∞
hm(t),

where
hm(t) = ∑

∣`∣≤m
d` exp(iω`t), d` = ⨏

T

0
f ′(t) exp(−iω`t) dt.

Integration by parts and the time-periodicity of y yield

d` = ⨏
T

0
f ′(t) exp(−iω`t) dt = iω`⨏

T

0
f (t) exp(−iω`t) dt +

f (T)− f (0)
T

= iω`c`.

Now, we have

hm(t) = ∑
∣`∣≤m

d` exp(iω`t) = ∑
∣`∣≤m

iω`γ` exp(iω`t) = g′m(t)

which completes the proof.

Following [11], for sound-soft scattering problems, where we impose both Dirich-
let and impedance boundary conditions in (2.9), the T-time periodic solution y of
(3.5) immediately yields the unique solution u of (2.9); namely u is given by (3.7). In
general, however, a T-time periodic of (3.5) neither is unique nor does it necessarily
yield the (unique) time-harmonic solution, as shown in the following theorem.

Theorem 6. Let u ∈ H1(Ω) be the unique solution of the Helmholtz equation (2.9) and
y ∈ C0([0, T]; H1(Ω)) ∩ C1([0, T]; L2(Ω)) a (real-valued) solution of the wave equation
(3.5) with initial conditions (y0, y1) ∈ H1(Ω)× L2(Ω). If ∇y and yt are time periodic with
period T = 2π/ω, then y admits the Fourier series expansion

(y(⋅, t), ϕ) = (Re{u e−iωt
}, ϕ)+ (λ + ηt, ϕ)+ ∑

∣`∣>1
(γ` e−iω`t, ϕ) (3.20)

for any ϕ ∈ H1
D, where the constants λ, η ∈ R and the complex-valued (eigen-)functions

γ` ∈ H1
D, ∣`∣ ≥ 2, satisfy γ` = γ−` and

−∇ ⋅ (a(x) ∇γ`(x)) = (`k(x))2γ`(x), x ∈ Ω, , (3.21a)
√

a(x)
∂γ`(x)

∂n
= −i`k(x)γ`(x), x ∈ ΓS, (3.21b)

∂γ`(x)
∂n

= 0, x ∈ ΓN , (3.21c)

γ`(x) = 0, x ∈ ΓD. (3.21d)

Furthermore, ifHd−1(ΓD ∪ ΓS) > 0, then η = 0 and ifHd−1(ΓD) > 0, then λ = η = 0.

Here (⋅, ⋅) denotes the standard inner product on L2(Ω).
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Remark 4. Following (3.20) in Theorem 6, it immediately follows for t = 0 that

(v, ϕ) = (u, ϕ)+ (λ +
i
ω

η, ϕ)+
∞

∑
∣`∣>1

(α` + i`β`, ϕ) ∀ϕ ∈ H1
D, (3.22)

where α` = Re{γ`} and β` = Im{γ`} satisfy

−∇ ⋅ (a(x) ∇α`(x)) = (`k(x))2α`(x), x ∈ Ω, (3.23a)
√

a(x)
∂α`(x)

∂n
= −`k(x)β`(x), x ∈ ΓS, (3.23b)

∂α`(x)
∂n

= 0, x ∈ ΓN , (3.23c)

α`(x) = 0, x ∈ ΓD, (3.23d)

and

−∇ ⋅ (a(x) ∇β`(x)) = (`k(x))2β`(x), x ∈ Ω, (3.24a)
√

a(x)
∂β`(x)

∂n
= `k(x)α`(x), x ∈ ΓS, (3.24b)

∂β`(x)
∂n

= 0, x ∈ ΓN , (3.24c)

β`(x) = 0, x ∈ ΓD. (3.24d)

Here we obtain u = y0 + (i/ω)y1 precisely when λ = η = 0 and all α`, β`, ∣`∣ > 1, vanish
identically.

Proof. For the proof, we distinguish between (i) Hd−1(ΓD ∪ ΓS) > 0 and (ii) ΓD ∪ ΓS =

∅. (i) For Hd−1(ΓD ∪ ΓS) > 0, let z denote the difference between y(x, t) and the time-
harmonic solution:

z(x, t) = y(x, t)−Re{u(x) e−iωt
}. (3.25)

It is easy to verify that z satisfies

1
c2(x)

∂2z(x, t)
∂2t

−∇ ⋅ (a(x) ∇z(x, t)) = 0, (x, t) ∈ Ω × (0, T), (3.26a)

√
a(x)

∂z(x, t)
∂n

+
1

c(x)
∂z(x, t)

∂t
= 0, (x, t) ∈ ΓS × (0, T), (3.26b)

∂

∂n
z(x, t) = 0, (x, t) ∈ ΓN × (0, T), (3.26c)

z(x, t) = 0, (x, t) ∈ ΓD × (0, T). (3.26d)

Now, let η(x) = z(x, T)− z(x, 0). Since both ∇z and zt are T-periodic,

∇[z(⋅, T)− z(⋅, 0)] = 0

throughout Ω and thus η(x) = η is constant a.e. in Ω.
If Hd−1(ΓD) > 0, η vanishes on ΓD and hence η = 0 everywhere in Ω. Otherwise

ΓD = ∅ and thus Hd−1(ΓS) > 0. By integrating (3.26a) and using Green’s formula
together with the homogeneous boundary conditions on ΓN and ΓS, we obtain

0 = ∫

T

0
∫

Ω
(

1
c2 ztt −∇ ⋅ (a∇z)) dx dt = ∫

Ω

1
c2 zt∣

T

0
dx +∫

ΓS

√
a

c
z∣

T

0
ds = η∫

ΓS

√
a

c
ds,
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where we have used (3.26b) and the T-periodicity of zt. Since a(x), c(x) > 0 and
Hd−1(ΓS) > 0, η must equal zero. Therefore, z is T-periodic and for any ϕ ∈ H1

D,
the function (z(⋅, t), ϕ) ∶ [0, T] → R is also T-periodic and continuous, followed from
Lemma 1. Thus, we can expand it in a Fourier series as

(z(⋅, t), ϕ) =
∞

∑
`=−∞

γ̃` eiω`t, 0 ≤ t ≤ T, (3.27)

with Fourier coefficients

γ̃` = ⨏

T

0
(z(⋅, t), ϕ) e−iω`t dt ∈ C, ` ∈ Z. (3.28)

Now let
γ`(x) = ⨏

T

0
z(x, t) e−iω`t dt ∈ H1

(Ω), ` ∈ Z. (3.29)

Then γ̃` = (γ`, ϕ).
Next, we verify that γ` solves the eigenvalue problem (3.21). First, we replace

γ` on the left side of (3.21) by its definition (3.29), use (3.26a), and integrate by parts
twice with respect to time the resulting expression to obtain

−∇ ⋅ (a(x)∇γ`(x)) = −⨏

T

0
∇ ⋅ (a(x)∇z(x, t)) e−iω`t dt

= −
1

c2(x) ⨏
T

0
ztt(x, t) e−iω`t dt

= (`k(x))2
⨏

T

0
z(x, t) e−iω`t dt

−
i`k(x)
c(x)T

z(x, t) e−iω`t
∣

T

0
−

1
c2(x)T

zt(x, t) e−iω`t
∣

T

0
, x ∈ Ω.

Since both z and zt are T-periodic, the last two terms vanish, which yields

−∇ ⋅ (a(x)∇γ`(x)) = (`k(x))2
⨏

T

0
z(x, t) e−iω`t dt = (`k(x))2γ`(x), x ∈ Ω,

by definition (3.29) of γ`.
We still need to verify that γ` also satisfies the boundary conditions (3.21b),

(3.21c), and (3.21d). As z(⋅, t) vanishes on ΓD, so does γ` since

γ`(x) = ⨏

T

0
z(x, t) e−iω`t dt = 0, x ∈ ΓD.

To verify that γ` satisfies (3.21b) on ΓS, we start from (3.29) and again use integration
by parts in time, the periodicity of z, and (3.26b) to obtain

√
a(x)

∂γ`(x)
∂n

= ⨏

T

0

√
a(x)

∂z(x, t)
∂n

e−iω`t dt = −⨏
T

0

1
c(x)

∂z(x, t)
∂t

e−iω`t dt

= −i`k(x)⨏
T

0
z(x, t) e−iω`t dt −

1
c(x)T

z(x, t) e−iω`t
∣

T

0

= −i`k(x) γ`(x), x ∈ ΓS,

by definition (3.29) of γ`. Similarly, (3.21c) follows from the definition (3.29) and
Equation (3.26c). Hence, γ` indeed satisfies (3.21) for ` ∈ Z.
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For ` = −1, (3.21) corresponds to (2.9) with u = γ−1 = γ1, homogeneous boundary
conditions, and no sources. By uniqueness, γ−1, together with its complex conjugate
γ1, is therefore identically zero. By Proposition 1, γ0 also vanishes identically.

Next, we use (3.27) in (3.25), together with (3.28) and (3.29), and rearrange terms
to obtain

(y(⋅, t), ϕ) = (Re{u e−iωt
}, ϕ)+ (λ, ϕ)+

∞

∑
∣`∣>1

(γ`, ϕ) eiω`t, ∀ϕ ∈ H1
D,

which corresponds to (3.20) with η = 0.

(ii) For ΓD = ΓS = ∅, that is in a situation of pure Neumann boundary conditions,
y is not T-periodic in general and hence

η(x) =
1
T

(y(x, T)− y(x, 0))

is no longer zero. However, ∇η(x) ≡ 0 by assumption and thus η is constant a.e. in
Ω. Now, let

z(x, t) = y(x, t)−Re{u(x) e−iωt
}− ηt.

Clearly, z satisfies

1
c2(x)

∂2z(x, t)
∂2t

−∇ ⋅ (a(x) ∇z(x, t)) = 0, (x, t) ∈ Ω × [0, T],

∂z(x, t)
∂n

= 0, (x, t) ∈ ΓN × [0, T],

and is T-periodic by definition of η. Therefore, z again admits a Fourier series ex-
pansion with coefficients γ` which satisfies (3.21). A similar argument as in case (i)
concludes the proof.

From Theorem 6, we conclude that the initial values y0 and y1 of a time-periodic
solution are in general not unique whenever λ, η, or γ` is not identically zero. For
sound-soft scattering problems where Hd−1(ΓS) > 0 and Hd−1(ΓD) > 0, however, the
constants λ, η and the eigenfunctions all vanish. We summarize this result in the
following corollary – see also [102].

Corollary 2. Let u ∈ H1(Ω) be the unique solution of (2.9) with Hd−1(ΓS) > 0 and
y ∈ C0([0, T]; H1(Ω)) ∩ C1([0, T]; L2(Ω)) be a solution of (3.5) with initial conditions
(y0, y1) ∈ H1(Ω)× L2(Ω). If ∇y and yt are time periodic with period T = 2π/ω, then

u = y0 +
i
ω

y1 + λ. (3.31)

Furthermore, ifHd−1(ΓD) > 0, then

u = y0 +
i
ω

y1.

Proof. From Theorem 6 we know that u satisfies the Fourier expansion (3.22) with
η = 0. Since each eigenvalue problem (3.21) corresponds to the Helmholtz equation
(2.9) with frequency ω` and f = gS = gD = gN ≡ 0, ` ≠ 0, which has only the trivial
solution, we conclude that γ` = α` = β` = 0, ∣`∣ > 1. Therefore (3.31) holds.

In addition, Theorem 6 implies that λ = 0 when Hd−1(ΓD) > 0, which, together
with (3.31), concludes the corollary.
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3.4 Exact controllability methods

Following Theorem 6 in Section 3.3, the initial values (y0, y1) of the time-periodic
solution y of (3.5) immediately yield the solution u of Helmholtz equation (2.9) given
by (3.7). Now, we discuss how to reformulate (2.9) as a least-squares optimization
problem [25, 26] to determine the initial values (y0, y1). Here we consider four kinds
of Helmholtz equations:

(i) sound-soft scattering problems:
Hd−1(ΓS) > 0,Hd−1(ΓD) > 0 and ΓN may be empty

(ii) sound-hard scattering problems:
Hd−1(ΓS) > 0,Hd−1(ΓN) > 0 and ΓD = ∅

(iii) scattering from a penetrable inhomogeneous inclusion:
ΓS = ∂Ω and ΓD = ΓN = ∅

(iv) Helmholtz equation in a physically bounded domain:
ΓS = ∅ and ΓD or ΓN may vanish

3.4.1 Sound-soft scattering problems

In [25, 26, 90, 91, 102], the authors only considered sound-soft scattering problems,
where they imposed Sommerfeld-like impedance boundary conditions on ΓS and
Dirichlet boundary conditions on ΓD. From Corollary 2, the solution y of (3.5) with
the initial value (y0, y1) is time-harmonic if, and only if, y and (y0, y1) fulfill (3.17).
To determine the unknown (control) variables y0, y1, one considers the least-squares
optimization problem

min
(y0,y1)

J(y0, y1)

with a penalty cost functional J. There are two different approaches, optimize-then-
discretize [104, 132, 25, 26, 83, 80] and discretize-then-optimize [90, 91].

In the discretize-then-optimize approach, one first discretizes (2.9), e.g. using
FE, and afterwards formulates the least-squares optimization problem in R2n. The
penalty functional is given by J1 ∶ R2n → R≥0,

J1(y0, y1) =
1
2
(

y(T)− y0
∂
∂t y(T)− y1

)

⊺

(
Kh

Mh
)(

y(T)− y0
∂
∂t y(T)− y1

) , (3.32)

where y(t) is the semi-discrete solution of (3.5) with the (discrete) initial value (y0, y1),
the stiffness matrix Kh and the mass matrix Mh are defined in (2.18).

Here we use the optimize-then-discretize approach and consider the penalty func-
tional J1 ∶ H1(Ω)× L2(Ω)→ R≥0,

J1(y0, y1) =
1
2 ∫Ω

a(x)∣∇(y(x, T)− y0(x))∣2 dx +
1
2 ∫Ω

1
c2(x)

(yt(x, T)− y1(x))2 dx,

(3.33)
where y = y[y0, y1] solves (3.5) with the initial value (y0, y1). Obviously, J1 is non-
negative and convex. Since

y[Re u, ω Im u](x, t) = Re{u(x) e−iωt
},

we obtain
J1(Re u, ω Im u) = 0.
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Following Corollary 2 and the definition (3.33), J1 has a unique (global) minimizer
(y0, y1) = (Re u, ω Im u), which yields the solution u of (2.9) through (3.7). Therefore,
the functional J1 is minimal at (y0, y1) if, and only if,

J1(y0, y1) = 0,

and if, and only if, the gradient or Fréchet derivative J′1 vanishes identically at (y0, y1).
We derive the gradient with the adjoint method [104]. First, the chain rule yields

⟨J′1(y0, y1), (δy0, δy1)⟩ = ∫
Ω

a(x)∇(y(x, T)− y0(x)) ⋅ ∇(δy(x, T)− δy0(x)) dx

+∫
Ω

1
c2(x)

(yt(x, T)− y1(x))(δyt(x, T)− δy1(x)) dx, (3.34)

for a perturbation (δy0, δy1) ∈ H1
D(Ω) × L2(Ω), where δy solves the homogeneous

wave equation (3.5) with f = gS = gN = gD = 0 and ⟨⋅, ⋅⟩ denotes the standard duality
pairing in ((H1

D × L2(Ω))′, H1
D × L2(Ω)). Next, multiplication of (3.5) by an arbitrary

function p and integration by parts over Ω and [0, T] then imply that

0 = ∫

T

0
∫

Ω
[

1
c2 δytt −∇ ⋅ (a∇δy)] p dx dt

= ∫

T

0
∫

Ω
[

1
c2 ptt −∇ ⋅ (a∇p)] δy dx dt +∫

T

0
∫

ΓS
[a

∂

∂n
p −

√
a

c
pt] δy ds dt

+∫

T

0
∫

ΓN
a

∂

∂n
p δy ds dt +∫

ΓS

√
a

c
[p δy]∣

T

0
ds +∫

Ω

1
c2 [p δyt − pt δy]∣

T

0
dx. (3.35)

We further have

⟨J′1(v), δv⟩ = −∫
Ω

a(x)∇(y(x, T)− y0(x)) ⋅ ∇δy0(x) dx (3.36)

−∫
Ω

1
c2(x)

(yt(x, T)− y1(x))δy1(x) dx

+∫
Ω

1
c2(x)

(p(x, 0)δy1(x)− pt(x, 0)δy0(x)) dx +∫
ΓS

√
a(x)

c(x)
p(x, 0)δy0(x) ds,

where p solves the solution of the adjoint (backward) wave equation

1
c2(x)

∂2 p(x, t)
∂2t

− ∇ ⋅ (a(x) ∇p(x, t)) = 0, x ∈ Ω, t > 0, (3.37a)

√
a(x)

∂p(x, t)
∂n

−
1

c(x)
∂p(x, t)

∂t
= 0, x ∈ ΓS, t > 0 (3.37b)

∂p(x, t)
∂n

= 0, x ∈ ΓN , t > 0, (3.37c)

p(x, t) = 0, x ∈ ΓD, t > 0, (3.37d)
p(x, T) = p0(x), pt(x, T) = p1(x), x ∈ Ω, (3.37e)

with the initial conditions

p0(x) = yt(x, T)− y1(x), x ∈ Ω, (3.37f)

∫
Ω

1
c2 p1w dx = ∫

ΓS

√
a

c
p0w ds −∫

Ω
a∇(y(⋅, T)− y0) ⋅ ∇w dx, w ∈ H1

D. (3.37g)
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The derivation of (3.36) and (3.37) and the CMCG Algorithm can be found in [25,
26]. Hence in each CG iteration, we compute J′1(y0, y1) by solving the forward and
backward (adjoint) wave equations (3.5) and (3.37) over one period [0, T]. If the
time-step ∆t until T = 2π/ω is chosen inversely proportional to the frequency ω, the
number of time-steps over one period remains independent of ω. Moreover, each
CG iteration requires an explicit (Riesz) representer g̃ = (g̃0, g̃1) ∈ H1

D(Ω) × L2(Ω) of
the gradient g = (g0, g1) = J′1(y0, y1), which is determined by solving the symmetric
and coercive elliptic problem [26, 108]:

∫
Ω

a∇g̃0 ⋅ ∇ϕ dx = ∫
Ω

g0(x)ϕ(x) dx

= ∫
Ω
[a(x)∇(y0(x)− y(x, T)) ⋅ ∇ϕ(x)− pt(x, 0)ϕ(x)] dx

+∫
ΓS

√
a(x)

c(x)
p(x, 0)ϕ(x) ds, ∀ϕ ∈ H1

D, (3.38a)

g̃1(x) = c2
(x)g1(x) = y1(x)− yt(x, T)+ p(x, 0), x ∈ Ω. (3.38b)

3.4.2 Sound-hard scattering problems or scattering from inhomogeneous
inclusion

Let u be the (unique) solution of the Helmholtz equation (2.9) with Hd−1(ΓS) > 0,
but now ΓD = ∅, as in a typical sound-hard scattering problem where ΓN corre-
sponds to the boundary of the obstacle and ΓS to the exterior artificial boundary.
Since Hd−1(ΓS) > 0, we again immediately conclude from Theorem 6 that η and γ`,
together with α` and β`, identically vanish in (3.22). However, in contrast to the sit-
uation of sound-soft scattering from Section 3.4.1, λ is no longer necessarily zero. In
fact, Corollary 2 implies that any (global) minimizer v of J1 necessarily corresponds
to an arbitrary constant shift of u, i.e. v = u + λ, λ ∈ R. To remove the spurious
constant shift and restore uniqueness, we propose three distinct approaches:

(i) determine λ by enforcing a compatibility condition,

(ii) replace J1 by an alternative functional or

(iii) use an absorbing boundary condition on ΓS with a zeroth-order term.

(i) Compatibility condition.

From Corollary 2 we know that if J1(y0, y1) = 0 there exists a constant λ ∈ R such that

v(x) = y0(x)+
i
ω

y1(x) = u(x)+ λ.

However, since Hd−1(ΓS) > 0, (2.9) always has a unique solution u. Hence, we shall
now derive an additional condition from (2.9) to determine λ.

In the absence of ΓD, by (2.10), we have

A[u, 1] = A[v − λ, 1] = A[v, 1]− λA[1, 1] = F[1], (3.39)
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Figure 3.6: One-dimensional Helmholtz equation with Neumann condition at x = 0 and Som-
merfeld condition at x = 1. Exact and numerical solution using the CMCG method with the cost
functional J1; (a) without compatibility condition; (b) with compatibility condition (3.41).

where A and F are given by (2.11) and (2.12), respectively. This yields after some
algebra the compatibility condition

λ =
A[v, 1]− F[1]

A[1, 1]
= −

∫
Ω

k2v dx +∫
Ω

f dx +∫
ΓS

[gS + i
√

a kv] ds +∫
ΓN

gN ds

∫
Ω

k2 dx + i∫
ΓS

√
a k ds

. (3.40)

Thus, once we have found a T-periodic solution v = y0 + (i/ω) y1 of (3.5), we deter-
mine the correct (unique) time-harmonic solution u by applying the constant shift

u = v − λ, (3.41)

with λ given by (3.40). We denote the combined use of J1 with the compatibility
condition (3.40)–(3.41) by Jcc

1 .
To illustrate the usefulness of the compatibility condition (3.40)–(3.41), we now

consider the following simple one-dimensional example. Let

u(x) = eix, x ∈ Ω = (0, 1),

be the exact solution of (2.9) with ΓN = {0}, ΓS = {1}, ω = a = c = 1, and f ≡ 0.
In Figure 3.6, we display the exact and the numerical solution obtained with the
CMCG method using the functional J1 in (3.33). The CMCG iteration converges to
a minimizer v, which contains a spurious constant shift from u. By computing λ in
(3.40) and subtracting it from v, we recover u, as shown in Figure 3.6b.

(ii) Alternative functionals.

Since the coerciveness of J1 in (3.33) "depends in a subtle way on the geometry of Ω"
[11], Bardos and Rauch proposed an alternative cost functional, J∞, which is coercive
even in situations with trapping rays. In [26], Bristeau et al. used the following real-
valued version of J∞:

J∞(y0, y1) =
1
2 ∫

T

0
∫

Ω
a(x)∣∇(y(x, t)−Re{v(x) e−iωt

})∣
2 dx dt

+
1
2 ∫

T

0
∫

Ω

1
c2(x)

(yt(x, t)−ω Im{v(x) e−iωt
})

2 dx dt, (3.42)
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where y solves (3.5) and v = y0+(i/ω) y1. In contrast to J1, the functional J∞ penalizes
the departure from the desired time-harmonic behavior not only after one period at
t = T, but in fact at all times. In [26, Section 7.6.2], the CMCG method with J1 or
J∞ was applied to wave scattering from a perfectly conducting circular cavity with
a crack and the numerical "solutions obtained with the two control approaches were
the same".

When the cost functional J1 is replaced by J∞ in the CMCG Algorithm (Section
3.7), the Fréchet derivative of J∞ requires the solution of modified forward and back-
ward wave equations akin to (3.5) and (3.37). However, unlike in the original CMCG
approach with J1, the backward wave equation now depends explicitly on the en-
tire solution of the forward wave equation. To avoid storing the entire history of
the forward wave equation, which may be prohibitive for large-scale problems, we
consider instead the alternative cost functional

Jm(y0, y1) =
1
2

m
∑
j=1
∫

Ω
a(x) ∣∇(y(x, tj)−Re{v(x) e−iωtj})∣

2
dx

+
1
2

m
∑
j=1
∫

Ω

1
c2(x)

(yt(x, tj)−ω Im{v(x) e−iωtj})
2 dx, (3.43)

where y solves (3.5) and v = y0 + (i/ω) y1. Here 0 < t1 < t2 < . . . < tm = T are m ≥ 1
fixed time instants – we shall only use m ≤ 3. Note that Jm coincides with J1 for m = 1
and t1 = T. In general, the uniqueness of a global minimizer of Jm depends on the
specific boundary condition in (2.9) and on the choice of {tj}

m
j=1. In particular, for

ΓD = ∅ and Hd−1(ΓS) > 0, the functional J2 in (3.43) with t1 = T/4 and t2 = T always
has a unique global minimizer.

Theorem 7. Let u ∈ H1(Ω) be the unique solution of (2.9) with ΓD = ∅ andHd−1(ΓS) > 0.
For (y0, y1) ∈ H1(Ω)× H1(Ω), the following assertions are equivalent:

(i) u = y0 + (i/ω) y1.

(ii) J2(y0, y1) = 0 with J2 as in (3.43) with m = 2, t1 = T/4 and t2 = T.

Proof. The implication (i) ⇒ (ii) obviously holds, since the solution y of (3.5) with
initial values (y0, y1) = (Re u, ω Im u) is unique and equal to Re{u(x) e−iωt}.

To show that (ii) ⇒ (i), let (y0, y1) ∈ H1(Ω) × H1(Ω) be a minimizer of J2 and
v = y0 + (i/ω) y1. Then, for the corresponding solution y of (3.5),

∇(y(x, T)− y(x, 0)) = 0, yt(x, T)− yt(x, 0) = 0 in Ω

and thus both ∇y and yt are T-periodic. From Corollary 2, we infer that

y(x, t) = Re{u(x) e−iωt
}+ λ

for some constant λ ∈ R and that v = u + λ. Thus

y(x, t) = Re{(v(x)− λ) e−iωt
}+ λ = Re{v(x) e−iωt

}+ λ (1− cos(ωt)). (3.44)

Since J2(y0, y1) = 0, we also have

yt(x,
T
4
)−ω Im{v(x) e−iω T

4 } = 0, x ∈ Ω. (3.45)



40 Chapter 3. Controllability methods for solving Helmholtz problems

We differentiate (3.44) in time, set t = T/4, and use (3.45) to obtain

0 = yt(x,
T
4
)−ω Im{v(x) e−iω T

4 }−ωλ sin(
ωT
4

) = −ωλ sin(
π

2
) = −ωλ. (3.46)

Since ω > 0, (3.46) implies that λ = 0 and hence that u = v, which concludes the
proof.

Remark 5. The choice of t1 in Theorem 7 is not unique. In fact, Theorem 7 holds for any
t1 ∈ (0, T) with sin(ωt1) ≠ 0, i.e. t1 ≠ T/2. The (somewhat arbitrary) value t1 = T/4 lies
between the first two critical values 0 and T/2.

To apply the CMCG method with the alternative functional Jm, we need to com-
pute its Fréchet derivative. Let v = (y0, y1) ∈ H1(Ω) × H1(Ω), δv = (δy0, δy1) be an
arbitrary perturbation and define

ṽ(x, t) = Re{(y0(x)+
i
ω

y1(x)) e−iωt
}, x ∈ Ω, t > 0,

δ̃v(x, t) = Re{(δy0(x)+
i
ω

δy1(x)) e−iωt
}, x ∈ Ω, t > 0.

Then, the Fréchet derivative of Jm is

⟨J′m(v), δv⟩ = −
m
∑
`=1
∫

Ω
a(x)∇(y(x, t`)− ṽ(x, t`)) ⋅ ∇δ̃v(x, t`) dx (3.47)

−
m
∑
`=1
∫

Ω

1
c2(x)

(yt(x, t`)− ṽt(x, t`))δ̃vt(x, t`) dx

+∫
Ω

1
c2(x)

(p(x, 0)δy1(x)− pt(x, 0)δy0(x)) dx +∫
ΓS

√
a(x)

c(x)
p(x, 0)δy0(x) ds.

Here p = ∑
m
`=1 p` and each p` solves the adjoint wave equation (3.37) with the initial

conditions p`(x, t`) = p`0(x) and p`t(x, t`) = p`1(x), 1 ≤ ` ≤ m, defined by

p`0(x) = yt(x, t`)− ṽt(x, t`), x ∈ Ω,

∫
Ω

1
c2(x)

p`1(x)w(x) dx = ∫
ΓS

√
a(x)

c(x)
p`0(x)w(x) ds

−∫
Ω

a(x)∇(y(x, t`)− ṽ(x, t`)) ⋅ ∇w(x) dx, ∀w ∈ H1
(Ω).

The CMCG method with the cost functional Jm in (3.47) requires the solution of
a single forward wave equation until time T and m independent backward wave
equations over [0, t`], ` = 1, . . . , m. To ensure that both y(k)

0 and y(k)
1 remain in

H1(Ω) during the CMCG iteration, we now determine an explicit Riesz representer
g̃(k) = (g̃(k)

0 , g̃(k)
1 ) ∈ H1(Ω) × H1(Ω) of g(k) = J′m(v(k)) by solving an elliptic coercive

problem similar to (3.38a) for both g̃(k)
0 and g̃(k)

1 . For m = 2, t1 = T/4 and t2 = T,
for instance, the CMCG Algorithm based on the functional J2 always computes the
correct minimizer at a modest 12.5% increase in the computational cost over using J1
– see Section 3.7 for details.

Next, the functional J∞ given by (3.42) not only has a uniqueness solution for
scattering problems, but also for Helmholtz equation with general boundary condi-
tion. We show that in the following theorem.
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Theorem 8. Let u ∈ H1(Ω) be the unique solution of the Helmholtz equation (2.9) and
y ∈ C1([0, T]; H1(Ω)) be the solution of the wave equation (3.5) with the initial values
y0, y1 ∈ H1(Ω). Suppose that J∞(y0, y1) = 0. Then

u = y0 +
i
ω

y1.

Proof. Following J∞(y0, y1) = 0, we have

∂

∂t
y(x, t)−

∂

∂t
Re{v(x) e−iωt

} = 0,

∇y(x, t)−∇Re{v(x) e−iωt
} = 0,

with v = y0 +
i
ω y1, which implies that

y(x, t)−Re{v(x) e−iωt
} ≡ µ ∈ R.

Since y(x, 0) = y0(x), we immediately have µ = 0, which concludes the proof.

For the sake of completeness, we also list the derivative of J∞(v)

⟨J′∞(v), δv⟩ = −∫
T

0
∫

Ω
a(x)∇(y(x, t)− ṽ(x, t))∇δ̃v(x, t) dx dt (3.48)

−∫

T

0
∫

Ω

1
c2(x)

(yt(x, t)− ṽt(x, t))δ̃vt(x, t) dx dt

+∫
Ω

1
c2(x)

(p(x, 0)δy1(x)− pt(x, 0)δy0(x)) dx +∫
ΓS

√
a(x)

c(x)
p(x, 0)δy0(x) ds,

where p is the solution of the adjoint wave equation (3.49)

1
c2 ptt −∇ ⋅ (a ∇p) = −∇ ⋅ (a ∇(y − ṽ))−

1
c2 (ytt − ṽtt) in Ω × (0, T), (3.49a)

a
∂p
∂n

−

√
a

c
pt = a

∂(y − ṽ)
∂n

on ΓS × (0, T), (3.49b)

∂p
∂n

=
∂(y − ṽ)

∂n
on ΓN × (0, T), (3.49c)

p = 0 on ΓD × (0, T), (3.49d)
p(x, T) = 0 for x ∈ Ω, (3.49e)

pt(x, T) = −(yt(x, T)− ṽt(x, T)) for x ∈ Ω. (3.49f)

Remark 6. For the CMCG method with J∞, the adjoint state method in (3.49) requires the
time-reversed solution y(⋅, T − t) of the forward problem (3.5), and hence we need to store the
entire history of y. For a large problem, in particular three-dimensional problems, the storage
requirement may be extensive. Using reverse time migration (RTM) with checkpoints, one
can reduce the storage [128]. However, this involves additional time integration of (3.5) and
leads to a trade-off between computational cost and storage requirement.

(iii) Absorbing boundary condition with zeroth-order term.

From Corollary 2, we know that the eigenvalue problems (3.21) with ΓD = ∅,Hd−1(ΓS) >

0, and the Sommerfeld condition (3.21b) only have the trivial solution for ` ≠ 0. How-
ever, we may also replace the simple Sommerfeld-like impedance condition (2.9b),
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with a ≡ 1, by the (more accurate) first-order Bayliss-Gunzburger-Turkel (BGT-1)
condition [12, 76] in d = 2, 3 dimensions, for instance:

∂u(x)
∂n

− ik(x)u(x)+
1

(4− d)r
u(x) = gS(x), x ∈ ΓS. (3.50a)

The corresponding time-harmonic wave field y solves (3.5) with (3.5b) replaced by

∂y(x, t)
∂n

+
1

c(x)
∂y(x, t)

∂t
+

1
(4− d)r

y(x, t) = Re{gS(x) e−iωt
}, x ∈ ΓS, t > 0, (3.50b)

while Corollary 6 still holds with (3.21b) replaced by

∂γ`(x)
∂n

− i`k(x)γ`(x)+
1

(4− d)r
γ`(x) = 0, x ∈ ΓS. (3.51)

Because of the strictly positive (or negative) definite imaginary part of the zeroth-
order coefficient in (3.50b), the eigenvalue problems (3.21) still only have the trivial
solution for ` ≠ 0. Moreover even for ` = 0, the nonzero coefficient of the zeroth-
order remaining term in (3.51) now implies that γ0 is not only constant but in fact
zero everywhere in Ω. In this case, the T-periodicity of y is sufficient to guarantee
convergence to the (unique) solution of the Helmholtz equation (2.9).

Clearly, other absorbing boundary conditions [76] may also permit the use of J1
without any modification. Exact nonreflecting boundary conditions based on inte-
gral formulations or DtN maps [76], for instance, could also be used but will gener-
ally lead to nonlocal space-time operators on the artificial boundary. Alternatively,
perfectly matched layers can probably be used as is and will lead to local formula-
tions without convolution integrals in time when combined with appropriate auxil-
iary functions – see Section 4.2.

3.4.3 Helmholtz equation in physically bounded domains

In Sections 3.4.1 and 3.4.2, we considered various scattering problems where we im-
pose an impedance boundary condition (2.9b) on part of the boundary ΓS. Here, we
consider the Helmholtz equation (2.9) with ΓS = ∅, i.e. with pure Dirichlet or Neu-
mann boundary condition. Clearly, to guarantee the uniqueness of the solution u
of (2.9), we now always assume that ω2 is not an eigenvalue of the principal ellip-
tic part. Still, the CMCG method with the cost functional J1 from (3.33) in general
will not yield the correct solution u, not even shifted by an arbitrary constant. In-
deed, let (y0, y1) ∈ H1(Ω) × L2(Ω) be a minimizer of J1. According to Theorem 6,
v = y0 + (i/ω) y1 then satisfies (3.22) with γ` being the solution of (3.21). While for
Hd−1(ΓS) > 0 all eigenfunction γ`, ∣`∣ > 1, necessarily vanish (Corollary 2), this is no
longer the case when ΓS = ∅, as (ω`)2 may be an eigenvalue of the principal part for
some ∣`∣ > 1, even when ω2 is not.

To illustrate this added ambiguity, we now consider the following simple one-
dimensional example. Let f be chosen so that

u(x) = 4x(1− x), x ∈ Ω = (0, 1),

is the solution of (2.9) with a = c = 1, ω = π/4, and Neumann boundary conditions
u′(0) = 4 and u′(1) = −4. Since ω2 does not lie in the spectrum Σ = {(`π)2 ∶ ` ∈ Z}

of (3.21), (2.9) is well-posed. However, (ω`)2 ∈ Σ for any ` ∈ 4Z with corresponding
eigenfunction α`(x) = cos(ω`x).
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Figure 3.7: Helmholtz equation in a bounded domain: numerical solutions of (2.9) in Ω =

(0, 1) with Neumann conditions at x = 0, 1 using the CMCG method either with J1 (a), J2 (b),
J3 (c), or J∞ (d).

Now, let (y0, y1) be an arbitrary initial value and y be the corresponding solution
of the wave equation (3.5). Then the solution ŷ of (3.5) with the initial value (y0 +

α`, y1) is ŷ(x, t) = y(x, t)+ α`(x) cos(ω`t). Since T = 2π/ω,

ŷ(x, T)− (y0(x)+ α`(x)) = y(x, T)+ α`(x) cos(ω`T)− (y0(x)+ α`(x)) = y(x, T)− y0(x)

and

ŷt(x, T)− y1(x) = yt(x, T)−ω`α`(x) sin(ω`T)− y1(x) = yt(x, T)− y1(x)

for any ` ∈ 4Z. Thus

J1(y0 + α`, y1) = J1(y0, y1), (y0, y1) ∈ H1
(Ω)× L2

(Ω), ` ∈ 4Z,

and minimizers of J1 are neither unique nor do they simply differ by a constant.
As shown in Figures 3.7a and 3.7b, the CMCG method using J1, or even J2, does

not yield the correct minimizer u. However, the cost functional J∞ in (3.42) remains
strictly convex; hence, the CMCG method based on J∞ converges to the correct min-
imizer u, as shown in Figure 3.7d. Similarly, the cost functional J3 in (3.43) with
t1 = T/4, t2 = T/2, and t3 = T always yields u, as illustrated in Figure 3.7c and shown
in the following theorem.

Theorem 9. Let u ∈ H1(Ω) be the unique solution of the Helmholtz equation (2.9) and
(y0, y1) ∈ H1(Ω)× H1(Ω). The following assertions are equivalent:

(i) u = y0 + (i/ω) y1.

(ii) J3(y0, y1) = 0 with t1 = T/4, t2 = T/2, t3 = T, and m = 3 in (3.43).
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Proof. As in the proof of Theorem 7, the implication (i)⇒ (ii) immediately holds.
Now, let (y0, y1) ∈ H1(Ω) × H1(Ω) be a minimizer of J3 and y be the solution of

(3.5). Then, ∇(y(x, T) − y(x, 0)) and yt(x, T) − yt(x, 0) vanish identically in Ω. Next,
we define the “misfit function”

r(x, t) = y(x, t)−Re{v(x) e−iωt
} (3.52)

and use (3.20) and (3.22) from Theorem 6 to replace v and y in (3.52). Let γ` be the
Fourier coefficients from Theorem 6, α` = Re{γ`}, and β` = Im{γ`}. Then this yields

(r(⋅, t), ϕ) = (y(⋅, t)−Re{u e−iωt
}, ϕ)− (Re{v e−iωt

}−Re{u e−iωt
}, ϕ)

= (λ(1− cos(ωt))+ η(t −ω−1 sin(ωt)), ϕ) (3.53)

+
∞

∑
`=2

{(α`(cos(ω`t)− cos(ωt))+ β`(sin(ω`t)− ` sin(ωt), ϕ)}.

Differentiating once with respect to time, we obtain

(rt(⋅, t), ϕ) = (ωλ sin(ωt)+ η(1− cos(ωt)), ϕ) (3.54)

+ω
∞

∑
`=2

{(−α`(` sin(ω`t)− sin(ωt))+ `β`(cos(ω`t)− cos(ωt)), ϕ)}.

Since ∇r(⋅, tj) = 0 and rt(⋅, tj) = 0 for tj ∈ {T/4, T/2}, r(⋅, tj) ≡ µj is constant a.e. in Ω,
j = 1, 2, while for t = t2 = T/2 = π/ω, (3.53) and (3.54) reduce to

(µ2, ϕ) = (2λ + η
T
2

, ϕ)+
∞

∑
`=2

((−1)` + 1)(α`, ϕ),

0 = (2η, ϕ)+ω
∞

∑
`=2

`((−1)` + 1)(β`, ϕ).

Thus,

(2λ + η
T
2
− µ2, ϕ)+ 2

∞

∑
`=2

` even

(α`, ϕ) = (2η, ϕ)+ 2ω
∞

∑
`=2

` even

`(β`, ϕ) = 0

for any test function ϕ ∈ H1
D(Ω).

If Hd−1(ΓD) > 0, µ1 = µ2 = 0 and λ = η = 0 by Theorem 6. Otherwise if ΓD = ∅,
2λ + η T/2 − µ2 and 2η both solve (3.21) with ` = 0 and hence are eigenfunctions
with zero eigenvalue unless they vanish identically. Similarly, α` and β` are either
eigenfunctions of (3.23) and (3.24) for the eigenvalue (ω`)2 or identically zero. By
orthogonality, η = 0 and the eigenfunctions α` = 0 and β` = 0 for any even ` ≥ 2.

Now, we set t = t1 = T/4 = π/(2ω) in (3.53) and (3.54) to obtain

(µ1, ϕ) = (λ, ϕ)−
∞

∑
`=3
` odd

((−1)` + `)(β`, ϕ) = (λ, ϕ)−
∞

∑
`=3
` odd

(` − 1)(β`, ϕ),

0 = (ωλ, ϕ)+ω
∞

∑
`=3
` odd

(`(−1)` + 1)(α`, ϕ) = (ωλ, ϕ)−ω
∞

∑
`=3
` odd

(` − 1)(α`, ϕ).

If α` and β` do not identically vanish, they are eigenfunctions of (3.23) and (3.24),
respectively. Since ` − 1 > 0 for any odd number ` ≥ 3, the orthogonality of the
eigenfunctions implies α` = 0 and β` = 0 for any odd ` ≥ 3 and λ = 0. Hence,
α` = β` = 0 for ` and λ = η = 0, which concludes the proof.
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3.5 Frequency filtering procedure

From Theorem 6 we conclude that a minimizer of J1 generally yields a time-dependent
solution y of (3.5), which contains a constant shift determined by λ, a linearly grow-
ing part determined by η, and higher frequency harmonics determined by γ`, all
superimposed on the desired time-harmonic field u with fundamental frequency ω.
Those spurious modes can be eliminated by replacing J1 with an alternative energy
functional at a small extra computational cost [83]. Instead we now propose an alter-
native approach via filtering which removes all spurious modes without requiring a
modified energy functional. However, for Neumann problems ΓN = ∂Ω, the spuri-
ous constant η in the Fourier expansion (3.22) is still present in any minimizer of J1.
To determine η, we again apply the compatibility condition (3.39).

3.5.1 Filtering procedure

Let y(x, t) be the time-dependent solution of (3.5) that corresponds to a minimizer
(y0, y1) of J1. Next, we define ŷ ∈ {w ∈ H1(Ω) ∣ w = gD on ΓD} as

ŷ(x) = ⨏
T

0
[y(x, t)+

i
ω

yt(x, t)] eiωt dt. (3.55)

To extract u(x) from y(x, t), we now take advantage of the mutual orthogonality of
different time harmonics exp(iω`t) in L2(0, T). Hence, we multiply (3.20) with eiωt

and integrate in time over (0, T) to obtain

ŷ(x) = ⨏

T

0
(Re{u e−iωt

}+ λ + ηt + i Im{u e−iωt
}+

iη
ω

) eiωt dt

= ⨏

T

0
u e−iωt eiωt dt −

iη
ω

= u −
iη
ω

. (3.56)

This yields

u(x) = ŷ(x)+
iη
ω

, x ∈ Ω (3.57)

where λ and all γ` have vanished but the constant η is still undetermined.
If Hd−1(ΓS) > 0 or Hd−1(ΓD) > 0, Theorem 6 implies that η = 0 and thus u(x) =

ŷ(x). Otherwise in the pure Neumann case (ΓN = ∂Ω), we determine η by integrating
(3.57), multiplied by k2(x), over Ω and using the compatibility condition

−∫
Ω

k2
(x)u(x) dx = ∫

Ω
f (x) dx +∫

∂Ω
gN(x) ds (3.58)

from (2.9a). This immediately yields the remaining constant

iη
ω

= −
1

∥k∥2
L2(Ω)

(∫
Ω

f (x) dx +∫
∂Ω

gN(x) ds +∫
Ω

k2
(x)ŷ(x)dx). (3.59)

We summarize the above derivation in the following proposition.

Proposition 4. Let u ∈ H1(Ω) be the unique solution of (2.9) and y the time dependent
solution of (3.5) corresponding to a minimizer (y0, y1) ∈ H1(Ω)× L2(Ω) of J, i.e. J(y0, y1) =

0. Then u is given by (3.57) with η = 0 if Hd−1(ΓS) > 0 or Hd−1(ΓD) > 0, and with η given
by (3.59) when ΓN = ∂Ω.
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Not only does the above filtering approach allow us to use the original cost func-
tional J1, it also involves a negligible computational effort or storage amount, as the
time integral for ŷ can be calculated cumulatively via numerical quadrature during
the solution of the wave equation (3.5).

For an even number of steps nT, for instance, the Simpson’s quadrature rule
yields

ŷ(x) ≈
1

3nT

nT/2

∑
m=1

[ṽ(x, t2m−2)+ 4ṽ(x, t2m−1)+ ṽ(x, t2m)],

where ṽ(x, t) = (y(x, t)+ i
ω yt(x, t)) eiωt and tm = m∆t, m = 0, . . . , nT.

We denote the use of the original functional J1, combined with the filtering pro-
cedure and the compatibility condition, by J f p,cc

1 .

3.5.2 Error estimate

We consider the accuracy and rate of convergence of the numerical solution uh to the
Helmholtz problem, obtained with the CMCG method and the frequency filtering
procedure. The rate of convergence of the CMCG method may not only depend on
the mesh size h but also on the time step ∆t and the tolerance Tol in the CG method
– see Section 3.7.

Let y be the solution of the wave equation with the initial values y0, y1 and ŷ
given in (3.55). Then we first show that the error of ∥u − ŷ∥ in L2-norm depends on
the departure from y(0), yt(0) after one period at t = T. Second, we show that uh
converges to the numerical solution u∗h of (2.19), obtained by the direct solver, for the
same spatial discretization when ∆t and Tol both tend to zero. As a consequence, for
sufficiently small ∆t and Tol, we obtain the same rate of convergence of uh as the rate
of the direct solver when h tends to zero.

Theorem 10. Assume Ω ⊂ Rd, d = 1, 2, 3, be an open, bounded and connected domain,
with a Lipschitz boundary ∂Ω. Let u ∈ H1(Ω) be the unique complex-valued solution of
(2.9) and y ∈ C0(0, T; H1(Ω))∩C1(0, T; L2(Ω)) the solution of (3.5) with the initial value
(y0, y1) ∈ H1(Ω)× L2(Ω) and T = 2π

ω . Then v given by

v(x) = ⨏
T

0
(y(x, t)+

i
ω

yt(x, t)) eiωt dt ∈ H1
(Ω) (3.60)

satisfies the boundary conditions (2.9c), (2.9d) and there are constants C, CS > 0 such that

∥a
∂

∂n
v − ik

√
av − gS∥

H−
1
2 (ΓS)

≤ CS(∥y(⋅, T)− y0∥H1(Ω) + ∥yt(⋅, T)− y1∥H−
1
2 (ΓS)

), (3.61)

and
∥u − v∥L2(Ω) ≤ C(∥y(⋅, T)− y0∥H1(Ω) + ∥yt(⋅, T)− y1∥L2(Ω)). (3.62)

In particular, if y, yt both are T-periodic then v satisfies the absorbing boundary condition
(2.9) and u = v a.e. in Ω.

Remark 7. (i) In the presence of absorbing boundary conditions (Hd−1(ΓS) > 0), the
solution v(x), resulted from the frequency filtering procedure given in (3.60), may not
satisfy the desired condition (2.9b) when the solution y(x, t) of the wave equation is not
exactly T-time periodic. However, Theorem 10 provides the continuous dependence of
the departure of v from (2.9b) on the departure of y from periodicity. For yt ∈ H1(Ω),
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we have the estimate

∥a
∂

∂n
v − ik

√
av − gS∥

H−
1
2 (ΓS)

≤ CS(∥y(⋅, T)− y0∥H1(Ω) + ∥yt(⋅, T)− y1∥H1(Ω)).

(ii) For then solution v in (3.60), where the corresponding time-dependent solution y is
only “closed” to T-time periodic, the error of u − v converges uniformly to zero when
the departure of y from periodicity tends to zero.

Proof of Theorem 10. (i) We first show that v given by (3.60) lies in H1(Ω) and satisfies
the boundary conditions (3.5c) and (3.5d).

By the definition (3.60) of v and integration by parts in time, we have

v(x) = ⨏

T

0
(y(x, t)+

i
ω

yt(x, t)) eiωt dt = 2⨏
T

0
y(x, t) eiωt dt +

i
Tω

y(x, t)∣
T

0
.

The regularity of y ∈ C1(0, T; H1(Ω)) immediately implies that v ∈ H1(Ω).
Next, the boundary condition (3.5d) yields

v = ⨏

T

0
(y(⋅, t)+

i
ω

yt(⋅, t)) eiωt dt = ⨏
T

0
(Re{gD e−iωt

}+ i Im{gD e−iωt
}) eiωt dt = gD

on the boundary ΓD. Similarly, boundary condition (3.5c) yields

a
∂

∂n
v = a⨏

T

0
(Re{gN e−iωt

}+ i Im{gN e−iωt
}) eiωt dt = gN

on ΓN , which proves the first assertion.

(ii) Second, we show that v satisfies (3.61). The definition (3.60) yields

a
∂

∂n
v − ik

√
av = ⨏

T

0
(a

∂

∂n
(y(⋅, t)+

i
ω

yt(⋅, t))− ik
√

a(y(⋅, t)+
i
ω

yt(⋅, t))) eiωt dt

= ⨏

T

0
(a

∂

∂n
y(⋅, t)+

√
a

c
yt(⋅, t)+

i
ω

(a
∂

∂n
yt(⋅, t)−

√
a

ω2

c
y(x, t))) eiωt dt.

We apply twice integration by parts over [0, T] on the last term to obtain

a
∂

∂n
v − ik

√
av = ⨏

T

0
(a

∂

∂n
y(⋅, t)+

√
a

c
yt(⋅, t)+

i
ω

∂

∂t
(a

∂

∂n
y(⋅, t)+

√
a

c
yt(⋅, t))) eiωt dt

−

√
a

c
y(⋅, t)∣

t=T

t=0
−

i
√

a
ωc

yt(⋅, t)∣
t=T

t=0

= gS −

√
a

c
y(⋅, t)∣

t=T

t=0
−

i
√

a
ωc

yt(⋅, t)∣
t=T

t=0
,

by the boundary condition (3.5b). This implies, together with the triangle inequality
and the trace theorem [56, §5.5], that there is a constant Ctr > 0 such that

∥a
∂v
∂n

− ik
√

a v − gS∥
H−

1
2 (ΓS)

≤ CS(∥y(⋅, T)− y0∥H1(Ω) + ∥yt(⋅, T)− y1∥H−
1
2 (ΓS)

)
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with

CS = ∥
√

a∥L∞(Ω)(
Ctr

cmin
+

1
ωcmin

),

which proves the first assertion (3.61).

(iii) Next, we define

z(x, t) = Re{u(x) e−iωt
}− y(x, t), (3.63)

which solves the wave equation (3.5) with f ≡ gD ≡ gN ≡ gS ≡ 0 and

z(x, 0) = Re{u(x)}− y0(x), zt(x, 0) = ω Im{u(x)}− y1(x).

By the identity

u(x) = ⨏

T

0
u(x) e−iωt eiωt dt = ⨏

T

0
(Re{u(x) e−iωt

}+ i Im{u(x) e−iωt
}) eiωt dt

= ⨏

T

0
(Re{u(x) e−iωt

}+
i
ω

Re{−iωu(x) e−iωt
}) eiωt dt

and the definitions (3.63) and (3.60), we obtain

u(x)− v(x) = ⨏

T

0
(z(x, t)+

i
ω

zt(x, t)) eiωt dt.

Since e±iωt is T-periodic, integration by parts over [0, T] on zt and the definition of z
yield

u(x)− v(x) = 2⨏
T

0
z(x, t) eiωt dt +

i
ω

y(x, t)∣
t=T

t=0
. (3.64)

Now, we define

ψ(x) = ⨏
T

0
z(x, t) eiωt dt. (3.65)

Then for ϕ ∈ H1
D(Ω), integration by parts in time yields

(−k2ψ −∇ ⋅ (a∇ψ), ϕ) = ⨏

T

0
∫

Ω
(−k2

(x)z(x, t)−∇ ⋅ (a(x)∇z(x, t))) eiωt ϕ(x) dt dx

= ⨏

T

0
∫

Ω
[

1
c2(x)

ztt(x, t)−∇ ⋅ (a(x)∇z(x, t))] eiωt ϕ(x) dt dx

−
1
T ∫Ω

1
c2(x)

zt(x, t)ϕ(x)∣
T

0
dx +

iω
T ∫

Ω

1
c2(x)

z(x, t)ϕ(x)∣
T

0
dx.

Since z solves the homogeneous wave equation (3.5), we have

(−k2ψ −∇ ⋅ (a∇ψ), ϕ) = ∫
Ω

fψ(x)ϕ(x) dx

with

fψ(x) =
iω

c2(x)T
y(x, t)∣

t=T

t=0
−

1
c2(x)T

yt(x, t)∣
t=T

t=0
∈ L2

(Ω). (3.66)
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Moreover, the definition (3.65) of ψ and the boundary condition (3.5b) follow

∫
ΓS
(a

∂ψ

∂n
− ik

√
aψ)ϕ ds = ∫

ΓS
⨏

T

0
(−

√
a(x)

c(x)
zt(x, t)− ik(x)

√
a(x) z(x, t)) eiωt ϕ(x) dt ds.

By integration by parts, we get

∫
ΓS
(a(x)

∂

∂n
φ(x)− ik(x)

√
a(x) φ(x))ϕ(x) ds = ∫

ΓS
gφ(x)ϕ(x) ds

with

gψ(x) = −
√

a
cT

(z(x, T)− z(x, 0)) = −
√

a
cT

(y(x, T)− y(x, 0)) ∈ L2
(ΓS). (3.67)

Since z satisfies the boundary conditions (3.5c) and (3.5d) with gD ≡ gN ≡ 0, by the
definition (3.65) we get

ψ(x) = 0, x ∈ ΓD,
∂

∂n
ψ(x) = 0, x ∈ ΓN .

It results that ψ solves the Helmholtz equation with f ≡ fψ, gS ≡ gψ, and gD ≡ gN ≡ 0.
Moreover, the definitions (3.66) and (3.67) yield

∥ fψ∥L2(Ω) ≤
ω

c2
minT

∥y(⋅, T)− y(⋅, 0)∥L2(Ω) +
1

c2
minT

∥yt(⋅, T)− yt(⋅, 0)∥L2(Ω) (3.68)

and, together with the constant Ctr > 0 from the trace operator,

∥gψ∥L2(ΓS)
≤

Ctr∥
√

a∥L∞(Ω)

cminT
∥y(⋅, T)− y(⋅, 0)∥H1(Ω). (3.69)

Under the assumption that the Helmholtz equation has a unique solution, by the
boundedness of the inverse [56, §6.2], there is a constant CH > 0 independent of φ,
fφ, and gφ such that

∥ψ∥L2(Ω) ≤ CH(∥ fψ∥L2(Ω) + ∥gψ∥L2(ΓS)
).

This, together with (3.64), (3.68), and (3.69), results

∥u − v∥L2(Ω) ≤ C(∥y(⋅, T)− y(⋅, 0)∥H1(Ω) + ∥yt(⋅, T)− yt(⋅, 0)∥L2(Ω))

with

C =
2CHω

c2
minT

+
CH

c2
minT

+
2CHCtr∥

√
a∥L∞(Ω)

cminT
+

1
ω

,

which concludes the assertion (3.62).

Following Theorem 10, we have the following estimate for the semi-discrete yh
and fully-discrete solution yh,∆t of (3.5).

Corollary 3. Let u ∈ H1(Ω) be the unique complex-valued solution of (2.9) and y ∈ C0([0, T]; H1(Ω))∩

C1([0, T]; L2(Ω)) be the real-valued solution of (3.5) with initial value (y0, y1) ∈ H1(Ω)×

L2(Ω) and T = 2π
ω . Furthermore, let uh ∈ Vh ⊂ H1(Ω) be the Galerkin approximation of u,

yh ∈ C0([0, T]; Vh)∩C1([0, T]; Wh), Wh ⊂ L2(Ω), be the semi-discrete approximation of y,
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and yh,∆t be the full-discrete approximation of y, where

v(x) = ⨏

T

0
(y(x, t)+

i
ω

yt(x, t)) eiωt dt, (3.70a)

vh(x) = ⨏

T

0
(yh(x, t)+

i
ω

(yh)t(x, t)) eiωt dt, (3.70b)

vh,∆t(x) = ⨏

T

0
(yh,∆t(x, t)+

i
ω

(yh,∆t)t(x, t)) eiωt dt. (3.70c)

Suppose that there are constants r, s, Ch, and Ct independent of y, h, and ∆t such that

max{∥yh − y∥, ∥(yh)t − yt∥} ≤ Chhr+1, ∥yh,∆t − yh∥ ≤ Ct∆ts. (3.71)

Then there is a constant C > 0 such that

∥u − vh,∆t∥L2(Ω) ≤ C(hr+1
+∆ts

+ ∥y(⋅, T)− y(⋅, 0)∥H1(Ω) + ∥yt(⋅, T)− yt(⋅, 0)∥L2(Ω)).

Proof. The estimation follows directly from the assumptions (3.71), the definition
(3.70), and Theorem 10, together with

∥u − vh,∆t∥ ≤ ∥u − v∥+ ∥v − vh,∆t∥ ≤ ∥u − v∥+ ∥v − vh∥+ ∥vh − vh,∆t∥.

Remark 8. Note that ∥v − vh∥ is the error in spatial discretization, ∥vh − vh,∆t∥ the error
in the numerical time integration and ∥u − v∥ the departure from the solution of the wave
equation y(⋅, 0), yt(⋅, 0) after one period at t = T. Following Theorem 10, the error ∥u − v∥
tends to zero when the misfit ∥y(⋅, T)−y0∥H1 and ∥yt(⋅, T)−y1∥L2 tend to zero. Furthermore,
vh and vh,∆t converge to v and vh, respectively, when h, ∆t → 0.

3.6 Initial run-up phase

In [114], Mur suggested that convergence of the time-harmonically forced wave
equation (3.5) to the time-harmonic asymptotic regime can be accelerated by pre-
multiplying the time-harmonic sources in (3.5) with the smooth transient function
θtr from zero to one,

θtr(t) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(2− sin(
t

ttr

π

2
)) sin(

t
ttr

π

2
), 0 ≤ t ≤ ttr,

1, t ≥ ttr,
(3.72)

active during the initial time interval [0, ttr], ttr = mT, and m ∈ N0 – see also [26].
Figure 3.8 monitors the function θtr(t), t ∈ [0, ttr].

For a given initial value (ŷ0, ŷ1) we first solve (3.5) over t ∈ [0, ttr] with Re{ f (x)e−iωt}

replaced by θ(t)Re{ f (x)e−iωt}, and Re{gS(x)e−iωt}, Re{gN(x)e−iωt}, and Re{gD(x)e−iωt},
respectively. For a real source term, e.g. f (x) ∈ R, the time-harmonic solution is given
by

Re{ f (x)e−iωt
} = f (x) cos(ωt).

Instead of cos(ωt) (Figure 3.8b), the source f is multiplied with cos(ωt)θtr(t) (Figure
3.8c).

Let ŷ be the corresponding solution of (3.5). Then we set

y0(x) = ŷ(x, ttr), y1(x) = ŷt(x, ttr). (3.73)
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0 ttr
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1

(a) θtr(t)
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−1
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1

(b) cos(ωt)

0 ttr

−1
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1

(c) cos(ωt)θtr(t)

Figure 3.8: Smooth transient kernel: (a) transient kernel θtr(t) from t = 0 to t = ttr; (b)
cos(ωt); (c) cos(ωt)θtr(t).

Here we always set ŷ0 = ŷ1 = 0. Moreover, the size of the initial time interval ttr is
chosen so that

ttr = mT, m ∈ N0, T = (2π)/ω,

and the wave travels at least once across the entire computational domain Ω during
the time interval [0, ttr]; hence, we set

m =

⎡
⎢
⎢
⎢
⎢
⎢
⎢

√

width2
+height2

+depth2

cminT

⎤
⎥
⎥
⎥
⎥
⎥
⎥

.

3.7 CMCG Algorithm and computational cost

We list the full CMCG Algorithm 2 – see [25, 26, 83, 80].
Every iteration of the CMCG Algorithm requires the solution of one strongly

elliptic problem (3.38a) together with the solution of one forward and one back-
ward wave equation over one period [0, T] and m − 1 backward wave equations for
m = 2, 3. For J2 or J3, however, the additional backward (or adjoint) wave equations
are not solved over the entire period [0, T] but only over the shorter time interval
[0, t1] for J2, or [0, t1] and [0, t2] for J2. Hence if we neglect the (much smaller) com-
putational cost of the single elliptic problem, the relative increased cost of using ei-
ther J2 or J3 over that of using J1 is proportional precisely to the additional number
of time-steps required for those (one or two) additional shorter time intervals [0, tj].
The computational cost of each single time-step is always merely proportional to the
number of degrees of freedom in the spatial FE discretization, when explicit time
integration is used to solve the (forward and backward) wave equations.

In Table 3.1, we estimate the computational effort and storage of the CMCG
method using different penalty functionals relative to that using the original func-
tional J1. Here nT = T/∆t denotes the number of time steps in the solution of the
forward wave equation over one period [0, T]. The functional Jm is slightly more
expensive for m = 2, 3, because each time instant tj, 1 ≤ j ≤ m, needs the solution
of an adjoint wave equation, but only over [0, tj]. Therefore, the functional J2 with
t1 = T/4 and t2 = T requires nT time-steps to obtain the forward solution (3.5) at
t = T and (nT + nT/4) time-steps for the two adjoint wave equations (3.37), which
yields a total of 2.25 × nT time-steps. Hence, the use of the functional J2 leads to a
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Algorithm 2: CMCG Algorithm

1 Input: Initial guess v(0) = (y(0)
0 , y(0)

1 ), tolerance Tol, cost functional J (e.g. J = J1)
2 Output: uh
3 Solve the forward and the backward wave equations (3.5) and (3.37) to deter-

mine the gradient of J, g(0) = J′(v(0)), defined by (3.34) .
4 Solve the coercive elliptic problem (3.38a) with g = g(0) to determine the new

search direction g̃(0).
5 Set r(0) = d(0) = g̃(0), relres(0) = 1, and ` = 0.
6 while relres(`) > Tol do
7 Solve the wave equation (3.5) with f = gD = gS = gN = 0 and the initial values

d(`) = (d(`)
0 , d(`)

1 ) and the backward wave equation (3.37).
8 Compute the gradient g(`) = J′(d(`)) defined by (3.34).
9 Solve the coercive elliptic problem (3.38a) with g = g(`) to get g̃(`).

10 α` =
∥
√

a∇r(`)0 ∥2
L2(Ω)

+ ∥(1/c) r(`)1 ∥2
L2(Ω)

(a∇g̃(`)
0 ,∇d(`)

0 )L2(Ω) + ((1/c2) g̃(`)
1 , d(`)

1 )L2(Ω)

.

11 v(`+1) = v(`) − α`d(`)

12 r(`+1) = r(`) − α` g̃(`)

13 β` =
∥
√

a∇r(`+1)
0 ∥2

L2(Ω)
+ ∥(1/c) r(`+1)

1 ∥2
L2(Ω)

∥
√

a∇r(`)0 ∥2
L2(Ω)

+ ∥(1/c) r(`)1 ∥2
L2(Ω)

14 d(`+1) = r(`+1) + β`d(`)

15 relres(`+1) =

¿
Á
Á
Á
ÁÀ

∥
√

a∇r(`+1)
0 ∥2

L2(Ω)
+ ∥(1/c) r(`+1)

1 ∥2
L2(Ω)

∥
√

a∇r(0)
0 ∥2

L2(Ω)
+ ∥(1/c) r(0)

1 ∥2
L2(Ω)

16 ` ← ` + 1

17 return uh = y(`)
0 + i

ω y(`)
1 , v(`) = (y(`)

0 , y(`)
1 )

(2.25 − 2)/2 = 12.5% relative increase in computational cost over J1. Similarly, the
functional J3 with t1 = T/4, t2 = T/2, and t3 = T requires nT time-steps for the forward
solution and (nT/4 + nT/2 + nT) time-steps for the adjoint solutions, which leads to
2.75× nT time-steps in total.

In contrast, the functional J∞ only needs the solution of a single forward and a
single backward wave equation over [0, T], which yields the same computational
effort as the functional J1. However, as the adjoint wave equation then involves
the entire history of the forward solution, it becomes necessary to store the forward
solution at all time steps tj = j∆t, 1 ≤ j ≤ nT.

3.8 Numerical experiments I: parameter study

Here we present a series of numerical examples that illustrate the accuracy and con-
vergence behavior of the CMCG method. First, we verify that the numerical solution
uh of (2.9), obtained with the CMCG method, converges to the numerical solution u∗h
obtained with a direct solver for the same spatial FE discretization as the time step
∆t → 0 in the numerical integration of (3.5). Second, we consider a plane wave exact
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J1 Jcc
1 J2 J3 J∞ J f p,cc

1
number of periods [0, T] 2 2 2.25 2.75 2 2

relative computational time 1 1 1.125 1.375 1 1

relative memory requirement 1 1 2 3 nT 1

sound-soft scattering ✓ ✓ ✓ ✓ ✓ ✓

sound-hard scattering × ✓ ✓ ✓ ✓ ✓

physically bounded domain × × × ✓ ✓ ✓

Table 3.1: Computational cost and storage of the CMCG method using the original functional
J1 combined with the compatibility condition, denoted by Jcc

1 , and with the filtering procedure,
denoted by J f p,cc

1 , or the alternative functionals Jm, J∞ relative to that using J1. Crosses indicate
that the CMCG method generally does not yield the correct time-harmonic solution. The top line
indicates the number of periods [0, T] for which the forward or backward wave equation (3.5)
must be solved.

solution and verify that the CMCG method achieves the expected rates of conver-
gence. Next, we consider the one-dimensional exact solution and progressively in-
crease the wave number to study how the number of CG iterations in the CMCG Al-
gorithm depends on the wave number, while refining the mesh to keep the number
of mesh points per wave length fixed. Fourth, we evaluate different stopping criteria
for the CG iteration in the CMCG Algorithm from Section 3.7. We also compare the
CMCG Algorithm to a long-time solution of the wave equation without controllabil-
ity (“do-nothing” approach) to demonstrate its effectiveness, in particular for non-
convex obstacles. Moreover, we show how an initial run-up yields a judicious initial
guess (y0, y1) for the CG iteration thereby further accelerating convergence. Finally,
we study how the number of CG iterations in the CMCG Algorithm depends on the
width of the computational domain Ω = (0, L)× (0, 1) and the time interval (0, mT),
T = 2π

ω , while increasing the width L and the number of time periods m.

3.8.1 Semi-discrete convergence

First, we consider a 1D example to show for a fixed FE-mesh that the numerical
solution uh, obtained with the CMCG method, converges to the numerical solution
u∗h , obtained with a direct solver from the sameP3-FE discretization of the Helmholtz
equation (2.9), as ∆t → 0.

Now, let u be the exact solution of (2.9) in Ω = (0, 1) with ω = k = 8π, a = c = 1 and
f = 0:

u(x) = − exp(ikx), with u(0) = −1, u′(1)− ik u(1) = 0.

For the time integration of (3.5), we use the standard explicit fourth-order Runge-
Kutta (RK4) method. Usually we avoid inverting the mass-matrix at each time step
via order preserving mass-lumping which, however, introduces an additional spatial
discretization error. Here to ensure a consistent comparison, we compute both uh

and u∗h without mass-lumping. For the CG iteration, we choose y(0)
0 ≡ 0, y(0)

1 ≡ 0 and
fix the tolerance to Tol = 10−14 to ensure convergence to machine precision accuracy.
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Figure 3.9: Semi-discrete convergence: Comparison of the numerical solution uh, obtained
with the CMCG method, and u∗h , obtained with a direct solver.
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Figure 3.10: Plane wave solution: the relative error of the numerical solution in the unit
square using the CMCG method for varying mesh size h.

In Figure 3.9, we monitor both the L2- and H1-difference between the numerical
solution u∗h , obtained with a direct solver, and uh, obtained with the CMCG method.
As expected, for increasingly smaller ∆t and a fixed stringent tolerance in the CG
iteration, the numerical solution uh of the CMCG method always converges to the
discrete solution u∗h of (2.9) for the same FE discretization.

3.8.2 Plane Wave Solution

We verify that the controllability method with the functional J1 from (3.33) indeed
achieves the same rate of convergence as the direct solution of the Helmholtz equa-
tion. Here, we consider a plane wave solution u(x, y) = uin(x, y), where

uin
(x, y) = exp(ik(x cos(θ)+ y sin(θ))) (3.74)

with the angle of incidence θ = 135○ and wave number k = ω = 2π (c ≡ 1). Hence we
consider (2.9) in the unit square Ω = (0, 1) × (0, 1) and set the boundary conditions
accordingly with ΓD = [0, 1]× {0, 1} and ΓS = {0, 1}× (0, 1). We use Pr-FE with (order
preserving) mass-lumping for the spatial discretization with r = 1, . . . , 3 and the clas-
sical fourth-order Runge-Kutta (RK4) method for the time integration of (3.5). The
tolerance in the CMCG Algorithm (Section 3.7) is set to Tol = 10−11.
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Figure 3.11: CMCG iterations vs. wave number: One-dimensional Helmholtz equation (2.9)
with Dirichlet condition at x = 0 and Sommerfeld condition at x = 1. The number of CMCG
iterations vs. the wave number k for a tolerance Tol = 10−6, 10−12: (a) with pollution error;
(b) without pollution error. The relative L2- and H1-errors between the exact solution of (2.9)
and the numerical solution, obtained with the CMCG method, for a tolerance 10−12; (c) with
pollution error; (d) without pollution error.

In Figure 3.10, we observe that the relative error of the numerical solution, ob-
tained with the CMCG method for a sequence of meshes with mesh size h = 2−`,
` = 2, . . . , 6, converges with the (expected) optimal rate as hr+1 (or hr) with respect to
the L2-norm (or H1-norm) – see Section 2.4. Clearly, as the mesh size decreases we
also reduce the time-step ∆t for numerical stability.

3.8.3 Number of CG iterations in the CMCG method for various frequency

Even when the geometry and the problem’s set-up remain fixed, classical iterative
methods require increasingly many iterations for the discrete Helmholtz problem at
higher wave number, k = ω/c [7, 55, 50]. To study how the number of CG iterations in
the CMCG Algorithm depends on k (or ω), we again consider the one-dimensional
exact solution,

u(x) = − exp(ikx),

(2.9) with a ≡ c ≡ 1 and f ≡ 0 together with u(0) = −1 at x = 0 and an (exact) absorbing
boundary condition at x = 1. For the numerical solution of (3.5), we use P3-FE in
space and the RK4 method in time.

Now, we progressively increase the wave number as k = ω = 2i , i = 0, . . . , 15,
while refining the mesh to keep the number of mesh points per wave length fixed,
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Figure 3.12: Computational domain Ω with a convex square (a) or a nonconvex cavity (b)
shaped obstacle

that is kh ≈ 1. In Figure 3.11a, we show the number of CMCG iterations required to
reach a fixed tolerance of Tol = 10−6, 10−12 in Step 6 in Algorithm 2. We observe that
the number of CG iterations vs. k essentially increases linearly with an approximate
slope of 0.58 – 0.92 for Tol = 10−6 and 0.83 – 0.98 for Tol = 10−12.

When the number of mesh points per wave length remains fixed as k increases,
the accuracy of the numerical solution generally suffers from the pollution effect
[7, 50]. Indeed, as shown in Figure 3.11c the error in the CMCG solution increases
with frequency if hk ≈ 1. To avoid the pollution error, we thus repeat the same
numerical experiment but let the mesh size h decrease slightly faster as k(kh)3 ≈ 1
while increasing k – see [7]. Now as shown Figure 3.11d both the L2- and H1-error
remain bounded as the frequency increases. Again in Figure 3.11b, we observe a
linear increase in the number of CMCG iterations vs. k with an approximate slope
of 0.62 – 0.90 for Tol = 10−6 and 0.83 – 1.10 for Tol = 10−12. Hence, the number of CG
iterations in the CMCG method generally increases with the wave number k both
with and without control of the pollution error.

3.8.4 CG iteration and initial run-up

Next, we compare different stopping criteria for the CG iteration in the CMCG Al-
gorithm 2. We then illustrate how the CMCG method greatly accelerates the con-
vergence of a solution of the wave equation to its long-time asymptotic limit, in
particular for nonconvex obstacles. Finally, we show how an initial run-up yields
a judicious initial guess for the CG iteration, which further accelerates the conver-
gence of the CMCG Algorithm.

Hence, we consider a two-dimensional sound-soft scattering problem (2.9) with
a = c = 1, k = ω = 2π, f = gD = gN = 0, and gS = −( ∂

∂n − ik)uin in a bounded square
domain Ω = (0, 10λ) × (0, 10λ), λ = 1, either with a convex obstacle or a semi-open
square shaped cavity. On the boundary ΓD of the obstacle, we impose a homoge-
neous Dirichlet condition and on the exterior boundary ΓS a Sommerfeld-like ab-
sorbing condition on the total wave field. The incident plane wave uin given by
(3.74) impinges with the angle θ = 135○ upon the obstacle.
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CG iteration and stopping criteria

In Algorithm 2 in Section 3.7, the CMCG method terminates at the `-th iteration and
returns

u(`)
h = y(`)

0 + (i/ω)y(`)
1 (3.75)

when the relative CG-residual in Step 15,

∣u(`)
h ∣CG ∶=

¿
Á
Á
Á
ÁÀ

∥
√

a ∇r(`+1)
0 ∥2

L2(Ω)
+ ∥(1/c) r(`+1)

1 ∥2
L2(Ω)

∥
√

a ∇r(0)
0 ∥2

L2(Ω)
+ ∥(1/c) r(0)

1 ∥2
L2(Ω)

, (3.76)

is less than the tolerance Tol. Indeed, a small CG-residual indicates that the gradient
of J1 is sufficiently small at (y(`)

0 , y(`)
1 ) and thus that a minimum has been reached.

Since the cost functional J1 also vanishes at the minimum, we can use J1 itself,
instead of its gradient, to monitor convergence of the CG iteration via the relative
periodicity misfit,

∣u(`)
h ∣J ∶=

√

J1(y(`)
0 , y(`)

1 )

∥ f ∥L2(Ω) + ∥gS∥L2(ΓS)

. (3.77)

In fact, the convergence criterion (3.77) is typically used in long-time simulations of
the wave equation without controllability (“do-nothing” approach) to determine the
current misfit from periodicity in the energy norm.

Alternatively, we may also directly compute the current relative Helmholtz residual
from (2.9):

∣u(`)
h ∣H ∶=

∥Ahu(`)
h − Fh∥2

∥Fh∥2
, (3.78)

where Ah and Fh result from a FE discretization in Section 2.4 of (2.9) without mass-
lumping, u(`)

h corresponds to the discrete vector of FE coefficients of u(`)
h , and ∥ ⋅ ∥2

denotes the discrete Euclidean norm.
In Figure 3.13, we monitor ∣u(`)

h ∣CG, ∣u(`)
h ∣J , and ∣u(`)

h ∣H, defined in (3.76)–(3.78)

for the CMCG solution u(`)
h at the `-th CG iteration. Whether for a convex (Figure

3.12a) or a nonconvex (Figure 3.12b) obstacle, both the CG-residual ∣u(`)
h ∣CG and the

periodicity misfit ∣u(`)
h ∣J rapidly converge to zero. In contrast, the Helmholtz residual

∣u(`)
h ∣H stagnates beyond the first hundred CG iterations, as the mass-matrix that

appears in Ah in (3.78) is discretized here without mass-lumping. That additional
discretization error together with the numerical error in the time integration of (3.5)
both prevent the discrete Helmholtz residual ∣u(`)

h ∣H from converging to zero; hence,
(3.78) is generally not a reliable stopping criterion for the CMCG method, unless the
spatial FE discretizations used in (2.9) and (2.19) are identical.

CMCG method vs. long-time wave equation solver

In general, the solution w(x, t) of the time-harmonically forced wave equation (3.5)
converges asymptotically to the time-harmonic solution [96, 11]

w(x, t) ∼ Re{u(x) e−iωt
} as t → +∞, (3.79)

where u is the (unique) solution of the Helmholtz equation (2.9) – see Section 3.2.1.
Thus, with a wave equation solver at hand, one can in principle compute u from
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Figure 3.13: CG iterations and stopping criteria: relative CG residual ∣u(`)h ∣CG in (3.76),

Helmholtz residual ∣u(`)h ∣H in (3.78), and periodicity mismatch ∣u(`)h ∣J in (3.77) at the `-th CG
iteration.
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Figure 3.14: CMCG method vs. long-time wave equation solver: plane wave scattering
from a convex (a) or a nonconvex obstacle (b). Comparison between the numerical solution, u(`)h ,

obtained with the CMCG method at the `-th CG iteration and the approximate solution w(`)h ,
obtained via (3.80) from the solution of the wave equation at time t = ` T without controllability.

w by solving (3.5) without controllability until a quasi-periodic regime is reached.
Given the current value of w(⋅, t) at time t = ` T, ` ≥ 1, one can extract it from the
complex-valued approximate solution of (2.9),

w(`)
h ∶= w(⋅, `T)+

i
ω

∂

∂t
w(⋅, `T), ` ≥ 1, T = (2π)/ω, (3.80)

which converges to u as ` → +∞. This “do-nothing” approach only requires the
time integration of (3.5) without controllability or CG iteration, but it may converge
arbitrarily slowly for nonconvex obstacles due to trapped modes [26, 83].

In Figure 3.14, we monitor the periodicity misfit of ∣u(`)
h ∣J and ∣w(`)

h ∣J , where u(`)
h

is the CMCG solution at the `-th CG iteration and w(`)
h is given by (3.80). In addi-

tion, we also compare both numerical solutions with the direct solution u∗h of the
linear system (2.19), resulting from the same underlying FE discretization, yet with-
out mass-lumping.

We observe that the asymptotic solution w(`)
h and the CMCG solution u(`)

h indeed
both converge to the time-harmonic solution u∗h , until the additional errors caused
by mass-lumping and the time discretization dominate the total error – see Section
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Figure 3.15: Initial run-up: plane wave scattering problems from (a) a convex or (b) a noncon-
vex obstacle: total number of forward and backward wave equations solved over one period [0, T]

until convergence.

3.8.1. For the convex obstacle, the number of CG iterations required by u(`)
h is only

half the number of time periods needed for w(`)
h to reach the same level of accuracy.

Since each CG iteration requires not only the solution of a forward and backward
wave equation but also of the elliptic problem (3.38a), simply computing a long-time
solution of the time-harmonically forced wave equation (3.5) without controllability
in fact proves cheaper here than the CMCG Algorithm.

For a nonconvex obstacle, however, the long-time numerical solution of the time-
dependent wave equation w(`)

h converges extremely slowly and fails to reach the
asymptotic time-harmonic regime even after 1000 periods. In contrast, the con-
vergence of the CMCG solution u(`)

h remains remarkably insensitive to the non-
convexity of the obstacle.

Initial run-up

In [114], Mur suggested that convergence of the time-harmonically forced wave
equation (3.5) to the time-harmonic asymptotic regime can be accelerated by pre-
multiplying the time-harmonic sources in (3.5) with the smooth transient function
θtr given in (3.72).

Again, we consider plane wave scattering either from a convex or nonconvex
obstacle – see Figure 3.12. Now, we first solve the wave equation (3.5) with the
modified source terms and zero initial conditions until time t = ` T, ` ≥ 1, which
yields the time-dependent solution ytr. After that initial run-up phase, we then apply
the CMCG Algorithm using the initial guess

y(0)
0 (x) = ytr(x, `T), y(0)

1 (x) =
∂

∂t
ytr(x, `T), x ∈ Ω.

To estimate the total computational effort, we count the total number of time periods
for which the (forward or backward) wave equation is solved: ` during initial run-up
and 2 × #iterCG during the CG iteration. In Figure 3.15 we display the total number
2 × #iterCG + ` of time periods needed until convergence with Tol = 10−6, as we vary
the number of periods ` in the initial run-up.

For a convex obstacle, the CMCG Algorithm without any initial run-up requires
888 time periods. However, as above, convergence can also be achieved at a com-
parable computational effort simply by solving the wave equation, here with the
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Figure 3.16: Plane wave in a semi-opened wave guide: Comparison of the number of CG
iterations, obtained with the CMCG method, with the width L of the computational domain
Ω = (0, L)× (0, 1) and time interval (0, mT).

source terms pre-multiplied by θtr in (3.72). Still, the minimal computational cost is
achieved when both the initial run-up and the CMCG Algorithm are combined.

For the nonconvex obstacle, however, simply solving the time-harmonically forced
wave equation over a very long time, let be it with or without θtr(t) smoothing, fails
to reach the long-time asymptotic final time-harmonic state. Regardless of the length
of the initial run-up, convergence indeed cannot be achieved here (within 1000 time
periods) without controllability because of trapped modes. Nevertheless, the ini-
tial run-up always speeds up the convergence of the CMCG method by providing a
judicious initial guess for the CG iteration.

3.8.5 Computational domain and time interval

Here we consider the plane wave solution u = −uin, given by (3.74) with θ = 30○, of
the scattering problem (2.9) with k = ω = 2π, a = c = 1, and the exact source terms in a
semi-open waveguide Ω = (0, L)× (0, 1), L > 0. We impose a physical boundary con-
dition on ΓD = {x1 = 0} ∪ {x1 = L} ∪ {x2 = 0} and an impedance boundary condition
on ΓS = {x2 = L}. For the numerical solution of (3.5), we use P3-FE in space and the
RK4 method in time.

Here we apply the CMCG method for a fixed CG tolerance Tol = 10−6 to find
an initial value (y0, y1) such that the corresponding solution y of (3.5) is mT-time
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periodic with T = 2π/ω and m ≥ 1. We compare the number of CG iterations with
the width of the computational domain L and the number of time periods m.

Note that Theorem 6 provides constants λ, η ∈ R and a sequence of γ` ∈ H1(Ω)

solving the eigenvalue problem (3.21) with (ω`)/m instead of ω`:

(y(⋅, t), ϕ) = (Re{u e−i ω
m t

}, ϕ)+ (λ + ηt, ϕ)+
∞

∑
∣`∣>1

(γ`, ϕ) ei ω
m `t, ϕ ∈ H1

D(Ω). (3.81)

Since Hd−1(ΓD),Hd−1(ΓS) > 0, the eigenvalue problem has only the trivial solution
such that λ, η, and γ`, ∣`∣ > 1, all vanish precisely. As a result, we have y(x, t) =

Re{u(x) e−i ω
m t}. Moreover, Equation (3.81) and its first derivative in time with t = 0

yield the desired time-harmonics solution (3.7).
We observe that for a fixed time interval (0, T) (m = 1) in the time integration of

(3.5), the number of CG iterations increases linearly to the width L – see Figure 3.16a .
On the other hand, in Figure 3.16b for a fixed width L = 8 or L = 16, the number of CG
iterations decreases when the time interval (0, `T) grows large. Next, we vary both
the computational domain size Ω = (0, L) × (0, 1) and time interval (0, mT), where
L = m range from 1 to 48. Figure 3.16c monitors the number of CG iterations, which
lies between 134 and 254. For instance, in comparison of L = m = 2 and L = m = 48,
the CMCG method requires the number of CG iterations of 206 and 202, respectively,
which does not have significant differences.

We conclude that keeping the ratio between the width of the domain L and the
number of the time periods m constant, the number of CG iterations may neither
increase nor decrease significantly. Since each CG iteration requires the solution of
an elliptic problem (3.38a) and the time integration of (3.5) is inherently parallel, it is
recommended to enlarge the time interval for a large computational domain when
an efficient parallel solver for the time-dependent wave equation is available.

3.9 Numerical experiments II: Helmholtz equations in phys-
ically bounded or unbounded domains

Here we present a series of numerical experiments to illustrate the usefulness of
controllability methods (CMCG) for the solution of the Helmholtz equation (2.9) in
various typical configurations. First, we apply the CMCG method with the origi-
nal energy functional J1 from (3.33) to a typical sound-soft scattering problem, as in
[25, 26]. To overcome the bottleneck in the time integration of (3.5) due to local mesh
refinement, we replace standard time marching by Runge-Kutta based explicit local
time-stepping methods [78, 81]. Second, we apply the CMCG method to a sound-
hard scattering problem, where we restore uniqueness by imposing the compatibility
condition from Section 3.4.2. Next, we also apply the CMCG method to scattering
from an inhomogeneous inclusion with a first-order absorbing boundary condition
[12] to demonstrate that uniqueness is then inherently guaranteed (see Section 3.4.2).
Finally, we show how the CMCG method can also be efficiently applied in a physi-
cally bounded domain by using the functional J3 in (3.43).

3.9.1 Sound-Soft Scattering

Again, we apply the CMCG method to a typical sound-soft scattering problem from
the open wedge shown in Figure 3.5 in Section 3.2.4. Hence we consider (2.9) with
ω = 36π, a = c = 1, ΓD the boundary of the wedge (gD = 0) and ΓN = ∅. The
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Figure 3.17: Sound-soft scattering: contour lines of the numerical solu-
tion with the CMCG method combined with explicit local time-stepping.
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Figure 3.18: Sound-soft scattering: relative residual and relative error at each CG iteration
using the CMCG method combined with a local time-stepping method with a time-step ∆τ =

∆t/q with q = 1, . . . , 9 (left); zoom on the relative residuals at each CG iteration for varying q
(right). In the left frame the curves for different q essentially coincide at this scale.

unbounded exterior is truncated by a square artificial boundary ΓS, where we im-
pose the absorbing boundary condition (2.9b) with gS = 0. The initial conditions are
set to zero, while the incident wave originates from three point sources located at
(0.75, 0.4), (0.5, 0.65), and (0.75, 0.65) in the top right corner of Ω.

For spatial discretization, we use P3-FE with mass-lumping and the mesh shown
in Figure 3.5 with 79′917 nodes and 12′116 triangles. To overcome the bottleneck
from the CFL-restriction on the time step ∆t due to local mesh refinement near the
wedge, we opt for local time-stepping (LTS) methods based on the classical fourth-
order RK method [78]. Hence, we split the mesh into “fine” and “coarse” elements –
see Figure 3.5 – and use small local time steps of size ∆τ = ∆t/q but only in the “fine”
part. Here, q denotes the refinement ratio between the smallest mesh size hcoarse

min in
the “coarse” part and h f ine

min in the “fine” part, given by (3.15) with h = hmin. Figure 3.17
displays the contour lines of the numerical solution of (2.9) obtained by the CMCG
Algorithm (Section 3.7) with the functional J1 from (3.33) and a tolerance Tol = 10−7.
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Figure 3.19: Sound-hard scattering: contour lines of the total wave field obtained with the
CMCG method and the compatibility condition (3.40)–(3.41).

The numerical solution obtained with the CMCG method differs by only 0.15% from
that obtained through direct solution of the Helmholtz equation (2.9). Both solutions
differ from a reference solution on a finer mesh by less than 3%.

Now, we combine the CMCG method with local time-stepping using different
mesh refinement ratios q. For a fixed mesh, shown in Figure 3.5, we vary the par-
tition into “fine” and “coarse” elements such that q = 1, . . . , 9 in (3.15). Regardless
of the tolerance Tol = 10−5, 10−6, 10−7 in the CMCG Algorithm, we observe in Figure
3.18 that the relative residuals and the numbers of iterations remain identical inde-
pendently of q. In summary, the CMCG method yields a comparable accuracy to
the direct solution of the Helmholtz equation while the convergence of the CMCG
method remains unaffected by the local time-stepping strategy.

3.9.2 Sound-hard scattering

Here we apply the CMCG method to the typical situation of an incident plane wave
scattered from a sound-hard cavity, as shown in Figure 3.19. Hence we consider (2.9)
with ΓD = ∅, ΓN the boundary of the obstacle (gN = 0) and ΓS the exterior square arti-
ficial boundary. Since ΓD = ∅, the original cost functional J1 in (3.33) does not have a
unique minimizer. To remove the spurious constant shift and thus obtain the correct
(unique) solution, shown in Figure 3.19, we post-process the solution obtained with
J1 by applying the compatibility condition (3.40)–(3.41) derived in Section 3.4.2 (i).
Here, the angle of the incident wave (3.74) is φ = 315○ with a = c = 1 and ω = 8π
whereas the mesh in Ω = (0, 3)× (0, 3) consists of 8′146 P3-FE with 53′456 nodes. For
the sake of comparison, we compute a reference solution by solving the Helmholtz
equation directly on a finer mesh. The CMCG method yields a relative error of 0.27%
with a tolerance Tol = 10−6, comparable to that in the direct solution of (2.9) on the
same mesh with a relative error of 0.29%.
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(a) computational domain with inhomogeneous inclusion (b) scattered field

Figure 3.20: Scattering from a penetrable inhomogeneous inclusion: the squared wave
speed c2 is constant inside and outside of the kite-shaped inclusion (a); contour lines of the
numerical solution obtained with the CMCG method using the BGT-1 absorbing condition (3.50)
and the functional J1 (b).

3.9.3 Scattering from Inhomogeneous Inclusion

We consider scattering from a penetrable inhomogeneous inclusion with a circular
artificial boundary ΓS; hence, we consider (2.9) with ΓD = ΓN = ∅. Instead of apply-
ing the compatibility condition (3.39), we enforce uniqueness by replacing the (ho-
mogeneous) Sommerfeld-like condition (2.9b) and (3.5b) on ΓS by the more accurate
first-order (homogeneous) Bayliss-Gunzburger-Turkel (BGT-1) absorbing condition
(3.50a) and (3.50b), respectively – see Section 3.4.2 (iii).

Again, we use P3-FEM with 667′225 nodes and 102′504 elements and apply the
RK4 method for the time integration of (3.5). The frequency ω = 32π, a ≡ 1, and
c2(x) = 1+ 8 ⋅H(x), where H(x) is the indicator function of the kite-shaped inclusion
– see Figure 3.20a. In Figure 3.20b, we display the scattered field for an incident plane
wave (3.74) with φ = 180○ obtained by the CMCG method using the original func-
tional J1 from (3.33). Both the numerical solution obtained with the CMCG method
and that obtained by solving (2.9) directly yield a 2.1% relative error with respect to
a reference solution computed on a finer mesh. Thus, the BGT-1 condition, like any
other absorbing boundary condition with a positive (or negative) definite zeroth-
order term, permits the use of the CMCG approach with the original cost functional
J1 even when ΓD = ΓN = ∅.

3.9.4 Closed wave guide

Finally, we consider the Helmholtz equation (2.9) in a physically bounded domain
Ω = (−5, 1) × (−0.5, 0.5) without any impedance boundary condition, ΓS = ∅. At the
right vertical entry boundary x = 1, the wave field satisfies the Dirichlet boundary
condition (2.9d) with g ≡ 1; elsewhere, it satisfies a homogeneous Neumann bound-
ary condition. Here, we have ω = 25, c = 1, and a(x) = 1 + H(x), where H is the
indicator function of the ellipse-shaped inclusion shown in Figure 3.21.

Again, we use P3-FEM with 30′518 nodes and 4′622 triangles for the spatial dis-
cretization and the RK4 method for the time integration of (3.5). Here, the solution,
shown in Figure 3.22, obtained using the CMCG method and the cost functional J3
in (3.43) with a relative error of 5.7% is slightly more accurate than that obtained by
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Figure 3.21: physically bounded domain with an inhomogeneous medium

Figure 3.22: contour lines of the numerical solution

Figure 3.23: Closed waveguide: the inhomogeneity a is constant inside and outside of the
ellipse-shaped inclusion (top); contour lines of the numerical solution of (2.9) using the CMCG
method with the functional J3 defined by (3.43) with t1 =

T
4 , t2 =

T
2 , and t3 = T (bottom).

the direct solution of the linear system with a relative error of 6.3%, probably due to
the high condition number of the discrete Helmholtz problem.

3.10 Numerical experiments III: HPC-CMCG method

The CMCG method leads to inherently parallel non-intrusive algorithms, as long as
an efficient parallel solver for the time-dependent wave equation is available. Here
we demonstrate that the CMCG approach, which requires the solution of the elliptic
problem (3.38a) at each CG iteration, nonetheless achieves strong scalability on a
massively parallel architecture.

The CMCG Algorithm from Section 3.7 is implemented within FreeFem++ [88], an
open source finite element software written in C++. FreeFem++ defines a high-level
Domain Specific Language (DSL) and natively supports distributed parallelism with
Message Passing Interface (MPI). The parallel implementation of the CMCG method
relies on the spatial decomposition of the computational domain Ω into multiple
subdomains, each assigned to a single computing core. Local finite element spaces
are then defined on the local meshes of the subdomains, effectively distributing the
global set of degrees of freedom across the available cores.

The bulk of the computational work for solving the forward and backward wave
equations in Steps 3 and 8 of the CMCG Algorithm simply consists in performing
a sparse matrix-vector product at each time step, which is easily parallelized in this
domain decomposition framework: it amounts to performing local matrix-vector
products in parallel on the local set of degrees of freedom corresponding to each
subdomain, followed by local exchange of shared values between neighboring sub-
domains.

While the explicit time integration of the wave equation, e.g. RK4 and LF method,
is trivially parallelized thanks to mass-lumping in Section 3.2.3, achieving good par-
allel scalability for the elliptic problem in Steps 4 and 8 of the CMCG Algorithm
is more difficult. Here we use domain decomposition (DD) methods [47], which
are well-known to produce robust and scalable parallel preconditioners for the it-
erative solution of large scale partial differential equations. We use the parallel DD
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Figure 3.24: Marmousi model: propagation velocity 1.5 ≤ c(x) ≤ 5.5 [km/s]

Frequency Wave number #Unknowns #Nodes
ν [Hz] k = ω/c = 2πν/c ndo f 24 cores per node

10 11 – 42 1′658′443 1–8
20 22 – 84 6′628′881 1–16
40 45 – 168 26′505′761 8–64
60 68 – 252 59′630′641 16–128
80 91 – 336 106′003′521 16–128

160 182 – 671 423′975′041 64–256
250 285 – 1048 1′035′241′009 128–512

Table 3.2: 2D-Marmousi model: P2-FE with 15 points per wave length and nT = T/∆t = 390
time steps.

library HPDDM [89], which implements efficiently various Schwarz and substruc-
turing methods in C++11 with MPI and Open Multi-Processing (OpenMP) for paral-
lelism and is interfaced with FreeFem++.

The elliptic problem (3.38a) in the CMCG algorithm is solved by HPDDM us-
ing a two-level overlapping Schwarz DD preconditioner, where the coarse space is
built using Generalized Eigenproblems in the Overlap (GenEO) [46]. The GenEO ap-
proach has proved effective in producing highly scalable preconditioners for solving
various elliptic problems [21, 46].

All computations were performed on the supercomputer OCCIGEN at CINES,
France 1, with 50’544 (Intel XEON Haswell) cores.

3.10.1 2D Marmousi model

First, we consider the two-dimensional geophysical Marmousi model [23] of (2.9) in
Ω = (0, 9.2)× (0, 3) with a ≡ 1, k(x) = ω/c(x), ω = 2πν, the wave frequency ν, and

f (x) = exp(−2000 ∣x − x∗∣2), x∗ = (6,−3/16).

The velocity profile c(x) is shown in Figure 3.24. We apply a homogeneous Dirichlet
condition at the top (ΓD = {x2 = 0}) and absorbing boundary conditions on the lateral
and lower boundaries (ΓS = ∂Ω/ΓD). For the spatial discretization, we use a P2-
FE method with (order preserving) mass-lumping and at least 15 points per wave
length λ. We apply the LF method for the time integration of (3.5). To speed-up the
convergence of the CMCG method, we use an initial run-up from Section 3.6 with
the smooth transient kernel θtr in (3.72), so that the wave travels at least once across

1https://www.cines.fr/calcul/materiels/occigen/

https://www.cines.fr/calcul/materiels/occigen/
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Figure 3.25: Marmousi model: real part of the scattered field with ω = 2πν, ν = 250 Hz
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Figure 3.26: Marmousi model: total CPU-time in seconds for varying number of cores. For
each frequency ν, the FE-discretization and problem size remain fixed.

the entire computational domain during the time interval [0, ttr]; hence, we set

m = ⌈

√
9.22 + 32

Tcmin
⌉ , ttr = mT, T = (2π)/ω.

For any particular frequency ν, we apply the CMCG method for fixed parameters
and FE-mesh while increasing the number of (CPU) cores. Figure 3.25 displays the
real part of the wave field with ν = 250 Hz. In Figure 3.26, we observe linear speed
up (strong scaling) at every frequency with increasing number of cores. In fact, the
speed up is even slightly better than linear due to cache effects, but also because the
cost of the direct solver used on each subdomain decreases superlinearly with the
decreasing size of subdomains as the number of cores increases. As the frequency ν
increases, both the period T = 1/ν and the time-step ∆t decrease, so that the number
of time steps per CG iteration remains constant. Since the number of CG iterations
does not grow here with increasing ν, the bulk of the computational work in the
CMCG Algorithm in fact shifts to the run-up phase. For ν = 10 Hz, for instance, the
CMCG Algorithm stops after 273 CG iterations, while 74% of the total computational
time is spent in the time integration of (3.5), 16% in the elliptic solver (DDM) and 10%
in the initial run-up. In contrast, for ν = 250 Hz, the CMCG Algorithm already stops
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Figure 3.27: 3D-cavity: (a) front view of the opening with inner and outer radius; (b) longitu-
dinal cross-section.

Frequency #Unknowns #Tetrahedra CG iterations #Nodes
ν = 2πω ndo f 24 cores per node

2 8.17 ⋅ 105 5′051′049 239 1–8
3 5.22 ⋅ 106 31′190′000 440 2–32
4 1.9 ⋅ 107 114′391′112 607 32–96
6 1.18 ⋅ 108 703′590′464 578 64–128

Table 3.3: 3D-cavity resonator: P1-FE; as η increases, the ratio hk3/2 remains constant to
avoid pollution errors [7]

after 5 CG iterations, while 99% of the total computational time is spent in the initial
run-up and 1% in the CG iteration. By modifying the run-up time ttr, one could
arbitrarily shift the relative computational cost between run-up and CG iterations
and thus further optimize for a minimal total execution time.

3.10.2 3D cavity

Here we solve a sound-soft scattering problem (2.9) with a ≡ c ≡ 1, k = ω = 2πν,
f ≡ gD ≡ gN ≡ 0, and

gS = −(∂n − ik)uin, uin
(x) = exp(ikx⊺d), d = (1/2, 0,

√
3/2)⊺,

in Ω = (0, 6λ) × (0, 3λ) × (0, 3λ), λ = 1, from a cavity – see Figure 3.27. We impose a
homogeneous Dirichlet boundary condition on the obstacle and a Sommerfeld-like
absorbing boundary condition on the exterior boundary. We discretize (3.5) with
P1-FE in space and the second-order LF method for time integration. To control the
pollution error and obtain an accurate numerical solution, we set hk3/2 ∼ const, as
we increase the frequency ν. Figure 3.29 shows the total wave field of (2.9) with
ν = 6 inside the cavity. For fixed parameters and mesh size, we now solve (2.9) at
frequency ν = 2, 3, 4, 6 with the CMCG method using an increasing number of cores
– see Table 3.3. Again, we observe in Figure 3.28 (better than) linear (strong) scaling
with increasing number of cores.
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Figure 3.28: 3D-sound-soft scattering problem: total computational time in second by solv-
ing (2.9) with the CMCG method in parallel architecture by varying the number of cores for a
fixed configuration – see Table 3.3

Figure 3.29: 3D-cavity: total wave field (2.9) with ν = 6 obtained with the CMCG method
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CHAPTER 4
More applications with the CMCG approach

In this chapter we extend the controllability method (CM), combined with the con-
jugate gradient (CG) method, to further applications.

In Section 4.1, we first show how to use the CMCG method to compute in one
shot the superposition of several time-harmonic (single frequency) wave fields. The
filtering procedure from Section 3.5 permits to extract the time-harmonic solution at
the desired frequency. Next, in Section 4.2, we formulate the CMCG method for un-
bounded scattering problems in a computational domain surrounded by a perfectly
matched layer (PML). This formulation completely replaces the absorbing boundary
condition on ΓS by the PML approach [18, 82, 81, 8]. Finally, in Section 4.3, we write
the CMCG Algorithm from Section 3.7 for the first-order formulation [70, 68, 80].
Since the derivative of the functional J1 in (3.33), which is needed during the CG
update, here operates only in (L2(Ω))d × L2(Ω), which is self-dual. This implies that
the Riesz representative at every CG iteration, obtained by solving the strongly el-
liptic problem (3.38a), is no longer needed. As a consequence, the CMCG becomes
inherently parallel.

4.1 Multiple time-harmonic sources

4.1.1 Controllability method for superposition of time-harmonic waves

Let ω > 0 and 0 < ω1 < . . . < ωm < +∞ be frequencies with

J = {
ωj

ω
∣ j = 1, . . . , m} ⊂ N. (4.1)

Then, we seek the solutions u(j) of the (2.9) with ω = ωj, f = f (j), gD = g(j)
D , gN = g(j)

N

and gS = g(j)
S , j = 1, . . . , m.

Now, instead of solving the Helmholtz equations directly in the frequency do-
main, we again reformulate (2.9) in the time domain. Hence,

y(x, t) =
m
∑
j=1

Re{u(j)
(x) e−iωjt}, (4.2)

satisfies the (real-valued) time-dependent wave equation (3.5) with the initial values

y0 =
m
∑
j=1

Re{u(j)
(x)}, y1 = ω

m
∑
j=1

Im{u(j)
(x)}, (4.3)
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and the source terms

f̃ (x, t) =
m
∑
j=1

Re{ f (j)
(x) e−iωjt}, g̃S(x, t) =

m
∑
j=1

Re{g(j)
S (x) e−iωjt},

g̃N(x, t) =
m
∑
j=1

Re{g(j)
N (x) e−iωjt}, g̃D(x, t) =

m
∑
j=1

Re{g(j)
D (x) e−iωjt}.

(4.4)

By Lemma 2, the wave equation (3.5), with the source terms given by (4.4) and the
initial values y0 ∈ H1(Ω) and y1 ∈ L2(Ω) given by (4.3), is well-posed and has a
unique solution y ∈ C0(0, T; H1(Ω))∩C1(0, T; L2(Ω)). Moreover, for sound-soft scat-
tering problems, the time-periodic solution y of (3.5) is also unique and satisfies (4.2).
For general Helmholtz equation, however, a time-periodic solution is not unique,
which is formulated in the following theorem.

Theorem 11. Let y ∈ C0([0, T]; H1(Ω))∩C1([0, T]; L2(Ω)) be a (real-valued) solution of
the wave equation (3.5) with initial conditions (y0, y1) ∈ H1(Ω)× L2(Ω). If ∇y and yt are
time periodic with period T = 2π/ω, then y admits the Fourier series expansion

(y(⋅, t), ϕ) =
m
∑
`=1

(Re{u(`)
(x) e−iω`t}, ϕ)+ (λ + ηt, ϕ)+∑

∣`∣∉J
(γ`, ϕ) eiω`t (4.5)

for any ϕ ∈ H1
D defined in (2.13), where the constants η, λ ∈ R, and the complex-valued

functions γ` ∈ H1, ∣`∣ ≥ 1, solve (2.9) with the frequency ω` and source terms

f̂ (`) = ⨏

T

0
f̃ (x, t)e−iω`t dt, ĝ(`)

S = ⨏

T

0
g̃S(x, t)e−iω`t dt, (4.6)

ĝ(`)
N = ⨏

T

0
g̃N(x, t)e−iω`t dt, ĝ(`)

D = ⨏

T

0
g̃D(x, t)e−iω`t dt, (4.7)

instead of ω, f , gS, gN , and gD, respectively. Here we recall the notation ⨏
T

0 given by (3.18).
IfHd−1(ΓS) > 0 then η = 0, and ifHd−1(ΓD) > 0 then λ = η = 0.

Remark 9. (i) For ω1 = ω and m = 1, Theorem 11 coincides with Theorem 6 from Section
3.3.1 with ω = ω1, f = f (1), gS = g(1)

S , gN = g(1)
N , and gD = g(1)

D .

(ii) The mutual orthogonality of different time harmonics e−iω`t in L2(0, T) yields

f̂ (`) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⨏

T

0
Re{ f (j) e−iω`t

} e−iω`t dt =
f (j)

2
, ` =

ωj

ω
∈ J ,

⨏

T

0
Re{ f (j) eiω`t

} e−iω`t dt =
f (j)

2
, −` =

ωj

ω
∈ J ,

0, ∣`∣ /∈ J .

(4.8)

Proof of Theorem 11. It can be proved in an analogous way as Theorem 6 by replacing
Re{ f (x) e−iωt}, Re{gS(x) e−iωt}, Re{gN(x) e−iωt}, and Re{gD(x) e−iωt} by f̃ (`)(x, t),
g̃(`)

S (x, t), g̃(`)
N (x, t), and g̃(`)

D (x, t) in (4.4), respectively.

For scattering problems (Hd−1(ΓS) > 0), the homogeneous Helmholtz equation
(2.9) with f ≡ gS ≡ gN ≡ gD ≡ 0 has only the trivial solution, which yields

y = λ +∑
`∈J

(γ` eiω`t
+γ−` e−iω`t ), 0 ≤ t ≤ T. (4.9)
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In particular, for sound-soft scattering (Hd−1(ΓD),Hd−1(ΓS) > 0),

y = ∑
`∈J

(γ` eiω`t
+γ−` e−iω`t ), 0 ≤ t ≤ T. (4.10)

Similar to the frequency filtering procedure for a single time-harmonic wave in Sec-
tion 3.5, we propose to use the filtering procedure to extract all desired time-harmonic
waves.

4.1.2 Frequency filtering procedure

We recall the frequency filtering procedure in Section 3.5. Let y be a T-time periodic
solution of the wave equation (3.5) with the initial value (y0, y1), where T = (2π)/ω.
By Theorem 11, y admits the Fourier series expansion

y(⋅, t) =
m
∑
`=1

Re{u(`)
(x) e−iω`t}+ λ + ηt +∑

∣`∣∉J
γ` eiω`t .

Now, we define

ŷj(x) = ⨏
T

0
(y(x, t)+

i
ωj

yt(x, t)) eiωjt dt, j = 1, . . . , m, (4.11)

in an analogous way with that in Section 3.5. Then, we obtain

ŷj = ⨏

T

0
[

m
∑
`=1

(Re{u(`) e−iω`t}+
ω`

ωj
Im{u(`) e−iω`t})+ ηt +∑

∣`∣/∈J
γ`(x) eiω`t

] e−iωjt .

The mutual orthogonality of different time harmonics e−iω`t in L2([0, T]) yields

ŷj = u(j)
−

iη
ωj

(4.12)

where u(j) solves the (desired) Helmholtz equation

−∇ ⋅ (a(x)∇u(j)
(x)) −

ω2
j

c2(x)
u(j)

(x) = f (j)
(x), x ∈ Ω, (4.13a)

a(x)
∂u(j)(x)

∂n
− iωj

√
a(x)

c(x)
u(j)

(x) = g(j)
S (x), x ∈ ΓS, (4.13b)

a(x)
∂u(j)(x)

∂n
= g(j)

N (x), x ∈ ΓN , (4.13c)

u(j)
(x) = g(j)

D (x), x ∈ ΓD. (4.13d)

The constant η immediately vanishes when Hd−1(ΓD ∪ ΓS) > 0. Otherwise, for ΓD =

ΓS = ∅, and ΓN = ∂Ω, (2.9) corresponds to a pure Neumann problem. We determine
η using the compatibility condition directly derived from the Helmholtz equation.
By integration of (4.13a) and using Green’s formula, together with (4.12) and the
boundary condition (4.13c), we obtain

−
iη
ωj

=
1

∥
ωj
c ∥

2 (∫Ω
f (j)

(x) dx +∫
ΓN

g(j)
N ds +∫

Ω
(

ωj

c(x)
)

2

ŷ(j)
(x) dx). (4.14)
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4.1.3 CMCG algorithm and computational cost

To determine the unknown initial values y0, y1 in (4.3), we minimize the functional
J1 in (3.33). Here y(x, t) is the solution of the wave equation (3.5) with instead the
source terms given by (4.4).

Since the formulation of the CMCG method in CMCG Algorithm 2 only requires
time-periodic sources, we can immediately apply the algorithm by replacing the
source terms in (3.5) with those given by (4.4) to find the minimizer (y0, y1). To
recover the desired time-harmonics, we apply the filtering procedure in (4.12). In the
absence of ΓS and ΓD, we impose the compatibility condition in (4.14) to restore the
uniqueness.

Next, the computational cost of the CMCG Algorithm for computing the super-
position of m time-harmonics is the same as the computational cost for solving single
frequency (2.9). Second, the filtering procedure only requires the integration of the
time-dependent solution y(x, t) in time, which is computed on the fly using quadra-
ture formula (e.g. Simpson’s rule), and hence it does not need to store the entire his-
tory of y(x, t). Since the solution y(x, t) is already computed in the CMCG algorithm,
the filtering procedure has almost no additional computational cost. Finally, the com-
patibility condition only requires simple matrix-vector multiplications, which can be
computed easily.

As a consequence, the CMCG method solves m Helmholtz equations in one shot
with the same computational cost as the cost for one Helmholtz equation. However,
here we require that the final time T = 2π

ω1
. This implies that we require a larger

number of time steps nT = nT1 ∶= T/∆t than the number of time steps nTj ,

nTj =
2π

ωj
<

2π

ω1
= nT, j = 2, . . . , m,

for the CMCG method for one frequency ωj. Moreover, to avoid pollution errors, we
require that the mesh size h is sufficiently small with respect to the highest frequency
ωm. Hence, we may need to solve the CMCG method on a finer mesh with a larger
number of time steps than the CMCG method for single frequency.

4.1.4 Numerical examples

Here we present series of numerical examples to show the usefulness of the CMCG
method and verify the accuracy and correctness of numerical solutions, obtained
with the filtering procedure for the desired harmonic wave field.

First, we illustrate the spurious constant shift in the one-dimensional superposi-
tion of the several solutions of the Neumann problem (2.9), ΓN = ∂Ω, obtained with
the CMCG method. To recover all desired eigenmodes, we apply the filtering pro-
cedure. In addition, to restore the uniqueness of the numerical solution, we impose
the compatibility condition (4.14). Second, we apply the CMCG method to solve in
one shot a two-dimensional scattering problem from inhomogeneous inclusion (4.13)
from three plane waves with different frequencies ω`, ` = 1, 2, 3. Again, we use the
filtering procedure to extract the desired eigenmodes. Finally, we solve scattering
problems of (2.9) with the source term f = f (`) and frequency ω = ωm, m, ` = 1, 2, 3,
with the CMCG method. The nine wave fields u`,m are determined by the filtering
procedure.
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Figure 4.1: One-dimensional superposition of Neumann problems: numerical superposi-
tion uh of Helmholtz equations (4.13), obtained with the CMCG-method.
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Figure 4.2: One-dimensional superposition of Neumann problems: numerical eigenmodes
u(`)h , ` = 1, . . . , 3, from the superposition uh, obtained with the filtering procedure; top row: real
part of each eigenmodes; bottom row: imaginary part of each eigenmodes.

Neumann problems

First, we consider the Neumann problem (4.13) in Ω = (0, 1), Γ = ΓN , with

a = c = 1, ω = 5, ωj = 2j ω, j = 1, . . . , m = 3.

Let the source terms f (j) and g(j)
N be chosen so that

u(j)
= eiωjx +(1+ i)x2, j = 1, . . . , m,

solves (4.13). Since ωj is not in the spectrum ΣL of the linear operator from Section
2.3, (4.13) has a unique solution for j = 1, . . . , m. The corresponding time-dependent
source terms f̃ and g̃N in (3.5) are given by (4.4).

Now, we use the RK4 method for solving the time integration of (3.5) with the
order preserving mass-lumping and with the time step ∆t = 0.15h, h = 2−6. Then the
CG iteration stops when Tol = 10−10 in Step 6 in the CMCG Algorithm is reached.
We apply the filtering procedure to extract the desired eigenmode u(j)

h , j = 1, 2, 3,
from the superposition uh shown in Figure 4.1, obtained with the CMCG method for
the superposition of time-harmonic waves in Section 4.1.3. To remove the spurious
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(a) inhomogeneity a (b) wave field Re{uh} (c) wave field Im{uh}

Figure 4.3: Superposition from inhomogeneous inclusion: the inhomogeneous medium a is
constant inside and outside of the kite-shaped inclusion (a); the illustration of a minimizer of J1
(b)–(c), obtained with the CMCG method.

constant shift from the solution u(j)
h , we impose the compatibility condition (4.14).

Figure 4.2 illustrates both the real and the imaginary part of each eigenmode u(j)
h ,

j = 1, 2, 3. The CMCG method, combined with the filtering procedure and the com-
patibility condition, yields the relative L2-errors ∥u(`)

h − u(`)∥ of 8.1 ⋅ 10−6, 6.6 ⋅ 10−5,
and 5.6 ⋅ 10−4, ` = 1, 2, 3. Here the L2-error increases due to the pollution error.

Scattering from inhomogeneous inclusion: plane waves

Here we consider the scattering from a penetrable inhomogeneous inclusion (2.9) in
the unit disk Ω = {x ∈ R2 ∣ ∥x∥ ≤ 1} with ΓS = ∂Ω, series of frequencies ωj = jω,
ω = 15, j = 1, . . . , m = 3, c = 1, and a(x) = 1 + 5 ⋅ H(x) ∈ [1, 6], where H(x) is the
indicator function of the kite-shaped inclusion – see Figure 4.3a. Furthermore,

f (j)
(x) ≡ 0, g(j)

S (x) = −
∂

∂n
uin

j (x)+ iωjuin
(x),

where uin
j (x) = eiωjx1 is the incident plane wave (3.74) with φ = 0○. We use P3-FE

for the spatial discretization with order preserving mass-lumping and the classical
fourth-order Runge-Kutta (RK4) method for the time integration of (3.5). In addition,
the tolerance in the CMCG algorithm is set to Tol = 10−8.

In Figures 4.3b – 4.3c, we display the superposition uh of scattering wave fields
governed from an incident plane wave (3.74), obtained by the CMCG method. In
Figures 4.4a – 4.4f, we monitor both the real and imaginary part of the numerical
solutions u(j)

h , j = 1, 2, 3.

To compare the accuracy of u(j)
h , obtained from uh with the filtering procedure in

(4.12), we compute the (reference) FE Galerkin solution u∗,(j)
h , j = 1, 2, 3, correspond-

ing to the direct solution of the linear system. The system,

A(j)
h u∗,(j)

h = F(j)
h , (4.15)

results from the same standard H1-conformingP3-FE discretization of the Helmholtz
equation (4.13) with ω = ωj, f = f (j) and g(j)

S . Here we obtain a relative difference

∥u∗,(j)
h − u(j)

h ∥L2(Ω), j = 1, 2, 3,
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(a) Re{u(1)
h } (b) Re{u(2)

h } (c) Re{u(3)
h }

(d) Im{u(1)
h } (e) Im{u(2)

h } (f) Im{u(3)
h }

Figure 4.4: Scattering from inhomogeneous inclusion: (a)-(f) numerical solutions u(j)h of

(4.13), obtained from uh with the filtering procedure (φj(t) = eiωjt); top row: Re{u(j)h }, j =

1, 2, 3; bottom row: Im{u(j)h }, j = 1, 2, 3.

of 3.8 ⋅ 10−6, 5.9 ⋅ 10−6, and 7.3 ⋅ 10−4.

Scattering from inhomogeneous inclusion and point sources

Finally, we consider scattering problems from a kite-shaped inhomogeneous inclu-
sion and from different Gaussian point sources. Let u(j,`) denote the solution of (2.9)
in Ω = (0, 1)× (0, 1) with the frequency

ωj = jω, ω = 20, j = 1, . . . , m = 3,

and the source term

f (`)(x) = 5000 e−5000(x−x∗` )
2
, ` = 1, . . . , m = 3,

with
x∗1 = (0.05 0.95)⊺ , x∗2 = (0.5 0.95)⊺ , x∗3 = (0.95 0.95)⊺ .

Here we impose the homogeneous absorbing boundary condition (2.9b) with g(`)
S =

0, ` = 1, 2, 3, on the boundary ΓS = ∂Ω. Furthermore, c = 1 and a(x) = 1 + 4 H(x),
where H(x) is the indicator function of the star-shaped inclusion.
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u(1)
h u(2)

h u(3)
h

real part

imaginary part

Figure 4.5: Scattering from inhomogeneous inclusion and point sources: minimizer u(p)h
of J1, obtained with the CMCG method for superposition with the source term f̃ (p), p = 1, 2, 3,
in (4.4) given by (4.16).

f (`)
ωj ω1 ω2 ω3 ω1 ω2 ω3

f (1)

f (2)

f (3)

real part imaginary part

Figure 4.6: Scattering from an inhomogeneous inclusion and point sources: numerical
solutions u(j,`)h of (2.9) with ω = ωj and f = f (`), j, ` = 1, 2, 3, obtained from u(p)h , p = 1, 2, 3,
with the filtering procedure.

First, we apply the CMCG method for the superposition with the time-harmonic
source term f̃ (p)(x, t), p = 1, 2, 3,

f̃ (1)
(x, t) = Re{ f (1)

(x) e−iω1t
+ f (2)

(x) e−iω2t
+ f (3)

(x) e−iω3t
}, (4.16a)

f̃ (2)
(x, t) = Re{ f (3)

(x) e−iω1t
+ f (1)

(x) e−iω2t
+ f (2)

(x) e−iω3t
}, (4.16b)

f̃ (3)
(x, t) = Re{ f (2)

(x) e−iω1t
+ f (3)

(x) e−iω2t
+ f (1)

(x) e−iω3t
}, (4.16c)
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to compute the numerical superposition u(p)
h shown in Figure 4.5. Then, we apply

the filtering procedure in (4.12) to the solution u(p)
h , p = 1, . . . , 3, which yields (u(1,1)

h ,

u(2,2)
h , u(3,3)

h ) from u(1)
h , (u(1,3)

h , u(2,1)
h , u(3,2)

h ) from u(2)
h , and (u(1,2)

h , u(2,3)
h , u(3,1)) from

u(3)
h – see Figure 4.6.

Again, we useP3-FE discretization with order preserving mass-lumping (105′841
unknowns) and the classical fourth-order Runge-Kutta (RK4) method for the time
integration of (3.5). The CG iteration stops when the tolerance Tol = 10−8 is reached.

To compare the accuracy of u(j,`)
h with u(j,`), we compute the reference solution

u∗,(j,`)
h of (4.15), j, ` = 1, 2, 3, with the direct solver. We observe that the relative L2-

difference ∥u∗,(j,`)
h − u(j,`)

h ∥ lies in [1.8 ⋅ 10−6, 2.5 ⋅ 10−6] for j = 1, in [1.9 ⋅ 10−5, 2.8 ⋅ 10−5]

for j = 2, and in [1.2 ⋅ 10−4, 4.4 ⋅ 10−4] for j = 3.

4.2 Helmholtz equation with perfectly matched layer

The perfectly matched layer (PML) was first formulated by Bérenger in [18] in order
to solve time-dependent Maxwell’s equations in unbounded domains; it absorbs the
electromagnetic waves in the absorbing layer without spurious reflection. Since then
the PML has been applied to both time-dependent and time-harmonic wave equa-
tions. Later this approach has been proven not only to be robust and flexible, but
also very accurate.

Here we apply the PML approach for solving unbounded Helmholtz problems.
Following [82, 81, 8], we use the PML formulation for the second-order wave equa-
tion and write the CMCG method for the “inherited” PML formulation for (2.9).

First, we recall the PML formulation for the wave equation from [82]. Next, in-
stead of using J1 in (3.33) for the CMCG method for PML formulation, we introduce
a new cost functional JPML. It basically extends the integration over Ω in J1 to the
integration over the domain Ω∞, which includes the PML layer. Finally, we show
some numerical examples, which first shows the accuracy of the numerical solution
and second illustrates the usefulness of the CMCG method, combined with the PML
approach.

4.2.1 Perfectly matched layer

Here we assume that the source f is compactly supported in Ω ⊂ R2 and is identically
zero outside Ω. We extend Ω to a bounded open set

Ω∞ = Ω ∪ΩPML, Ω ∩ΩPML = ∅,

with a Lipschitz boundary Γ = ∂Ω∞ – see Figure 4.7.
We let ζ1, ζ2 ≥ 0 denote the damping function with

{
ζi > 0 in ΩPML,
ζi = 0 in Ω, i = 1, 2.

(4.17)

In addition, we define

Γ1 = −(
ζ1 0
0 ζ2

) , Γ2 = (
ζ2 − ζ1 0

0 ζ1 − ζ2
) .
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Ω

ΩPML

∂Ω

∂Ω∞

Ω∞ = Ω ∪ ΩPML ∪ ∂Ω

Figure 4.7: Computational domain Ω, surrounded by the PML layer ΩPML.

Let (y, φ) be the solution of the PML modified wave equation [82, 8],

1
c2

∂2y
∂2t

−∇ ⋅ (a∇y) = Re{ f e−iωt
} in Ω × (0, T) (4.18a)

and

1
c2

∂2y
∂2t

−∇ ⋅ (a∇y)+ (ζ1 + ζ2)
∂y
∂t

+ ζ1ζ2y −∇ ⋅φ = 0 in ΩPML × (0, T), (4.18b)

∂

∂t
φ − Γ1φ − aΓ2∇y = 0 in ΩPML × (0, T), (4.18c)

y = 0 on Γ × (0, T), (4.18d)
φ = 0 in ΩPML × (0, T) (4.18e)

with the initial conditions

y(⋅, 0) = y0,
∂y(⋅, 0)

∂t
= y1 in Ω∞, (4.18f)

φ(⋅, 0) = 0 in ΩPML. (4.18g)

Here the auxiliary function φ vanishes identically in Ω. Again, we are looking for
the unknown initial values y0, y1 such that the corresponding wave solution is time-
periodic.

We note that a three-dimensional PML formulation can be found in [82].

4.2.2 Controllability method

To determine the initial values y0, y1, we formulate a PDE-constrained least-squares
problem. First, we define the cost functional

JPML(y0, y1) =
1
2 ∫Ω∞

a(x)∣∇y(x, T)−∇y0(x)∣2 dx +
1
2 ∫Ω∞

1
c2(x)

(yt(x, T)− y1(x))2 dx.

(4.19)
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To optimize JPML, we require the Fréchet derivative of JPML, which is given by

⟨J′PML(y0, y1), (δy0, δy1)⟩ = ∫
Ω∞

a(x)∇(y(x, T)− y(x, 0)) ⋅ ∇(δy(x, T)− δy0(x)) dx

+∫
Ω∞

1
c2(x)

(yt(x, T)− y1(x))(δyt(x, T)− δy1(x)) dx

(4.20)

for the perturbation (y0, y1). Here δy0 and δy1 solve the homogeneous wave equation
(4.18) with f = gS = gN = gD = 0 and the initial values (δy0, δy1, δφ0) = 0. Then, the
integration of (4.18a) and (4.18b) over Ω∞ × (0, T) yields

0 = ∫

T

0
∫

Ω∞

[
1
c2 δytt −∇ ⋅ (a∇δy)]p dx dt

+∫

T

0
∫

ΩPML
[(ζ1 + ζ2) δyt + ζ1ζ2 δy −∇ ⋅ δφ]p dx dt

= ∫

T

0
∫

Ω∞

[
1
c2 ptt −∇ ⋅ (a∇p)]δy dx dt +∫

T

0
∫

ΩPML
[− (ζ1 + ζ2)pt + ζ1ζ2 p]δy dx dt

+∫

T

0
∫

∂Ω∞

a[− (∇δy ⋅ n)p + (∇p ⋅ n)δy] ds dt +∫
T

0
∫

ΩPML
δφ ⋅ ∇p dx dt

−∫

T

0
∫

∂ΩPML

(δφ ⋅ n)p ds dt +∫
Ω∞

1
c2 [p δyt − pt δy]∣

T

0
dx +∫

ΩPML
(ζ1 + ζ2)p δy∣

T

0
dx.

(4.21)

From the integration of (4.18c), multiplied with ψ, φ = δφ, and integration by parts,
together with the fact that Γ1 and Γ2 are diagonal and δy = 0 on Γ, we obtain

0 = ∫

T

0
∫

ΩPML

1
a

Γ−1
2 [δφt − Γ1δφ − aΓ2(∇δy)] ⋅ψ dx dt

= ∫

T

0
∫

ΩPML

1
a

Γ−1
2 [−ψt − Γ1ψ] ⋅ δφ + δy ∇ ⋅ψ dx dt +∫

ΩPML

1
a
(Γ−1

2 ψ) ⋅ δφ∣

T

0
dx.

(4.22)

Equations (4.21)–(4.22) and integration by parts, together with p = 0 on ∂Ω∞ and
ψ = 0 in Ω, yield

0 = ∫

T

0
∫

Ω
[

1
c2 ptt −∇ ⋅ (a∇p)]δy dx dt

+∫
Ω∞

1
c2 [p δyt − pt δy]∣

T

0
dx +∫

ΩPML
(ζ1 + ζ2)p δy∣

T

0
dx −∫

ΩPML

1
a
(Γ−1

2 ψ) ⋅ δφ∣

T

0
dx

+∫

T

0
∫

ΩPML
[

1
c2 ptt −∇ ⋅ (a∇p)− (ζ1 + ζ2)pt + ζ1ζ2 p −∇ ⋅ψ]δy dx dt

+∫

T

0
∫

ΩPML

1
a

Γ−1
2 [ψt + Γ1ψ + aΓ2∇p] ⋅ δφ dx dt. (4.23)
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Let (p, ψ) be the solution of the PML modified adjoint wave equation

1
c2

∂2 p
∂2t

−∇ ⋅ (a∇p) = 0 in Ω × (0, T), (4.24a)

1
c2

∂2 p
∂2t

−∇ ⋅ (a∇p)− (ζ1 + ζ2)
∂p
∂t

+ ζ1ζ2 p −∇ ⋅ψ = 0 in ΩPML × (0, T), (4.24b)

∂

∂t
ψ + Γ1ψ + aΓ2∇p = 0 in ΩPML × (0, T), (4.24c)

p = 0 on Γ × (0, T), (4.24d)

ψ = 0 in Ω × (0, T) (4.24e)

with the initial conditions

p(x, T) = yt(x, T)− y1(x), x ∈ Ω∞, (4.24f)

∫
Ω∞

1
c2 pt(⋅, T)ϕ dx = ∫

ΩPML
(ζ1 + ζ2)p(⋅, T)ϕ dx −∫

Ω∞

a∇(y(⋅, T)− y0) ⋅ ∇ϕ dx

(4.24g)

for all ϕ ∈ H1
0(Ω∞) and ψ(⋅, T) = 0 in ΩPML. Equations (4.23) and (4.24) then yield

∫
Ω∞

1
c2(x)

[p(x, 0) δy1(x)− pt(x, 0) δy0(x)] dx +∫
ΩPML

(ζ1 + ζ2)p(x, 0) δy0(x) dx

= ∫
Ω∞

1
c2(x)

[p(x, T) δyt(x, T)− pt(x, T) δy(x, T)] dx

+∫
ΩPML

(ζ1(x)+ ζ2(x))p(x, T) δy(x, T) dx

= ∫
Ω∞

1
c2(x)

(yt(x, T)− y1(x))δyt(x, T) dx

+∫
Ω∞

a(x)∇(y(x, T)− y0(x)) ⋅ ∇δy(x, T) dx. (4.25)

Combined with (4.20) we have

⟨J′PML(y0, y1), (δy0, δy1)⟩ = −∫
Ω∞

a(x)∇(y(x, T)− y0(x)) ⋅ ∇δy0(x) dx

−∫
Ω∞

1
c2 pt(x, 0) δy0(x) dx

+∫
ΩPML

(ζ1(x)+ ζ2(x))p(x, 0) δy0(x) dx

+∫
Ω∞

1
c2(x)

(p(x, 0)− p(x, T))δy1(x) dx. (4.26)

Similar to (3.38) in Section 3.4, we need the corresponding (Riesz) representer of
(4.26).

4.2.3 Numerical experiments

In this section we consider two scattering problems (2.9) in an unbounded domain.
To avoid or reduce the reflection from the artificial boundary, we apply the perfectly
matched layer (PML) with the layer size L.
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Figure 4.8: Cubic polynomial damping function ζ

In both examples, the damping function ζ(z) in (4.17) in the layer W ≤ ∣z∣ ≤ W + L
is given by the cubic polynomial

ζ(z) = ζ0(
∣z∣−W

L
)

3

, (4.27)

where ζ0 is typically set to 20 or 30 – see Figure 4.8.
We first consider the accuracy of the numerical solution of (2.9) in [−W, W] ×

[−W, W], obtained with the CMCG method combined with JPML. Furthermore, we
compare the numerical solution with that, obtained with the original CMCG method
with J1. Second, we consider the scattering problem (2.9) with a partial physically
bounded domain.

Helmholtz equation in an unbounded domain

First, we consider the numerical solution uh of the two-dimensional scattering prob-
lem (2.9) in (−W, W) × (−H, H), W = H = 4, with a = c = 1, ω = k = 4π, and the exact
solution u given by

u(x) =
⎧⎪⎪
⎨
⎪⎪⎩

e
1

16 (∣x∣2−W2) cos (π ∣x∣2

2 ), ∣x∣ < W,
0, ∣x∣ ≥ W.

(4.28)

Let f be chosen such that (4.28) solves (2.9).
We apply the CMCG method for solving (2.9), with Ω surrounded by PML with

the width of L = 0.2, combined with the cost functional JPML. Here the time inte-
gration of (4.18), with P3-FE discretization (92′233 nodes and 14′112 elements), is
solved by the RK4 method. For comparison, we also compute the solution of (2.9)
with ΓS = ∂Ω and the exact gS in (2.9b), obtained with the CMCG method with the
original cost functional JCC

1 combined with the compatibility condition (4.14).
Now, Figures 4.9a and 4.9b monitor the relative errors of both methods. Here we

observe that the both relative L2– and H1–errors decrease and saturate at some point.
We finally obtain a numerical solution, obtained with the original approach, with a
relative L2- and H1-error of 0.0045 and 0.0212, respectively. Next, the CMCG method
with PML approach yields a slightly better result than the original approach with a
relative L2- and H1-error of 0.0040 and 0.0210, respectively.

Figures 4.9c and 4.9d monitor the relative CG residual and the cost functional
JPML from the CMCG algorithm at each CG iteration. We observe that both CMCG
methods combined with JCC

1 or with JPML converge to the given tolerance Tol = 10−6.
The CMCG method with J1 terminates after 144 CG iterations while the CMCG
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Figure 4.9: Absorbing boundary condition vs. perfectly matched layer: numerical results
of the scattering problem (2.9), obtained with the CMCG method combined with either J1 (ΓS =

∂Ω) or JPML; (a) – (b) the relative L2- and H1-error of the numerical solution uh at each CMCG
iteration, (c) the relative CG residual; (d) the cost functional J1 and JPML.

method with JPML stops after 160 CG iterations. We therefore conclude that both
methods terminate in comparable number of CG iterations with comparable accu-
racy.

Sound-soft scattering from inhomogeneous inclusion

Here we consider the scattering problem (2.9) with ω = 20π, c = 1, and a(x) = 1 +
H(x), where H(x) is an indicator function of the kite-shaped inclusion – see Figure
4.10a. We impose a homogeneous boundary condition on the arc boundary ΓD =

{x ∣ x2 ≥ 0, ∣x∣ = 2}. The wave goes out through the boundary ΓPML = {x1 = −2}∪{x1 =

2}∪ {x2 = −1}. The source term f ,

f (x) = −103 e−800 (x2
1+(x2−1)2), x ∈ Ω∞,

lies inside the domain Ω at (0, 1).
We useP3-FEM with 165′880 nodes and 25′422 elements for the spatial discretiza-

tion and the RK4 method for the time integration of (3.5). Furthermore, we add a
PML layer with a PML width of L = 0.5.

We observe the contour lines of the numerical solution shown in Figure 4.10b,
obtained with the CMCG method with (4.19). Here the outgoing wave is indeed
damped in PML such that the wave near to boundary vanishes identically.
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(a) computational domain with inhomogeneous inclusion and
without perfectly matched layer (b) contour lines of the scattered field uh

Figure 4.10: Sound-soft scattering problem with PML: (a) the inhomogeneous medium a
is constant inside and outside of the kite-shaped inclusion; (b) contour lines of the numerical
solution of (2.9) using the CMCG method with the functional JPML defined by (4.19).

In summary, the PML approach applied to the CMCG method leads to a com-
parably accurate and probably parallelizable method for scattering problems in fre-
quency domain.

4.3 Helmholtz equation in first-order formulation

The CMCG Algorithm from Section 3.7 iterates on the initial value (y0, y1) ∈ H1(Ω)×

L2(Ω) of the second-order wave equation (3.5) until its solution is T-time periodic.
However, the gradient of the cost functional J1(y0, y1), which is needed during the
CG update, only lies in the dual space H−1(Ω) × L2(Ω). To ensure that the solution
remains sufficiently regular in H1(Ω) × L2(Ω), the corresponding Riesz represen-
tative is computed at every CG iteration by solving the strongly elliptic problem
(3.38a). In [70], Glowinski et al. derived an equivalent first-order formulation for
sound-soft scattering problems, where the solution instead lies in (L2(Ω))d+1, which
is self-dual or is isomorph to its dual space. As a consequence, all CG iterates auto-
matically lie in the correct solution space (L2(Ω))d+1, while the solution of (3.38a) is
no longer needed.

4.3.1 Model problem

Following [70, 33], we let z = −iωu, r = ∇u and rewrite the Helmholtz equation (2.9),
with a ≡ 1, equivalently as

−∇ ⋅ r(x)− i
ω

c2(x)
z(x) = f (x), x ∈ Ω, (4.29a)

−iωr(x) = ∇z(x), x ∈ Ω, (4.29b)

r(x) ⋅ n +
1

c(x)
z(x) = gS(x), x ∈ ΓS, (4.29c)

r(x) ⋅ n = gN(x) x ∈ ΓN , (4.29d)
z(x) = −iωgD(x), x ∈ ΓD. (4.29e)

Here ∇ ⋅ r = div(r) denotes the divergence of r.
We always assume for any particular choice of ω, c, f , and boundary conditions

(4.29c)-(4.29e) on Γ = ΓD ∪ΓS ∪ΓN that (4.29) has a unique solution (r, z) ∈ H(div; Ω)×
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L2(Ω) with r ⋅ n = gN on ΓN , where

H(div; Ω) = {p ∈ (L2
(Ω))

d
∣ ∇ ⋅ p ∈ L2

(Ω)}. (4.30)

Remark 10. For the unique solution u ∈ H1(Ω) of (2.9), r̂ = ∇u ∈ (L2(Ω))d and ẑ =

−iωu ∈ L2(Ω) clearly satisfy (4.29) by applying ϕ ∈ C∞c (Ω) in its variational formulation:

(∇ ⋅ r̂, ϕ) = ( f + i
ω

c2 ẑ, ϕ), ∀ϕ ∈ C
∞
c (Ω).

We conclude that ∇ ⋅ r̂ = f + iωc−2ẑ ∈ L2(Ω) a.e. in Ω, and hence r̂ ∈ H(div; Ω). By the
uniqueness, it indeed follows that r = r̂ = ∇u and z = ẑ = −iωu a.e. in Ω.

Let p = ∇y and v = yt. Then we rewrite the time-dependent wave equation (3.5)
in first-order form:

1
c2(x)

∂

∂t
v(x, t)−∇ ⋅ p(x, t) = Re{ f (x) e−iωt

}, x ∈ Ω, t > 0, (4.31a)

∂

∂t
p(x, t) = ∇v(x, t), x ∈ Ω, t > 0, (4.31b)

p(x, t) ⋅ n +
1

c(x)
v(x, t) = Re{gS(x) e−iωt

}, x ∈ ΓS, t > 0, (4.31c)

p(x, t) ⋅ n = Re{gN(x) e−iωt
}, x ∈ ΓN , t > 0, (4.31d)

v(x, t) = Re{−iωgD(x) e−iωt
}, x ∈ ΓD, t > 0 (4.31e)

with the initial conditions

p(x, 0) = p0(x) ∈ Rd, v(x, 0) = v0(x) ∈ R, x ∈ Ω. (4.31f)

The (mixed) variational formulation is to find p(t) ∈ H(div; Ω) and v(t) ∈ L2(Ω) for
a fixed t > 0 such that

∫
Ω
(

1
c2(x)

∂

∂t
v(x, t)−∇ ⋅ p(x, t))w(x) dx = Re{∫

Ω
( f (x)w(x)) e−iωt dx}, (4.32a)

∫
Ω
(pt(x, t)q(x)+ v(x, t)∇ ⋅ q(x)) dx +∫

ΓS
c(x)(p(x, t) ⋅ n)(q(x) ⋅ n) ds

= Re{(∫
ΓS

c(x)gS(x)q(x) ⋅ n ds − iω∫
ΓD

gD(x)q(x) ⋅ n ds) e−iωt
}, (4.32b)

for any (q, w) ∈ Hdiv
N × L2(Ω), where

Hdiv
N = {q ∈ H(div; Ω) ∣ q ⋅ n = 0 on ΓN}. (4.33)

The solution (p, v) of (4.31) exists for (p0, v0) ∈ H(div; Ω) × L2(Ω) and lies in the
function space Q [15, 97, 56],

Q = C0
([0, T]; H(div; Ω)× L2

(Ω))∩C1
([0, T]; (L2

(Ω))
d+1

). (4.34)

Here the solution of (4.31) is also unique. Since the second-order formulation (3.5)
yields a solution of (4.31), it establishes the relation between both formulations,
which we formulate in the following lemma.
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Lemma 3. Suppose the first-order formulation (4.31) has a solution (p, v) ∈ Q. Then (p, v)
is unique.

Furthermore, if y solves the second-order formulation (3.5) with ∇y(⋅, 0) = p(⋅, 0) and
yt(⋅, 0) = v(⋅, 0), then ∇y = p and yt = v a.e. in Ω.

Proof. (i) We show the uniqueness by the energy dissipation law

E[p, v](t) ∶=
1
2 ∫Ω

∣p(x, t)∣2 dx +
1
2 ∫Ω

1
c2(x)

∣v(x, t)∣2 dx ≤ E[p, v](0).

Let (p1, v1) and (p2, v2) be solutions of (4.31) in H(div; Ω) × L2(Ω). Then (q = p1 −

p2, w = v1 − v2) solves (4.31) with f ≡ gS ≡ gD ≡ gN ≡ 0, q(⋅, 0) = 0, and w(⋅, 0) = 0 in
Ω. To show that the energy E[q, w] is monotonically decreasing in t ≥ 0, we consider
the derivative of the energy,

∂

∂t
E[q, w](t) = ∫

Ω
qt(x, t)q(x, t) dx +∫

Ω

1
c2(x)

wt(x, t)w(x, t) dx.

Equations (4.31a) and (4.31b) follow

∂

∂t
E[q, w](t) = ∫

Ω
∇w(x, t) ⋅ q(x, t) dx +∫

Ω

1
c2(x)

∇ ⋅ (q(x, t))w(x, t) dx.

Green’s formula, together with the boundary conditions (4.31c) – (4.31e), yields

∂

∂t
E[q, w](t) = ∫

∂Ω
w(x, t)q(x, t) ⋅ n ds = −∫

ΓS
c(x)w(x, t)2ds ≤ 0.

Hence E[q, w](t) is monotonically decreasing and

0 ≤ E[q, w](t) ≤ E[q, w](0) = 0,

which implies that q ≡ 0 and w ≡ 0.
(ii) Since (∇y, yt) ∈ Q satisfies (4.31a) - (4.31e), the uniqueness (i) implies that

p = ∇y and v = yt a.e. in Ω.

For sound-soft scattering problems (Hd−1(ΓD),Hd−1(ΓS) > 0), the time-periodic
solution y of (4.31) is unique, and therefore, corresponds to the (unique) time-harmonic
solution Re{u(x) e−iωt} of (4.31). For general boundary value problems governed by
the Helmholtz equation, however, a time-periodic solution of (4.31) is not necessarily
unique, as shown in the following theorem.

Theorem 12. Let u ∈ H1(Ω) be the unique solution of (2.9) and (p, v) ∈ Q be a real-valued
solution of (4.31) with initial values (p0, v0) ∈ H(div; Ω) × L2(Ω). If p and v are time
periodic with period T = 2π/ω, then p and v admit the Fourier series representation

p(⋅, t) = Re{∇u e−iωt
}+λ +

∞

∑
∣`∣>1

γ
p
` e−iω`t, (4.35a)

v(⋅, t) = ω Im{u e−iωt
}+ η +

∞

∑
∣`∣>1

γv
` e−iω`t, (4.35b)

where the constant η ∈ R, λ ∈ Hdiv
N with

∫
Ω

λ ⋅ ∇ϕ dx = 0, ∀ϕ ∈ H1
(Ω), ϕ∣ΓD ≡ 0, (4.36)
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and the complex-valued eigenfunctions γ
p
` ∈ Hdiv

N , γv
` ∈ L2(Ω), ∣`∣ > 1, satisfy

−c2
(x)∇ ⋅γ

p
` (x)+ iω`γv

`(x) = 0, x ∈ Ω, (4.37a)

iω`γ
p
` (x) = ∇γv

`(x), x ∈ Ω, (4.37b)

c(x)γ
p
` (x) ⋅ n + γv

`(x) = 0, x ∈ ΓS, (4.37c)

γ
p
` (x) ⋅ n = 0, x ∈ ΓN , (4.37d)

γv
`(x) = 0, x ∈ ΓD. (4.37e)

Furthermore, ifHd−1(ΓS ∪ ΓD) > 0, then η = 0.

Proof. Let

q(⋅, t) = p(⋅, t)−Re{∇u e−iωt
}, w(⋅, t) = v(⋅, t)−ω Im u e−iωt.

Then q and w satisfy (4.31) with f ≡ gD ≡ gS ≡ gN ≡ 0 and initial values

q(x, 0) = p0(x)−Re{∇u(x)}, w(x, 0) = v0(x)−ω Im{u(x)}, x ∈ Ω.

Since p and v are T-periodic, so are q and w. Moreover, the mappings

t ↦ (q(⋅, t), ψ), t ↦ (w(⋅, t), ϕ)

are T-periodic and continuous for any (ψ, ϕ) ∈ Hdiv
N × L2(Ω) [56]. Hence, they admit

the Fourier series representation,

(q(⋅, t), ψ) =
∞

∑
`=−∞

γ̂
p
` eiω`t, (w(⋅, t), ϕ) =

∞

∑
`=−∞

γ̂v
` eiω`t,

where γ̂
p
` ∈ Cd , γ̂v

` ∈ C. Next, we define

γ
p
` (x) = ⨏

T

0
q(x, t) e−iω`t dt, γv

`(x) = ⨏
T

0
w(x, t) e−iω`t dt, (4.38)

which implies that
γ̂

p
` = (γ

p
` , ψ), γ̂v

` = (γv
` , ϕ).

We shall now show that γ
p
` and γv

` satisfy (4.37) for all ∣`∣ ≥ 1. First, integration by
parts, (4.31a) – (4.31b), and the periodicity of q and w imply that

γv
`(x) = ⨏

T

0
wt(x, t)

e−iω`t

iω`
dt −

w(x, t) e−iω`t

iω`T
∣

T

0
= ⨏

T

0
c2
(x)∇ ⋅ q(x, t)

e−iω`t

iω`
dt,

γ
p
` (x) = ⨏

T

0
qt(x, t)

e−iω`t

iω`
dt −

q(x, t) e−iω`t

iω`T
∣

T

0
= ⨏

T

0
∇w(x, t)

e−iω`t

iω`
dt.

Together with the definition (4.38) of γ
p
` and γv

` , we thus immediately obtain

iω`γv
` − c2

∇ ⋅γ
p
` = 0, iω`γ

p
` = ∇γv

` in Ω.

Since w(x, t) = 0 for x ∈ ΓD, we infer from (4.38) that

∫
ΓD

γv
`(x)ϕ(x) ds = ⨏

T

0
∫

ΓD
w(x, t)ϕ(x) ds e−iω`t dt = 0, ϕ ∈ L2

(ΓD),



4.3. Helmholtz equation in first-order formulation 89

and hence γv
` satisfies (4.37e). Similarly, (4.37c), (4.37d) follow from the fact that q

and w satisfy (4.31c), (4.31d) with gN ≡ gS ≡ 0. Hence γ
p
` , γv

` satisfy (4.37) for all ∣`∣ ≥ 1.
In fact for ` = 1, (4.37) corresponds to (2.9) in first-order formulation with γ

p
1 = ∇u,

γv
1 = iωu, homogeneous boundary conditions and no sources. By uniqueness, γ

p
1

and γv
1 , together with their complex conjugates, are therefore identically zero.

Next, we consider γ
p
0 , γv

0 . Again, since q and w satisfy (4.31a)-(4.31e) with f = 0
and homogeneous boundary conditions, we obtain from (4.38) with ` = 0 and the
periodicity of q and w

∫
Ω
(∇ ⋅γ

p
0) ϕ dx = ⨏

T

0
∫

Ω

1
c2 wt ϕ dxdt = 0, ∀ϕ ∈ L2

(Ω), (4.39)

∫
Ω

γv
0∇ ⋅ψ dx = ⨏

T

0
∫

Ω
qt ⋅ψ dxdt −⨏

T

0
∫

ΓS
w ψ ⋅ n dsdt (4.40)

= ⨏

T

0
∫

ΓS
c q ⋅ n ψ ⋅ n dsdt = ∫

ΓS
c γ

p
0 ⋅ n ψ ⋅ n ds, ∀ψ ∈ Hdiv

N .

In particular, (4.39)-(4.40) implies with ϕ = γv
0 and ψ = γ

p
0 that

∫
ΓS

c∣γp
0 ⋅ n∣

2 ds = 0,

and hence, γ
p
0 ⋅ n = 0 on ΓS, since c > 0. Moreover, Green’s formula, together with

(4.39) and the homogeneous boundary conditions, implies that

∫
Ω

γ
p
0 ⋅ ∇ϕ dx = −∫

Ω
(∇ ⋅γ

p
0) ϕ dx +∫

∂Ω
γ

p
0 ⋅ n ϕ ds = 0, ∀ϕ ∈ H1

D,

and therefore λ = γ
p
0 satisfies (4.36).

To show that γv
0 is constant, we now let ϕ ∈ C∞c (Ω) and ψ = ej ϕ ∈ H(div; Ω),

j = 1, . . . , d, where ej is the j-th unit basis vector of Rd. Integration of (4.31b) over
[0, T], the definition (4.38) with ` = 0 and the periodicity of q then yield

0 = ⨏

T

0
∫

Ω
qt ⋅ψ dxdt = −⨏

T

0
∫

Ω
w ∇ ⋅ψ dxdt = −∫

Ω
γv

0
∂ϕ

∂xj
dx. (4.41)

From (4.41), we conclude that ∂xj γ
v
0 = 0, j = 1, . . . , d, which implies

γv
0(x) ≡ η, γv

0 ∈ H1
(Ω).

Since γv
0 satisfies (4.31e) with ` = 0, η = γv

0 = 0, if Hd−1(ΓD) > 0. Similarly, if
Hd−1(ΓS) > 0, (4.31c), together with γ

p
0 ⋅ n = 0 on ΓS, yields

0 = ⨏

T

0
[c(x)q(x, t) ⋅ n +w(x, t)] dt = c(x)γ

p
0(x) ⋅ n + γv

0(x) = η, x ∈ ΓS.

Thus, η = 0 whenHd−1(ΓD ∪ ΓS) > 0, which completes the proof.

For sound-soft scattering problems, where Hd−1(ΓD) > 0 and Hd−1(ΓS) > 0, η = 0
and all eigenfunctions γ

p
` , γv

` , ∣`∣ > 1 of (4.37) trivially vanish in (4.35). Therefore,
(4.35)-(4.36) in Theorem 12 with t = 0 imply that

(p0,∇ϕ) = (Re{∇u},∇ϕ), ϕ ∈ H1
D(Ω),

v0 = ω Im{u}.
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From the real part of (2.9) we than conclude that

u = −
1
k2 (Re{ f}+∇ ⋅ p0)+

i
ω

v0. (4.42)

4.3.2 Fundamental Frequency Filter

When the CMCG method is applied to the first-order formulation (4.31), any time-
periodic solution of (4.31) in (4.35) generally consists of spurious perturbations η,
λ and eigenfunctions γ

p
` and γv

` superimposed on the desired (unique) solution u
of (2.9). To extract u from (p0, v0), we apply a filtering approach, similar to that in
Section 3.5, and thereby restore uniqueness. Again, we multiply the Fourier series
representation in (4.35) of v by eiωt and integrate over (0, T). Since η and λ are
independent of time, while eiωt is orthogonal to eiω`t, ∣`∣ > 1, all spurious modes
vanish and the resulting expression simplifies to:

2
T ∫

T

0
v(⋅, t) eiωt dt =

2
T ∫

T

0
Re{−iωu e−iωt

} eiωt dt = −iωu,

which immediately yields

u(x) =
2i

Tω ∫

T

0
v(⋅, t) eiωt dt. (4.43)

We summarize this result in the following proposition.

Proposition 5. Let u ∈ H1(Ω) be the unique solution of (2.9) and (p, v) ∈ Q be a T-time
periodic solution of (4.31). Then u is given by (4.43) .

4.3.3 Exact controllability method

Here we introduce the corresponding penalty functional Ĵ ∶ H(div; Ω)× L2(Ω)→ R≥0
to the penalty functional J1 from (3.33) with

Ĵ(p0, v0) =
1
2 ∫Ω

∣p(x, T)− p0(x)∣2 dx +
1
2 ∫Ω

1
c2(x)

(v(x, T)− v0(x))2 dx. (4.44)

Here again, the CG method requires the Fréchet derivative Ĵ′ ∶ H(div; Ω)× L2(Ω) →

(H(div; Ω))′ × L2(Ω),

⟨ Ĵ′(p0, v0), (δp0, δv0)⟩ = ∫
Ω
(p(x, T)− p0(x)) ⋅ (δp(x, T)− δp0(x)) dx

+∫
Ω

1
c2(x)

(v(x, T)− v0(x))(δv(x, T)− δv0(x)) dx (4.45)

for a pertubation (δp0, δv0) ∈ H(div; Ω) × L2(Ω). Here δp and δv solve the homo-
geneous wave equation (4.31) (or (4.32)) with f = gS = gN = gD = 0, and initial
values (δp0, δv0). Then Equations (4.32a), with w = v∗ ∈ L2(Ω), and (4.32b), with
q = p∗ ∈ Hdiv

N (Ω), and integration by parts in time yield

0 = ∫

T

0
∫

Ω
[

1
c2 δvt −∇ ⋅ δp]v∗ dx dt

= ∫
Ω

1
c2 δv v∗∣

T

0
dx −∫

T

0
∫

Ω
[

1
c2 δv v∗t + (∇ ⋅ δp) v∗] dx dt, (4.46)
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0 = ∫

T

0
[∫

Ω
(δpt ⋅ p∗ + δv∇ ⋅ p∗) dx −∫

ΓS
c (δp ⋅ n)(p∗ ⋅ n) ds] dt

= ∫
Ω

δp ⋅ p∗∣
T

0
dx −∫

T

0
[∫

Ω
(δp ⋅ p∗t − δv∇ ⋅ p∗) dx +∫

ΓS
c (δp ⋅ n)(p∗ ⋅ n) ds] dt.

(4.47)

Furthermore, integration by parts and Equations (4.46) and (4.47) imply that

∫
Ω
[

1
c2 δv v∗ − δp ⋅ p∗]∣

T

0
dx = ∫

T

0
∫

Ω
[

1
c2 v∗t +∇ ⋅ p∗]δv dx dt

+∫

T

0
∫

Ω
[v∗(∇ ⋅ δp)− (p∗t ⋅ δp)] dx dt

−∫

T

0
∫

ΓS
c (δp ⋅ n)(p∗ ⋅ n) ds dt

= ∫

T

0
∫

Ω
[

1
c2 v∗t +∇ ⋅ p∗]δv dx dt (4.48)

−∫

T

0
∫

Ω
[p∗t +∇v∗] ⋅ δp dx dt

+∫

T

0
[∫

ΓD
v∗(δp ⋅ n) ds +∫

ΓS

(v∗ − c δp ⋅ n)(p∗ ⋅ n) ds] dt.

Let (p∗, v∗) ∈ Q be the solution of the adjoint wave equation in first-order form,

1
c2(x)

∂v∗(x, t)
∂t

+∇ ⋅ p∗(x, t) = 0, x ∈ Ω, t > 0, (4.49a)

∂p∗(x, t)
∂t

+∇v∗(x, t) = 0, x ∈ Ω, t > 0, (4.49b)

c(x)p∗(x, t) ⋅ n + v(x, t) = 0, x ∈ ΓS, t > 0, (4.49c)
p∗(x, t) ⋅ n = 0, x ∈ ΓN , t > 0, (4.49d)

v∗(x, t) = 0, x ∈ ΓD, t > 0, (4.49e)

with the initial conditions

p∗(x, T) = p(x, T)− p0(x), x ∈ Ω, (4.49f)
v∗(x, T) = −(v(x, T)− v0(x)), x ∈ Ω. (4.49g)

Then, Equation (4.48) yields

∫
Ω
[δp0(x) ⋅ p∗(x, 0)−

1
c2(x)

δv0(x)v∗(x, 0)] dx

= ∫
Ω
[δp(x, T) ⋅ p∗(x, T)−

1
c2(x)

δv(x, T)v∗(x, T)] dx

= ∫
Ω
[δp(x, T) ⋅ (p(x, T)− p0(x))+

1
c2(x)

δv(x, T)(v(x, T)− v0(x))] dx,
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and, together with (4.45), we obtain

⟨ Ĵ′(p0, v0), (δp0, δv0)⟩ = ∫
Ω
(p∗(x, 0)− p∗(x, T)) ⋅ δp0(x) dx

−∫
Ω

1
c2(x)

(v∗(x, 0)− v∗(x, T))δv0(x) dx. (4.50)

In contrast to J′1 in (3.34), for (g0, g1) = Ĵ′(p0, v0), we have

g0(x) = p∗(x, 0)− p∗(x, T) ∈ Hdiv
N , (4.51)

g1(x) = −
1

c2(x)
(v∗(x, 0)− v∗(x, T)) ∈ L2

(Ω), (4.52)

and hence no Riesz representative is needed.

4.3.4 Hybridizable discontinuous Galerkin discretization

In [70], Glowinski et al. used classical (mixed) Raviart-Thomas (RT) finite elements
to discretize (4.31). Since no mass-lumping is available for RT elements on trian-
gles or on tetrahedra [15], each time-step then requires the inversion of the mass-
matrix. To avoid that extra computational cost, which also impedes parallelization,
we instead consider the recent hybrid discontinuous Galerkin (HDG) finite element
(FE) method [37, 38] to discretize (2.9) in first-order formulation and (4.31). Then,
the mass-matrix is block-diagonal, with (small and constant) block size equal to the
number of degrees of freedoms per element, so that the time-stepping scheme be-
comes truly explicit and inherently parallel.

Let Th denote a regular triangulation of Ωh, Eh the set of all faces and Pr the space
of polynomials of degree r. In addition, we define

Ph = {r ∈ (L2
(Ω))

d
∶ r∣K ∈ (P

r
(K))

d,∀K ∈ Th}, (4.53)

Vh = {w ∈ L2
(Ω) ∶ w∣K ∈ P

r
(K),∀K ∈ Th}, (4.54)

Mh = {µ ∈ L2
(Eh) ∶ µ∣F ∈ P

r
(F),∀F ∈ Eh}. (4.55)

Next, we consider the semi-discrete wave equation (4.32),

∂

∂t
(

1
c2 vh, w)

Th
= ( f , w)Th − (∇ ⋅ ph, w)Th + ⟨p̂h ⋅ n, w⟩∂Th , (4.56a)

∂

∂t
(ph, r)Th = − (vh,∇ ⋅ r)Th + ⟨v̂h, r ⋅ n⟩∂Th , (4.56b)

⟨p̂h ⋅ n, µ⟩∂Th/∂Ωh
= 0, (4.56c)

with the boundary conditions

⟨p̂h ⋅ n +
1
c

v̂h, µ⟩∂Ωh∩ΓS = ⟨Re{gS exp(−iωt)}, µ⟩∂Ωh∩ΓS , (4.56d)

⟨p̂h ⋅ n, µ⟩∂Ωh∩ΓN = ⟨Re{gN exp(−iωt)}, µ⟩∂Ωh∩ΓN , (4.56e)

⟨v̂h, µ⟩∂Ωh∩ΓD = ⟨
∂

∂t
Re{gD exp(−iωt)}, µ⟩

∂Ωh∩ΓD
, (4.56f)

for some (r, w, µ) ∈ Ph ×Vh × Mh and t ∈ (0, T). Here (⋅, ⋅)K denotes the standard inner
product of L2(K), K ∈ Th, and ⟨⋅, ⋅⟩F the standard scalar product of L2(F), F ∈ Eh, and
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the numerical flux is given by

p̂h ⋅ n = ph ⋅ n − τ(vh − v̂h) on ∂Th (4.57)

with the numerical flux parameter τ. Following [38], the HDG Galerkin FE formula-
tion reads: find (ph, vh, v̂h) ∈ Ph ×Vh × Mh such that

(
∂ph

∂t
, r)K = − (vh,∇ ⋅ r)K + ⟨v̂h, r ⋅ n⟩∂K, (4.58a)

(
1
c2

∂vh

∂t
, w)K = ( f , w)K − (ph,∇w)K + ⟨p̂h ⋅ n, w⟩∂K, (4.58b)

⟨p̂h ⋅ n +
1
c

v̂h, µ⟩∂K∩ΓS = ⟨Re{gS exp(−iωt)}, µ⟩∂K∩ΓS , (4.58c)

⟨p̂h ⋅ n, µ⟩∂K∩ΓN = ⟨Re{gN exp(−iωt)}, µ⟩∂K∩ΓN , (4.58d)
⟨v̂h, µ⟩∂K∩ΓD = ⟨ω Im{gD exp(−iωt)}, µ⟩∂K∩ΓD , (4.58e)

for all (r, w, µ) ∈ Ph ×Vh × Mh, K ∈ Th and t ∈ [0, T], where

p̂h ⋅ n = ph ⋅ n − τ(vh − v̂h) on ∂K, (4.58f)

with the stabilization function τ in [38]. In addition, it satisfies the initial conditions

ph(x, 0) = p0(x), vh(x, 0) = v0(x), x ∈ Ω. (4.58g)

For the first-order system (4.58) of ordinary differential equations, we use standard
explicit Runge-Kutta (RK) methods.

4.3.5 Post-processing and superconvergence

For a FE discretization with piecewise polynomials of degree r, we usually expect
convergence as O(hr+1) with respect to the L2-norm. For the above HDG discretiza-
tion, however, an extra power in h can be achieved by applying a cheap local post-
processing step [38, §2.8]. The same (super-) convergence in space of order r + 2
using only Pr-FE can be achieved with the CMCG method by applying the local
post-processing step to the numerical solutions (pnT

h , vnT
h ) of (4.31) at the final time

T = nT∆t.
Let (pm

h , vm
h , v̂m

h ) denotes the fully discrete solution of (4.58) at tm = m∆t. First, we
compute the new (more accurate) approximation pnT ,∗

h of p(⋅, T) by solving the local
problem

(pnT ,∗
h , ψ)L2(K) = −(vnT

h ,∇ ⋅ψ)L2(K) + ⟨v̂nT
h , ψ ⋅ n⟩∂K, ∀ψ ∈ Ph

on each K ∈ Th. Then, we calculate the additional approximations ynT ,∗
h of y(⋅, T) =

Re{u(x)} given by (4.42), vnT ,∗
h of v(⋅, T) in Pr+1(K), which satisfies

(∇ynT ,∗
h ,∇ϕ)L2(K) = (pnT

h ,∇ϕ)L2(K), ∀ϕ ∈ P
r+1

(K),

(ynT ,∗
h , 1)L2(K) = (ynT

h , 1)L2(K),

(∇vnT ,∗
h ,∇ϕ)L2(K) = (pnT ,∗

h ,∇ϕ)L2(K), ∀ϕ ∈ P
r+1

(K),

(vnT ,∗
h , 1)L2(K) = (vnT

h , 1)L2(K),

for any element K ∈ Th. The new approximate solution u is then given by (4.43) with
p and v replaced by pnT ,∗

h and vnT ,∗
h .
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Figure 4.11: HDG semi-discrete convergence: comparison of the numerical solution uh, ob-
tained with the CMCG method, and u∗h , obtained with a direct solver for the same fixed P2-FE
discretization (H1-conforming or HDG).

4.3.6 Numerical experiments

Here we present a series of numerical examples that illustrate the usefulness, accu-
racy and convergence behavior of the CMCG method for the first-order formulation
in various typical configurations. First, we verify that the numerical solution uh of
(4.29), obtained with the CMCG method, converges to the numerical solution u∗h , ob-
tained with a direct solver for the same spatial HDG-FE discretization, as the time
step ∆t → 0 in the numerical integration of (4.31). Second, we verify that the CMCG
method for the first-order formulation with HDG-FE discretization achieves the ex-
pected rates of super convergence after a local post-processing when the minimizer
of the cost functional Ĵ in (4.44) is unique. Third, we study how the number of CG
iterations in the CMCG Algorithm depends on the wave number k. Finally, we apply
the CMCG method to a Helmholtz equation in a physically bounded domain, where
we restore the uniqueness using the filtering procedure from Section 4.3.2.

Semi-discrete convergence

First, we consider a simple 1D example to show for a fixed FE-mesh that the nu-
merical solution uh, obtained with the CMCG method, converges to the numerical
solution u∗h of (2.9) in first-order formulation, obtained with a direct solver, as ∆t → 0.
Hence we consider the following solution u of (2.9) in Ω = (0, 1) with ω = k = 6π,
a = c = 1, and f ≡ 0:

u(x) = exp(ikx), with u(0) = 1, u′(1)− ik u(1) = 0.

We use the standard explicit fourth order Runge-Kutta (RK4) method for the time
integration of (4.31) in the CMCG Algorithm. For the CG iteration, we always choose
y(0)

0 ≡ 0, y(0)
1 ≡ 0 and fix the tolerance to Tol = 10−14 to ensure convergence to machine

precision accuracy.
In Figure 4.11, we monitor the difference between the numerical solution u∗h of

(4.29), obtained with a direct solver, and uh, obtained with the CMCG method us-
ing the first-order formulation. As expected, for increasingly smaller ∆t and a fixed
stringent tolerance in the CG iteration, the numerical solution of the CMCG method
always converges to the discrete solution of the Helmholtz equation. For the sake
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Dirichlet-Sommerfeld h = 2−1 h = 2−2 h = 2−3 h = 2−4 h = 2−5 h = 2−6 rate

HDG CMCG 4.2 ⋅ 10−2 5.7 ⋅ 10−3 7.6 ⋅ 10−4 9.8 ⋅ 10−5 1.2 ⋅ 10−5 1.6 ⋅ 10−6 2.94
with (FP) and (CC) 4.2 ⋅ 10−2 5.7 ⋅ 10−3 7.6 ⋅ 10−4 9.8 ⋅ 10−5 1.2 ⋅ 10−5 1.6 ⋅ 10−6 2.94
with (FP), (CC), and (PP) 1.3 ⋅ 10−2 6.9 ⋅ 10−4 3.9 ⋅ 10−5 2.3 ⋅ 10−6 1.4 ⋅ 10−7 9.0 ⋅ 10−9 4.10

Neumann-Sommerfeld h = 2−1 h = 2−2 h = 2−3 h = 2−4 h = 2−5 h = 2−6 rate

HDG CMCG 4.2 ⋅ 10−2 5.7 ⋅ 10−3 7.6 ⋅ 10−4 9.8 ⋅ 10−5 1.2 ⋅ 10−5 1.6 ⋅ 10−6 2.94
with (FP) and (CC) 4.2 ⋅ 10−2 5.7 ⋅ 10−3 7.6 ⋅ 10−4 9.8 ⋅ 10−5 1.2 ⋅ 10−5 1.6 ⋅ 10−6 2.94
with (FP), (CC), and (PP) 1.3 ⋅ 10−2 6.9 ⋅ 10−4 3.9 ⋅ 10−5 2.3 ⋅ 10−6 1.4 ⋅ 10−7 9.0 ⋅ 10−9 4.10

Pure Sommerfeld h = 2−1 h = 2−2 h = 2−3 h = 2−4 h = 2−5 h = 2−6 rate

HDG CMCG 4.2 ⋅ 10−2 5.7 ⋅ 10−3 7.6 ⋅ 10−4 9.8 ⋅ 10−5 1.2 ⋅ 10−5 1.6 ⋅ 10−6 2.94
with (FP) and (CC) 4.3 ⋅ 10−2 6.5 ⋅ 10−3 8.9 ⋅ 10−4 1.1 ⋅ 10−4 1.4 ⋅ 10−5 1.8 ⋅ 10−6 2.91
with (FP), (CC), and (PP) 1.3 ⋅ 10−2 6.9 ⋅ 10−4 3.9 ⋅ 10−5 2.3 ⋅ 10−6 1.4 ⋅ 10−7 9.0 ⋅ 10−9 4.10

Pure Dirichlet h = 2−1 h = 2−2 h = 2−3 h = 2−4 h = 2−5 h = 2−6 rate

HDG CMCG 2.2 ⋅ 10−1 1.1 ⋅ 10−1 5.5 ⋅ 10−2 2.7 ⋅ 10−2 1.4 ⋅ 10−2 6.8 ⋅ 10−3 1.01
with (FP) and (CC) 4.5 ⋅ 10−2 5.8 ⋅ 10−3 7.6 ⋅ 10−4 9.8 ⋅ 10−5 1.2 ⋅ 10−5 1.6 ⋅ 10−6 2.97
with (FP), (CC), and (PP) 1.3 ⋅ 10−2 6.8 ⋅ 10−4 3.8 ⋅ 10−5 2.3 ⋅ 10−6 1.4 ⋅ 10−7 9.0 ⋅ 10−9 4.09

Pure Neumann h = 2−1 h = 2−2 h = 2−3 h = 2−4 h = 2−5 h = 2−6 rate

HDG CMCG 3.9 ⋅ 10−2 1.0 ⋅ 10−2 9.5 ⋅ 10−3 9.5 ⋅ 10−3 9.6 ⋅ 10−3 9.6 ⋅ 10−3 0.41
with (FP) and (CC) 3.9 ⋅ 10−2 5.7 ⋅ 10−3 7.6 ⋅ 10−4 9.8 ⋅ 10−5 1.2 ⋅ 10−5 1.6 ⋅ 10−6 2.92
with (FP), (CC), and (PP) 1.4 ⋅ 10−2 6.9 ⋅ 10−4 3.9 ⋅ 10−5 2.3 ⋅ 10−6 1.4 ⋅ 10−7 9.0 ⋅ 10−9 4.11

Dirichlet-Neumann h = 2−1 h = 2−2 h = 2−3 h = 2−4 h = 2−5 h = 2−6 rate

HDG CMCG 4.4 ⋅ 10−2 5.8 ⋅ 10−3 7.6 ⋅ 10−4 9.8 ⋅ 10−5 1.9 ⋅ 10−2 1.9 ⋅ 10−2 0.24
with (FP) and (CC) 4.4 ⋅ 10−2 5.8 ⋅ 10−3 7.6 ⋅ 10−4 9.8 ⋅ 10−5 1.2 ⋅ 10−5 1.6 ⋅ 10−6 2.95
with (FP), (CC), and (PP) 1.9 ⋅ 10−2 8.3 ⋅ 10−4 4.1 ⋅ 10−5 2.4 ⋅ 10−6 1.5 ⋅ 10−7 9.0 ⋅ 10−9 4.20

Table 4.1: HDG superconvergence: numerical error ∥u−uh∥ vs. mesh size h, obtained with the
CMCG method for the first-order formulation with P2-HDG discretization for various boundary
conditions, either with or without compatibility condition (CC), filtering procedure (FP), and
post-processing (PP).

of comparison, we also compute the numerical solution, obtained with the original
CMCG method applied to the second-order formulation using (continuous) P2-FEM
with mass-lumping – see Figure 4.11.

Convergence and superconvergence

To illustrate the accuracy and verify the expected convergence rates for the HDG-FE
discretizations in the CMCG method, we consider the one-dimensional solution

u(x) = − exp(ikx), x ∈ Ω = (0, 1),

of (2.9) with a = c = 1 and k = ω = 5π/4. For various examples, we impose that
u satisfies the different combination of boundary conditions (2.9b) – (2.9d) related
to the configurations in Secion 3.4. Table 4.1 shows the relative L2-error ∥u − uh∥,
obtained with the CMCG method for the first-order formulation (4.29), by using
P2-HDG (r = 2) discretization on a sequence of increasingly finer meshes h = 2−i,
i = 1, . . . , 6. Clearly as we refine the mesh, we always reduce the time-step in the RK4
method to satisfy the CFL stability condition. The CG iteration stops once the toler-
ance Tol = 10−12 is reached. In addition, we compare the numerical solution with or
without imposing compatibility condition (CC), filtering procedure (FP), and post-
processing (PP).
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Figure 4.12: One-dimensional sound-soft scattering: the number of CG iterations vs. the
wave number k = 2i, i = 0, . . . , 5

We observe that the CMCG method for scattering problems (Hd−1(ΓS) > 0) yields
a solution with the expected optimal convergence of order r + 1 with polynomials of
degree r. But it fails for Helmholtz equation in physically bounded domains ΓS =

∅ without filtering procedure and imposing the compatibility condition, since the
minimizer of the cost functional is in general not unique. Next, we observe that the
CMCG method even achieves a superconvergence of order r + 2, once local post-
processing is applied to the solution in the final CG iteration.

Wave guide with varying frequency

Here we compare the CMCG method for both formulations for solving the Helmholtz
equation (2.9) with the exact solution

u(x) = − eikx, x ∈ Ω = (0, 1),

exact source terms, and a = c = 1. We impose an impedance boundary condition
on ΓS = {1} and a Dirichlet boundary condition on ΓD = {0}. We use P2-HDG-FE
for first-order formulation and H1-conforming P2-FE and P3-FE for second-order
formulation. Moreover, we apply the RK4 method for solving the time integration
of (4.31) and (3.5), respectively.

Now, we progressively increase the wave number as k = ω = 2i , i = 0, . . . , 7, where
the corresponding mesh size h decreases with hk

3
2 ∼ const – see Section 2.4. Figure

4.12 monitors the number of CMCG iterations required to reach a fixed tolerance of
10−10 in Step 6 in Algorithm 2 for both formulations. We observe that the number
of CG iterations vs. k essentially increases linearly with an approximate slope of
between 0.76 and 0.87.

Hence, the number of CG iterations in the CMCG method generally increases
with the wave number k both with and without control of the pollution error.

Physically bounded domain

In the absence of Dirichlet or impedance boundary conditions, the first-order formu-
lation does not yield the correct minimizer of Ĵ. As a simple remedy, we proposed
in Section 4.3.2 a filtering procedure which removes the unwanted spurious modes.
To illustrate the effectiveness of the filtering procedure, we now consider the exact
solution of (2.9),

u(x) = 16x2
(x − 1)2, x ∈ Ω = (0, 1), (4.60)



4.3. Helmholtz equation in first-order formulation 97

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x

n
u

m
er

ic
a
l

so
lu

ti
o
n

exact solution

HDG-CMCG solution without filtering

HDG-CMCG solution with filtering

Figure 4.13: Physically bounded domain: comparison of the exact solution u of (4.29) with
the numerical solution uh, obtained with the CMCG method for the first-order formulation with
HDG discretization, either with or without filtering procedure.

with homogeneous Neumann boundary conditions, k = ω = π/4, and a = c = 1. Note
that k2 is not an eigenvalue of (3.21), and therefore (2.9) is well-posed. However, as
(4k)2 = π2 indeed corresponds to the first eigenvalue of the negative Laplacian, the
CMCG method in general will not yield the unique solution – see Theorems 6 and
12. Indeed as shown in Figure 4.13, the original CMCG method [70, 68] does not
yield the exact solution u of (2.9). However, when the CMCG method is combined
with the filtering approach proposed in Section 4.3.2, the desired numerical solution
indeed coincides with u even for a pure Neumann problem.

Now, we summarize that the uniqueness of the Helmholtz equation using the
CMCG method for the first-order formulation can be recovered by filtering proce-
dure and imposing a compatibility condition.
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Part II

Inversion of time-harmonic wave
equations
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CHAPTER 5
Inverse Helmholtz problems

To explore the (unknown) inhomogeneous inclusion, one typically formulates the
(inverse) problem as an optimal control problem, where the control u is the squared
wave speed. This leads to an ill-posed PDE-constrained optimization problem, which
requires the repeated (state) solution y, depending on the control, of the scattering
problem (2.9) from Part I. Here we seek after a minimizer u∗, where the correspond-
ing (simulated) wave field y of (2.9) with a = u∗ coincides with the measured data
yobs. Since the measured data in general contains perturbations, the exact solution
u may neither be found nor be unique, which makes the problem harder to solve.
Moreover, to capture more detailed properties from the inhomogeneous inclusion,
one requires high frequent solutions of (2.9), which again requires a fine mesh and
hence leads to a large number of unknowns. This deteriorates the solvability of the
optimization problem due to the growing number of local minima. Therefore, one
typically requires adding a regularization (or penalty) term into the cost functional,
which e.g. penalizes the total variation (TV) of the control [100, 28, 79]. However,
such regularization itself involves additional parameters, so that determining appro-
priate parameter values for the reconstruction can be difficult.

Next, the representation of the control in the grid-based nodal basis, resulting e.g.
either from the finite difference (FD) or finite element (FE) discretization, typically
leads to a prohibitively large number of unknown variables. Therefore, we instead
use the regularization by discretization and size reduction based on the adaptive
spectral (AS) space approach in [77, 79], which not only significantly reduces the
number of unknowns, but also is very robust and provides an accurate result.

In Section 5.1, we first formulate the inversion problem as a least-squares prob-
lem via an optimal control technique. Second, we derive an optimization formula-
tion with penalty term for the regularization and subsequently apply a (standard)
Newton-like optimization method on the least-squares problem. The numerical re-
sult shows the accuracy of the reconstructed medium and the usefulness of the regu-
larization and illustrates the accuracy of the AS approximation of the medium. Next,
in Section 5.2, we consider the regularization of the control u in parameterization
based on the spectral decomposition of an (adaptive) linear elliptic operator, which
again depends on u. In addition, we analyse the corresponding adaptive spectral
(AS) space [9]. Here, a numerical example verifies the main result for a piecewise
constant media. In Section 5.3, we apply the AS space approach on the optimal con-
trol problem. To reduce the dimension of the AS space efficiently and significantly,
we introduce a dynamic size reduction approach based on low-rank approximation
using the singular value decomposition (SVD) [72, 85]. Then, we perform a series of
numerical experiments to illustrate the accuracy, convergence behavior of the adap-
tive spectral inversion (ASI), and the size reduction of the AS space.
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5.1 PDE-constrained optimization problem

Let y denote the solution of the scattering problem (2.9),

−∇ ⋅ (u∇y) − ω2y = f in Ω, (5.1a)
∂y
∂n

− i
ω
√

u
y = 0 on ΓS, (5.1b)

∂y
∂n

= 0 on ΓN , (5.1c)

y = 0 on ΓD, (5.1d)

in a bounded connected polygonal domain Ω ⊂ Rd, d ≤ 3, with a Lipschitz boundary
∂Ω = ΓS ∪ ΓN ∪ ΓD, where u(x) ≥ u0 > 0 is unknown. In contrast to (2.9), the variable
coefficients a and c2 in (2.9) are replaced by the squared wave speed u.

Now, the goal is to explore the unknown (exact) inhomogeneous medium u ∈

L∞(Ω) from the measured data yobs ∈ L2(Γ) on the partial boundary Γ ⊂ ∂Ω such
that the solution y of (5.1) corresponds to yobs. Since the measured data usually
contains either additive or multiplicative Gaussian noise, even the solution of (5.1)
with the true profile u may not exactly coincide with yobs.

To determine an approximation of u, the inverse problem is formulated as a PDE-
constrained optimization problem,

min
w∈V

J[w] (5.2)

for some V, e.g. V = L∞(Ω). The misfit (cost) functional J ∶ V → R≥0 is

J[w] =
1
2

Ns

∑
`=1

∥y` − yobs
` ∥

2
L2(Γ), (5.3)

where y` = y`[w] is the solution of (5.1) with f = f` and g = g`, ` = 1, . . . , Ns. It basi-
cally “penalizes” the misfit between y` and the observed data yobs

` on the boundary.
Here we have Ns observations from Ns different source terms.

It is well-known that the inverse problem is in general severally ill-posed. There-
fore, we require an additional regularization term such as the total variation (TV)[58],

TVε[w] = ∫
Ω

√
∣∇w∣2 + ε2 dx, ε > 0. (5.4)

We note that the parameter ε > 0 is added to the TV regularization term, since ∇w
may vanish such that the derivative of TVε with ε = 0 may not exist. It is clear that
one can instead use, for instance, the regularization with Tikhonov, Gaussian, or
Lorentzian penalty term [79, 115]. Now, we instead consider

Ĵ[w] = J[w]+ αR[w] (5.5)

with the regularization parameter α ≥ 0 and R = TVε, ε > 0. As a consequence, we
solve the PDE-constrained optimization problem,

min
w∈V

Ĵ[w] = min
w∈V

{J[w]+ αR[w]}. (5.6)

The choice of α depends on the model problem and one usually requires that αR[w]

is slightly smaller than J[w]. Once the parameter is too large, we only minimize the
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total variation of w instead of J[w]. Many strategies such as the L-curve criterion
[86] are proposed to choose the parameter adaptively. In [115], Nahum proposed

α =
J[u]
R[u]

. (5.7)

Based on [58] we determine α as follows: for a (local) minimizer u of Ĵ[w] it holds

⟨ Ĵ′[u], δu⟩ = ⟨J′[u], δu⟩+ α⟨R′
[u], δu⟩ = 0, ∀δu,

where ⟨⋅, ⋅⟩ denotes the corresponding dual pairing and the derivatives of J′ and R′

are given in Section 5.1.1. For δu = u, we obtain

α = −
⟨J′[u], u⟩
⟨R′[u], u⟩

. (5.8)

To ensure that the total variation regularization R = TVε in (5.4) is well-defined,
we instead consider the approximation uδ of u∗ in V ∶= W1,∞(Ω).

5.1.1 Newton-type optimization method

Similar to Section 3.4, we require the (Fréchet) derivative of the cost functional Ĵ in
(5.5) for the optimization. Here we follow the optimize-then-discretize approach.

Let δu be a perturbation. Then we obtain

⟨ Ĵ′[u], δu⟩ = ⟨J′[u], δu⟩+ α⟨TV′
ε [u], δu⟩ (5.9)

with

⟨J′[u], δu⟩ =
Ns

∑
`=1

Re{∫
Γ
(y` − yobs

` ) δy` ds} (5.10)

and

⟨TV′
ε [u], δu⟩ = ⟨−∇ ⋅ (

∇u
√

∣∇u∣2 + ε2
), δu⟩ = ∫

Ω

∇u ⋅ ∇δu
√

∣∇u∣2 + ε2
dx, (5.11)

where the derivative δy` ∶= ∂
∂u y` solves (5.1) with u = δu and f` = g` = 0.

Now, we consider the linear operator A[u] ∶ H1(Ω)→ (H1(Ω))′,

A[u] y = −∇ ⋅ (u∇y)−ω2y. (5.12)

By Equation (5.1a), we obtain A[u] y` = f` in Ω, and furthermore, we have

∂

∂u
(A[u] y`) = (

∂

∂u
A[u]) y` +A[u]δy` =

∂

∂u
f` = 0. (5.13)

Let z` ∈ H1(Ω) be the solution to the adjoint scattering problem,

−∇ ⋅ (u∇z`) − ω2 z` = f ∗` ∶= {
y` − yobs

` on Γ,
0 in Ω/Γ,

(5.14a)

∂z`
∂n

+ i
ω
√

u
z` = 0 on ΓS, (5.14b)

∂z`
∂n

= 0 on ΓN , z` = 0 on ΓD. (5.14c)
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By (5.14a) and (5.12), we again obtain

A
∗
[u] z` = f ∗` in Ω.

Next, we integrate (5.13) multiplied with z` over Ω. Integration by parts and the
definition (5.12), together with the boundary conditions, yield

∫
Ω
(A[u] δy`) z` dx = −∫

Ω
∇ ⋅ (u ∇ δy`) z` dx −ω2

∫
Ω

δy z` dx

= −∫
Ω
∇ ⋅ (u∇ z`)δy` dx −ω2

∫
Ω

z` δy dx

= ∫
Ω
(A

∗
[u] z`) δy` dx = ∫

Γ
(y` − yobs

` ) δy` ds. (5.15)

Furthermore, Equation (5.13) implies that

∫
Ω
(A[u]δy`) z dx = −∫

Ω
((

∂

∂u
A[u]) y`) z` dx = −∫

Ω
δu∇y` ⋅ ∇z` dx. (5.16)

As a result, together with Equations (5.10), (5.15), and (5.16), we finally obtain

⟨J′[u], δu⟩ = −Re{∫
Ω

Ns

∑
`=1

δu ∇y` ⋅ ∇z` dx}. (5.17)

Here we consider u and y = y[u] in (5.3) in the finite dimensional subspaces
Vh = {ψj}

K
j=1 ⊂ V and Wh = {ϕj}

N
j=1 ⊂ H1(Ω), respectively. Furthermore, β ∈ RK

denotes the discrete representative solution of u in Vh with

u ≈
K
∑
j=1

βjψj.

We then minimize the discrete cost function Ĵ ∶ RK → R≥0 by using its discrete gradi-
ent Ĵ′ ∶ RK → RK.

Now, we apply a Newton-type based gradient method with the iteration

H`d` = − Ĵ′[β`], (5.18a)
β`+1 = β` + ρ`d`, (5.18b)

for some ρ` ∈ R and symmetric positive definite matrix H` to optimize the nonlinear
least-squares problem (5.2), where d` denotes the search direction. To determine the
line step ρ`, we use the Wolfe-Powell or Armijo line search methods [117].

For H` = Hess( Ĵ)[β`], the Hessian matrix of Ĵ, (5.18) corresponds to the classical
Newton iteration. It is well-known that the classical Newton method has a quadratic
rate of convergence when the iterative solution is near to a minimizer. However,
the Newton method may fail when the iterative solution is close to a saddle point,
since the Hessian matrix of the function becomes indefinite. Moreover, it may be
expensive to determine the Hessian matrix of Ĵ exactly. Therefore, we use the BFGS
method [117], a quasi-Newton method with rank-2 update. Since, for a large system,
it still requires to store the (dense) Hessian matrix, and thus, we instead use the
limited memory BFGS (L-BFGS) method [106, 34].

It is clear that other nonlinear optimization methods such as the nonlinear CG
method (Fletcher-Reeves, Polak-Ribière, or Hestenes-Stiefel), inexact Newton method,
or Gauss-Newton method, can also be applied to (5.2) [117].
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To prevent that the optimization procedure converges to a false local minimum,
we apply the frequency continuation strategy from [35, 10, 94]. Starting at the low-
est frequency ν1, a fixed α1 > 0 in (5.5), and the initial guess u(0), we seek a local
minimizer u(1) with the BFGS method. Next, we update the new regularization pa-
rameter αm, m >, given by (5.8), namely,

αm = θm ⋅ ∣
⟨J′[u(m)], u(m)⟩

⟨R′[u(m)], u(m)⟩
∣ , 0 < θm ≤ 1, m ≥ 1. (5.19)

Then, we increase the frequency and rerun again the BFGS method to determine the
new solution (or minimizer). Note that one can e.g. fix θm = 1

2 in (5.19), m ≥ 1.
Here we list the algorithm of the (standard) inversion method using a grid-based

nodal basis.
Algorithm 3: Standard inversion method with grid-based nodal basis

Input: initial guess u(0), regularization parameter α1
Output: u(m)

1 for m = 1, 2, . . . do
2 Find a (local) minimizer u(m) of J + αmR in the FE space starting at u(m−1).
3 if ∥u(m) − u(m−1)∥ < Tol then
4 Return u(m) and stop.
5 Update the new regularization parameter αm+1 by (5.19).
6 νm+1 = νm +∆ν

5.1.2 Numerical examples

Here we consider an example with the unknown piecewise constant profile

u(x) = 2+ χS(x)+ χB(x),

shown in Figure 5.1a, where χS and χB denote the characteristic function of a disk B
and a star S, respectively, with S ⊂⊂ B. Now, we apply theP1-FE for the inverse prob-
lem (5.6) and P3-FE for the Helmholtz equation (5.1). Next, we minimize the misfit
Ĵ in (5.5) between the synthetic data y and the observed data yobs, where both are
obtained by solving the Helmholtz equation with the corresponding squared wave
speed. Here the observed data, recorded on the boundary Γ = ∂Ω from the eight
Gaussian sources located at (0.05, 0.05), (0.5, 0.05), (0.95, 0.05), (0.05, 0.5), (0.95, 0.5),
(0.05, 0.95), (0.5, 0.95), and (0.95, 0.95), contains 20% white noise. To avoid any in-
verse crime, the mesh for the observation is independent of the synthetic data and is
about 30% finer than the mesh for the synthetic data.

Starting at the lowest frequency ν1 = 4 and the regularization parameter α1 =

5 ⋅ 10−5, we apply Algorithm 3 with the TV-penalty and ε = 10−6 to reconstruct the
unknown medium u. The frequency increases in each iteration by ∆ν = 2 up to
ν20 = 42.

Figure 5.1b shows the reconstruction u(20) of u with a relative L2-error of 3.7%.
Here we observe that the inversion method captures precisely the shapes. Next, we
repeat the same example without the TV-penalty term. It yields a larger relative
L2-error of 16.89%. However, the reconstruction here shown in Figure 5.1c recovers
the star-type shape better and sharper at the corners than the reconstruction with a
penalty term.
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(a) total profile u (b) reconstruction with
TV-regularization

(c) reconstruction without
regularization

Figure 5.1: Scatterer from circular and star-shaped inclusion: (a) exact total profile u; (b)
reconstruction of u with TV-penalty term; (c) reconstruction of u without regularization term.

5.2 Adaptive spectral decomposition

It is well-known that the optimization problem of minimizing (5.3) in L∞(Ω) is, in
general, severally ill-posed. To obtain a well-posed problem, we add a Tikhonov-
type regularization term R[u] into the misfit functional J[u] in (5.3). However, this
approach does not address the costs of solving an optimization problem in a higher
dimensional space, as the dimension of set of discrete media is determined by the
number of nodal variables resulting from the FD or FE discretization. An alterna-
tive approach for obtaining a well-posed problem in lower dimensional space, with
keeping the media reasonably accurate, is proposed in [77, 79]. Instead of adding
a penalty term in the original misfit functional J, the control u is regularized by
parametrization in a finite-dimensional (spectral) space spanned by the eigenfunc-
tions of the linear elliptic operator Lε[w], ε > 0. The linear elliptic operator

Lε[w] = −∇ ⋅ (µε[w]∇), µε[w] =
1

√
∣∇w∣2 + ε2

or µε[w] =
1

max{∣∇w∣, ε}
,

with w = u, however, again depends on the control. Therefore, the spectral space
requires an (initial) guess or approximation û of u. For given w = û, the (adaptive)
spectral (AS) space consists of eigenfunctions ϕ` of the eigenvalue problem

Lε[w](ϕ`) = λ`ϕ`, 0 < λ1 ≤ λ2 ≤ . . . .

Then, the spectral expansion of u in AS space is truncated by a finite number K,
namely

u ≈
K
∑
`=1

β` ϕ`, β` ∈ R.

For a piecewise constant medium u, numerical examples in [43, 77, 79] showed that
the AS approach efficiently reduces the number of degrees of freedoms and still
yields remarkably accurate approximations.

Note that for a piecewise constant function u, the operator Lε[u] is not well-
defined. Therefore, we instead consider a regular approximation uδ of u, e.g., a
projection of u on an H1-conforming FE space.

Here we do the analysis of the AS space for piecewise constant media in a more
general setting [9].
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5.2.1 Adaptive spectral space

For the analysis, we assume that for a given function w, µε[w], ε > 0, is given by

µε[w](x) = µ̂ε(∣∇w(x)∣), x ∈ Ω, (5.20)

where µ̂ε ∶ [0,∞)→ R is a nonincreasing function that satisfies

µ̂ε(0) = ε−1, 0 < µ̂ε(τ), τµ̂ε(τ) ≤ 1, τ ≥ 0. (5.21)

In particular, the above yields for w with ∇w ∈ L∞(Ω),

0 < µ̂ε(∥∇w∥L∞(Ω)) ≤ µ̂ε(∣∇w∣) = µε[w]. (5.22)

In practice, we choose for µ̂ε

µ̂ε(τ) = (τq
+ εq

)
− 1

q , q ∈ [1,∞). (5.23)

We note that µε in (5.20) with µ̂ε given by (5.23), with q = 2, coincides with the deriva-
tive of TVε in (5.11) – see [79]. Furthermore, µε in (5.20) with

µ̂ε(τ) = max (τ, ε)
−1

was originally used in [43, 77].
To include FE approximations in our analysis, we consider the eigenvalues and

eigenfunctions of the operator Lε[uδ] in closed subspaces Vδ and Vδ
0 of H1(Ω) and

H1
0(Ω), respectively. More precisely, Vδ

0 is the subspace of Vδ of functions with zero
trace on ∂Ω – see the trace theorem in Section 2.1.

Let ϕ0 ∈ V
δ denote the solution of the strongly elliptic boundary value problem

B[ϕ0, v] = 0, ∀v ∈ V
δ
0 , (5.24a)

ϕ0 = g, on ∂Ω, (5.24b)

where g = uδ on ∂Ω and B[⋅, ⋅] is the bilinear form given by

B[v, w] = ⟨µε[uδ]∇v,∇w⟩ . (5.25)

We say that λ ∈ R>0 is an eigenvalue of Lε[uδ] in Vδ
0 , if there exists an eigenfunction

0 ≠ ϕ ∈ Vδ
0 such that

B[ϕ, v] = λ ⟨ϕ, v⟩ , ∀ v ∈ V
δ
0 . (5.26)

Following the spectral theorem [56, §6], the sequence of eigenvalues {λk} of Lε[uδ]

in Vδ
0 is strictly positive, real-valued, and nondecreasing. Moreover, the sequence

of corresponding eigenfunctions {ϕk} is an orthonormal basis with respect to the L2

inner product of Vδ
0 . Clearly, the eigenvalues λk and eigenfunctions ϕk depend on δ

and ε. To simplify notation, we write λk for λk[ε, δ], etc., when it is clear from the
context.

5.2.2 Notation

In [77, 79], Grote et al. proposed to construct affine spaces of candidate functions
adaptively in an iterative process. The procedure relies on the decomposition

u = u0
+ ũ in Ω, u0

∈ V
δ, ũ ∈ V

δ
0 . (5.27)
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We suppose that the background u0 of the medium has the form

u0
=

M
∑
m=1

û0,mχ0,m, (5.28)

where χ0,m denotes the characteristic function of a set

Bm
= B̃m

∩Ω (5.29)

for some mutually disjoint connected open sets B̃1, . . . , B̃M such that

Ω ⊂⊂
M
⋃

m=1
B̃m, H

d−1(B̃m
∩ ∂Ω) > 0. (5.30)

We further suppose that ũ is given by

ũ =
K
∑
k=1

ûkχk, ûk
≠ 0, k = 1, . . . , K, (5.31)

where χk is the characteristic function of a connected open set Ak ⊂⊂ Ω/S, where

S = (
M
⋃

m=1
∂Bm

)/∂Ω, (5.32)

and the sets A1, . . . , AK are open, connected, and with mutually disjoint boundaries.
We recall that for piecewise constant function u, we instead consider a regular

approximation uδ ∈ W1,∞(Ω) of u. Suppose that uδ = u0
δ + ũδ, where

u0
δ =

M
∑
m=1

û0,mχ0,m
δ ∈ V

δ, ũδ =
K
∑
k=1

ûkχk
δ ∈ V

δ
0 . (5.33)

The approximation {χ0,m
δ }δ>0 of χ0,m satisfies limδ↘0 χ0,m

δ = χ0,m in L2(Ω) and χ0,m
δ ∈

Vδ, for all δ. Similarly, for each k = 1, . . . , K, the approximation {χk
δ}δ>0 of χk satisfies

limδ↘0 χ0,m
δ = χ0,m in L2(Ω) and χk

δ ∈ V
δ
0 , for all δ.

For δ > 0, let

Uδ =
M
⋃
k=1

Uk
δ , Uk

δ = {x ∈ Ω ∣ dist(x, (∂Ak
)∩Ω) < δ}, (5.34)

Aδ =
K
⋃
k=1

Ak
δ, Ak

δ = (Ω/Uk
δ
)∩ Ak, (5.35)

Sδ = {x ∈ Ω ∣ dist(x, S) < δ}, (5.36)

Dδ = Ω/(Uδ ∪ Sδ). (5.37)

The region Uk
δ basically surrounds the boundary of each shape Ak. For our analysis,

Uk
δ includes the “discontinuous jump” of the characteristic function χk and Sδ the

“discontinuous jump” in the background. Moreover, u is constant a.e. in Dδ and ũ
vanishes identically in Dδ/Aδ. Figures 5.2 and 5.3 illustrate the definition of (5.29),
(5.32), and (5.34)–(5.37).
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B1

B2

A1

A2

Sδ

S

(B
1 ∪B2

) ∩Dδ

Figure 5.2: Illustration of the definitions (5.29), (5.32), and (5.36): (left) shapes Ak, Bm; (right)

background (B
1
∪ B

2
)∩Dδ, boundary S, and region Sδ.

A1

A2

A3

A4
A1

δ

U1
δ

A2
δ

U2
δ

A3
δU3

δ

A4
δ

U4
δ

Figure 5.3: Illustration of definitions (5.34) and (5.35) with homogeneous background: (left)
shapes Ak; (right) approximated shapes Ak

δ of Ak and their neighborhood Uk
δ .

5.2.3 Statement of main results and discussion

The main analytic result, given by Theorem 13, provides estimates for the approxi-
mation ϕ0 of the background u0 and for the eigenvalues λk and eigenfunctions ϕk of
Lε[uδ], k = 1, . . . , K; namely, there are C0, C > 0 independent of δ, ε > 0 such that

∥∇ϕ0∥
2
L2(Dδ)

≤ C0 ε, (5.38a)

∥∇ϕ`∥
2
L2(Dδ)

≤ C ε. (5.38b)

Clearly, letting ε tends to zero, it follows for a fixed δ > 0 that both the background
ϕ0 and the eigenfunction ϕ` are constant a.e. in Dδ. From the main theorem follows
Corollary 4, which provides similar estimates for finite element formulations and for
uδ obtained as the convolution of u and the standard mollifier [57, 56].

Estimate (5.38a) for the background ϕ0 in Theorem 13 directly follows from Lemma
5. However, the estimate (5.38b) for the eigenfunctions ϕk relies on Proposition 6
and Lemma 7, which provide the estimate of the eigenvalue λk and eigenfunction
ϕk, k = 1, . . . , K, with

λk ≤ ∥∇χk∥
2
L2(Uδ)

, ∥∇ϕk∥
2
L2(Dδ)

≤ λkε.
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B1∂B1−δ

∂B1+δ

∂B1

Uδ

δ

δ

Figure 5.4: Illustration of Minkowski content (5.42) of B1 and Uδ = B1+δ/B1−δ.

Here we require for our estimation that the approximations {χk
δ}δ and {χ0,m

δ }δ of each
characteristic function {χk} and {χ0,m}, respectively, satisfy the estimates

∥∇χ0,m
δ ∥L1(Ω) ≤ C0, m = 1, . . . , M, (5.39a)

∥∇χk
δ∥L1(Ω) ≤ C, k = 1, . . . , K, (5.39b)

for all δ sufficiently small and C0, C > 0 independent of ε and δ.
Note that since χδ converges to a function χ with jump discontinuities, the gra-

dients of χδ need not be bounded (in any norm) with respect to δ > 0, for δ in a
neighborhood of zero. Thus, whether estimate (5.39) is satisfied or not depends on
properties of the method by which χδ is obtained, as well as on properties of the set
A. The following lemma provides sufficient conditions for (5.39).

Lemma 4. Let A ⊂ Rd be a bounded Lipschitz domain and Uδ = {x ∈ Rd ∣ dist(x, ∂A) < δ}
with δ ∈ (0, η], for η > 0. The following assertions hold.

(i) There exists a constant C > 0 such that δ−1L(Uδ) < C, for every δ ∈ (0, η].

(ii) If {gδ}δ∈(0,η] is a family of functions such that supp(gδ) ⊂⊂ Uδ, for all δ ∈ (0, η] and
some p ∈ [1,∞],

δ1−1/p
∥gδ∥Lp(Rd) ≤ C1 (5.40)

(with the usual convention 1/∞ ∶= 0), then there exists a constant C > 0, such that for
every δ ∈ (0, η],

∥gδ∥L1(Rd) ≤ C. (5.41)

Remark 11. (i) Note that in particular, for p =∞, (5.40) reduces to δ∣gδ∣ ≤ C1 a.e. in Rd

for all δ ∈ (0, η]. Also note that for p = 1, the conclusion of the lemma is trivial.

(ii) For the proof of the estimate δ−1L(Uδ) < C in Lemma (i), we need the theorem of the
d-dimensional Minkowski content (see [59, Theorem 3.2.39] and [127, §4.1]), namely

lim
δ↘0

L(Uδ)

2δ
= H

d−1
(∂A). (5.42)

To illustrate the Minkowski content (see Figure 5.4), we consider the unit disk A = B1,
where Br = Br(0) = {x ∈ R2 ∣ ∥x∥ < r}. Then, by definition, we have Uδ = B1+δ/B1−δ,
δ > 0, and

L(Uδ)

2δ
=

(1+ δ)2π − (1− δ)2π

2δ
= 2π = H

1
(∂A), ∀δ > 0.
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Proof of Lemma 4. (i) We first show that ψ ∶ [0, η]→ R, given by

ψ(δ) =

⎧⎪⎪
⎨
⎪⎪⎩

δ−1L(Uδ) δ ≠ 0,
2Hd−1(∂A) δ = 0,

(5.43)

is bounded or, more precisely, ψ is continuous in [0, η]. Since A is a bounded Lip-
schitz domain, its boundary ∂A is (d − 1)-rectifiable. In particular, there exists a
Lipschitz mapping from a bounded subset of Rd−1 onto ∂A. Hence the (d − 1)-
dimensional Minkowski content and the (d − 1)-dimensional Hausdorff measure of
∂A coincide. Thus, we have limδ↘0 ψ(δ) = ψ(0), i.e., ψ is continuous at δ = 0. Since
ρ(x) = dist(x, ∂A) is Lipschitz and satisfies ∣∇ρ(x)∣ = 1 a.e. x ∈ Uδ [45, §6], we have

L(Uδ) = ∫

δ

0
H

d−1
(ρ−1

{t})d t, (5.44)

by the coarea formula in [57, §3.4]. Combining this with (5.42), we conclude that the
function δ ↦ L(Uδ) is absolutely continuous in [0, η]. It follows that ψ is continuous
in (0, η]. Since it is also continuous at δ = 0, we have that it is continuous in the entire
closed interval [0, η]. Therefore, ψ is bounded in [0, η], which proves (i).

(ii) The Hölder inequality, together with supp(gδ) ⊂⊂ Uδ, implies that

∥gδ∥L1(Rd) = ∫Uδ

∣gδ(x)∣ dx ≤ (L(Uδ))
1−1/p

∥gδ∥Lp(Rd). (5.45)

Next, Equation (5.40) yields

∥gδ∥L1(Rd) ≤ C1(δ−1
L(Uδ))

1−1/p
. (5.46)

Thus the conclusion follows from assertion (i) of this lemma.

In the following results we suppose η > 0 is such that the sets Ak
η are nonempty,

there holds
Sη ∩Uη = ∅, Uk

η ∩U j
η = ∅, ∀ k ≠ j, (5.47)

and for each connected component Eη of Dη/Aη , there holds Hd−1(∂Eη ∩ ∂Ω) > 0.
Since the boundaries of A1, . . . , AK are mutually disjoint and Ak ⊂⊂ Ω/S, k = 1, . . . , K,
such an η > 0 exists. We further suppose for each m = 1, . . . , M,

∇χ0,m
δ ∈ L∞(Ω), supp(∇χ0,m

δ
) ⊂⊂ Sδ, ∀ δ ∈ (0, η], (5.48)

and for each k = 1, . . . , K,

∇χk
δ ∈ L∞(Ω), supp(∇χk

δ) ⊂⊂ Uk
δ , ∀ δ ∈ (0, η]. (5.49)

Following these assumptions and (5.21), we obtain

µε[uδ] = µ̂ε(0) = ε−1 (5.50)

a.e. in Dδ for each δ ∈ (0, η], ∇uδ ∈ L∞(Ω), and thus, for all ε > 0, (5.22) with w = uδ is
satisfied. In particular, the operator Lε[uδ] is uniformly elliptic in Ω.
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Note that ∇χk
δ fulfills (5.49), where χk

δ is an (H1-conforming) FE-approximation
of χk with

χk
δ = {

1, in Ak
δ,

0, in Ω/(Ak
δ ∪Uk

δ).

For the approximation ϕ0 of the background u0, we have the following:

Lemma 5. For every ε > 0 and δ ∈ (0, η] there holds

∥∇ϕ0∥
2
L2(Dδ)

≤ ε ∥∇u0
δ∥L1(Ω). (5.51)

Here we need the following general Lemma.

Lemma 6. Let V be a Hilbert space and B ∶ V ×V → R a symmetric, coercive and continuous
bilinear form.

(i) If F ∶ V → R is a continuous linear functional, then there exists a unique u ∈ V such
that

B[u, v] = F[v] ∀ v ∈ V. (5.52)

Furthermore, u is the unique minimizer in V of the functional G given by

G(v) =
1
2

B[v, v]− F[v]. (5.53)

(ii) Suppose that V is a subspace of Ṽ, B ∶ Ṽ × Ṽ → R is a continuous extension of B, and
w ∈ Ṽ. Then there exists a unique u ∈ w +V such that

B[u, v] = 0 ∀ v ∈ V. (5.54)

Moreover, u is the unique minimizer of the functional I, given by I(v) = B[v, v], in
w +V, namely

B[u, u] ≤ B[w + v, w + v] ∀ v ∈ V. (5.55)

Proof. (i) According to the Theorem of Lax-Milgram there exists a unique solution
u ∈ V of (5.52) [56, §6.2]. Now, let G ∶ V → R defined by (5.53). Then for u ≠ v ∈ V it
holds

G(v) =
1
2

B[v, v]− F[v] =
1
2

B[v, v]− B[u, v]

=
1
2
(B[v, v]− 2B[u, v]+ B[u, u])−

1
2

B[u, u]

=
1
2

B[v − u, v − u]−
1
2

B[u, u]

> −
1
2

B[u, u] =
1
2

B[u, u]− B[u, u] =
1
2

B[u, u]− F[u] = G(u).

(ii) For u ∈ w +V, let û = u −w. Then û ∈ V and u satisfies (5.54) if, and only if,

B[û, v] = B[u −w, v] = B[u, v]− B[w, v] = −B[w, v], ∀ v ∈ V. (5.56)

Since F̂[v] = −B[w, v] is continuous for a fixed w, there exists a unique û ∈ V satisfying
(5.56). Moreover, (ii) implies that, for any v ∈ V, it holds

1
2

B[û, û]+ B[w, û] =
1
2

B[û, û]− F̂[û] ≤
1
2

B[v, v]− F̂[v] =
1
2

B[v, v]+ B[w, v]. (5.57)
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Let u = û+w. Then we have u ∈ w+V and thus we recover (5.55) from (5.57), namely

B[u, u] = B[û, û]− B[w, w]+ 2B[u, w]

≤ B[v, v]+ 2B[w, v]− 2B[w, û]− B[w, w]+ 2B[u, w]

= B[w + v, w + v]+ 2B[w, u − û −w] = B[w + v, w + v].

Proof of Lemma 5. Following Lemma 6, the solution ϕ0 of (5.24) is the unique mini-
mizer of the functional I(v) = B[v, v] in uδ +V

δ
0 , i.e.,

B[ϕ0, ϕ0] ≤ B[uδ + v, uδ + v], ∀ v ∈ V
δ
0 ,

or equivalently
B[ϕ0, ϕ0] ≤ B[u0

δ + v, u0
δ + v], ∀ v ∈ V

δ
0 . (5.58)

By the last estimate with v = 0 and the equality uδ = u0
δ, which holds in Sδ, we obtain

B[ϕ0, ϕ0] ≤ B[u0
δ, u0

δ] = ∫Sδ

µε[u0
δ]∣∇u0

δ ∣
2 dx ≤ ∥∇u0

δ∥L1(Sδ)
, (5.59)

by (5.21) with τ = ∣∇uδ∣, and hence the conclusion.

The estimates of the eigenfunctions are due to the following simple proposition:

Proposition 6. For every j ∈ N there holds

∥∇ϕj∥
2
L2(Dδ)

≤ λj ε, λj = λj(ε, δ). (5.60)

Proof. The proposition follows from (5.26) and the definition of B[⋅, ⋅].

Thus, to show that an eigenfunction ϕk is “almost” piecewise constant, we require
an estimate of the eigenvalue λk of Lε[uδ] in Vδ

0 .

Lemma 7. There exists a constant C, independent of u1, . . . , uK, such that for every ε > 0,
δ ∈ (0, η], and k = 1, . . . , K, there holds

λk ≤
C∥τ∥2

minj ∣ûj∣
, τj = ∥∇χ

j
δ∥L1(Ω), j = 1, . . . , K. (5.61)

The proof of Lemma 7 requires the following result.

Lemma 8. If the sets Ak
η , k = 1, . . . , K, are nonempty and (5.47) is satisfied for some η > 0,

then the following assertions hold true:

(i) There exists j = 1, . . . , K such that

L(A
j
η /

K
⋃

j≠k=1
Ak

η) > 0, A
k
η = Ak

η ∩Dη . (5.62)

(ii) The restrictions of the functions χk, k = 1, . . . , K, to Dη are linearly independent.

(iii) If for every k = 1, . . . , K, (5.49) is satisfied, then there exists a constant C > 0 such that
for every δ ∈ [0, η] and ψ̂ = (ψk)K

k=1 ∈ RK, the following estimates are satisfied:

∥ψδ∥
2
L2(Ω)

≥ ∥ψ∥
2
L2(Dη)

≥ C∥ψ̂∥
2
2, (5.63)

where ∥ ⋅ ∥2 denotes the Euclidean norm in RK, ψ = ∑k ψkχk and ψδ = ∑k ψkχk
δ.
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Ajη

x

W\Ajη V = W ∩Ajη

Figure 5.5: Illustration of assertion (i) in Lemma 8.

Proof of Lemma 8. (i) Let x ∈ ∂Aη . Then, by the definition of ∂Aη , for each neighbor-
hood W of x, it holds W ∩ Aη ≠ ∅ and W ∩ (Ω/Aη) ≠ ∅. Since

W ∩ Aη =
K
⋃
k=1

(W ∩ Ak
η), W ∩ (Ω/Aη) =

K
⋂
k=1

(W ∩ (Ω/Ak
η)), (5.64)

we obtain x ∈ W ∩ (Ω/Aj
η), ∀j, and there is j = 1, . . . , K with x ∈ W ∩ Aj

η . As a con-

sequence, we have x ∈ ∂Aj
η . Note that ∂Aj

η ⊂⊂ ∂U j
η . As the sets Uk

η with k = 1, . . . , K
are mutually disjoint, for each k ≠ j, there holds x ∉ ∂Ak

η . Similarly, we have x ∉

∂Sη . Hence, there exists an (sufficiently small) open set W such that x ∈ W, and

W ∩ (Ak
η ∪Uk

η) = ∅, for all k ≠ j, and W ∩ Sη = ∅. However, since x ∈ ∂Aj
η , the intersec-

tion W ∩ Aj
η is nonempty. Let V = W ∩ Aj

η shown Figure 5.5. By the above, we have

V ∩Uk
η = ∅, for all k = 1, . . . , K and V ∩ Sη = ∅. Consequently, V is a nonempty open

set satisfying V ⊂ Aj
η ∩ Dη = A

j
η and V ∩Ak

η ⊂ V ∩ Ak
η = ∅, for k ≠ j. Thus, we have

L(V) > 0 which proves (i).

(ii) Suppose
K
∑
k=1

ψkχk
= 0 a.e. in Dη . (5.65)

From (i) there is j satisfying (5.62). Without loss of generality, we assume that j = K.
However, by (5.65) this can be true, only if ψK = 0. The above argument may be
repeated by induction. Since there is a finite number of functions χk, the procedure
stops only when there is only one function left; let it be χ1. Then (5.65) reduces to
ψ1χ1 = 0. However, since A1

η ∩ Dη is open and nonempty (by the same argument),
this implies that ψ1 = 0, and we have that the restrictions of χk to Dη are linearly
independent.

(iii) Let ψ̂ = (ψk) ∈ RK, δ ∈ [0, η], ψ = ∑k ψkχk, and ψδ = ∑k ψkχk
δ, where χk

0 = χk. As
each χk

δ coincides with χk in Dδ = Ω/Uδ, we have

∥ψδ∥
2
L2(Ω)

≥ ∫
Dδ

∣
K
∑
k=1

ψkχk
δ∣

2
= ∫

Dδ

∣
K
∑
k=1

ψkχk
∣
2
= ∥ψ∥

2
L2(Dδ)

≥ ∥ψ∥
2
L2(Dη)

, (5.66)

for δ < η, since Dη ⊂⊂ Dδ. Expending the term on the right hand side yields

∥ψ∥
2
L2(Dη)

=
K
∑

k,j=1
ψkψj

∫
Dη

χkχj
=

K
∑

k,j=1
Mkjψ

kψj
= ∥ψ̂k

∥
2
M, (5.67)
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where ∥v∥2
M = v⊺Mv, v ∈ RK, and

Mkj = ∫
Dη

χkχj
= L(Ak

∩ Aj
∩Dη) > 0.

Hence ∥ψ∥2
L2(Dη)

is a quadratic form in the vector ψ̂, represented by the symmetric

matrix M = (Mkj), and is positive for any ψ̂ ≠ 0, by assertion (ii) of this lemma. It
follows that M is symmetric positive definite, and thus ∥ ⋅ ∥M is a norm in RK. As a
consequence, it yields (5.63), together with (5.66) and (5.67), and hence the conclu-
sion.

Proof of Lemma 7. It follows from spectral theory for symmetric elliptic operators and
the Courant minimax principle [56, §6.5 – 6.6] that for each n,

λn = min
0≠v∈Φ�

n−1

B[v, v]
∥v∥2 , (5.68)

where Φn−1 = span{ϕj}
n−1
j=1 , and W� denotes the orthogonal complement of W in Vδ

0

with respect to the L2(Ω) inner product. For

ψδ =
K
∑
k=1

ψkχk
δ, ψk

∈ R, (5.69)

there holds

⟨ϕj, ψδ⟩ =
K
∑
k=1

ψk
⟨ϕj, χk

δ⟩. (5.70)

Let n ≤ K and ψ̂ = (ψk)K
k=1 ∈ RK with ∥ψ̂∥2 = 1 such that ψδ given by (5.69) satisfies

⟨ϕj, ψδ⟩ = 0, j = 1, . . . , n − 1. (5.71)

One can find such a vector of coefficients ψ̂, since n ≤ K and hence the homogeneous
linear system (5.71) has more variables than equations. By Lemma 8 there exists
a constant C1 > 0 independent of ∥ψ̂∥2 = 1, δ ∈ (0, η], or ε such that ∥ψδ∥

2 ≥ C1.
Consequently, 0 ≠ ψδ ∈ Φ�

n−1, and thus we recover

λn ≤
B[ψδ, ψδ]

∥ψδ∥
2 ≤ C−1

1 B[ψδ, ψδ]. (5.72)

We write
B[ψδ, ψδ] = ∫

Uδ

µε[uδ]∣∇ψδ∣
2 dx. (5.73)

Next, we show

∣∇ψδ(x)∣ <
∣∇uδ(x)∣
minj ∣uj∣

, a.e. x ∈ Uδ. (5.74)

Let m = minj ∣uj∣. Since the sets U1
δ , . . . , UK

δ are mutually disjoint, each x ∈ Uδ lies in
precisely one Uk

δ , k = 1, . . . , K, and hence at most one of the gradients ∇χk
δ is nonzero.

Therefore, in Uδ we have

∣∇ψδ∣ = ∣
K
∑
k=1

ψk
∇χk

δ∣ =
K
∑
k=1

∣ψk
∣∣∇χk

δ∣ ≤
1
m

K
∑
k=1

∣uk
∣∣∇χk

δ∣ =
1
m

∣
K
∑
k=1

uk
∇χk

δ∣ .
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Since Sδ ∩Uδ = ∅, we have ∇u0
δ = 0 a.e. in Uδ and hence (5.74) is satisfied. Thus we

obtain
B[ψδ, ψδ] ≤

1
m ∫

Uδ

∣∇ψδ∣ dx =
1
m

∥∇ψδ∥L1(Ω). (5.75)

It follows, together with Cauchy-Schwarz inequality, that

B[ψδ, ψδ] ≤
1

minj ∣uj∣

K
∑
k=1

∣ψk
∣τk ≤

∥τ∥2

minj ∣uj∣
, (5.76)

which, combined with (5.72), yields the conclusion.

We summarize the results in the following theorem:

Theorem 13. If A1, . . . , AK and B1, . . . , BM have Lipschitz boundaries and there exists a
constant C such that for every δ ∈ (0, η], each of the functions χδ = χ0,m

δ , m = 1, . . . , M, and
χδ = χk

δ, k = 1, . . . , K, satisfies
δ∥∇χδ∥L∞(Ω) ≤ C. (5.77)

Then there exist constants C0, C1, independent of the coefficients û0,1, . . . , û0,M and û1, . . . , ûK

such that for every ε > 0, and δ ∈ (0, η] the following estimates hold

∥∇ϕ0∥
2
L2(Dδ)

≤ C0 max
m

∣û0,m
∣ ε, (5.78)

λk ≤
C1

minj ∣ûj∣
, ∥∇ϕk∥

2
L2(Dδ)

≤
C1

minj ∣ûj∣
ε, k = 1, . . . , K. (5.79)

Moreover, for each Lipschitz domain V ⊂⊂ Dη/Aη with Hd−1(∂V ∩ ∂Ω) > 0, there exists
a constant C2, independent of the coefficients û0,1, . . . , û0,M, and û1, . . . , ûK, such that for
every ε > 0, and δ ∈ (0, η] the following estimates are satisfied

∥u0
− ϕ0∥

2
L2(V)

≤ C2 max
m

∣û0,m
∣ ε, (5.80)

∥ϕk∥
2
L2(V)

≤
C2

minj ∣ûj∣
ε, k = 1, . . . , K. (5.81)

Proof. Estimates (5.78) and (5.79) follow easily from Lemma 4 with p =∞, Lemmata
5 and 7, and Proposition 6. Estimates (5.80) and (5.81) follow from the Poincaré
inequality in Section 2.1 and estimates (5.78) and (5.79), respectively, sinceHd−1(∂V ∩

∂Ω) > 0.

Remark 12. For a fixed δ > 0 and a connected open Lipschitz domain V ⊂⊂ Dδ, the estimate
(5.79) from Theorem 13 and Poincaré inequality in Section 2.1 provide constants CV , C > 0,
independent of δ, such that

∥ϕk −
1
L(V)

∫
V

ϕk dx∥
2

L2(V)

≤ CV∥∇ϕk∥
2
L2(V)

≤ Cε, ∀ε > 0.

Essentially, estimates (5.78) and (5.79) imply that ϕ0 and the first K eigenfunctions
ϕk of Lε[uδ] are “almost” constant in each connected component of Dδ. In particular,
ϕ0 is almost constant in each connected component of Dδ/Aδ. Since the Hausdorff
measure of ∂Ω ∩ ∂Bm is positive, for each m = 1, . . . , M, and ϕ0 coincides with u0

δ on
∂Ω, we have that ϕ0 approximates u0

δ well in Dδ/Aδ. Similarly, for k = 1, . . . , K, ϕk
is almost constant in each connected component of Dδ/Aδ, vanishes on ∂Ω, and is,
therefore, small in Dδ/Aδ.
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Consequently, uδ can be well approximated in ϕ0 +ΦK, for example, by its L2 best
approximation in ϕ0 +ΦK,

ϕ0 + PK[uδ − ϕ0], (5.82)

where PK is given by

⟨v − PK[v], ϕ⟩ = 0, ∀ (v, ϕ) ∈ V
δ
×ΦK. (5.83)

From Theorem 13 we may deduce estimates (5.78)–(5.81) for specific methods of
approximation.

Corollary 4. Let u ∈ L∞(Ω). Suppose that A1, . . . , AK and B1, . . . , BM have Lipschitz
boundaries. Estimates (5.78)–(5.81) hold true in each of the following cases:

(i) For each δ ∈ (0, η], uδ is the convolution of u with the standard mollifier (e.g., [57, 56]),
and Vδ = H1(Ω).

(ii) For each δ ∈ (0, η], uδ is the FE projection of u into an H1-conforming FE space Vδ

associated with a mesh Tδ, where the family of meshes {Tδ}δ∈(0,η] is regular and quasi-
uniform (see, e.g., [24, 122]), and Vδ = Vδ or Vδ = H1(Ω).

Proof. (i) Here we verify that the convolution, uδ = ρδ ∗ u, δ > 0, of u ∈ W1,∞(Ω),
satisfies (5.77), where ρδ(x) = δ−dρ(x/δ) and ρ ∈ C∞

c (Rd) is the standard mollifier,

ρ(x) = {
C exp ( 1

∣x∣2−1), ∣x∣ < 1,
0, ∣x∣ ≥ 1,

, C = ( ∫
{∣x∣<1}

exp(
1

∣x∣2 − 1
) dx )

−1

.

By definitions and integration by substitution, we have

δ∣
∂

∂xj
uδ(x)∣ ≤ δ∫

Rd
∣u(y)∣∣

∂

∂xj
ρδ(y − x)∣ dy

≤ ∥u∥L∞(Ω)∫
Bδ(0)

1
δd ∣(

∂

∂xj
ρ)(

y
δ
)∣ dy ≤ ∥u∥L∞(Ω)∫

B1(0)
∣

∂

∂xj
ρ(ŷ)∣ dŷ,

which yields

δ ∣∇uδ(x)∣ ≤ ∥u∥L∞(Ω)∥∇ρ∥L1(B1(0)), x ∈ Ω,

and hence, together with Theorem 13, the first assertion.

(ii) A proof for two-dimensional computational domains can be found in [24,
§6.6] and in [122, §4.5]. Since the proof for two-dimensional domains is quite general,
one can reuse and extend the proof for three-dimensional computational domains.

5.2.4 Numerical example

Here we consider the numerical example that shows the usefulness of the adaptive
spectral (AS) space to verify the property shown in Corollary 4. We start with a
piecewise constant function u given by

u = u0
+ ũ, u0

(x) =
M
∑
m=1

û0,mχ0,m
(x), ũ(x) =

K
∑
k=1

ûkχk
(x),
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(a) exact (total) medium uδ (b) exact background u0
δ

(c) AS approximation

Figure 5.6: Adaptive spectral approximation of a piecewise constant medium: (a) exact
total medium uδ in FE space; (b) exact background u0

δ in FE space; (c) L2-orthogonal projection
P8[uδ], given by (5.83), of uδ in AS space with eight eigenfunctions.

for some coefficients û0,m and ûk, m = 1, . . . , M, k = 1, . . . , K, with M = 5 and K = 8.
Here χ0,m and χk denote the characteristic function of the shape Bm and Ak, re-
spectively, where Bm touches the boundary ∂Ω in sense of Hd−1(B

m
∩ ∂Ω) > 0 and

Ak ⊂⊂ Ω.
First, we approximate u with P1-FE in a regular and quasi-uniform triangular

mesh denoted by uδ ∈ W1,∞(Ω), which is displayed in Figure 5.6a. Next, we compute
the spectral space VN in (5.26) with w = uδ, N = 8, and ε = 10−8, and project uδ into
vN = PN[uδ] ∈ VN , where PN is given by (5.83). The reconstruction vN of uδ matches
remarkably well with a relative L2-error of 0.15% in VN – see Figure 5.6c.

In Figure 5.7a, we monitor the numerical background ϕ0 of (5.24). Moreover, Fig-
ures 5.7b – 5.7i illustrate the eigenfunctions ϕ1, . . . , ϕ8 of (5.26) with the (smallest)
eigenvalues λ1 ≤ . . . ≤ λ8. Here we observe that ϕ0 is “almost” identical to the (exact)
background u0. In addition, each eigenfunction ϕk accurately matches a characteris-
tic function χk, k = 1, . . . , 8, except for ϕ1 and ϕ6. Since the corresponding shapes A1

and A6 (after reordering) are overlapped to each other, ϕ1 and ϕ6 both instead are
a linear combination of χ1 and χ6. Moreover, the background precisely vanishes in
every eigenfunction ϕk. Consequently, each eigenfunction corresponds very closely
to a linear combination of the characteristic functions. This fulfills the property of
the AS space shown in Corollary 4.

5.3 Adaptive spectral inversion

Here we present the adaptive spectral inversion (ASI) method and some numerical
examples that illustrate the usefulness of the ASI method. First, we consider the in-
verse problem in Section 5.1 formulated as a PDE-constrained optimization problem
to determine the unknown control u and provide a detailed description of the ASI
algorithm. We then apply the adaptive spectral (AS) decomposition approach from
Section 5.2 to regularize the ill-posed problem, where the solution u is projected to
the control space consisting of a finite number of spectral basis functions. To have a
small number of basis functions, we propose to use a dynamic size reduction of the
control space.

Next, we apply the ASI method, combined with the space size reduction ap-
proach, to solve a two-dimensional inverse scattering problem. Finally, we show the
numerical result of the scattering problem from the salt dome model.
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(a) background ϕ0 (b) ϕ1 with λ1 ≈ 5.9 (c) ϕ2 with λ2 ≈ 6.0

(d) ϕ3 with λ3 ≈ 7.1 (e) ϕ4 with λ4 ≈ 7.8 (f) ϕ5 with λ5 ≈ 13.7

(g) ϕ6 with λ6 ≈ 43.2 (h) ϕ7 with λ7 ≈ 55.4 (i) ϕ8 with λ8 ≈ 62.3

Figure 5.7: Adaptive spectral approximation of a piecewise constant medium: (a) back-
ground ϕ0 in (5.24) with w = uδ and ε = 10−8; (b)–(i) eigenfunctions ϕ1, . . . , ϕ8 of (5.26) to the
first eight eigenvalues λ1, . . . , λ8.

5.3.1 Adaptive spectral space with size reduction

Let us recall the PDE-contrained optimization problem,

u∗ = argmin
v

J[v], (5.84)

where J is defined in (5.3). Here we consider the representative of

u∗ ≈ ϕ0 +
K
∑
`=1

β`ψ`, β` ∈ R,

in the adaptive spectral (AS) space spanned by the eigenfunctions ψ` of (5.26), ` =

1, . . . , K, and the background ϕ0 given in (5.24). Since the exact medium u (or uδ) is
unknown, we start with an initial guess u(0) and compute

U(0)
= ϕ

(0)
0 +Φ(0), Φ(0)

= span{ψ
(0)
1 , . . . , ψ

(0)
K0

}, K0 = dim(Φ(0)
), (5.85)

defined in (5.24) and (5.26) with w = u(0). We then instead minimize the discrete
optimization problem (5.84),

β
(0)
∗ = argmin

β∈RK0

J[ϕ
(0)
0 +

K0

∑
`=1

β`ψ
(0)
` ],
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and set

u(0)
∗ (x) = ϕ

(0)
0 (x)+

K0

∑
`=1

β
(0)
∗,` ψ

(0)
` (x) ∈ U(0).

Now, the challenge is to update U(m), m ≥ 1, adaptively while keeping the property
of the previous AS space and in addition reducing the number of basis functions
without losing the accuracy of the solution up to a given tolerance.

Let us consider the current space

U(m−1)
= ϕ

(m−1)
0 +Ψ(m−1), Ψ(m−1)

= span{ψ
(m−1)
1 , . . . , ψ

(m−1)
Km−1

},

and compute the new AS space,

V(m)
= ϕ

(m)

0 +Φ(m), Φ(m)
= span{ϕ

(m)

1 , . . . , ϕ
(m)

K̃m
}, (5.86)

where K̃m is the dimension of the new AS space, ϕ
(m)

0 solves (5.24), and ϕ
(m)

` satisfies

(5.26), ` = 1, . . . , K̃m, with w = u(m−1)
∗ .

Following [77, 79], the new basis U(m) = V(m) is formed and the old one U(m−1) is
completely replaced by V(m). Instead of replacing the entire basis at each iteration,
we now propose to pass relevant information in U(m−1) to U(m). Therefore, we first
merge U(m−1) with V(m) and reduce then the merged space, including the previous
background ϕ

(m)

0 − ϕ
(m−1)
0 ,

span{ϕ
(m)

0 − ϕ
(m−1)
0 , ψ

(m−1)
1 , . . . , ψ

(m−1)
Km−1

, ϕ
(m)

1 , . . . , ϕ
(m)

K̃m
} (5.87)

by using the singular value decomposition (SVD); namely, we replace the SVD of the
matrix, consisting of all discrete vectors of (5.87), by its “trimmed down” version of
the SVD – see [72, §2.5.4, §12.2] and [85].

Let ψ
(m)

1 , . . . , ψ
(m)

N , for some N, denote an orthonormal basis with respect to the L2

inner product of the resulted thin SVD space. Then, we consider the (orthonormal)
projection

P[u(m−1)
] = ϕ

(m)

0 +
N
∑
`=1

β
(m)

` ψ
(m)

` , β
(m)

` ∈ R, (5.88)

of u(m−1)
∗ into ϕ

(m)

0 + span{ψ
(m)

1 , . . . , ψ
(m)

N }, where P is given by (5.83).
To reduce the space dimension further, we remove all basis functions, where the

corresponding coefficients β` in the solution are sufficiently small like

∣β
(m)

` ∣ ≤ Tolβ, Tolβ > 0.

Finally, we set after rearranging, e.g. ∣β(m)

1 ∣ ≥ . . . ≥ ∣β
(m)

N ∣,

u(m)
= ϕ

(m)

0 +
Km

∑
`=1

β
(m)

` ψ
(m)

` , Km ≤ N,

and define
U(m)

= ϕ
(m)

0 + span{ψ
(m)

1 , . . . , ψ
(m)

Km
}. (5.89)
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Now, we list the complete ASI algorithm:

Algorithm 4: ASI algorithm

Input: initial guess u(0) of the medium u, initial space U(0) and frequency ν1
Output: reconstruction u(m) of the medium

1 while m = 1, 2, . . . do
2 Find a (local) minimizer u(m)

∗ of J in (5.84) starting with u(m−1) in U(m−1).

3 if ∥u(m)
∗ − u(m−1)

∗ ∥ < TolASI then
4 Return u(m) = u(m)

∗ and stop.
5 Compute the new affine space V(m) in (5.86).
6 Merge V(m) with U(m−1) given in (5.87) and

trim the merged space with the SVD in (5.91).

7 Find an orthonormal basis ψ
(m)

1 , . . . , ψ
(m)

K of the trimmed space.
8 Truncate the affine space with (5.89) to obtain the new reduced space U(m).

9 Determine the least-squares u(m) of u(m)
∗ in U(m).

10 if ∥u(m) − u(m−1)∥ < εν then
11 Increase the frequency, νm+1 = νm +∆ν.
12 else
13 Set νm+1 = νm.

Remark 13. (i) The dimension of the new AS space in Step 5 given by K̃m can be fixed
for m ≥ 0, or K̃m increases linearly to the current frequency ν as in [77, 79].

(ii) To trim the space given by a matrix B ∈ Rq×p, q ≥ p, and rank(B) ≥ 1, e.g. resulting
from the discrete basis function of (5.87), needed in Step 6, we compute its singular
value decomposition

B = UΣV⊺, Σ =

⎛
⎜
⎜
⎜
⎝

σ1
⋱

σp
0

⎞
⎟
⎟
⎟
⎠

∈ Rq×p , σ1 ≥ σ2 ≥ ⋅ ⋅ ⋅ ≥ σp > 0,

where U = (U1 . . . Uq) ∈ Rq×q and V = (V1 . . . Vp) ∈ Rp×p are orthogonal
matrices. Next, we replace sufficiently small singular value σi,

σi

σ1
≤ εΣ , εΣ > 0, (5.90)

by zero. Let r ≥ 1 be the largest number where (5.90) is not fulfilled. Then we define
the “trimmed” matrix B̃ with rank(B̃) = r as

B̃ = ŨΣ̃Ṽ⊺
∈ Rp×r, (5.91)

where

Σ̃ =
⎛
⎜
⎝

σ1
⋱

σr

⎞
⎟
⎠

, Ũ = (U1 . . . Ur) , Ṽ = (V1 . . . Vr) . (5.92)

The resulted matrix B̃ is called the low-rank approximation of B.
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(iii) The basis of the low-rank approximation of (5.87) gathered from the SVD method in
Step 6, is in general not orthonormal with respect to the L2 inner product. To ensure
that the resulting basis functions in (5.91) are mutually orthonormal, we apply the
QR decomposition or the (modified) Gram-Schmidt method [72, §5.2] to find an or-
thonormal basis ψ

(m)

1 , . . . , ψ
(m)

K of the trimmed space with respect to the standard inner
product.

(iv) In Step 8, one can also reduce the sum in the solution by finding the smallest subset
I ⊂ {1, . . . , N} such that

∥P[u(m−1)
− ϕ

(m−1)
0 ]−∑

`∈I
β
(m)

` ψ
(m)

` ∥ ≤ Tolβ, Tolβ > 0.

By Parseval’s identity and under the assumption that ∣β
(m)

1 ∣ ≥ . . . ≥ ∣β
(m)

N ∣, one only
needs to find the smallest Km ≤ N such that

∥P[u(m−1)
− ϕ

(m−1)
0 ]−

Km

∑
`=1

β
(m)

` ψ
(m)

` ∥ = (
N
∑

`=Km+1
∣β

(m)

` ∣
2
)

1
2

≤ Tolβ

and sets instead

u(m)
= ϕ

(m)

0 +
Km

∑
`=1

β
(m)

` ψ
(m)

` , U(m)
= ϕ

(m)

0 + span{ψ
(m)

1 , . . . , ψ
(m)

Km
}.

5.3.2 Numerical examples

Here we present some numerical examples to illustrate the accuracy and the useful-
ness of the ASI method, as well as the behavior of the dimension of the adaptive
spectral space.

First, we solve a PDE-contrained optimization problem (5.84) in nodal basis (Al-
gorithm 3) and in ASI basis (Algorithm 4) to reconstruct the unknown piecewise
constant medium u (or uδ) with two obstacles. Then, we consider the accuracy and
convergence of both methods. In addition, we show how the complexity of the de-
gree of freedoms using the ASI method combined with the size reduction approach
decreases efficiently. Next, we repeat the same example with a third obstacle and
consider again the accuracy of the reconstruction, obtained with the ASI method,
and the complexity of the degree of freedoms in the ASI approach. Finally, we apply
the ASI method to a more realistic Salt-dome model from geosciences.

Numerical experiment 1: circular-shaped inclusions

We consider
u(x) = 2+

4
3

χ1
(x)+ χ2

(x), x ∈ Ω = (0, 1)× (0, 1),

where χk denotes the characteristic function of the disk Ak, k = 1, 2, with the radius
r1 = 0.115 and r2 = 0.125. The exact medium u now is approximated with the piece-
wise linear function in P1-FE – see Figure 5.8a.

We minimize the misfit J, defined in (5.3), between the synthetic data y and the
observed data yobs, where both are obtained by solving the Helmholtz equation with
ΓS = ∂Ω and the squared wave speed u. The eight Gaussian sources originate at
(0.05, 0.05), (0.5, 0.05), (0.95, 0.05), (0.05, 0.5), (0.95, 0.5), (0.05, 0.95), (0.5, 0.95), and
(0.95, 0.95), and the data, which contains 20% white noise, is measured on the whole
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(a) exact (unknown)
profile u

(b) reconstruction (nodal
basis with TV-penalty)

(c) reconstruction
(ASI basis)

(d) reconstruction (ASI
basis with size reduction)

Figure 5.8: Two circular inclusions: comparison of the reconstructions of the unknown
medium u (a), either with the grid-based nodal basis (b) or with the AS basis, either without
(c) or with (d) dynamic size reduction from Section 5.3.1.
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(a) misfit vs. ASI iteration or frequency step
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(b) relative L2-error vs. ASI iteration or frequency step
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(c) frequency ν vs. ASI iteration or frequency step
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(d) number of basis functions vs. ASI iteration

Figure 5.9: Two circular inclusions: comparison of the misfit J or Ĵ (a), the relative L2-error
(b), and the frequency (c) in each iteration (frequency step for nodal basis and ASI iteration for
AS basis) of the inversion method in nodal basis and in AS basis; (d) comparison of the dimension
of the AS space in each ASI iteration, obtained with the ASI method with and without dynamic
size reduction, while the number of grid-based nodal basis is fixed (ndo f s = 80′401).

boundary Γ = ∂Ω. We use the P3-FE for the spatial discretization. To avoid any
inverse crime, the mesh for the observation is independent of the synthetic data and
is about 30% finer than the mesh for the synthetic data.

Now, we apply the ASI method to the inverse problem (5.84). It starts at the
lowest frequency ν = 4, ν = 2πω, and the adaptive spectral (AS) space U(0) in (5.85)
with µ ≡ 1. Then, we increase the frequency up to ν = 42 with the frequency step
∆ν = 2 when the criterion for increment in Step 10 in the ASI algorithm 4 is fulfilled.
Figures 5.9c and 5.9d monitor the frequency νm and the number of basis functions at
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(a) unknown medium u (b) reconstruction (AS basis)

Figure 5.10: Three circular inclusions: (a) total medium u; (b) ASI reconstruction.

each ASI iteration m.
First, we apply the ASI method from [77, 79] without the dynamic size reduction

of the AS space. Starting with the spectral space U(0) of the (negative) Laplacian op-
erator with dim(U(0)) = 16, the ASI method adapts the AS space U(m) given in (5.26)
with w = u(m) and dim(U(m)) = 4νm, m = 1, . . . , 25. The ASI method yields in the
last iteration an AS space U(m), m = 25, with dim(U(m)) = 168 and a reconstruction
shown in Figure 5.8c with a relative L2-error of 3.3%.

Second, we apply the ASI method with the dynamic space size reduction strategy
starting with dim(U(0)) = 50. The dimension of the AS spaces U(m), m = 1, . . . , 25, re-
sulting from the ASI method combined with size reduction approach in (5.89), vary
from 3 to 89. The AS space U(25) in the last iteration only consists of two basis func-
tions. Moreover, the ASI method even yields in the last step a reconstruction illus-
trated in Figure 5.8d with a lower relative L2-error of 3.1%.

Again, we repeat the same example and reconstruct the profile with the grid-
based nodal basis with the TV-regularization. This yields a comparable accurate,
relative L2-error of 3.5%. However, the control consists of 80′401 degrees of free-
doms. In Figure 5.9b, we observe that the relative L2-error of all approaches reaches
the same level of accuracy. In addition, Figure 5.9a monitors the misfit in each iter-
ation m and shows that the misfit from ASI methods decreases monotonically and
rapidly. In contrast, the misfit Ĵ = J + αR in (5.5), obtained with the grid-based nodal
approach, converges slowly and is stagnated at 0.00112 in the last iteration m = 20,
where J(u(m)) = 0.00016 and αmR(u(m)) = 0.00096.

Next, we consider the scattering problem from three circular inhomogeneous in-
clusions,

u(x) = 2+
4
3

χ1
(x)+ χ2

(x)+
5
4

χ3
(x), x ∈ Ω = (0, 1)× (0, 1),

with the radii r1 = 0.1075, r2 = 0.1125, and r3 = 0.110. We apply the ASI method, with
the same settings as in the case of two disks, to reconstruct the unknown medium u.
Figure 5.10a illustrates the exact profile. We impose 20% white noise on the observed
data. The ASI method again starts with dim(U(0)) = 50 and yields here an AS space
U(m), with dim(U(m)) = 3, in the last iteration m = 24. The corresponding reconstruc-
tion with a relative L2-error of 4% is shown in Figure 5.10b. Furthermore, Figure 5.11
displays the basis vectors ψ

(m)

1 , ψ
(m)

2 , and ψ
(m)

3 of U(m), which remarkably match the
eigenfunctions ϕ1, ϕ2, and ϕ3 in (5.26) with w = u.

To illustrate the robustness with respect to the observed data with perturbations,
we compare the reconstruction of u, obtained from observations, containing white
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(a) eigenfunction ϕ1 (b) eigenfunction ϕ2 (c) eigenfunction ϕ3

(d) basis function ψ1 (e) basis function ψ2 (f) basis function ψ3

Figure 5.11: Three circular inclusions: (a)–(c) eigenfunctions in (5.26) with the exact medium
w = u; (d)–(f) basis of the AS space U(m) in the last iteration m = 24, obtained with the ASI
method combined with the space size reduction approach in Section 5.3.1.

noise of level 0%, 10%, 20%, or 40%, with the ASI method. Here we observe that the
ASI method yields relative L2-errors between 3.9% and 4.1%.

We conclude that the adaptive spectral inversion (ASI), with the dynamic space
size reduction approach, not only reduces the degree of unknowns significantly but
also yields an accurate and robust method.

Numerical experiment 2: Salt-Pluto model

Let us consider the two-dimensional Pluto 1.5 model from geosciences generated
by the “subsalt multiples attenuation and reduction technology” (SMAART). That
is (2.9) in Ω = (0, 24.4) × (−9, 0) [km] with the squared velocity profile u(x) shown
in Figure 5.12a. Here we impose that the solution y of (2.9) satisfies the absorbing
boundary condition (2.9b) on the lateral and lower boundaries and the homogeneous
(physical) Neumann boundary condition ∂

∂n y = 0 on the surface (y = 0). The Ns = 91
source terms are located at the top, 50 meters beneath the surface (y = 0.05), dis-
tributed in about every 270 meters. Next, the data, which contains 20% white noise,
is measured on the surface Γ = {y = 0} ⊂ ∂Ω.

For the discretization of the synthetic data, we use a P3-FE method with at least
20 points per wave length. To avoid any inverse crime, the mesh for the observation
again is finer than the mesh for the synthetic data. Next, we apply P1-FE with 54′572
vertices and 108′400 elements to present the control uδ.

First, we show the approximation of uδ in the AS space, by solving (5.26) with w =

uδ in µε– see Figure 5.12b. Then, starting at ν = 0.5 [Hz], with the initial guess u(0) =

u(0)
0 shown in Figure 5.12c, and the eigenspace U(0) spanned by spectral basis of the

negative Laplacian operator with dim(U(0)) = 150, we solve the inverse problem
(5.84) by using the ASI method with increasing frequency ν up to 3 [Hz]. The ASI
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(a) exact medium u (b) AS approximation (K = 100)
(rel. L2 error = 2.6%)

(c) initial guess u(0)

(rel. L2 error = 24%)
(d) ASI reconstruction (ν = 3.00[Hz])

(rel. L2 error = 10%)

Figure 5.12: Salt dome (Pluto) model: comparison of the exact profile u (a) with the AS
approximation (b), obtained with the L2-orthogonal projection, and with u(m) (d), obtained with
the ASI method after m = 13 ASI iterations starting with the initial guess u(0) (c).
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Figure 5.13: Salt dome (Pluto) model: comparison of the misfit (a), the relative L2 error (b),
the number of basis functions Km (c), and the frequency ν (d) in each ASI iteration m.

method yields the reconstruction of uδ in the last iteration, shown in Figure 5.12d,
with an L2-error of 10%. In addition, Figure 5.13b monitors the history of the L2-error
in each ASI iteration. We observe that it precisely captures the location and size of
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the obstacles (salt-dome). However, the shape of the obstacle slightly differs from
the exact shape, in particular the bottom of the large obstacle probably due to lack of
measured data.

Figure 5.13c monitors the dimension of the U(m) in each ASI iteration m. Here
we observe that the number of basis functions increases at the beginning from 150 to
173 and decreases and is stagnated at about 87. The frequency increases in each ASI
iteration by ∆ν = 0.25 [Hz], shown in Figure 5.13d, when the criterion,

∥u(m)

h − u(m−1)
h ∥ ≤ TolASI = 2.5%

is fulfilled.
In Figure 5.13a, we observe the convergence behavior of the misfit function J,

which is monotonically decreasing.
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Conclusion

Starting from inverse scattering problems in frequency domain for probing the un-
known medium, we have seen that solving these problems requires the repeated
multiple solutions of the time-harmonic wave equation or the (forward) Helmholtz
equation. To gain more detailed properties of the medium, one requires the high-
frequency solutions to the forward problem, which is well-known to be difficult to
solve.

First, based on [25, 26], we have shown how to apply the controllability method
(CM) combined with the conjugate gradient (CG) method as an alternative method
for solving the Helmholtz equation. Akin to a shooting method, the CMCG method
determines the time-harmonic solution of the corresponding wave equation in the
time domain by iteratively reducing the departure from periodicity. Each CG itera-
tion then requires the numerical solution of a forward and a backward wave equa-
tion over one period, together with the solution of a coercive elliptic problem inde-
pendent of the frequency. Thanks to the well-known parallel efficiency of explicit
methods combined with the excellent scalability of two-level domain decomposition
preconditioners for coercive elliptic problems up to thousands of cores, the CMCG
method is inherently parallel with strong scalability. Including a transient initial run-
up to determine a judicious initial guess significantly accelerates the CG iteration.
In fact, for scattering from convex obstacles, simply solving the time-harmonically
forced wave equation over a long-time without any controllability can provide an
even simpler, highly parallel Helmholtz solver. For nonconvex obstacles, however,
solving the wave equation without any controllability is not a viable option, as the
long time asymptotic convergence to the time-harmonic regime is simply too slow
due to trapped modes. In all cases, the CMCG Algorithm combined with the initial
run-up leads to the smallest time-to-solution. In the presence of local mesh refine-
ment, high-order explicit local time-stepping (LTS) methods [78, 81] overcome the
bottleneck due to an overly stringent CFL stability constraint.

However, the original CMCG method is based on the minimization of the cost
functional J1 in (3.33), which only guarantees convergence to the (unique) solution
of the Helmholtz equation for sound-soft scattering problems, when both Dirich-
let and impedance boundary conditions are imposed. For any other combination
of boundary conditions, the minimization of J1 generally does not lead to the cor-
rect time-harmonic solution. To extend the original CMCG method to boundary
value problems governed by the Helmholtz equation with arbitrary combinations of
Dirichlet, Neumann, or impedance boundary conditions, we have proposed to use
alternative cost functionals or additional conditions and procedures to restore the
uniqueness.

For scattering problems from sound-hard obstacles or inclusions, the compat-
ibility condition eliminates the spurious constant shift in the minimizer and thus
even permits the use of the original cost functional J1. Alternatively, (more accu-
rate) absorbing boundary conditions that include a zeroth-order term also permit
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the use of J1 without modification. Exact nonreflecting boundary conditions based
on integral formulations or DtN maps [76] could also be used but will generally lead
to nonlocal space-time operators on the artificial boundary. Perfectly matched lay-
ers, however, lead to local formulations without convolution integrals in time when
combined with appropriate auxiliary functions [99, 82, 8]. Next, for Helmholtz equa-
tion in physically bounded domains, the CMCG solution, obtained with the original
cost functional, will generally contain higher order spurious eigenmodes. We thus
have proposed a simple filtering procedure to remove them. In contrast to J1, the
alternative cost functional J3 in (3.43) always yields the true solution at little extra
computational cost and storage requirement.

Based on the first-order formulation of the wave equation, the CMCG method
uses a recent hybridized discontinuous Galerkin (HDG) discretization, which not
only automatically yields a block-diagonal mass-matrix but also completely avoids
solving the coercive elliptic problem that occurred in the CG method. Hence, it is
trivially parallelized and even leads to superconvergence after a local post-processing
step.

The CMCG approach developed here for the Helmholtz equation immediately
generalizes to other time-harmonic vector wave equations from electromagnetics or
elasticity [90].

Second, the inverse Helmholtz problems used to explore the unknown inho-
mogeneous medium is formulated as a nonlinear PDE-constrained optimal control
problem for the misfit functional J[u]. Since it is well-known that minimizing J is
severally ill-posed, a penalty term αR[u] based on the total variation is added to
the optimization. The parameter α originating from the regularization is determined
dynamically from a guess of u. This leads not only to a robust method, but is also
flexible and accurate.

However, the representation of the control in the grid-based nodal basis, result-
ing e.g. either from the finite difference (FD) or finite element (FE) discretization,
typically leads to a prohibitively large number of unknown variables. Therefore, we
have shown how to instead use the adaptive spectral (AS) decomposition as regular-
ization [43, 77, 79, 9]. It does not only significantly reduce the number of unknowns,
but also yields a very robust and accurate method.

For piecewise constant medium, e.g. a sum of K linearly independent character-
istics, our analytical theory has shown that the AS space only requires K eigenfunc-
tions to accurately approximate the medium, which is finally verified by numerical
examples.

In [77, 79], Grote et al. proposed to use the frequency stepping strategy to prevent
that the optimization method converges to a false minimum. Moreover, for each
frequency, the new AS space U(m), with the dimension increasing proportional to
the frequency, completely replaces the previous AS space U(m−1). Based on that,
the new merging approach guarantees that the information of the previous (affine)
space U(m−1) of candidate functions passes to the new space U(m). Moreover, its
dimension is dynamically controlled by the size reduction strategy, which is based on
the low-rank approximation. The numerical experiments showed that the modified
ASI approach not only is efficient, robust, and dynamically reduces the number of
unknowns, but is also remarkably accurate.
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