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Interface-rich Aqueous Systems for 
Sustainable Chemical Synthesis
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Abstract: Mimicking an enzyme’s exquisite activity and selectivity is a long-standing goal for sustainable chemi-
cal method development in aqueous media. The use of interface-rich aqueous systems, such as single-chain 
polymers, micelles and vesicle membranes recently emerged as strategy to emulate the compartmentalization 
of natural systems. In aqueous solution, aggregates such as micelles or microemulsion droplets are formed, 
providing reaction environments different from bulk solutions that frequently improve selectivity and accelerate 
reaction rates for a wide array of chemical transformations. We present here selected examples of interface-rich 
aqueous systems and discuss the advantages they offer for chemical synthesis. In particular metal-catalyzed 
cross-coupling reactions are highlighted and future challenges to perform reactions in interface-rich aqueous 
media are discussed.
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styrene production step is believed to occur via association of the 
micelles with the bacterial membrane to increase membrane per-
meability. This work demonstrates that micellar media can also 
be used in synthetic biotechnology in combination with chemical 
reactions. 

1.3 Microemulsion Droplets
Upon addition of immiscible organic co-solvents (5–20%) to 

micelles in water, solvent-swollen oil-in-water microemulsion 
droplets are formed. As reactions in micelles may suffer from pre-
cipitation and low initial solubility of reagents, they often become 
unsuitable for large-scale synthesis. In contrast, microemulsion 
droplets are thermodynamically more stable and thus better suited 
for the scale-up of the chemical transformations.[9] An example 
of this type of catalysis is the Suzuki-Miyaura reaction (Fig. 3), 
where the reaction under conventional micellar media conditions 
(2 wt% of surfactant TPGS-750-M or Kolliphor EL in water) led 
to low yields and partial deprotection of the Boc group, while the 
addition of 10% toluene co-solvent created a microemulsion, giv-
ing significantly higher yields and shorter reaction times for this 
air-tolerant coupling reaction.[10]

1.4 Reactions in Vesicle Membranes
Various amphiphilic molecules in aqueous media aggregate 

to bilayer vesicles with hydrophilic head groups pointing to both 
surfaces. Contrary to micelles, these vesicles thus enclose an aque-
ous volume, creating a different environment to accelerate chemi-
cal reactions. For example, Walde et. al.[11] developed a protocol 
for the multicomponent Passerini reaction to access α-acetyloxy 
carboxamides (Fig. 4). With the surfactant DODAB, the prod-
uct was obtained in 58% with significantly higher reaction rates 
than in organic solvents or water in absence of amphiphile (33%). 
The Passerini reaction between the long chain aldehyde and iso-
cyanide is believed to occur within the vesicle membranes with 
the carboxylic acid in close proximity to the cationic amphiphile 
head group. Interestingly, the vesicle system can be reused several 
times without loss of activity.[11]

2. Cross-coupling Reactions in Interface-rich Aqueous 
Systems

Cross-coupling reactions are the most frequently utilized 
transformations in the pharmaceutical industry after amide bond 
formation.[12] With the limited resources of transition metals and 
the environmental impact of solvent use, the development of 
novel protocols with high catalyst turnover and recyclable reac-
tion medium remain a main industrial challenge.[13] While most 
reported cross-coupling reactions involve high catalyst loadings 
unsuitable for large-scale applications, reactions in micellar me-
dia can be carried out with reduced amounts of catalyst and often 
allow to recycle the catalysts and the reaction media (Fig. 5).[14] 
Furthermore, extensive optimization studies revealed a significant 
influence of the structure of the surfactant and the micellar size for 

1. From Enzymes to Interface-rich Aqueous Systems
Enzymatic systems can accelerate chemical reactions with ex-

quisite selectivity in aqueous media and under mild conditions. [1] 
Promiscuous water-soluble enzymes frequently contain hydro-
phobic cavities that act as general bases or acids or accommo-
date metal ions to accelerate a wide array of chemical reactions. 
Structural simplifications of these characteristics by using soft 
interface-rich aqueous systems (IRAS), such as single-chain poly-
mer nanoparticles, micelles, emulsion droplets and vesicle mem-
branes have recently allowed to mimic several of the properties 
of enzymes, offering strategies for the sustainable organic trans-
formation for a broad scope of substrates and reaction classes. 
In aqueous solution, these systems create environments different 
from bulk phase, allowing a high local concentration of reagents. 
Such interface-rich aqueous systems are distinguished into two 
types:[2] type I systems that accelerate reactions by the local en-
vironment of the interface-rich structure and type II IRAS, which 
further promote chemical reactions with embedded catalytic sites. 

1.1 Single-Chain and Hyperbranched Polymers
Single chain and hyperbranched water-soluble polymers in 

aqueous solution fold into globular structures, thus forming com-
partments with a specific local environment. The hydrophobic 
interior of such nanoparticles can be functionalized, for instance 
by immobilizing a chiral salen TiIV, thus providing type II sys-
tems (depicted in Fig. 1, PN

68
IS

4
). In aqueous solution, the formed 

nanoparticles have an average diameter of 12 nm and similar to 
enzymes, lead to an increased activity and exquisite selectivity for 
the sulfoxidation of arylsulfides, while the catalyst can be recov-
ered and reused without significant loss of activity.[3] 

1.2 Reactions in Micelles
Micelles are formed spontaneously in water by surfactants at 

high enough concentrations (CMC: critical micelle concentration; 
ca. 10–3– 10-4 M). In polar solvents such as water, the hydropho-
bic tails of the surfactant create a specific local environment at 
the center of the micelle, while the hydrophilic part is located at 
the outside surface, similar to the hydrophilic amino acid resi-
dues of globular proteins. Micelles thereby create an excellent 
compartment of type I, with high local concentrations of catalysts 
and reactants in the core that lead to a significant acceleration of 
chemical reactions, frequently combined with an increase in yield 
and selectivity. Furthermore, a covalently bound catalyst to the 
surfactant’s hydrophobic side chain creates a type II system for 
specialized applications. These two general principles have been 
applied to accelerate a wide variety of chemical reactions includ-
ing cross-couplings,[4] in concert with biocatalytic reactions[5] as 
well as organocatalytic[6] and photocatalytic[7] transformations. 
Moreover, Balskus and co-workers recently applied the common-
ly used surfactant TPGS-750-M to accelerate the flux of styrene 
produced in Escherichia coli, followed by sequential FeTPPCl-
mediated cyclopropanation (Fig. 2).[8] Rate acceleration for the 
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Fig. 1. Single-chain polymer with immobilized salen TiIV catalyst for the asymmetric sulfoxidation. 
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ture-sensitive π-allylpalladium intermediates.[20] Moreover, other 
commonly utilized metal-catalyzed reactions such as Buchwald-
Hartwig amination,[21] C–H activation, Heck reaction,[22] Negishi 
coupling[23] were performed at room temperature in aqueous me-
dia with the possibility to recycle the surfactant system.

Researchers at Novartis demonstrated that the production pro-
cess of a new drug entity in a four-step sequence using the sur-
factant methodology improved the Process Mass Intensity (PMI) 
by 32%, reduced overall time, improved the purity of the final 
product and significantly reduced the organic solvent PMI by 
52% compared to the conventional route in organic solvents.[14] 
This study highlights that interface-rich aqueous systems offer not 
only more sustainable but also an economically feasible approach 
for process development. Interestingly, the highest cost reduction 
(38% vs. organic solvent process) was achieved in a metal-cata-
lyzed cross-coupling step (Suzuki-Miyaura reaction, Fig. 6).[14]

an optimal reaction outcome.[15,16] Notably, the reactions in micel-
lar media frequently depend on the reaction vessel, stirring speed 
and scale. However, high-throughput assay in microliter plates 
has been established to quickly optimize conditions for cross 
couplings in micellar media.[16] Furthermore, the optimization 
of ligand electronic, steric properties and lipophilicity to favor 
longer residence time in the micelles allows for a high turnover 
frequency and prevents catalyst degradation in aqueous media.[17]

Remarkably, with Pd nanoparticles for the Suzuki-Miyaura 
coupling in micellar media at slightly elevated temperatures or 
at room temperature, the catalyst loading was recently reduced 
to as low as 320 ppm.[18] To avoid degradation of Pd catalysts, 
Handa et. al. designed a new surfactant based on the proline scaf-
fold (FI-750-M) that better mimics polar-aprotic solvents. This 
surfactant was effective in Suzuki-Miyaura couplings with polar 
quinolines[19] and allows sp2-sp3 coupling reactions with air/mois-
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Notably, the addition of glucose (5 mol%) further improved the 
catalytic efficiency and the homogeneity of the reaction mixture, 
rendering the protocol amenable for scale-up.[28]

The utility of the developed reaction system and the versatility 
of the micellar media was demonstrated in a three-step sequence 
to access an important chemical intermediate via a Sonogashira 
reaction followed by ester hydrolysis and finally an amide bond 
formation in micellar media (Fig. 9). This work demonstrates the 
possibility to apply micellar reaction media for several reactions 
in combination with metal-mediated cross couplings.[5,14,27]

An additional benefit of using micellar media in metal-cata-
lyzed reaction is the efficient removal of residual metal that helps 
to comply with the strict health regulations.[29] Simple isolation 
procedures, such as filtration of solid products or the extraction 
of products with environmentally benign solvents (e.g. EtOAc), 
typically amount to less than 1 ppm residual Pd in the final prod-
ucts.[13] 

4. Conclusion and Outlook
In the last decade, chemical synthesis in interface-rich aque-

ous systems evolved to a green and sustainable alternative to 
reactions in organic solvents. Many advantages including lower 
catalyst loadings, improved reaction rates and selectivities are 
already well documented. Future challenges lie in the detailed 
understanding of IRAS for the design of novel sustainable and 
robust transformations. The scalability was already proven on ki-
logram-scale,[14] but has yet to be applied for a commercial route 

Similarly, the Heck reaction typically requires high tempera-
tures and long reaction times in bulk. In 2008, Lipshutz et. al., 
applied micellar media to accelerate Heck reaction at room tem-
perature (Fig. 6) to obtain high yields of up to 95%.[24]

3. Sonogashira Reactions in Micellar Media and 
Microemulsion Droplets

The Sonogashira reaction is one of most frequently used cross-
coupling reactions in academic research and the pharmaceutical 
industry to build propargylic derivatives. To make current pro-
tocols more sustainable, a combination of TPGS-750-M surfac-
tant (2 wt%) in water with Pd catalysts (< 3000 ppm) and differ-
ent phosphine ligands (Fig. 7) was studied for a copper-free[25] 
Sonogashira coupling under mild conditions (25–45 °C).[26] ArI 
and ArBr both were competent partners in this reaction, while 
ligand design was found to be crucial for the IRAS-accelerated 
reactions. As high concentrations can be reached in micelles, pa-
rameters such as ligand lipophilicity become particularly impor-
tant for high turnover frequency. 

To broaden the scope and applicability of aqueous Sonogashira 
reactions, a robust protocol with commercially available 
CataCXium A Pd G3 catalyst was recently developed in a par-
ticularly challenging cross-coupling (Fig. 8).[27] With optimized 
reaction conditions using TPGS-750-M (2 wt%) and organic co-
solvent (i.e. 5% THF),[9] improved yields and selectivities were 
achieved for o-dihalogenated compounds compared to other 
catalyst/ligand combinations known for Sonogashira reactions. 
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in the chemical-pharmaceutical industry. In the future, we expect 
that the combination of IRAS with flow chemistry could render 
these processes continuous. More abundant metals (e.g. Fe, Ni) 
might be explored as alternatives to precious transition metals, 
while surfactants from renewable sources will become available 
on scale. Finally, catalysis in IRAS could enable novel chemical 
transformations, reaction networks, cascades or multi-component 
couplings. It will therefore be interesting to observe how catalysis 
in interface-rich aqueous media will expand for the years to come 
to further contribute to more sustainable chemical synthesis.
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