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Abstract. We study the mixing properties of a scalar ρ on the unit disk ad-
vected by a certain incompressible velocity field u, which is a stationary radial

solution of the Euler equation. The scalar ρ solves the continuity equation

with the velocity field u and we can measure the degree of “mixedness” of ρ
with two different scales commonly used in this setting, namely the geometric

and the functional mixing scale. We develop a physical space approach well

adapted to the quantitative analysis of the decay in time of the geometric mix-
ing scale, which turns out to be polynomial for a large class of initial data.

This extends previous results for the functional mixing scale, based on the

explicit expression for the solution in Fourier variable, results that are also
partially recovered by our approach.

1. Introduction

We consider a passive scalar ρ (also called tracer) on the two–dimensional unit
disk B1(0), advected by a divergence-free velocity field u which is tangent to the
boundary ∂B1(0). Given a mean-free initial condition ρ0, the scalar ρ satisfies the
Cauchy problem for the continuity equation with velocity field u:{

∂tρ+ div(uρ) = 0 on [0,∞)×B1(0)

ρ(0, ·) = ρ0 on B1(0).
(1.1)

Observe that the mean-free condition for the tracer is preserved by the time evolu-
tion.

In this note we study certain mixing properties of the solution ρ under the action
of the following autonomous velocity field

u(t, r, θ) = (u1(r, θ), u2(r, θ)) := 2πr2(sin θ,− cos θ), t ≥ 0 , (1.2)

where (r, θ) are polar coordinates. Notice that u is a smooth stationary solution to
the two dimensional Euler equation

∂tu+ (u · ∇)u = −∇P, div u = 0 , (1.3)

with pressure P = −|u|2/2 + const.
In fact, this velocity field is the canonical counterpart on the unit disk of a shear

flow on the two dimensional flat torus. Mixing by shear flows has been studied
in a variety of settings and geometries, most recently in connection with inviscid
damping for the Euler equation (see in particular [5, 23, 24, 16] and the references
therein). Heuristically, for the velocity field in (1.2), mixing is due to the fact
that, as a consequence of the increase of the angular component of u in the radial
direction, different portions of the tracer move close to others with different history
and thus relatively different concentrations; see Figure 1.
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t = 0 t = 5

Figure 1. An example of evolution under the action of the veloc-
ity field (1.2). We have ρ = 1 in the black region and ρ = −1 in
the white region.

In this note we measure the degree of “mixedness” of the tracer ρ with two
different mixing scales which are commonly used in this setting. The first one is
the geometric mixing scale G(·) introduced in [6]:

Definition 1.1 (Geometric Mixing Scale). Given an accuracy parameter 0 < κ < 1,
the geometric mixing scale of ρ(t, ·) is the infimum ε(t) of all ε > 0 such that for
every x ∈ R2 there holds∣∣∣∣∣

 
Bε(x)

ρ(t, y) dy

∣∣∣∣∣ ≤ κ‖ρ(t, ·)‖L∞(B1(0)) . (1.4)

We denote

G(ρ(t, ·)) := ε(t) .

We systematically use the notation Br(x) ⊂ R2 for the two–dimensional open
disk centered at x with radius r and we abbreviate Br(0) to Br. The parameter
κ, which measures the accuracy of the mixing, can be exploited in order to avoid
pathological examples like the one discussed in Remark 1.10.

The second mixing scale we use is the functional one, which has been introduced
in [18] and subsequently widely employed in the applied fluid dynamics literature
(see for instance the survey [21]):

Definition 1.2 (Functional Mixing Scale). The functional mixing scale of ρ(t, ·)
is ‖ρ(t, ·)‖Ḣ−1(B1).

In the above definition, ‖·‖Ḣ−1(B1) denotes the semi-norm in the negative homo-

geneous Sobolev space, defined in (2.13). Since we will always restrict to zero-mean
functions, this actually turns to be a norm for our purposes.

We observe that, although intuitively related, the two mixing scales in Defini-
tions 1.1 and 1.2 are not equivalent; see the examples and remarks in [17]. The link
between these two notions has been extensively analyzed in [25].

We are interested in quantifying the weak convergence to zero (i.e., the average
of the initial datum) of the solution of (1.1) with the velocity field u in (1.2), that
is, in quantifying the decay to zero (as a function of time) of the two mixing scales
in Definitions 1.1 and 1.2 for the solution.

Remark 1.3. It can be seen quite easily that the decay of any of the two mixing
scales under consideration cannot be faster than polynomial. Indeed, such decay
is controlled by the regularity with respect to the space variable of the ODE flow
associated to u, and it is immediate to check that the Lipschitz constant of the flow
grows linearly in time. Heuristically this “slow mixing” is due to the fact that the
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velocity field, being time-independent, can stir the solution at each point in one
direction only. Due to this structural constraint the decay rate is therefore much
slower than the exponential rate typically associated to self-similar (and therefore,
heavily time-dependent) evolutions, a brief account of which will be given in Re-
mark 1.12.

Let us consider the following assumption on the initial datum ρ0 in (1.1):

Assumption 1.4. We assume that ρ0 is a bounded function which is zero outside
B1 and which satisfies the following condition of zero average on circles:ˆ

∂Br

ρ0 dSr = 0 (1.5)

for almost every r > 0, where dSr is the uniform measure on the circle of radius r.

Under Assumption 1.4, the argument in [23, Theorem 2.1] (see also [24]) based
on the explicit formula in Fourier variable for the solution ρ gives that for any initial
datum ρ0 ∈ L2(B1) the functional mixing scale of the solution converges to zero,
i.e., ‖ρ(t, ·)‖Ḣ−1(B1) → 0. Assuming some regularity on the initial datum ρ0 the

same argument gives a rate of convergence, more specifically

‖ρ(t, ·)‖Ḣ−1(B1) ≤ Ct
−α for any ρ0 ∈ Ḣα(B1) , (1.6)

and

‖ρ(t, ·)‖Ḣ−1(B1) ≤ Ct
−α/2 for any ρ0 ∈ Ẇα,1(B1) . (1.7)

Remark 1.5. (i) Without Assumption 1.4 one can see that the solution converges
weakly in L2(B1) to the function taking on each circle the constant value equal to
the average of ρ0 on the circle itself. (ii) Polynomial decay of the functional mixing
scale can be proved for more general velocity fields, under suitable nondegeneracy
conditions on the profile of the velocity. This is technically more complicated and
requires the use of the method of stationary phase for oscillatory integrals; see the
Appendix of [5]. (iii) By means of examples it is proved in [25] the optimality (up
to iterated logarithmic loss) of the rate in (1.6).

To the best of our understanding such Fourier variable techniques cannot be
applied to analyze the decay of the geometric mixing scale of the solution. Our
objective in this note is to develop an approach in physical space well adapted to
the study of the geometric mixing scale. It essentially consists of two steps:

(1) Explicit analysis of the mixing rate for some specific step functions, and
(2) Approximation of a general function with step functions as in (1).

In this procedure the accuracy κ and the regularity of the data will play an im-
portant role. Indeed, they will both influence the scale at which we can perform
the approximation procedure with step functions (see Seciton 3) and the analysis
of the mixing rate step functions at this given scale (see Proposition 2.1).

Besides allowing the analysis for the specific example considered in the present
paper, we believe that our approach could be useful in broader settings, in which the
presence of more general geometries and velocity profiles makes the use of Fourier
analysis techniques unfeasible.

The first result that we obtain with this approach is that every bounded initial
datum satisfying Assumption 1.4 gets mixed by the velocity field we are considering:

Theorem 1.6 (Universality of the mixer). For any initial datum ρ0 ∈ L∞ sup-
ported in B1 which satisfies Assumption 1.4 we have

G(ρ(t, ·))→ 0 and ‖ρ(t, ·)‖Ḣ−1(B1) → 0, as t→∞ . (1.8)
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We are not able to give a quantitative rate of decay for such a general class of
initial data as in Theorem 1.6. However, in the case when the initial datum is
continuous, or has fractional Sobolev regularity, the approximation step in (2) in
our strategy can be made quantitative. This allows us to prove the following result:

Theorem 1.7. Let ρ0 be as in Theorem 1.6.

(i) If ρ0 ∈ C(B1) then there exists an absolute constant C > 0 and a constant

C̃ which depends on the datum ρ and on the accuracy κ such that

G(ρ(t, ·)) ≤ C

κ2
t−1, for all t ≥ C̃ . (1.9)

(ii) If ρ0 ∈ Ẇα,1(B1) with α ∈ (0, 1], then

G(ρ(t, ·)) ≤ C1t
−α2 , for all t ≥ C2 , (1.10)

where the constants here depend on α, κ, ‖ρ0‖Ẇα,1(B1) and ‖ρ0‖L∞ .

Observe that (1.10) entails the same rate as in (1.7) for the functional mixing
scale. Moreover, let us stress that we obtain an explicit rate even for continuous
functions, without requiring any fractional Sobolev regularity. In fact, recalling the
discussion in Remark 1.3, the decay rate in (1.9) turns out to be optimal.

In fact, it is possible to exploit our approach also for the analysis of the decay
of the functional mixing scale. However, due to our method entailing an approxi-
mation step, we just obtain a decay rate slower than the one ensured by the exact
computation in Fourier variable:

Proposition 1.8. Let ρ0 be as in Theorem 1.6.

(i) If ρ0 ∈ C0,α(B1) with α ∈ (0, 1], then

‖ρ(t, ·)‖Ḣ−1(B1) ≤ C3t
− α
α+1 , for all t ≥ C4 , (1.11)

where the constants here depend on α, ‖ρ0‖C0,α(B1) and ‖ρ0‖L∞ .

(ii) If ρ0 ∈ Ẇα,1(B1) with α ∈ (0, 1], then

‖ρ(t, ·)‖Ḣ−1(B1) ≤ C5t
− α
α+4 , for all t ≥ C6 , (1.12)

where the constants here depend on α, ‖ρ0‖Ẇα,1(B1) and ‖ρ0‖L∞ .

Remark 1.9 (condition of zero average on circles). Without Assumption 1.4 the
results of Theorems 1.6 and 1.7 and Proposition 1.8 cannot hold (for a fixed but
arbitrary accuracy parameter κ, in the case of the geometric mixing scale). Consider
for instance an initial datum which is −1 on an inner disk and +1 on an outer
annulus, as in Figure 2. This particular example does not get mixed (indeed it is a
stationary solution of (1.1)). We prove in Proposition 4.4 that Assumption 1.4 is
in fact necessary in order for a bounded initial density to get mixed by the velocity
field u.

+1

−1

Figure 2. An example of an initial datum that is not mixed by
the velocity field u.
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Remark 1.10 (role of the accuracy parameter κ). Given an accuracy parameter
κ we consider an initial datum which is equal to κ on an inner disk, −κ on an
intermediate annulus, and +1 and −1 on the upper and lower half of an outer
annulus (see Figure 3). By a simple inspection of the proof of Proposition 2.1 we
see that the geometric mixing scale G(ρ(t, ·)) with accuracy parameter κ decays
like 1/t. However, the solution clearly does not converge to zero weakly in L2 in
the inner disk and in the intermediate annulus, where it is in fact stationary. To
overcome this pathological behavior we notice that the geometric mixing scale does
not go to zero as long as we choose any finer accuracy parameter 0 < κ′ < κ. This
suggests that also the accuracy κ plays an important role in the analysis of mixing,
see also [25]. Indeed, in Proposition 4.1 we show that if G(ρ(t, ·)) decays to zero for
all κ ∈ (0, 1), then the solution ρ(t, ·) converges to zero weakly in L2. This is also
equivalent to the decay to zero of the functional mixing scale, see [17], providing a
quantitative measure of the level of mixedeness in the ergodic sense; see [15, 18].

κ

−κ
+1

−1

Figure 3. Example of an initial datum whose geometric mixing
scale goes to zero, but the functional mixing scale does not.

Remark 1.11 (behaviour of the constants). We can not predict the behavior of the

constant C̃ that appears in (1.9), which depends on the modulus of continuity of
the initial datum ρ0. However, (1.9) gives a precise asymptotic upper bound for
the geometric mixing scale of continuous initial data, namely that

κ2 t lim sup
t→∞

G(ρ(t, ·)) ≤ C ,

where C is an absolute constant (in particular it is independent on ρ0). If we
assume some fractional Sobolev regularity on ρ0, we see that the geometric mixing
scale decays at a polynomial rate that depends on the regularity of the initial data.

It is worth to remark that, in contrast to C̃, all the constants Cj , j = 1, . . . , 6, will
be explicitly estimated in the proofs of the inequalities (1.10), (1.11), and (1.12).
In particular, looking at (3.21), (3.36), and (3.39), we see that C2, C4, C6 → ∞
as α → 0 and looking at (3.20), (3.29), (3.38), (3.40), and (3.47), we see that the
constants C1, C3, C5 are bounded as α→ 0.

Remark 1.12 (exponential mixing under cellular velocity fields). We have already
commented on the fact that the rate of decay of the mixing scales is polynomial and
not faster due to the strong constraint that the velocity field is smooth and time-
independent. To put into context the results of this note we briefly review some
of the explicit analytical examples of exponential mixing available in the literature,
constructed in different settings.

In connection with a conjecture stated by Bressan [6], Crippa and De Lellis [7]

showed that if the velocity field has a uniform in time bound on the Ẇ 1,p norm,
where 1 < p ≤ ∞, then the geometric mixing scale of the solution to the continuity
equation cannot decay faster than exponentially. Iyer, Kiselev and Xu [13] and
Seis [19] later showed similar bounds for the functional mixing scale, hence

G(ρ(t, ·)) ≥ Ce−ct and ‖ρ(t, ·)‖Ḣ−1 ≥ Ce−ct , (1.13)
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where C > 0 and c > 0 are constants depending on the initial datum ρ0 and
on the given bounds on the velocity field. In order to prove the sharpness of the
bounds in (1.13), Yao and Zlatoš [22] and Alberti, Crippa, and Mazzucato [1, 2]
constructed explicit velocity fields with the above constraints, and initial data, to
which the associated solution gets mixed at an exponential rate.

By interpolation, there is a strong connection between the decay of ‖ρ(t, ·)‖Ḣ−1

and the increase of the positive Sobolev semi-norms of ρ(t, ·). By an iteration
and scaling argument with the optimal mixer of [2], the authors of [3] constructed
a divergence-free velocity field in L∞(W 1,p), for any given 1 ≤ p < ∞, and a
solution ρ to the continuity equation, so that ρ0 ∈ C∞ and ρ(t, ·) does not belong

to Ḣs for any s > 0 and t > 0.
Both the example of [22] and [2] use a similar inductive structure for the con-

struction. The basic idea is to equally redistribute the tracer at each step among
a finer sub-grid, as schematically visualized in Figure 4, with tracer movements lo-
calized in the cells. Velocity field of this so called cellular type cannot be universal

Figure 4. First two steps of a cellular flow

mixers (see Appendix C in [8]), which means that they cannot mix every initial
datum ρ0. In fact, in the results above the velocity field only mixes a specific,
conveniently constructed, initial datum. Furthermore, the results in [8] show that

under a uniform-in-time bound on the Ẇ s,p norm, where s > 1 and 1 < p ≤ ∞,
any velocity field of cellular type cannot mix faster than polynomial. The numer-
ical simulations in [17] suggests that exponential decay is still possible under this
constraint on the norm, and hence in this case the cellular structure is responsible
for slowing down the mixing process. Observe that the example in (1.2) is clearly
not of cellular type. Examples of exponential universal mixers of non cellular type
have been constructed in [11].

Other examples of mixing velocity fields were constructed in order to prove the
non-uniqueness of solutions of the continuity equation ([9, 6, 17]) in the case where
u /∈ L1((0, T );BV ). In this case, it is possible to have perfect mixing in finite
time. By inverting time, such a perfect mixer produces a non-trivial solution of the
continuity equation with zero initial datum. The structure used to construct these
examples is similar to the cellular type described above.

Structure of the Paper. The rest of the paper is organized as follows. In Sec-
tion 2.1 we consider a family of initial data which are piecewise constant in the
radial direction, for which we can prove a decay of order 1/t for the geometric
mixing scale, as well as a decay of order 1/

√
t for the functional mixing scale. This

follows by a combination of the main computation in Lemma 2.7 and other auxil-
iary Lemmas in Subsections 2.2 and 2.3. The proofs of Theorems 1.6 and 1.7 and
of Proposition 1.8 (in Subsections 3.1, 3.2, and 3.3 respectively) are performed by a
suitable approximation of different families of initial data with piecewise constant
data, for which we can use the results of Section 2.1. In the appendix we show that
Assumption 1.4 is necessary for the tracer to get mixed, exploiting the role of the
accuracy κ in connection with the weak convergence to zero of the tracer.
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2. Preliminaries and the Case of Piecewise Constant Data

Hereafter the domain of all the function spaces we take into account will be
most of the times the two–dimensional disk B1, so that in such cases we will not
specify this anymore. For instance, we simply write Hs, ‖ · ‖Hs instead of Hs(B1),
‖ · ‖Hs(B1), and so on.

2.1. Piecewise Constant Data. Here we first focus on a specific class of initial
data, that are piecewise constant along the radial direction and satisfy Assump-
tion 1.4. More precisely, we consider

ρ0(r, θ) :=

2N−1∑
`=0

χ(`2−N ,(`+1)2−N ](r)f
`(θ), N ∈ N ∪ {0} , (2.1)

where f ` ∈ L∞(T) and ˆ 2π

0

f `(θ)dθ = 0 . (2.2)

For instance, when N = 0 and f0(θ) := χ(0,π](θ) − χ(π,2π](θ), we are considering
the simple initial data which equals 1 in the upper half disk and −1 in the lower
half disk; see Figure 1.

Proposition 2.1. There exists an absolute constant C such that the following
holds. For ρ0 ∈ L∞ of the form (2.1), we have

G(ρ(t, ·)) ≤ C

κ2t
, for t ≥ C 2N

κ
, (2.3)

and

‖ρ(t, ·)‖Ḣ−1 ≤
C‖ρ‖L∞√

t
, for t ≥ C22N . (2.4)

This proposition gives a quantitative rate of decay for both the geometric and
the functional mixing scales in the case of initial data of the particular form (2.1).
Notice that the rate does not depend on the integer N involved in the expres-
sion (2.1). For the proof of the proposition we need some preliminary lemmas, that
are also required to prove the main results in Section 3.

2.2. Auxiliary Lemmas. Since the velocity field (1.2) advects a traced point over
a circle centered at zero, we will tile the unit disk with pieces of annuli which behave
like rectangles with bounded eccentricity. More precisely, this means that there is
an absolute constant c such that, for any M ∈ N and Q ∈ QM like below, we have
that Q is contained in a disk B and |Q| ≥ c|B|. Notice that the area of the tiles
Q ∈ QM is proportional to 2−2M and their diameter is proportional to 2−M ; see
Remark 2.3.

Definition 2.2 (Annular tiling). Given any M ∈ N, we tile B1\{0} in the following
way

B1 =

2M−1⋃
i=0

i⋃
j=0

QMij ,
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where QMij are given, in polar coordinates, by

QMij =

{
(r, θ) ∈ [0, 1]× [0, 2π] : r ∈

(
i2−M , (i+ 1)2−M

]
, θ ∈ 2π

(
j

i+ 1
,
j + 1

i+ 1

]}
,

and we set

QM =
{
QMij , where i = 0, . . . , 2M − 1 and j = 0, . . . , i

}
.

Figure 5. Example of an annular tiling for M = 2

Remark 2.3. Note that there exist constants C1 and C2 > 0, such that

C12−2M ≤
∣∣QMij ∣∣ ≤ C22−2M and C12−M ≤ diamQMij ≤ C22−M (2.5)

for all M ∈ N.

The following is a slightly different version of Lemma 3.5 in [2]. We prove that it
suffices to show that the tracer is well mixed on all the annular tiles of diameter 2−M

in order to show that it is well mixed on any disk of comparable diameter.

Lemma 2.4. Let ρ be a bounded function supported in B1. If∣∣∣  
Q

ρ
∣∣∣ ≤ κ

2
‖ρ‖L∞ , for all Q ∈ QM , (2.6)

then there is an absolute constant C > 0 so that

G(ρ) ≤ C 2−M

κ
.

Proof. We have∣∣∣  
Bε(x)

ρ
∣∣∣≤ 1

πε2

∑
Q∈QM
Q⊂Bε(x)

∣∣∣ ˆ
Q

ρ
∣∣∣+

1

πε2

∑
Q∈QM

Q∩∂Bε(x) 6=∅

ˆ
Q

|ρ|

≤ ‖ρ‖L
∞

πε2

(κ
2
|Bε(x)|+

∣∣Bε+c2−M (x) \Bε−c2−M (x)
∣∣)

≤ κ

2
‖ρ‖L∞ +

4c2−M

ε
‖ρ‖L∞ ≤ κ‖ρ‖L∞ ,

as long as ε ≥ 8c2−M/κ. Here c is taken sufficiently large so that diamQ ≤ c2−M ;
recall Remark 2.3. �

A similar lemma holds also for the functional mixing scale. If the tracer is well
mixed on any tile Q ∈ QM , then its Ḣ−1 norm is small.

Lemma 2.5. Let ρ be bounded, mean-free function supported in B1. If∣∣∣∣ 
Q

ρ

∣∣∣∣ ≤ 2‖ρ‖L∞2−M , for all Q ∈ QM , (2.7)

there exists an absolute constant C such that

‖ρ‖Ḣ−1 ≤ C‖ρ‖L∞2−M . (2.8)



POLYNOMIAL MIXING UNDER A CERTAIN STATIONARY EULER FLOW 9

For the proof of Lemma 2.5 we need the following Poincaré estimate:

Lemma 2.6 (Poincaré inequality on tiling). There exists an absolute constant C
such that for all ξ ∈W 1,1 we have that

‖ξ − ξQ‖L1(Q) ≤ C2−M‖∇ξ‖L1(Q) (2.9)

for any Q ∈ QM , where ξQ :=
ffl
Q
ξ.

Proof. First of all, since the tiles QM00 are just disks of radius 2−M centered at zero,
(2.9) for Q = Q00 is simply a rescaled version of the Poincaré inequality on the
unit disk. To handle the remaining tiles, we start by the Poincaré inequality over
a rectangle R of sides λ1 × λ2, that is

‖ξ − ξQ‖L1(R) ≤ C‖(λ1∂1 + λ2∂2)ξ‖L1(R) , (2.10)

which one gets by translating and rescaling the Poincaré inequality on the unit
cube. Thus, recalling that QMij has sides 2−M × 2π

i+1 (when we look at it as a

rectangle in polar coordinates), we have
ˆ
QMij

|ξ − ξQ|(r, θ)drdθ ≤ C
ˆ
QMij

∣∣∣∣(2−M∂r +
2π

i+ 1
∂θ

)
ξ

∣∣∣∣ (r, θ)drdθ. (2.11)

We multiply this inequality times i2−M and, noting that r ' i2−M when r ∈ QMij ,
we arrive atˆ

QMij

|ξ − ξQ|(r, θ) r drdθ . C2−M
ˆ
QMij

∣∣∣∣(∂r +
∂θ
r

)
ξ

∣∣∣∣ (r, θ) r drdθ , (2.12)

that, once we recall ∇ = ∂r + 1
r∂θ, completes the proof of Lemma 2.6. �

Proof of Lemma 2.5. We work with the Ḣ−1 norm defined by duality as

‖ρ‖Ḣ−1 = sup

{ˆ
B1

ρ(x)ξ(x) dx : ‖∇ξ‖L2 ≤ 1

}
. (2.13)

First we note that there exists a constant C > 0 such that for any mean-free
function ρ we have that

C‖ρ‖Ḣ−1 ≤ ‖ρ‖H−1 ≤ ‖ρ‖Ḣ−1 , (2.14)

where

‖ρ‖H−1 = sup

{ˆ
B1

ρ(x)ξ(x) dx : ‖ξ‖H1 ≤ 1

}
. (2.15)

The second inequality in (2.14) is immediate. As for the first inequality, let ξ such

that ‖∇ξ‖L2 ≤ 1. We define ξ̃ = ξ − ξB1
and note that since ρ is mean-free, we

have that ˆ
B1

ρ(x)ξ̃(x) dx =

ˆ
B1

ρ(x)ξ(x) dx . (2.16)

On the other hand, by the Poincaré inequality we have that

‖ξ̃‖L2 ≤ C‖∇ξ‖L2 and ‖∇ξ̃‖L2 = ‖∇ξ‖L2 . (2.17)

By the definitions (2.13) and (2.15), this concludes the proof of (2.14).
In order to show (2.8), by (2.14) it is sufficient to show that

‖ρ‖H−1 ≤ C‖ρ‖L∞2−M . (2.18)
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Let ξ such that ‖ξ‖H1 ≤ 1. Then∣∣∣∣∣
ˆ
B1

ρ(x)ξ(x) dx

∣∣∣∣∣ ≤ ∑
Q∈QM

∣∣∣∣ˆ
Q

ρ(x)ξ(x) dx

∣∣∣∣ (2.19)

≤
∑

Q∈QM

ˆ
Q

|ρ(x)(ξ(x)− ξQ)| dx+

∣∣∣∣ˆ
Q

ρ(x)ξQ dx

∣∣∣∣
≤ ‖ρ‖L∞

∑
Q∈QM

‖ξ − ξQ‖L1(Q) +
∑

Q∈QM

|ξQ|
∣∣∣∣ˆ
Q

ρ(x) dx

∣∣∣∣
≤ C2−M‖ρ‖L∞

 ∑
Q∈QM

‖∇ξ‖L1(Q) +
∑

Q∈QM

∣∣∣∣ˆ
Q

ξ(y) dy

∣∣∣∣


≤ C2−M‖ρ‖L∞ (‖∇ξ‖L1 + ‖ξ‖L1)

≤ C2−M‖ρ‖L∞‖ξ‖H1 ≤ C‖ρ‖L∞2−M ,

where we used (2.9) and (2.7) in the fourth inequality. This concludes the proof of
(2.18) and therefore of the lemma. �

The following is a key lemma that will be used, together with the subsequent
one, in the proof of all the main results in the next section. Here we consider initial
data of the form (2.1), namely piecewise constant along the radial direction and
with zero circular mean, and we show that solutions are well mixed on any (small)
annular tile, provided we wait a sufficiently large time. Here we only consider tiles
which are contained into the sets (annuli) where the data are radially piecewise
constant. The case of large tiles, on which the data can also change their values
once we move in the radial direction, will be analyzed in Lemma 2.8.

Lemma 2.7. There exists an absolute constant C > 0 such that the following holds.

For any ρ0 ∈ L∞ of the form (2.1) and t ≥ C 2M

κ , we have∣∣∣∣ 
Q

ρ(t, ·)
∣∣∣∣ ≤ κ

4
‖ρ(t, ·)‖L∞ , ∀M > N, ∀Q ∈ QM . (2.20)

If t ≥ C22M we have∣∣∣∣ 
Q

ρ(t, ·)
∣∣∣∣ ≤ 2−M‖ρ(t, ·)‖L∞ , ∀M > N, ∀Q ∈ QM . (2.21)

Proof. We first prove (2.20). Since QM00 = B2−M , and the initial datum has zero
average on any circle, a property which is preserved by the flow, we immediately
have ˆ

QM00

ρ(t, ·) = 0 . (2.22)

Hence it is sufficient to consider i ≥ 1. Since we are considering ρ0 of the form (2.1),
the restriction of the solution ρ(t, ·) to the tiles QMij is

ρ(t, r, θ)
∣∣∣
QMij

= f `(θ − 2πtr) ,

where ` is the only integer such that (i2−M , (i+ 1)2−M ] ⊂ (`2−N , (`+ 1)2−N ]. We
set

ri = i2−M , i = 1, . . . , 2M − 1 and θj =
j

i+ 1
2π, j = 0, . . . , i . (2.23)
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Let us compute

ˆ
QMij

ρ(t, ·) =

ˆ θj+1

θj

ˆ ri+1

ri

ρ(t, r, θ) r drdθ =

ˆ θj+1

θj

ˆ ri+1

ri

f `(θ − 2πtr) r drdθ .

For any fixed θ, we change variables y = θ − 2πtr. By rdr = −(2πt)−2(θ − y)dy,
we get

ˆ θj+1

θj

ˆ ri+1

ri

f `(θ − 2πtr) r drdθ =
1

(2πt)2

ˆ θj+1

θj

I1(θ) dθ +
1

(2πt)2

ˆ θj+1

θj

I2(θ) dθ ,

where

I1(θ) := −
ˆ dθ−2πtri+1e2π

θ−2πtri+1

f `(y)(θ − y) dy −
ˆ θ−2πtri

bθ−2πtric2π
f `(y)(θ − y) dy , (2.24)

I2(θ) := −
1
2π bθ−2πtric2π∑

k= 1
2π dθ−2πtri+1e2π

ˆ 2π(k+1)

2πk

f `(y)(θ − y) dy , (2.25)

and dae2π (bac2π) is the smallest (largest) multiple of 2π which is larger (smaller)
than a.

The integral of I1(θ) will be small because we integrate over a small set, while
the integral of I2(θ) will be small due to cancellation effects arising in the integral.
Indeed

|I1(θ)| . (1 + tri+1)‖f `‖L∞ ≤ (1 + tri+1)‖ρ0‖L∞ ,

so that

1

(2πt)2

ˆ θj+1

θj

|I1(θ)| dθ . 1 + tri+1

t2
(θj+1 − θj)‖ρ0‖L∞

.

(
1

t2
+

2−M

t

)
‖ρ(t, ·)‖L∞ ,

(2.26)

where we have used θj+1−θj = 2π
i+1 . Now, recalling that |QMij | ' 2−2M , from (2.26)

we see that

1

(2πt)2

ˆ θj+1

θj

|I1(θ)| dθ < κ

8
‖ρ(t, ·)‖L∞ |QMij | (2.27)

as long as t ≥ C 2M

κ , for some large absolute constant C. In order to estimate the

contribution of I2(θ), we notice that, since f ` is 2π-periodic with zero mean, the
general term of the sum (2.25) reduces to

ˆ 2π(k+1)

2πk

f `(y)(θ − y) dy = −
ˆ 2π(k+1)

2πk

f `(y)y dy , (2.28)

and, once we set F `(y) :=
´ y

0
f `(z)dz,

−
ˆ 2π(k+1)

2πk

f `(y)y dy = −
[
F `(y)y

]2π(k+1)

2πk
+

ˆ 2π(k+1)

2πk

F `(y) dy

=

ˆ 2π

0

F `(y) dy . ‖f `‖L∞ ≤ ‖ρ0‖L∞ ,

where we have used that F `(0) = 0 and that F ` is 2π-periodic, which follows by
the fact that f ` has zero mean. Thus, plugging this into (2.25) and noting that
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there are less than t(ri+1 − ri) = t2−M terms in the sum over k, we arrive at

1

(2πt)2

ˆ θj+1

θj

|I2(θ)| dθ . θj+1 − θj
t

2−M‖ρ0‖L∞

' 2−M

(i+ 1)t
‖ρ(t, ·)‖L∞ ≤

2−M

t
‖ρ(t, ·)‖L∞ ,

(2.29)

and again, with the same computation used to deduce (2.27) by (2.26), we have
that

1

(2πt)2

ˆ θj+1

θj

|I2(θ)| dθ < κ

8
‖ρ(t, ·)‖L∞ |QMij | , (2.30)

provided t ≥ C 2M

κ , for some large constant C. This concludes the proof of (2.20).
Estimate (2.21) can be proved in an analogous way. Indeed, looking at (2.26)
and (2.29), it is clear that we only need to restrict to t ≥ C22M . �

In the next lemma we show that solutions corresponding to initial data of the
form (2.1) are well mixed on (large) tiles which contain the sets (annuli) where the
data are radially piecewise constant. This is a complement of Lemma 2.7. Notice
that the estimate (2.32) below is more efficient than its counterpart (2.21), since it
even holds for smaller times.

Lemma 2.8. There exists an absolute constant C such that the following holds.
Let ρ0 ∈ L∞ of the form (2.1). For all M ≤ N we have that∣∣∣∣ 

Q

ρ(t, ·)
∣∣∣∣ ≤ κ

4
‖ρ(t, ·)‖L∞ (2.31)

for all Q ∈ QM and all t ≥ C 2N

κ . Similarly∣∣∣∣ 
Q

ρ(t, ·)
∣∣∣∣ ≤ 2−M‖ρ(t, ·)‖L∞ (2.32)

for all Q ∈ QM and all t ≥ C2M+N .

The proof is very similar to that of Lemma 2.7.

Proof. Given M ≤ N , we define the following sub-tiling of each QMij ∈ QM :

Dk,N
ij,M =

{
r ∈

(
i2−M + k2−N , i2−M + (k + 1)2−N

]
, θ ∈ 2π

(
j

i+ 1
,
j + 1

i+ 1

]}
for k = 0, ..., 2N−M − 1. We denote by DMN the family of all sub-tiles Dk,N

ij,M . We

D1

2−N

D2 D3 D4

QM

Figure 6. Sub-tiling of Q ∈ QM

will show that for all D ∈ DMN we have that∣∣∣∣ˆ
D

ρ(t, ·)
∣∣∣∣ ≤ κ

4
|D| ‖ρ(t, ·)‖L∞ , if t ≥ C

κ 2N , (2.33)
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and ∣∣∣∣ˆ
D

ρ(t, ·)
∣∣∣∣ ≤ |D| ‖ρ(t, ·)‖L∞2−M , if t ≥ C2(N+M) . (2.34)

This is enough to prove the statement. Indeed, this would imply, for any Q ∈ QM ,
that ∣∣∣∣ˆ

Q

ρ(t, ·)
∣∣∣∣ ≤ ∑

D∈DMN
D⊂Q

∣∣∣∣ˆ
D

ρ(t, ·)
∣∣∣∣ ≤ κ

4
‖ρ‖L∞

∑
D∈DMN
D⊂Q

|D| = κ

4
‖ρ(t, ·)‖L∞ |Q|

and∣∣∣∣ˆ
Q

ρ(t, ·)
∣∣∣∣ ≤ ∑

D∈DMN
D⊂Q

∣∣∣∣ˆ
D

ρ(t, ·)
∣∣∣∣ ≤ 2−M‖ρ‖L∞

∑
D∈DMN
D⊂Q

|D| = 2−M‖ρ(t, ·)‖L∞ |Q| ,

which concludes the proof.
The computation of (2.33) and (2.34) is similar to the one we performed in the

proof of Lemma 2.7, so that we will omit the redundant details. We fix Dk,N
ij,M ∈ DMN .

Recalling the zero average condition on circles, it is sufficient to consider i ≥ 1. We
let

rki = i2−M + k2−N , i = 1, . . . , 2M − 1, k = 0, . . . , 2N−M − 1 ,

θj =
j

i+ 1
2π, j = 0, . . . , i .

Proceeding as in the proof of Lemma 2.7, we compute

ˆ
Dk,Nij,M

ρ(t, ·) =

ˆ θj+1

θj

ˆ rki+1

rki

ρ(t, θ, r) r drdθ

=
1

(2πt)2

ˆ θj+1

θj

I1(θ) dθ +
1

(2πt)2

ˆ θj+1

θj

I2(θ) dθ

where I1(θ) and I2(θ) are defined like in (2.24) and (2.25), replacing ri, ri+1 with rki , r
k
i+1.

The estimate of the contribution of I1 is the same, namely

1

(2πt)2

ˆ θj+1

θj

|I1(θ)| dθ .
(

1

t2
+

2−M

t

)
‖ρ0‖L∞ , (2.35)

and, by |Dk,N
ij,M | ' 2−(N+M), we have that

1

(2πt)2

ˆ θj+1

θj

|I1(θ)| dθ < κ

8
‖ρ(t, ·)‖L∞ |Dk,N

ij,M | , (2.36)

as long as t ≥ C
κ 2N , for some absolute large constant C > 1, and

1

(2πt)2

ˆ θj+1

θj

|I1(θ)| dθ < ‖ρ(t, ·)‖L∞ |Dk,N
ij,M |2

−M . (2.37)

as long as t ≥ C2N+M .
The contribution of I2(θ) is different, since in the (analogous of) the sum in (2.25)

there are now less than 2πt(rki+1 − rki ) = 2πt2−N terms, so that we get

1

(2πt)2

∣∣∣∣∣
ˆ θj+1

θj

I2(θ) dθ

∣∣∣∣∣ . θj+1 − θj
t

2−N‖ρ0‖L∞

=
2−N

(i+ 1)t
‖ρ(t, ·)‖L∞ ≤

2−N

t
‖ρ(t, ·)‖L∞ .

(2.38)
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Again, by |Dk,N
ij,M | ' 2−(M+N), we have that

1

(2πt)2

ˆ θj+1

θj

|I2(θ)| dθ < κ

8
‖ρ(t, ·)‖L∞ |Dk,N

ij,M | , (2.39)

as long as t ≥ C
κ 2N , and

1

(2πt)2

ˆ θj+1

θj

|I2(θ)| dθ < ‖ρ(t, ·)‖L∞ |Dk,N
ij,M |2

−M , (2.40)

provided t ≥ C2M+N . Combining (2.36) and (2.39), we arrive at (2.33), and
combining (2.37) and (2.40), we arrive at (2.34). This concludes the proof of
Lemma 2.8. �

2.3. Proof of Proposition 2.1. We rely on Lemma 2.7, in which we established

how the average of the solution decays on each annular tile. Given any t > 2C 2N

κ ,

where C is the absolute constant of the lemma, we set M := blog2(C−1κt)c. We

note that M > N , by t > 2C 2N

κ . By definition of M , we also have t ≥ C 2M

κ , so
that we can apply Lemma 2.7 and∣∣∣∣ 

Q

ρ(t, ·)
∣∣∣∣ ≤ κ

4
‖ρ(t, ·)‖L∞ , ∀Q ∈ QM ,

and then Lemma 2.4 implies

G(ρ(t, ·)) . 2−M

κ
.

Noting 2−M ≤ 2C
κt , again by definition of M , we arrive at

G(ρ(t, ·)) . 1

κ2t
,

as claimed in (2.3).
The proof of (2.4) is similar. Given t ≥ 4C22N , with C the large constant of

Lemma 2.7, we set M := b 1
2 log2 C

−1tc. Again we have M > N and t ≥ C22M , so
that, applying the lemma we get∣∣∣∣ 

Q

ρ(t, ·)
∣∣∣∣ ≤ 2−M‖ρ(t, ·)‖L∞ , ∀Q ∈ QM , (2.41)

which implies by Lemma 2.5 that

‖ρ(t, ·)‖Ḣ−1 ≤ C‖ρ(t, ·)‖L∞2−M .

Now, using 2−M . 1√
t
, the inequality (2.4) follows and the proof is concluded. �

3. Proof Theorems 1.6 and 1.7 and of Proposition 1.8

The key point in all the proofs in this section is to approximate ρ0 by a sequence
of piecewise constant data ρN0 of the form (2.1), for which we have already proved
decay estimates for both the geometric and functional mixing scales. The quan-
tification of the decay of the mixing scale will turn out to strongly depend on the
quantification of the approximation of the initial datum.

The approximated data ρN0 are defined, on each QNij ∈ QN , in the following way:

ρN0

∣∣∣
QNij

= (ρ0)QNij :=

 
QNij

ρ0 . (3.1)
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Note that ρN0 satisfies Assumption 1.4 provided ρ0 satisfies it. Indeed, if we take
r ∈ (ri, ri+1], we have

ˆ
∂Br

ρN0 dSr =
2πr

i+ 1

i∑
j=0

ρ0

∣∣∣
QNij

=
2πr

i+ 1

i∑
j=0

ˆ θj+1

θj

ˆ ri+1

ri

ρ0(θ,R)RdRdθ (3.2)

=
2πr

i+ 1

ˆ ri+1

ri

(ˆ θi+1=2π

θ0=0

ρ0(θ,R)dθ

)
RdR = 0 ,

where, in the last identity, we have used that ρ0(·, R) has zero average on [0, 2π]
for almost every R; see (2.2).

3.1. Proof of Theorem 1.6. Recalling that QN is a family of sets of bounded
eccentricity, by the Lebesgue Differentiation Theorem and Dominated Convergence
Theorem we have that

lim
N→∞

‖ρN0 − ρ0‖L1 → 0 . (3.3)

Now let M ∈ N be fixed. By (3.3), we can choose N large enough, so that

‖ρN0 − ρ0‖L1 ≤ 2−2M
(κ

4

)2

‖ρ0‖L∞ . (3.4)

Denoting ρN (t, ·) the evolution of ρN0 at time t, we define the set

ANt =
{
|ρN (t, ·)− ρ(t, ·)| > κ

4
‖ρ0‖L∞

}
. (3.5)

Using that the flow is measure preserving, by Chebychev inequality and (3.4) we
have

|ANt | = |AN0 | ≤
‖ρN0 − ρ0‖L1

κ
4 ‖ρ0‖L∞

≤ 2−2M
(κ

4

)
. (3.6)

We decompose∣∣∣∣∣
 
B2−M (x)

ρ(t, ·)

∣∣∣∣∣ ≤
∣∣∣∣∣
 
B2−M (x)

(ρ− ρN )(t, ·)

∣∣∣∣∣+

∣∣∣∣∣
 
B2−M (x)

ρN (t, ·)

∣∣∣∣∣ . (3.7)

Notice that, as a consequence of Proposition 2.1 with an accuracy parameter κ/2,
the second term on the right is bounded by κ

2 ‖ρ(t, ·)‖L∞ , for all sufficiently large t.
For the first term we can bound∣∣∣∣∣

 
B2−M (x)

(ρ− ρN )(t, ·)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

π2−2M

ˆ
B2−M (x)∩ANt

(ρ− ρN )(t, ·)

∣∣∣∣∣
+

∣∣∣∣∣ 1

π2−2M

ˆ
B2−M (x)\ANt

(ρ− ρN )(t, ·)

∣∣∣∣∣
≤ 1

π2−2M
2‖ρ‖L∞ |ANt |+ sup

y/∈ANt
(ρ− ρN )(t, y)

≤ κ

4
‖ρ‖L∞ +

κ

4
‖ρ‖L∞ ≤

κ

2
‖ρ‖L∞

(3.8)

where in the last inequality we have used (3.6) and (3.5). Back to (3.7), we have
shown that ∣∣∣∣∣

 
B2−M (x)

ρ(t, ·)

∣∣∣∣∣ ≤ κ‖ρ‖L∞ (3.9)

for all sufficiently large t. Since M was arbitrary, we conclude that G(ρ(t, ·)) → 0

as t → ∞. The proof for the Ḣ−1 norm is similar. An analogous argument shows
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that for any M ∈ N and t sufficiently large, we have that

 
Q

ρ(t, ·) ≤ 2C‖ρ‖L∞2−M (3.10)

for any Q ∈ QM , which implies, by Lemma 2.5, that

‖ρ(t, ·)‖Ḣ−1 ≤ C‖ρ‖L∞2−M

for t sufficiently large. Since M is arbitrary, we conclude that ‖ρ(t, ·)‖Ḣ−1 → 0 as
t→∞. �

3.2. Proof of Theorem 1.7. (i) If ρ0 is continuous on B1 and zero on R2 \ B1,
we can choose N sufficiently large so that

‖ρ(t, ·)− ρN (t, ·)‖L∞ = ‖ρ0 − ρN0 ‖L∞ <
κ

4
‖ρ0‖L∞ =

κ

4
‖ρ(t, ·)‖L∞ . (3.11)

Now, for all t ≥ C2N+3/κ we set

M = blog2(C−1κt)c , (3.12)

where C is the constant in Lemma 2.7. This implies M > N and t ≥ C2M/κ.
Notice that for any QMij ∈ QM we have∣∣∣∣∣

 
QMij

ρ(t, ·)

∣∣∣∣∣ ≤
∣∣∣∣∣
 
QMij

ρ(t, ·)− ρN (t, ·)

∣∣∣∣∣+

∣∣∣∣∣
 
QMij

ρN (t, ·)

∣∣∣∣∣ . (3.13)

By (3.11), the first term is bounded by κ
4 ‖ρ(t, ·)‖L∞ . Using Lemma 2.7, the second

term is also bounded by κ
4 ‖ρ(t, ·)‖L∞ . Recalling Lemma 2.4, this gives

G(ρ(t, ·)) ≤ C 2−M

κ
≤ 2C2

κ2t
,

with a possibly larger constant C, where in the second estimate we have again used
definition (3.12). This concludes the proof of (1.9).

(ii) We now let ρ0 belong to Ẇα,1, for some α ∈ (0, 1]. We begin by proving the
following inequalities.

Claim 1. Let α ∈ (0, 1). Then there exists a constant C = C(α) such that for all
N ∈ N and Q ∈ QN we have that

‖ρ0 − (ρ0)Q‖L1(Q) ≤ C2−Nα
¨

Q×Q

|ρ0(x)− ρ0(y)|
|x− y|2+α

dx dy , (3.14)

and there exists a constant C such that for all N ∈ N and Q ∈ QN we have that

‖ρ0 − (ρ0)Q‖L1(Q) ≤ C2−N‖∇ρ0‖L1(Q) . (3.15)

Proof. The family of Poincaré inequalities (3.15) has been already proved in Lemma 2.5.
In order to prove (3.14) we recall that |Q| ' 2−2N and diamQ ' 2−N , so that

1

|Q|
.

2−Nα

|x− y|2+α
, if (x, y) ∈ Q×Q .
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Therefore we haveˆ

Q

|ρ0(y)− (ρ0)Q| dy =

ˆ

Q

∣∣∣∣ρ0(y)−
 
ρ0(x)dx

∣∣∣∣ dy (3.16)

≤ 1

|Q|

ˆ

Q

ˆ

Q

|ρ0(y)− ρ0(x)| dxdy

. 2−Nα
ˆ

Q

ˆ

Q

|ρ0(y)− ρ0(x)|
|x− y|2+α

dxdy . �

As a consequence of Claim 1, we compute the following rate of the approximation
for the initial data.

Claim 2. For any α ∈ (0, 1], there exists a constant C = C(α) such that for any
N ∈ N we have that

‖ρ0 − ρN0 ‖L1 ≤ C2−Nα‖ρ0‖Ẇα,1 . (3.17)

Proof. Let first α = 1. Recalling the rescaled Poincaré inequality (3.15), we can
compute

‖ρ0 − ρN0 ‖L1 =
∑
Q∈QN

‖ρ0 − (ρ0)Q‖L1(Q)

≤ C2−N
∑
Q∈QN

‖∇ρ0‖L1(Q) = C2−N‖ρ0‖Ẇ 1,1 .
(3.18)

Similarly, for α ∈ (0, 1) we compute

‖ρ0 − ρN0 ‖L1 =
∑
Q∈QN

‖ρ0 − (ρ0)Q‖L1(Q)

≤ C2−Nα
∑
Q∈QN

¨

Q×Q

|ρ0(x)− ρ0(y)|
|x− y|2+α

dx dy (3.19)

≤ C2−Nα
¨

B1×B1

|ρ0(x)− ρ0(y)|
|x− y|2+α

dx dy

= C2−Nα‖ρ0‖Ẇα,1 . �

We can now go back to the proof of Theorem 1.7(ii). We choose

c = c(κ, ‖ρ0‖Ẇα,1 , ‖ρ0‖L∞)

sufficiently large, in such a way that

‖ρ0‖Ẇα,1 ≤
2c

2C2

(κ
8

)2

‖ρ0‖L∞ , (3.20)

where the constant C is larger than the one in (3.19), twice the one in Lemma 2.8,
and such that |Q| ≥ 1

C 2−2M , for all M ∈ N and all Q ∈ QM . Given any

t ≥ C

κ
2

2+c
α , (3.21)

we set

M :=

⌊
log2

( κ
C

)α
2

2−
c
2 t

α
2

⌋
. (3.22)

Notice that by (3.21) we have M ≥ 1. We define

σ(M) :=

⌈
2M + c

α

⌉
(3.23)
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and notice that σ(M) > M . By (3.22) we have

t ≥ C

2κ
2σ(M) ,

so that we are allowed to apply Lemma 2.8 to the solution ρσ(M). Let

A
σ(M)
t =

{
|ρσ(M)(t, ·)− ρ(t, ·)| > κ

8
‖ρ0‖L∞

}
. (3.24)

Using Claim 2 and (3.20), we have that

‖ρσ(M)
0 − ρ0‖L1 ≤ 1

2C
2−2M

(κ
8

)2

‖ρ0‖L∞ , (3.25)

for any M ∈ N. This implies, via Chebychev’s inequality, that∣∣∣Aσ(M)
t

∣∣∣ =
∣∣∣{|ρσ(M)

0 − ρ0| >
κ

8
‖ρ0‖L∞

}∣∣∣ ≤ 1

2C
2−2M

(κ
8

)
. (3.26)

Let Q ∈ QM . We have∣∣∣∣ 
Q

ρ(t, ·)
∣∣∣∣ ≤  

Q

∣∣∣ρ(t, ·)− ρσ(M)(t, ·)
∣∣∣+

∣∣∣∣ 
Q

ρσ(M)(t, ·)
∣∣∣∣ , (3.27)

and the second term on the right hand side is estimated by κ
4 ‖ρ‖L∞ , using Lemma 2.8

(recall that σ(M) > M). In order to bound the first term we need to use (3.26).
Indeed, recalling also that |Q| ≥ 1

C 2−2M , we have
 
Q

∣∣∣ρ(t, ·)−ρσ(M)(t, ·)
∣∣∣≤ C22M

ˆ
Q∩Aσ(M)

t

∣∣∣ρ(t, ·)−ρσ(M)(t, ·)
∣∣∣

+
1

|Q|

ˆ
Q\Aσ(M)

t

∣∣∣ρ(t, ·)−ρσ(M)(t, ·)
∣∣∣

≤C22M2‖ρ‖L∞
∣∣∣Aσ(M)

t

∣∣∣+
κ

8
‖ρ‖L∞

≤ κ
4
‖ρ‖L∞ .

In conclusion, we have shown that the averages of ρσ(M) over the elements of
QM are bounded by κ

2 ‖ρ‖L∞ , as long as t satisfies (3.21). By Lemma 2.4, this
implies that

G(ρ(t, ·)) ≤ C

κ
2−M , (3.28)

but, recalling (3.22), we also have

C

κ
2−M ≤

(
C

κ

)1+α
2

21+ c
2 t−

α
2 , (3.29)

so that (1.10) has been proved. �

3.3. Proof of Proposition 1.8. (i) We are assuming that ρ0 ∈ C0,α, for some
α ∈ (0, 1]. Let us start by proving the following claim.

Claim 3. We have

‖ρ(t, ·)− ρN (t, ·)‖L∞ ≤ C‖ρ0‖C0,α2−Nα , (3.30)

for all N ∈ N and for some absolute constant C, where

‖ρ0‖C0,α = ‖ρ0‖L∞ + sup
x,y∈B1,x 6=y

|ρ0(x)− ρ0(y)|
|x− y|α

.
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Proof. Clearly
‖ρ(t, ·)− ρN (t, ·)‖L∞ = ‖ρ0 − ρN0 ‖L∞ .

On the other hand, if x ∈ Q, with Q ∈ QN , we can bound∣∣ρ0(x)− ρN0 (x)
∣∣ ≤  

Q

|ρ0(x)− ρ0(y)| dy

≤ ‖ρ0‖C0,α

 
Q

|x− y|α dy . ‖ρ0‖C0,α2−Nα ,

where we have used that diam(Q) . 2−N . �

We can now pass to the proof of Proposition 1.8(i). Let

t ≥ (8C)
α+1
α

(
‖ρ0‖C0,α

‖ρ0‖L∞

) 1
α

, (3.31)

where C > 1 is larger than the constants in Lemma 2.8 and in (3.30). Then we set

M =

⌊
log2

((
‖ρ0‖L∞
‖ρ0‖C0,α

) 1
α+1 t

α
α+1

2C

)⌋
. (3.32)

Notice that

2−M <

(
‖ρ0‖C0,α

‖ρ0‖L∞

) 1
α+1 4C

t
α
α+1

. (3.33)

Moreover, (3.31) ensures that M ≥ 1. Finally we set

σ(M) =

⌈
log2

((
2C‖ρ0‖C0,α

‖ρ0‖L∞
2M
) 1
α

)⌉
. (3.34)

Notice that σ(M) ≥M + 1 and

C2−σ(M)α‖ρ0‖C0,α ≤ 1

2
2−M‖ρ0‖L∞ . (3.35)

Again by (3.32), we see that

t > 2C2M
(

2C
‖ρ0‖C0,α

‖ρ0‖L∞
2M
) 1
α

, (3.36)

and, by (3.34), that (
2C
‖ρ0‖C0,α

‖ρ0‖L∞
2M
) 1
α

>
2σ(M)

2
,

so that we have t ≥ C2M+σ(M), namely (using also σ(M) ≥ M + 1) we are under
the assumptions of Lemma 2.8, when we consider the solution ρσ(M). Thus, for any
Q ∈ QM , we can bound∣∣∣∣ 

Q

ρ(t, ·)
∣∣∣∣ ≤ ∣∣∣∣ 

Q

ρ(t, ·)− ρσ(M)(t, ·)
∣∣∣∣+

∣∣∣∣ 
Q

ρσ(M)(t, ·)
∣∣∣∣ . (3.37)

Both the terms on the right hand side are bounded by 1
22−M‖ρ(t, ·)‖L∞ , the first

one because of Claim 3 and the inequality (3.35), the second one as consequence
of Lemma 2.8. Hence the statement follows by Lemma 2.5. Indeed, recalling also
(3.33), we arrive at

‖ρ(t, ·)‖Ḣ−1 ≤ C2−M‖ρ0‖L∞ ≤ 4C2‖ρ0‖
1

α+1

C0,α‖ρ0‖
α
α+1

L∞ t−
α
α+1 , (3.38)

so that the proof of (1.11) is concluded.

(ii) The proof is a variation of that of Theorem 1.7(ii). Let us take

t ≥ C8
α+4
α 2

c
α , (3.39)
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where C is as before and c is sufficiently large so that

‖ρ0‖Ẇα,1 ≤
2c

2C2
‖ρ0‖L∞ . (3.40)

Setting

M :=

⌊
log2

1

2
C−

α
α+4 2−

c
α+4 t

α
α+4

⌋
, (3.41)

a similar argument as in the proof of Theorem 1.7(ii) shows that for

σ(M) :=

⌈
4M + c

α

⌉
(3.42)

we have that

‖ρσ(M)
0 − ρ0‖L1 ≤ 1

2C
2−4M‖ρ0‖L∞ . (3.43)

Thus, using Chebychev’s inequality, we have that∣∣∣Aσ(M)
t

∣∣∣ =
∣∣∣{|ρσ(M)(t, ·)− ρ(t, ·)| > 2−M‖ρ0‖L∞

}∣∣∣ ≤ 1

2C
2−3M . (3.44)

We bound ∣∣∣∣ 
Q

ρ(t, ·)
∣∣∣∣ ≤  

Q

∣∣∣ρ(t, ·)− ρσ(M))(t, ·)
∣∣∣+

∣∣∣∣ 
Q

ρσ(M)(t, ·)
∣∣∣∣ (3.45)

for all Q ∈ QM . The second term is bounded by 2−M‖ρ‖L∞ by Lemma 2.8, that
we are allowed to apply beacuse t ≥ C2M+σ(M) and σ(M) > M ≥ 1, looking
at (3.39), (3.41), and (3.42). The same argument used in the proof of (1.10) now
shows that the second term is also bounded by 2−M‖ρ‖L∞ . In conclusion, we
have shown that the average of ρ(t, ·) over the elements of QM is bounded by
2‖ρ‖L∞2−M . Thus Lemma 2.5 implies that

‖ρ(t, ·)‖Ḣ−1 ≤ C‖ρ0‖L∞2−M , (3.46)

and, noting that (see (3.41))

2−M ≤ 4C1+ α
α+4 2

c
α+4 t−

α
α+4 , (3.47)

the proof of (1.12) is concluded. �

4. Appendix: Necessity of Assumption 1.4

In Proposition 4.1 we show that, if the geometric mixing scale of a solution decays
to zero for any accuracy parameter κ ∈ (0, 1), then such a solution converges to
zero weakly in L2. This would not be the case just assuming decay for a given fixed
κ, as pointed out in Remark 1.10. This fact is then used in Proposition 4.4 to show
that the zero average condition of Assumption 1.4 is necessary for any bounded
initial density in order to get mixed (in either geometric or functional sense) by the
velocity field u.

Proposition 4.1. Let ρ0 ∈ L∞ supported in B1 be an initial datum for which
limt→∞ G(ρ(t, ·))→ 0 for all κ ∈ (0, 1). Then ρ(t, ·) converges to zero weakly in L2

as t→∞.

Remark 4.2. Notice that in the above proposition we are using neither the precise
form of the velocity field, nor the fact that the domain is the unit disk. This is a
general result relating the decay to zero of the geometric mixing scale to the weak
convergence to zero.
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Proof of Proposition 4.1. By the density of continuous functions in L2 it suffices to
show that we have

lim
t→∞

ˆ
B1

ρ(t, x)φ(x) dx = 0 ,

for all φ ∈ C(B1). Let δ > 0 be given. Our goal is to show that there exists a time
t0 such that ∣∣∣∣ˆ

B1

ρ(t, x)φ(x) dx

∣∣∣∣ ≤ δ (4.1)

for all t ≥ t0. Since φ is continuous there exists ε̄ = ε̄(δ, φ) such that |φ(x)−φ(y)| ≤
δ
3 (‖ρ‖L∞π)−1 for all y ∈ Bε(x) for all 0 < ε ≤ ε̄. Furthermore, we choose a finite

family of disjoint disks B1, . . . , BN such that

Bi ⊂ B1, diamBi ≤ ε̄, and |A| ≤ δ

3
(‖ρ‖L∞‖φ‖L∞)

−1
, (4.2)

where A = B1 \
⋃N
i=1B

i. Let xi be the centers of the disks Bi. We have that∣∣∣∣ˆ
B1

ρ(t, x)φ(x)dx

∣∣∣∣ ≤ N∑
i=1

|φ(xi)|
∣∣∣∣ˆ
Bi
ρ(t, x)dx

∣∣∣∣
+

N∑
i=1

max
x∈Bi

|φ(x)− φ(xi)|
ˆ
Bi
|ρ(t, x)| dx

+

ˆ
A

|φ(x)ρ(t, x)| dx

= I + II + III .

(4.3)

Since limt→∞ G(ρ(t, ·)) → 0 for all κ ∈ (0, 1), using the forthcoming Lemma 4.3
with r = ri = 1

2 diamBi, taking t0 the maximum of the t̄(ri, ·), and choosing

κ =
δ

3

(
‖ρ‖L∞

N∑
i=1

|φ(xi)| ·
∣∣Bi∣∣)−1

we have that, for all t ≥ t0

I =

N∑
i=1

|φ(xi)|
∣∣∣∣ˆ
Bi
ρ(t, x)dx

∣∣∣∣ ≤ N∑
i=1

|φ(xi)| ·
∣∣Bi∣∣ ‖ρ‖L∞κ ≤ δ

3
. (4.4)

For the second term we have that

II ≤ δ

3
(‖ρ‖L∞π)−1

N∑
i=1

ˆ
Bi
|ρ(t, x)| dx ≤ δ

3
. (4.5)

Finally, by (4.2) we can estimate

III ≤ |A| ‖ρ‖L∞‖φ‖L∞ ≤
δ

3
. (4.6)

Hence combining (4.3) with equations (4.4), (4.5), and (4.6), we have shown (4.1),
which completes the proof of Proposition 4.1. �

Lemma 4.3. Let ρ0 ∈ L∞ supported in B1 be an initial datum for which we
have limt→∞ G(ρ(t, ·)) → 0 for all κ ∈ (0, 1). Then ∀r > 0, κ > 0 there exists a
time t̄ = t̄(r, κ) such that ∣∣∣∣∣

 
Br(x)

ρ(t, y) dy

∣∣∣∣∣ ≤ κ‖ρ‖∞ (4.7)

for all x and all t ≥ t̄.
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Proof. Fix κ > 0 and r > 0. Our goal is to find a time t̄ such that (4.7) holds.
Since for κ′ = κ/2 we have that Gκ′(ρ(t, ·))→ 0, there exists a time t̄, such that for
all t ≥ t̄ there exists a radius δ = δ(t) ≤ κ

12r such that∣∣∣∣∣
 
Bδ(t)(x)

ρ(t, y) dy

∣∣∣∣∣ < κ

2
‖ρ‖∞ (4.8)

for all x. For an arbitrary x and t ≥ t̄ we have (hereafter δ = δ(t))ˆ
Br(x)

 
Bδ(z)

ρ(t, y) dy dz =
1

|Bδ|

ˆ
Br(x)

ˆ
Br+δ(x)

1Bδ(z)(y)ρ(t, y) dy dz

=
1

|Bδ|

ˆ
Br+δ(x)

ρ(t, y)

ˆ
Br(x)

1Bδ(y)(z) dz dy

=
1

|Bδ|

ˆ
Br−δ(x)

ρ(t, y)

ˆ
Br(x)

1Bδ(y)(z) dz dy

+
1

|Bδ|

ˆ
Br+δ(x)\Br−δ(x)

ρ(t, y)

ˆ
Br(x)

1Bδ(y)(z) dz dy

=

ˆ
Br−δ(x)

ρ(t, y) dy

+
1

|Bδ|

ˆ
Br+δ(x)\Br−δ(x)

ρ(t, y)

ˆ
Br(x)

1Bδ(y)(z) dz dy ,

(4.9)

where as usual 1A(x) = 1 if x ∈ A and 1A(x) = 0 if x /∈ A. Namely, we proved the
identityˆ

Br−δ(x)

ρ(t, y) dy =

ˆ
Br(x)

 
Bδ(z)

ρ(t, y) dy dz (4.10)

− 1

|Bδ|

ˆ
Br+δ(x)\Br−δ(x)

ρ(t, y)

ˆ
Br(x)

1Bδ(y)(z) dz dy

Since ∣∣∣∣∣
 
Br(x)

ρ(t, y) dy

∣∣∣∣∣ ≤ 1

|Br|

∣∣∣∣∣
ˆ
Br−δ(x)

ρ(t, y) dy

∣∣∣∣∣+ ‖ρ‖∞
|Br \Br−δ|
|Br|

(4.11)

using (4.10), triangle inequality and (4.8) we arrive to∣∣∣∣∣
 
Br(x)

ρ(t, y) dy

∣∣∣∣∣ ≤
∣∣∣∣∣
 
Br(x)

 
Bδ(z)

ρ(t, y) dy dz

∣∣∣∣∣+ ‖ρ‖∞
|Br+δ \Br−δ|

|Br|

+ ‖ρ‖∞
|Br \Br−δ|
|Br|

≤
(
κ

2
+ 4

δ

r
+ 2

δ

r

)
‖ρ‖∞ .

(4.12)

Hence, using that δ = δ(t) ≤ κ
12r, we conclude that∣∣∣∣∣
 
Br(x)

ρ(t, y) dy

∣∣∣∣∣ ≤ κ‖ρ‖∞ (4.13)

for all x and all t ≥ t̄.
�

Proposition 4.4. Let ρ0 ∈ L∞ supported in B1 be a mean-free initial datum for
which limt→∞ ‖ρ(t, ·)‖Ḣ−1 = 0 or limt→∞ G(ρ(t, ·)) = 0 for all κ ∈ (0, 1). Then ρ0

has to satisfy Assumption 1.4.
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Proof. Clearly it is sufficient to consider r > 0. Looking at the vector field u, it is
immediate to check that the average of any solution ρ(t, ·), advected by u, on any
disk centered at the origin, is preserved. Namely we have, for all r > 0 (notice that
ρ(t, ·) = 0 outside B1):ˆ

|x|≤r
ρ(t, x)dx =

ˆ
|x|≤r

ρ0(x)dx, ∀t ≥ 0 .

Thus, for any r1 < r2, we still haveˆ
r1<|x|≤r2

ρ(t, x)dx =

ˆ
r1<|x|≤r2

ρ0(x)dx, ∀t ≥ 0 . (4.14)

Using Proposition 4.1 in the case of the geometric mixing scale, we see that any
of the assumptions of the current proposition imply that ρ(t, ·) converges to zero
weakly in L2 as t→∞. Thus, testing against φ = χBr2 and φ = χBr1 , we see that

lim
t→∞

ˆ
r1<|x|≤r2

ρ(t, x)dx = lim
t→∞

(ˆ
|x|≤r2

ρ(t, x)dx−
ˆ
|x|≤r1

ρ(t, x)dx

)
= 0 ,

for all r1 < r2. By (4.14), this clearly impliesˆ
r1<r≤r2

ˆ
∂Br

ρ0 dSr =

ˆ
r1<|x|≤r2

ρ0(x)dx = 0 , (4.15)

for all r1 < r2. Taking r ∈ [r1, r2] and letting r2 − r1 → 0, using (4.15) and the
Lebesgue differentiation theorem, we have proved thatˆ

∂Br

ρ0 dSr = 0 , (4.16)

for any r > 0 which is a Lebesgue point of the function r > 0 7→
´
∂Br

ρ0 dSr. Since

this function is bounded (recall that ρ0 ∈ L∞) and supported on (0, 1], we obtain
that (4.16) is valid for almost any r > 0, as claimed. �
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