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Abstract 51 

The gene coding for glycine receptor β subunits (GLRB) has been found to be related to panic 52 

disorder and agoraphobia (PD/AG) and to be associated with altered insular BOLD activation 53 

during fear conditioning, as an intermediate phenotype of defensive system reactivity in healthy 54 

subjects. In a multicenter clinical trial on PD/AG patients we investigated in three sub-samples 55 

whether GLRB allelic variation (A/G; A-allele identified as «risk») in the single nucleotide 56 

polymorphism rs7688285 was associated with autonomic (behavioral avoidance test BAT; n=267 57 

patients) and neural (differential fear conditioning; n=49 patients, n=38 controls) measures, and 58 

furthermore with responding towards exposure-based cognitive behavioral therapy (CBT, n=184 59 

patients). An interaction of genotype with current PD/AG diagnosis (PD/AG vs. controls; fMRI data 60 

only) and their modification after CBT was tested as well. Exploratory fMRI results prior to CBT, 61 

revealed A-allele carriers irrespective of diagnostic status to show overall higher BOLD activation in 62 

the hippocampus, motor cortex (MC) and insula. Differential activation in the MC, anterior 63 

cingulate cortex (ACC) and insula was found in the interaction genotype X diagnosis. Differential 64 

activation in ACC and hippocampus was present in differential fear learning. ACC activation was 65 

modified after treatment, while no overall rs7688285 dependent effect on clinical outcomes was 66 

found. On the behavioral level, A-allele carriers showed pronounced fear reactivity prior to CBT 67 

which partially normalized afterwards. In sum, rs7688285 variation interacts in a complex manner 68 

with PD/AG on a functional systems level and might be involved in the development of PD/AG but 69 

not in their treatment. 70 

Clinical Trials Registration: 71 

Registry name: ISRCTN registry 72 

URL: https://doi.org/10.1186/ISRCTN80046034 73 

Registration number: ISRCTN80046034 74 
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1. Introduction 75 

Anxiety disorders constitute the most prevalent group of mental disorders and are a leading cause 76 

of disability with high individual and societal burden (Gustavsson et al., 2011; Wittchen et al., 77 

2011). In order to optimize their treatment and foster preventive approaches, it is necessary to 78 

better understand the underlying pathogenetic mechanisms and the potential of cognitive 79 

behavioral therapy (CBT) to affect these (Teachman et al., 2012). Twin studies demonstrate a 80 

heritability of anxiety disorders with 30%–50% of the individual variability to be explained by 81 

genetic factors (Gordon JA 2004; Shimada-Sugimoto et al., 2015). When specific candidate genes 82 

are identified, their functional relevance on multiple levels of analysis according to the Research 83 

Domain Criteria (RDoC) approach (Insel et al., 2010; Kozak and Cuthbert, 2016) is a research 84 

priority. Recently, the field of “therapygenetics” was introduced, where the association of genetic 85 

variants with (non-pharmacological) therapy outcome is studied and which adds a further layer of 86 

analysis. 87 

A recent genome-wide association study (GWAS) (Deckert et al., 2017) found evidence for an 88 

association between the gene encoding the glycine receptor β subunit (GLRB, which plays an 89 

important role in the regulation of postsynaptic inhibition in neurotransmission and is involved in 90 

defensive motor reflex circuits (Lynch, 2004) and categorical (panic disorder (PD)) as well as 91 

dimensional (agoraphobia (AG)) characteristics of fear/anxiety, increased startle responses and 92 

neural indicators of defensive responding (Deckert et al., 2017). Specifically the rs7688285 single 93 

nucleotide polymorphism (SNP) was associated with GLRB expression changes and phenotypically 94 

showed the most robust impact. On a neural level, GLRB and rs688285 were associated to 95 

increased insular activation during fear conditioning as an intermediate phenotype of defensive 96 

system reactivity which could be replicated in two further, independent healthy control samples 97 
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(Lueken et al., 2017). 98 

Defensive responses consist of phylogenetically old and adaptive behavioral adjustments (e.g., 99 

startle, fight, flight and freezing) and according autonomic reactivity (e.g., increased heart rate 100 

during flight) that prepare an organism to defend itself or flee a potentially harmful situation. 101 

Higher-level cognitive systems can modulate the engagement of these responses resulting in more 102 

complex behaviors such as prospective avoidance of potentially threatening situations (Mobbs et 103 

al., 2015). Together, defense responses are associated with a diverse neurofunctional system 104 

consisting of the cortical forebrain (e.g., (pre-)motor, prefrontal and anterior cingulate cortex; 105 

ACC), the insula, limbic (e.g., amygdala, hippocampus) and midbrain structures (Carvalho et al., 106 

2010; Fanselow 1994; Mobbs et al., 2009; Wendt et al., 2017). These behaviors are modulated by 107 

learning experiences, especially fear conditioning. Through this process, the organism learns to 108 

discriminate between signals predicting threat (conditioned stimulus (CS) that is followed by an 109 

unconditioned stimulus (US); CS+) and cues predicting safety (CS that is never paired with an US; 110 

CS-) and integrates it in a way that eventually the CS+ alone evokes defensive reactions (e.g., 111 

freezing) to cope with the upcoming threat (Fullana et al., 2016; Lonsdorf et al., 2017; Sehlmeyer 112 

et al., 2009; Wendt et al., 2017). 113 

Based on the initial findings of GLRB, we aimed to further explore the role of rs7688285 allelic 114 

variation in context of current PD/AG diagnosis and its treatment on multiple response levels 115 

(symptom reports, autonomic responding and neural data). Due to the current lack of studies on 116 

the intermediate GLRB-phenotype in the patient population, exploratory analyses on existing 117 

samples are a starting point to pave the way for future research on systematic conducted larger 118 

samples. Thus, we aimed to provide initial insights on a translational level. In line with previous 119 

research (Deckert et al., 2017; Lueken et al., 2017), we expected a) A-allele carriers (previously 120 

identified as carriers of genetic «risk»; Deckert et al., 2017; Lueken et al., 2017) to show signs of 121 
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enhanced defensive autonomic responding in a behavioral test as well as altered fear processing 122 

on a neural level in a fear conditioning and extinction task. Furthermore, aiming to translate 123 

findings from healthy subjects to the clinical population, we hypothesized that b) genotype would 124 

interact with current diagnosis in terms of a more pronounced effect in patients than in healthy 125 

subjects. Finally, investigating the potential of CBT as first-line treatment to modify bio-behavioral 126 

«risk» signatures as observed prior to treatment, we explored whether c) genotype interacts with 127 

the response toward exposure-based CBT in which dysfunctional defensive reactivity is modified 128 

by corrective fear-inhibitory learning in PD/AG patients (therapygenetic effect). 129 
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2. Experimental procedures 130 

Participants 131 

Participants represent sub-samples (behavioral avoidance test (BAT): n=267 patients AA/AG n=91, 132 

GG n=176; CBT completer: n=184 patients, AA/AG n=61, GG n=122; fMRI pre: n=49 patients AA/AG 133 

n=13, GG n=36, n=38 healthy controls/HC, AA/AG n=17, GG n=22; fMRI post: n=39 patients: A/AG 134 

n=9, GG n=30; n=29 HC, A/AG n=13, GG n=16; Supplementary Figure SF1) from the randomized 135 

controlled multicenter trial «Mechanism of Action in CBT» (MAC) with a total number of 369 136 

enrolled patients (Gloster et al., 2009; Gloster et al., 2011). This study was part of the national 137 

research network PANIC-NET funded by the German Federal Ministry of Education and Research. 138 

The study with all of its subprojects was approved by the respective local ethical committees; 139 

written informed consent of all participants was obtained. Detailed information about inclusion 140 

and exclusion criteria, clinical assessment, treatment procedure, and measures of quality control 141 

for fMRI data can be found elsewhere (Gloster et al., 2009; Gloster et al., 2011; Straube et al., 142 

2014) and in the Supplementary Methods 1.1-1.3. Patients were free from psychotropic 143 

medication, not related, and fulfilled a diagnosis of PD/AG according to DSM-IV-TR criteria 144 

(American Psychiatric Association 2000) as diagnosed by the Composite International Diagnostic 145 

Interview (Wittchen HU, Garczynski E, Pfister H. 1997) (CIDI). Treatment consisted of 12 sessions of 146 

standardized exposure-based CBT (Supplementary Methods 1.2). The Structured Interview Guide 147 

for the Hamilton Anxiety Scale (SIGH-A) (Shear et al., 2001) served as the primary of five outcome 148 

measure with reductions in symptom severity of at least 50% defining a clinically meaningful 149 

response (Gloster et al., 2009; Gloster et al., 2011) (Supplementary Methods 1.4).  150 

Genotype data of patients were previously included in the GWAS study (Deckert et al., 2017) as 151 

one of two independent validation samples for GLRB locus identification and the baseline (t1) fMRI 152 

sample of controls was included in Lueken et al. (2017) as one of two independent samples. The 153 



 

8 

present work provides new data in terms of genotype associated fMRI, BAT and clinical outcomes 154 

in patients focused on the multilevel longitudinal aspect by investigating the therapygenetic effects 155 

of GLRB and the potential of CBT to modify bio-behavioral «risk» signatures. 156 

 157 

Genotyping 158 

Genotyping of rs7688285 on blood samples was performed with Sequenom´s MassArray® system 159 

(Sequenom, San Diego, CA, USA), as recommended by the manufacturers and described previously 160 

(Deckert et al., 2017). While Deckert at al. (2017) identified four SNPs (rs7688285, rs78726293, 161 

rs191260602, rs17035816) associated with dimensional or dichotomous agoraphobic phenotypes, 162 

we chose to pick rs7688285 for our analyses for three major reasons: 1) rs7688285 had by far the 163 

strongest association with the phenotype at the categorial level (PD/AG patients vs. HC), 2) in our 164 

sample only rs7688285 had a distribution that allowed to differentiate reasonably between genetic 165 

subgroups (see Supplementary Methods 1.7), 3) we could avoid the problems of multiple testing, 166 

by focusing on the most promising candidate SNPs. The rs7688285 SNP is a marker for the GRLB 167 

gene located on chromosome 4q31-34 (Deckert et al., 2017; Kaabi et al., 2006). According to 168 

Deckert et al., (2017), the minor A-allele of rs7688285 is associated with increased risk for the 169 

dichotomous agoraphobia phenotype based on the Symptom Checklist-90 and goes along with 170 

increased mRNA expression of GLRB in human midbrain tissue post mortem. Carriers of at least 171 

one A-allele were thus defined as carriers of this genetic «risk» compared to GG-homozygotes.  172 

 173 

Psychophysiological data acquisition and analysis during BAT  174 

Patients were assessed in a standardized behavioral avoidance test (BAT) consisting of an exposure 175 

to a small, dark and closed test chamber prior to (t1) and after CBT (t2). The procedure is 176 

described in detail elsewhere (Hamm et al., 2016; Richter et al., 2012) and in the Supplementary 177 
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Methods 1.5. The duration of tolerated exposure was obtained as index of behavioral fear 178 

response with a) passive avoidance: patients completely avoiding to enter the chamber, b) active 179 

avoidance: patients who first entered the chamber but left it before completing the intended 180 

exposure duration of 10 minutes and c) no avoidance. After each phase 181 

(anticipation/exposure/recovery), the intensity of experienced anxiety and panic symptoms were 182 

assessed by paper and pencil immediately on a 10-point Likert scale ranging from 1 (not at all) to 183 

10 (very strong). During the entire test, the electrocardiogram (ECG) was measured as described 184 

elsewhere (Reif et al., 2014) in patients showing active or no avoidance .  185 

To test the effect of genotype, reported fear levels and heart rate we conducted a mixed-model of 186 

variance including genotype as between-subjects factor and BAT phase as within-subject factor. 187 

The presence of avoidance behavior (active vs. no avoidance) was included as between-subjects 188 

factor to control for the effects of active avoidance (Richter et al., 2012). To test the genotype 189 

depended effect of CBT on BAT reactivity we additionally included the within-subject factor time 190 

(t1 vs. t2). 191 

 192 

fMRI data acquisition and analysis 193 

A previously validated (Reinhardt et al., 2010) fear conditioning and extinction task was applied: 194 

during the acquisition phase (A), the US (white noise) and one of two previous neutral stimuli 195 

(colored sphere) were paired (reinforcement rate of 50%) to become the fear related conditioned 196 

stimulus (CS+) while the other stimulus was never paired and consequently acquired safety signal 197 

properties (CS-). In the extinction phase (E), both CS were presented again without the US. 198 

Preprocessing and first level analyses followed previous publications (Kircher et al., 2013; Lueken 199 

et al., 2017; Reif et al., 2014) (see also Supplementary Methods 1.5). On group level, only those 200 

trials in which no US was delivered during acquisition were analyzed to avoid an overlap with 201 
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neuronal activation directly related to the presentation of the US (Kircher et al., 2013). 202 

A flexible factorial design including gender, age, years of education, center and BDI value as 203 

covariates of no interest was used to examine activation differences during presentation of CS+ 204 

and CS- separately for A (early, late) and E between A-allele carriers and GG-homozygotes in 205 

patients and controls. At t1, these contrasts of interest were calculated: (1) main effect of 206 

genotype to reveal the general influence of «risk» status on brain activation, (2) interaction 207 

between genotype and diagnosis to test for the diagnosis specific influence of genotype, (3) 208 

interaction between genotype and CS-type to test for the differential learning effects depending 209 

only on genetic «risk», (4) interaction between genotype, CS-type and diagnosis to investigate the 210 

effects of genotype on CS-processing in the presence of current psychopathology. Finally, using a 211 

separate flexible factorial analysis, including patients’ and controls pre- and post-treatment data, 212 

we explored if neural signatures related to the A-allele genotype and diagnosis in patients were 213 

modified after CBT by testing in patients (1) the interaction between genotype and time (t1, t2) 214 

and (2) between genotype, time and CS-type (see also Supplementary Methods 1.6). 215 

In accordance with previous analyses (Kircher et al., 2013; Lueken et al., 2017; Reif et al., 2014), a 216 

Monte Carlo simulation at threshold p<0.005 (uncorr.) and a minimum cluster size of 142 217 

contiguous voxels was used to correct for multiple comparisons at p<0.05 for all contrasts of 218 

interest. Clusters were localized using the Anatomy Toolbox v1. Post hoc small volume corrections 219 

of the amygdala were performed using the masks of the Automated Anatomical Labeling (aal) 220 

implemented in SPM5. Beta values from significant peak voxels of these clusters were extracted for 221 

bar graph visualization. 222 
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3. Results 223 

Sample characteristics 224 

Genotype dependent sample characteristics for all subsamples are given in the Supplementary 225 

Table S1. Before treatment, patients with and without A-allele did not differ in demographic and 226 

clinical characteristics suggesting comparable severity of panic/agoraphobic and depressive 227 

symptoms. Genotype distribution did not deviate from the Hardy-Weinberg equilibrium. Among 228 

the fMRI sample, patients and controls only differed in education but not in their 229 

neuropsychological characteristics. Patients scored higher than controls in the Anxiety Sensitivity 230 

Index (ASI) and the Beck Depression Inventory II (BDI II).  231 

 232 

Psychophysiological assessment during BAT 233 

Detailed results are reported in Table S2a. In short, genotype was not associated with the 234 

frequency of active and passive avoidance behavior or mean duration of BAT exposure during pre-235 

treatment assessment. In those patients entering the test room, A-allele carriers reported more 236 

pronounced fear during BAT exposure relative to phases of anticipation and recovery as compared 237 

to GG-homozygotes (Figure 1a) and irrespective of avoidance behavior. Increased fear reports 238 

went along with a higher heart rate acceleration from last minute of anticipation to first minute of 239 

BAT exposure in A-allele carriers relative to GG-homozygotes (Figure 1b), again in both active- and 240 

non-avoiders. This genotype associated modulation was specific for fear activation during 241 

exposure as overall heart rate did not differ between genotype groups across all BAT phases. 242 

 243 

Please insert Figure 1 here 244 

 245 

Neural correlates of fear conditioning/fMRI 246 
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Detailed results are reported in Table 1. 247 

Main effects of GRLB. Across groups (PD/AG vs. controls) and stimulus types (CS+/CS-), an overall 248 

main effect of higher activation of the A-allele genotype was observed in the left hippocampus, 249 

bilateral motor cortex (MC) and bilateral insula (Figure 2a). 250 

Interaction effect genotype X diagnosis. Across both stimulus types, an overall interaction between 251 

genetic A-allele genotype and group (PD/AG vs. controls) was found in the bilateral anterior and 252 

middle cingulate cortex (ACC/MCC), left insula (located more anterior than the cluster identified in 253 

the main effect) and right MC. A-allele carrying controls showed higher activation, while A-allele 254 

carrying patients exhibited a reverse pattern (Figure 2b). 255 

Interaction effect genotype X CS. Regarding the A-allele effects on differential conditioning, an 256 

interaction between stimulus type and genotype across groups during early acquisition was found 257 

in the left amygdala. Over both groups (PD/AG and controls), the A-allele genotype showed higher 258 

activation during CS- versus CS+ presentation (Figure 2c). 259 

Interaction effect genotype X diagnosis X CS. An overall interaction effect between the A-allele, 260 

diagnosis and stimulus type was found in the left hippocampus. During early acquisition, diagnosis 261 

specific effects of the A-allele genotype depending on stimulus type were found in the right MC, 262 

midline ACC, MCC, and bilateral hippocampal regions. A-allele carrying versus GG-homozygote 263 

patients showed higher activation to CS+ than CS- in these regions, whereas controls showed the 264 

reverse pattern. During late acquisition, more activation for CS- > CS+ was found in the right 265 

amygdala of A-allele carrying patients, whereas controls showed the reverse pattern (Figure 2d). 266 

During full extinction an interaction was found in the bilateral MC where A-allele carrying versus 267 

GG-homozygote patients showed higher activation to CS+ than CS-; controls showed the reverse 268 

pattern. 269 

Please insert Table 1 here 270 
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 271 

Please insert Figure 2 here 272 

 273 

Modification of GLRB related processes after CBT 274 

Treatment response 275 

As reported in detail elsewhere (Gloster et al., 2011), primary outcomes improved considerably 276 

during treatment. Dimensional and responder analyses revealed that symptom reduction did not 277 

differ depending on rs7688285 genotype (see supplementary materials: Results 2.1 and Table S3). 278 

 279 

Psychophysiological assessment during BAT 280 

Detailed results are reported in Table S2b. We found an overall decrease of avoidance behavior 281 

during BAT after treatment, as indicated by an increase of tolerated exposure duration from t1 to 282 

t2 in pre-treatment avoiders. However, this decrease did not differ between genotype groups. In 283 

those patients entering the test chamber during both assessments, mean heart rate was found to 284 

decrease from t1 to t2 in the GG-variation but not in the A-allele group (Figure 1c) over all BAT 285 

phases and irrespective of avoidance behavior. Reported fear decreased from t1 to t2 which did 286 

not differ between genotype groups. 287 

 288 

Neural correlates of fear conditioning/fMRI 289 

Detailed results are reported in Table 2. Analyses are focused on the patient group only to reduce 290 

complexity. To further test the group specificity of the clusters found in patients, we calculated 291 

ANOVAs based on extracted individual parameter estimates (using the VOI function of SMP5). 292 

Interaction effect genotype x time. Analysis across pre- and post-treatment showed that activation 293 

related to the A-allele genotype was altered following CBT overall in the ACC, MCC and visual 294 
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processing areas. A-allele carriers vs. GG-homozygotes showed increased activation in the 295 

cingulate cortex after CBT (Figure 3). 296 

Interaction effect genotype x time X CS. The interaction between genotype, time and stimulus type 297 

revealed higher activation in the motor cortex during acquisition post-treatment for A-allele 298 

carriers towards CS+ than CS-. Tthis effect seemed to be treatment unspecific, because it was 299 

found in controls as well.  300 

 301 

Please insert Table 2 here 302 

 303 

Please insert Figure 3 here 304 
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4. Discussion 305 

This study investigated the role of rs7688285 allelic variation coding for GLRB expression and 306 

PD/AG pathophysiology in context of defensive responding. Across autonomic and neural levels, 307 

we explored how neural intermediate phenotypes of genetic variants are associated with the 308 

presence of current PD/AG diagnosis and the potential of exposure-based CBT to act upon these 309 

multilevel (patho-)physiological «risk» signatures.  310 

The following main results were obtained: First, we found general genotype dependent effects in 311 

key brain regions related to fear conditioning and extinction as well as on the autonomic level of 312 

defensive responding. Second, and unlike initial expectations, the neurofunctional signatures 313 

associated with GLRB A-allele genotype and GLRB X stimulus type found in healthy subjects – 314 

mainly the anterior insula (Deckert et al., 2017; Lueken et al., 2017) – were not further amplified in 315 

patients with current diagnosis, as A-allele carrying patients showed several reverse patterns of 316 

neurofunctional activation that was more comparable to GG-homozygote controls. Third, the 317 

neural and autonomic signatures in patients were partly modified after CBT treatment. 318 

Noteworthy, results regarding treatment response revealed no pronounced differences as a 319 

function of rs7688285 genotype. 320 

In line with previous findings from partly independent data-sets (Deckert et al., 2017; Lueken et al., 321 

2017) (see participants section), we found increased insular activity over A-allele carrying patients 322 

and controls within a cluster in the mid insula. Further, increased activity in the hippocampus and 323 

MC was found to be associated with allelic variation. However, we found the A-allele presence to 324 

interact with the current presence of PD/AG diagnosis. Insular activation in an anterior cluster, 325 

hippocampus, motor cortex and cingulate activation was differentially associated with allelic 326 

variation and diagnostic status. This interaction revealed reverse patterns in patients vs. controls: 327 
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the neural signature in the patient A-allele group was more comparable to GG-homozygote 328 

controls. This leads to the yet preliminary assumption that intermediate phenotypes as identified 329 

in healthy subjects (Lueken et al., 2017) cannot simply be extrapolated to clinical groups in terms 330 

of a linear relation. Instead, the relationship between genotype and the presence of current 331 

clinical diagnosis might be more complex, possibly following an inverted u-shaped function (Cools 332 

and D'Esposito 2011; Vijayraghavan et al., 2007; Waal and Preston 2017). 333 

Differential fear learning was also found to be associated with rs7688285 allelic variation and 334 

diagnosis. During early acquisition, A-allele carrying patients showed more activity toward the 335 

threat (CS+) than to the safety signal (CS-) in bilateral hippocampal regions, whereas controls 336 

showed the reverse pattern – as previously reported for the independent healthy sample 1 in 337 

Lueken et al. (2017). As early acquisition is crucial for establishing the association between CS+ and 338 

aversive stimuli (Kircher et al., 2013), and considering the hippocampus to be highly involved in 339 

memory formation (Rothschild et al., 2017), its higher activation toward CS+ could indicate higher 340 

priority of encoding threat. A similar activation pattern was also found in the motor cortex. As 341 

GLRB plays an important role in defensive motor reflex circuits (Lynch 2004), the motor cortex 342 

activation might indicate top-down involvement of voluntary motor control to react to potentially 343 

harmful stimuli reflecting intentional defensive behavior in response to an approaching threat. In 344 

contrast, on the level of amygdala reactivity, higher activation was associated with enhanced safety 345 

signal (CS-) processing during late acquisition in A-allele carrying patients but not in A-allele 346 

carrying controls. However, during early acquisition, A-allele carriers over both groups showed 347 

higher amygdala activation toward the CS-, in line with the independent healthy sample 1 in 348 

Lueken et al. (2017). Again, that supports the idea of potential non-linearity in phenotypes in the 349 

context of current diagnosis.  350 

During BAT, A-allele carrying patients demonstrated elevated fear reactivity as reflected by more 351 
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pronounced fear ratings and autonomic arousal compared to GG-homozygotes. This genotype 352 

effect was limited to the exposure phase suggesting fear specific effects evoked by proximal threat 353 

(Hamm et al., 2016). In line with the previous observation of increased fear potentiated startle 354 

during BAT (Deckert et al., 2017), we found the GLRB A-allele genotype to be associated with 355 

heightened defensive reactivity possibly preparing for a behavioral fight/flight response. However, 356 

we did not find increased tendency for active or passive avoidance suggesting that an open display 357 

of this kind of behavioral fear response depends on additional factors (Helbig-Lang et al., 2014). 358 

Concerning the expected influence of GLRB genotype on the response to CBT, treatment effects 359 

were not found to be affected by allelic variation on the level of reported symptom severity. On 360 

the neural level, however, reactivity in the cingulate cortex was partly modified after CBT: the 361 

general genotype associated effect in A-allele carriers was reversed, whereas the differential fear 362 

learning effect during early acquisition in the ACC and hippocampus was found to be unaltered 363 

after CBT. Furthermore, the previously reported activation reduction in the inferior frontal gyrus 364 

(Kircher et al., 2013) was not associated with genotype (Supplemental Results 2.1). Our findings of 365 

increased overall activation of the cingulate cortex, confirm this region to be a sensitive area in 366 

terms of activation changes from prior to post treatment in anxiety and depressive disorders 367 

(Dunlop et al., 2017; Lueken et al., 2016; Siegle et al., 2012). The cingulate cortex is crucial for fear 368 

expression, attention and motor control, functionally connected with the amygdala, anterior insula 369 

and hippocampus (Bush et al., 2000) and plays an important role in fear regulation (Etkin et al., 370 

2011). Our pre-treatment data suggest that patients carrying the A-allele activate more of these 371 

neurofunctional resources when processing threat (CS+), while controls carrying the A-allele are 372 

more focused on safety signals (CS-). This also underlays the assumption of non-linearity in the 373 

interaction of phenotype and current psychopathology.  374 

During post-treatment BAT, we observed unaltered heart rate responses in A-allele carrying 375 
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patients, while a decrease from the pre-treatment assessment was observed in the GG-376 

homozygote group. Persistent autonomic arousal during the fear challenge suggests still strongly 377 

pronounced physiological fear reactivity (Hamm et al., 2016; Richter et al., 2012) after treatment. 378 

Hence, in A-allele carrying patients, CBT might be effective in reducing avoidance behavior, but fail 379 

to normalize exaggerated physiological responding during threat. Future research needs to test 380 

whether residual defensive reactivity might favor symptom relapse on the long run.  381 

Several limitations must be considered. Since genetic variance cannot be manipulated in human 382 

samples, the relationship between investigated data and allelic variation in rs7688285 must be 383 

correlative. Additionally, diagnosis also represents an unrandomized factor. Therefore, it is possible 384 

that PD/AG diagnosis and altered fear reactivity are confounded by sharing causes. In this case, the 385 

descriptive potential of our results is nevertheless informative. Furthermore, our results have to be 386 

interpreted with caution and fMRI results must be classified as exploratory because of the small 387 

sample sizes in the genotype subgroups especially when conducting interaction analyses. We 388 

cannot exclude that our results could either represent false positive effects or that important 389 

differences might have been missed due to false negative findings. However, although this sample 390 

is likely underpowered, the clinical relevance of these exploratory significant results on the 391 

rs7688285 associated neural activation in PD/AG is high. Complex analyses are needed to provide 392 

at least preliminary information about group specific activation to better understand the role of 393 

genes in the complex environment of factors possibly influencing psychopathologies. Another 394 

limitation is possible selectivity of the patient sample. Since participation was based on voluntary 395 

consent information and the fMRI-setting itself can be afflicted with anxiety, we cannot exclude 396 

that some patients – especially with additional claustrophobia – deliberately avoided participation. 397 

This could have lead to a potentially not representative sample regarding the severity of anxiety or 398 

functional level. The more valuable however, is the data at hand of at least a small part of a 399 
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patient-group that is difficult to investigate in the fMRI. Our data benefit from coming from a large 400 

and controlled clinical trial which makes them valuable. Further longitudinal investigations are 401 

needed on how risk factors contribute to the development of PD/AG and how the brain is shaped 402 

by both genetic risk and environmental factors (e.g., life events/learning) (Kuhn et al., 2016). This is 403 

of particular relevance in clarifying the complex transition from (neural) endophenotypes to the 404 

development of current psychopathology and is feasible in ongoing clinical multicenter trials 405 

(Heinig et al., 2017). 406 

To conclude, we consider our findings to support the hypothesis of the rs7688285 SNP coding for 407 

GLRB being associated with PD/AG. We provide preliminary evidence that it represents a risk 408 

factor for altered fear reactivity on a physiological and neurofunctional level and that it interacts 409 

with the presence of current PD/AG diagnosis in a rather complex way. A-allele carrying patients 410 

showed more pronounced autonomic fear reactivity during BAT and altered fear processing on a 411 

neural level. A modification of these (dysfunctional) signatures seems to be possible but not 412 

exhaustive. Noteworthy, we found no evidence that the genotype affects treatment success on 413 

clinical (symptom reduction) or behavioral (BAT avoidance) levels. This suggests that rs7688285 414 

allelic variation might be involved in the development of anxiety disorders but not necessarily in 415 

their modification via CBT. Our results may help to expand the knowledge of rs7688285 function 416 

on intermediate phenotypes. So far, the A-allele is supposed to be the risk factor. Our data 417 

however suggest first evidence, that this «risk»-allele as identified in subclinical populations may 418 

reverse its mechanism of action in PD/A patients. Interactions between genetic «risk»-variants, 419 

normal and pathological forms of fear processing and its modification by psychological 420 

interventions seem to be complex and not necessarily linear. Thus – although preliminary – our 421 

findings can provide an important contribution to the yet young field of gene x environment 422 

interactions and intermediate phenotypes, especially to the newly investigated GLRB in the context 423 



 

20 

of anxiety disorders. Future systematic research on larger samples of the patient-population is 424 

needed to clarify if the rs7688285 A-allele becomes a resilience factor in patients with current 425 

PD/AG at least on a neural systems level. 426 
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Figure legends 578 

Figure 1. Main effect of GLRB genotype on BAT outcome measures in PD/AG patients. A: 579 

Main effect of GLRB genotype on reported fear (F(2,468)=3.33, p=.04; A: n=91, G: n=176 ) at 580 

t1. B: Heart rate increase from last minute of anticipation phase to first minute of exposure 581 

phase (F(1,205)=5.69, p=.02; A: n=68, G: n=141) at t1 C: decrease of heart rate from t1 to t2 582 

during BAT exposure phase (F(1,125)=5.08, p<.05; A: 39, G: n=90). A: carriers of at least one 583 

A-allele, GG: GG-homozygotes; ∆bpm: deviation of beats per minute. See also Supplementary 584 

Table ST2. 585 

 586 

Figure 2. GLRB genotype associated BOLD activation in fear conditioning and extinction at 587 

baseline. A: carriers of at least one A-allele: PD/AG n=13, controls n=17, GG: GG-588 

homozygotes: PD/AG n=36, controls n=22; PD/AG: diagnosis of panic disorder and 589 

agoraphobia: HC: healthy control subjects; CS+: conditioned stimulus that is followed by the 590 

unconditioned stimulus (US) with a reinforcement rate of 50% (only unpaired CS+ were 591 

included in the analyses; CS-: conditioned stimulus that is never followed by an US). A: Main 592 

effect of GLRB genotype during full course of fear conditioning (MNI coordinates x, y, z: 16, -593 

18, 52, 155 voxels, t=3,35, p<.001; -44, 4, 2, 337 voxels, t=3.37, p<0.001; -20, -42, 8,275 594 

voxels, t=3,76, p>0.001). B: Interaction between GLRB genotype and presence of diagnosis 595 

during full course of fear conditioning (MNI coordinates x, y, z: 52, 4, 42, 535 voxels, t=3,79, 596 

p<.001; -34, 16, 14, t=3.68, p<.001; -10, 22, 24, t=3.65, p<0.001). C: Interaction between 597 

GRLB genotype and stimulus type (CS+ = threat; CS- = safety signal) during early acquisition 598 

(MNI coordinates x, y, z: -26, 4, -18, 53 voxels, t=3.33, p=.0.006, small volume correction 599 

using Automated Anatomical Labeling (aal) masks, family-wise error correction at p<0.05). D: 600 
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Interaction between GRLB genotype, presence of PD/AG diagnosis and stimulus type during 601 

early and late acquisition (MNI coordinates x, y, z: 54, -24, 56, 911 voxels, t=3.75, p<0.001; 6, 602 

10. 28, 3rd maximum of an 6006 voxels cluster, t=4.23, p=<0.001, -22. -14 -28, 199 voxels 603 

t=3.75, p<0.001; 34, 0 -28, 27 voxels, t=3.42, p=0.005, small volume correction using aal 604 

masks, family-wise error correction at p<0.05). Bar graphs illustrate the contrast estimates 605 

(arbitrary units (a.u.)) of activation. Error bars indicate the s.e.m. in all cases. Peak voxels of 606 

identified clusters based on the “Overlap between structure and function” of the Anatomy 607 

Toolbox v1.5 and the “Cluster Labeling” of the aal implemented in SPM5 are given. See also 608 

Table 1. 609 

 610 

Figure 3. GLRB genotype associated BOLD activation in fear conditioning and extinction 611 

after CBT. A: carriers of at least one A-allele: PD/AG n=9, GG: GG-homozygotes n=30; CS+: 612 

conditioned stimulus that is followed by the unconditioned stimulus (US) with a 613 

reinforcement rate of 50% (only unpaired CS+ were included; CS-: conditioned stimulus that 614 

is never followed by an US. A: Overall interaction effect between GLRB genotype and time in 615 

patients (MNI coordinates x, y, z: 10, 28, 34, 2082 voxels, t=3.95, p<0.001). Bar graphs 616 

illustrate the contrast estimates (arbitrary units (a.u.)) of activation. Error bars indicate the 617 

s.e.m. in all cases. Peak voxels of identified clusters based on the “Overlap between structure 618 

and function” of the Anatomy Toolbox v1.5 and the “Cluster Labeling” of the Automated 619 

Anatomical Labeling implemented in SPM5 are given. See also Table 2. 620 


