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Abstract 

Folding and insertion of -barrel membrane proteins into native membranes is efficiently 

catalyzed by -barrel assembly machineries. Understanding this catalysis requires a detailed 

description of the corresponding uncatalyzed folding mechanisms, which however have so 

far remained largely unclear. Here, we resolve folding and membrane insertion of the E. coli 

outer membrane protein X (OmpX) into 1,2-didecanoyl-sn-glycero-3-phosphocholine 

(PC10:0) membranes at the atomic level. By combining four different experimental 

techniques, we correlate global folding kinetics with global and local hydrogen bond 

formation kinetics. Under a well-defined reaction condition, these processes follow single-

exponential velocity laws, with rate constants identical within experimental error. The data 

thus establish at atomic resolution that OmpX folds and inserts into the lipid bilayer of 

PC10:0 liposomes by a two-state mechanism. 
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In Gram-negative bacteria, mitochondria and chloroplasts, -barrels are the predominant 

architectural class of proteins in the outer membranes, facilitating essential physiological 

functions.[1] Improper targeting and misfolding hampers cell physiology, leads to 

aggregation phenotypes and associated diseases.[2] Bacterial cells duplicate their entire 

outer membrane in as short as 20 minutes and outer membrane protein (OMP) folding in 

vivo must therefore occur on a substantially shorter time scale, i.e. on the order of seconds 

or faster. To achieve such fast kinetics, folding and insertion of OMPs in vivo is catalyzed by 

the -barrel assembly machinery (BAM).[3] Understanding this fundamental catalysis step of 

OMP biogenesis essentially requires to study the uncatalyzed reaction, i.e. the BAM-

independent folding mechanism as a reference point. 

 

BAM-independent folding and insertion of OMPs into lipid bilayers in vitro has been studied 

extensively, but no clear mechanistic concept has so far emerged.[4] For the smallest OMPs 

with 8 strands, two fundamentally different folding mechanisms have so far been described. 

On the one hand, the folding of OmpA into lipid bilayers has been shown to follow a slow 

and coherent process via multiple intermediate steps, the so-called “concerted insertion 

mechanism”.[4e] This mechanism has recently been refined to include up to nine 

intermediate states.[4b] Notably, this mechanism has so far not been resolved by high-

resolution methods and the nature of the intermediate states is therefore unclear. On the 

other hand, the 8-stranded protein PagP was shown to fold by a two-state mechanism 

under highly denaturing conditions of 8M urea solution.[4c] Point mutations and ϕF-value 

analysis suggested a tilted transition state in the lipid bilayer membrane. Notably, the two-

state behavior was observed under highly denaturing concentrations and the study 

therefore does not allow conclusions on the presence or absence of intermediate states 

under physiological conditions. 

 

We therefore deem it necessary to study an OMP insertion process with high-resolution 

methods under non-denaturing conditions. We have previously established a technical 

setup to monitor the formation of -barrel hydrogen bonds at the single residue level by 

hydrogen/deuterium (H/D) exchange in combination with mass spectrometry and solution 

NMR spectroscopy.[5] This technical setup has the potential to not only detect folding 

intermediates, but also to characterize them structurally. Here, we apply these techniques 
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to characterize folding of the 8-stranded -barrel OmpX from E. coli into a lipid bilayer 

membrane at the atomic level. 

 

As a starting point, the global kinetics of OmpX folding into homogeneous PC10:0 liposomes 

were determined by two bulk methods, SDS-PAGE gel shift assay and tryptophan 

fluorescence spectroscopy. Folding was studied at pH 10.0 and in the presence of 600 mM 

arginine. Arginine is known to solubilize unfolded proteins, preventing their aggregation, but 

is not a chaotropic denaturant.[6] The elevated pH, in turn, assures rapid solvent exchange 

for accessible amide protons.[7] On the SDS-PAGE gel the folded and unfolded species of 

OmpX can be readily distinguished by the characteristic band shift for folded OMPs (Figure 

1A). Starting from completely unfolded protein, after around 10 minutes the OmpX folding 

reaction has essentially completed. The fraction of folded OmpX as a function of folding 

time T follows a single exponential with folding rate constant of kF = 0.0098  0.00042 s-1 

(Figure 1B). As a second method, we monitored the same folding process under identical 

buffer conditions by real-time tryptophan fluorescence spectroscopy. OmpX contains two 

tryptophan residues at amino acid position 76 and 140 located in the periplasmic turn 2 and 

in strand 8 (Figure S1). Upon folding, the fluorescence spectrum experiences a characteristic 

blue shift with an increase in fluorescence intensity (Figure 1C). The fluorescence intensity 

at 340 nm as a function of the folding time T follows a single exponential with folding rate 

constant of kF = 0.010  0.00014 s-1 (Figure 1D). 

 

The three-dimensional structure of a -barrel membrane protein is defined by a network of 

backbone hydrogen bonds between adjacent strands around the entire barrel 

circumference.[8] Their formation provides a key factor stabilizing the protein in the low 

dielectric and apolar membrane environment.[9] We used H/D-exchange in a pulsed 

quenched flow setup to monitor hydrogen bond formation during folding of OmpX into lipid 

bilayers. In our custom-built apparatus, complete OMP folding into liposomes was achieved 

with simultaneous incorporation of deuterons at non-exchangeable amide positions at 

variable folding time T (Figure S2). To enable the observation of individual resonances of 

OmpX by solution NMR spectroscopy, the refolded protein was transferred from 

proteoliposomes into N,N-dimethyldodecylamine N-oxide (LDAO) micelles after completion 
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of the folding reaction (Figure S3A). OmpX stays folded during this transfer, as evidenced by 

the observation that protein refolded in D2O-buffer into liposomes preserves its deuterium 

content in the barrel core into micelles (Figure S3B). Furthermore, amide proton back-

exchange in the core of the folded protein occurs with kinetics on the timescale of tens of 

days[5] so that its contributions are negligible during the few hours that are needed for 

sample preparation. The resulting 2D [15N, 1H]-TROSY NMR spectrum of OmpX in LDAO 

micelles is well-dispersed, and facilitates sequence-specific quantification of deuterium 

incorporation as a function of folding time T (Figure 2A). During the preparation of the time 

zero (T = 0 s) sample, the deuterated protein is transferred into H2O-buffer before it can 

even fold and it then refolds in the H2O-buffer. Hence, all amide signals are observed with 

maximal intensity. On the other end of the timescale, at very large T, the protein is 

transferred to H2O-buffer only after folding has essentially completed in D2O-buffer. 

Therefore, all amide protons that are exchange-protected in the barrel structure show a 

decrease of the NMR signal as a function of the folding time T (Figure 2B–E). In contrast, 

amide protons that are rapidly exchanging in the folded state of OmpX feature constant 

NMR signal intensities irrespective of folding time T. This is exemplified for the residues G16 

and N19 located in the first extracellular loop of OmpX (Figure 2B–C). For each of the 

exchange-protected residues, the decrease in amide proton NMR signal intensities as a 

function of T was found to be well described by a single exponential function, yielding the 

residue-specific hydrogen bond formation rate constant kH(i). These were all found to be 

identical within the experimental error, averaging to 0.014  0.0048 s-1 (Figure 2C and 2D). 

 

As a fourth method to determine the hydrogen incorporation per molecule, we quantified 

H/D exchanged samples obtained with the pulsed quenched flow setup by Electrospray 

Ionization Time-of-Flight (ESI-TOF) mass spectrometry (Figure S4A).[5, 10] Also in this method, 

protons in flexible parts exchange rapidly with solvent protons during sample preparation 

and only amide protons in the barrel core retain their deuterium content. Undesirable back-

exchange during the injection and in the gas phase of the ESI-MS experiments was 

minimized by using water-free organic solvents and rapid sample handling. Consequently, 

deconvolution of signal resulted in clearly distinguishable signals for the barrel-protonated 

and barrel-deuterated OmpX molecules with respective masses of 16390 and 16430 Da 

(Figure 3). Superposition of the deconvoluted spectra for each sampled folding time point T 
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directly shows a bimodal population shift from the fully protonated to the fully deuterated 

OmpX species, without any intermediate species (Figure 3A), demonstrating the absence of 

any intermediate state during the transition from unfolded to folded OmpX and the 

formation of the entire hydrogen bonding network in a single, cooperative event. The 

fraction of deuterated OmpX as a function of folding time T follows a single exponential with 

hydrogen bond formation rate constant of kH = 0.012  0.0007 s-1 (Figure 3B). 

 

Taken together, the folding of OmpX into a PC10:0 lipid bilayer membrane was resolved by 

four different experimental methods, fluorescence spectroscopy, SDS-PAGE, and H/D-

exchange coupled to NMR spectroscopy and mass spectrometry. The four methods deliver 

the global folding rate constant kF, and the global and the residue-specific rate constants of 

hydrogen-bond formation, kH and kH(i), respectively. For all four methods the data followed 

a single exponential law with rate constants on the minutes time scale and these are 

identical within experimental error (Table 1). The folding process is thus fully described by a 

two-state folding mechanism and the absence of any significantly populated intermediates. 

Unfolded OmpX inserts and folds from a membrane-associated state into the membrane 

with a single and irreversible structural rearrangement, resulting the native -barrel 

structure. Hence, formation of the hydrogen bond network appears cooperative on the 

timescale of global folding. 

 

This mechanism of insertion and folding of OmpX into PC10:0 bilayer is distinct from the 

concerted insertion mechanism reported previously for the similarly-sized protein OmpA, 

which progresses slowly and concertedly along multiple intermediate states.[4b, 4e] The 

apparent slow folding of bulk OmpX is a statistically rare, but not a microscopically slow 

process. Importantly, the available data do not resolve whether the actual formation of the 

hydrogen bond network of a single molecule of OmpX is cooperative or sequential. Finally, 

the mechanism agrees with the 2-state folding as observed for the protein PagP,[4c] however 

it is now established for the first time under non-denaturing conditions. 

 

Notably, the mechanism established here is also in agreement with single-molecule studies 

of OMP folding by atomic force microscopy (AFM).[11] In these experiments, bilayer-

embedded OMPs on a mica surface are subjected to a tensile load, resulting in stepwise 
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unfolding -hairpin by -hairpin. Thereby, a partially unfolded OMP with some of its 

hairpins left in the membrane refolds back to its native barrel conformation on a time scale 

of a few seconds.[11a, 11b, 12] Connecting these observations, it is tempting to speculate that 

also in the unperturbed refolding experiments the transmembrane crossing of a single 

hairpin would provide a seed sufficient for the rapid folding of the rest of the barrel. 

Consequently, the facilitation of such a single transmembrane crossing would then also be a 

sufficient mechanism for catalytic insertion by the BAM machinery. 

 

In summary, we have established here at the atomic level that the membrane protein OmpX 

folds under certain non-denaturing condition into a lipid bilayer as a two-state process, 

where folding, insertion and hydrogen bond formation synchronously follow a single 

exponential velocity law. OmpX folding is microscopically a rare, not a slow process. This 

mechanistic description forms a well-defined starting point to address the folding 

mechanisms of OMPs under different conditions including (i) other OMPs with higher -

strand number, (ii) bilayers with longer lipid chain length, (iii) BAM-catalyzed folding under 

physiological conditions including the contributions of periplasmic chaperones. The fact that 

BAM-mediated folding is a prime target for novel antibiotics adds to the relevance of these 

findings. 
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Tables 

Table 1. Rate constants of OmpX folding into PC 10:0 liposomes.  

Experimental method Rate constants 

SDS-PAGEa 

Fluorescence spectroscopya 

ESI-TOF mass spectrometryb 

Solution NMR spectroscopyc 

kF = 0.0098  0.00042 s-1 

kF = 0.010  0.00014 s-1 

kH = 0.012  0.0007 s-1 

 kH (i)  = 0.014  0.0048 s-1 

[a] Protein folding rate constants, [b] global hydrogen bond formation rate constant, and [c] 

average residue-specific hydrogen bond formation rate constant with standard deviation. 
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Figures 

 

Figure 1. Kinetics of OmpX folding into PC10:0 lipid bilayers. (A) SDS-PAGE gel of the time 

course of 5.5 M OmpX folding into PC10:0 liposomes at 25 C. At the indicated time points, 

the refolding reaction was quenched and applied to SDS-PAGE. The position of the folded (F) 

and unfolded (U) species is indicated and a boiled reference sample is shown on the righthand 

lane. (B) Fraction of folded OmpX as determined from the gel band intensities as a function 

of the refolding time T. The data (black circles) were fitted with a single exponential (black 

line). (C) Tryptophan fluorescence spectra of OmpX folding into PC10:0 liposomes under 

identical buffer conditions as in A. Spectra were recorded at variable time points, as indicated. 

(D) Time course of the fluorescence intensity at 340 nm. Experimental data (black diamonds) 

were fitted with a single exponential (black dashed line).  
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Figure 2. Residue-specific amide hydrogen bond formation kinetics of OmpX refolding into 

PC10:0 liposomes as monitored by H/D-exchange NMR spectroscopy. (A) 2D [15N,1H]-

TROSY spectra of OmpX in LDAO micelles, extracted from a reaction of OmpX refolding into 

liposomes under H/D exchange conditions with folding times T of 0 s (black) and 300 s 

(purple). Resonance intensities vary due to differential incorporation of deuterium at the 

backbone amide position. (B) Exemplary spectral region (outlined in grey in A) at variable 

folding time T, as indicated. (C) Relative NMR signal intensities Irel as a function of the refolding 

time T for the residues shown in B. The experimental data (black circles) have been fitted to 

single exponentials (black lines). (D) Residue-specific hydrogen bond formation rate constants 
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kH(i) of OmpX folding into PC10:0 liposomes. The red dashed line indicates the average value 

kH(i) of 0.014  0.0048 s-1. (E) All backbone amide protons of protected residues, for which 

kinetic hydrogen bond formation data has been obtained, indicated as white spheres on the 

OmpX crystal structure (PDB 1QJ8). [8i] 
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Figure 3. Hydrogen bond formation kinetics of individual OmpX molecules refolded into 

PC10:0 liposomes as monitored by H/D-exchange mass spectrometry. (A) Mass spectra of 

OmpX folding into liposomes at different folding times T, as indicated. The protonated and 

deuterated species of OmpX (H-OmpX and D-OmpX, respectively) are labeled. (B) Fraction of 

the deuterated species, fD-OmpX as a function of the refolding time T. The experimental data 

(black circles) were fitted with a single exponential (black line). 


