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Abstract 

Background:  Water mites are among the most diverse organisms inhabiting freshwater habitats and are considered 
as substantial part of the species communities in springs. As parasites, Hydrachnidia influence other invertebrates and 
play an important role in aquatic ecosystems. In Europe, 137 species are known to appear solely in or near spring-
heads. New species are described frequently, especially with the help of molecular species identification and delimi-
tation methods. The aim of this study was to verify the mainly morphology-based taxonomic knowledge of spring-
inhabiting water mites of central Europe and to build a genetic species identification library.

Methods:  We sampled 65 crenobiontic species across the central Alps and tested the suitability of mitochondrial 
(cox1) and nuclear (28S) markers for species delimitation and identification purposes. To investigate both markers, 
distance- and phylogeny-based approaches were applied. The presence of a barcoding gap was tested by using the 
automated barcoding gap discovery tool and intra- and interspecific genetic distances were investigated. Further-
more, we analyzed phylogenetic relationships between different taxonomic levels.

Results:  A high degree of hidden diversity was observed. Seven taxa, morphologically identified as Bandakia con-
creta Thor, 1913, Hygrobates norvegicus (Thor, 1897), Ljania bipapillata Thor, 1898, Partnunia steinmanni Walter, 1906, 
Wandesia racovitzai Gledhill, 1970, Wandesia thori Schechtel, 1912 and Zschokkea oblonga Koenike, 1892, showed high 
intraspecific cox1 distances and each consisted of more than one phylogenetic clade. A clear intraspecific threshold 
between 5.6–6.0% K2P distance is suitable for species identification purposes. The monophyly of Hydrachnidia and 
the main superfamilies is evident with different species clearly separated into distinct clades. cox1 separates water 
mite species but is unsuitable for resolving higher taxonomic levels.

Conclusions:  Water mite species richness in springs is higher than has been suggested based on morphological 
species identification alone and further research is needed to evaluate the true diversity. The standard molecular 
species identification marker cox1 can be used to identify species but should be complemented by a nuclear marker, 
e.g. 28S, to resolve taxonomic relationships. Our results contribute to the taxonomical knowledge on spring inhabiting 
Hydrachnida, which is indispensable for the development and implementation of modern environment assessment 
methods, e.g. metabarcoding, in spring ecology.
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Background
Water mites (Hydrachnidia) are highly diverse in aquatic 
habitats [1]. They have a complex life-cycle that includes 
a prelarva, a parasitic larval stage, an initial resting stage 
(protonymph), a free living deutonymph, a second resting 
stage (tritonymph) and the final adult stage [2]. Hydrach-
nidia disperse predominantly through passive rather than 
active pathways because water mite larvae parasitize 
other invertebrate taxa, generally insect hosts that fly 
[2–5].

Nearly all freshwater environments are inhabited by 
water mite species with a high degree of habitat speciali-
zation [6]. Mites in springs and other groundwater-influ-
enced ecosystems occur in remarkably high diversity of 
habitats [7–9]. Of the 970 recorded European water mite 
species, 137 are found solely in or near springs and are 
adapted to several microhabitats, such as different sub-
strate types and environmental conditions [2, 9]. Due to 
the high degree of adaptation and their influence on eco-
system functioning for other invertebrate taxa [10–14], 
these so called crenobiontic (occur exclusively in spring 
habitats) and crenophilous (tendency to be found in the 
spring brook) species play a critical role in spring species 
communities. Considering that springs are island-like 
habitats within an uninhabitable terrestrial matrix [15, 
16], spring dwelling water mite populations are assumed 
to be rather isolated. This would promote reproductive 
isolation and therefore lead to an increased speciation 
rate [4, 17], which is among other things an explanation 
for the relatively high species diversity of water mites in 
springs. However, the degree of isolation of spring water 
mite populations is highly dependent on the dispersal 
abilities of their hosts and influenced by taxon specific 
host spectra and specificity [5, 18, 19]. Furthermore, 
the high microhabitat diversity in springs [15, 20], their 
relatively stable environmental conditions [21, 22] and 
absence of large predators, e.g. fish [9], make them excep-
tionally favorable habitats for insect larvae and benefit 
their development. Therefore, the diversity and abun-
dance of water mite hosts is relatively high in springs 
compared to other freshwater habitats, which is likewise 
considered as precondition for the high number of creno-
biont water mite species [9].

Despite their importance for freshwater species com-
munities, the taxonomic knowledge about Hydrachnidia 
species is still limited today and new species are discov-
ered frequently (e.g. [23–26]). The intensity of re-exam-
ination of European Hydrachnidia has increased over 
the past years with several taxonomic revisions pub-
lished [9]. Most water mite species known today have 
been described based on morphology only and stud-
ies applying genetic methods to verify and complement 
these descriptions are still relatively scarce (e.g. [27–30]). 

Nonetheless, many studies have shown that genetic spe-
cies delimitation, frequently using cox1 barcoding [31], 
has a large potential to reveal new species, resolve taxo-
nomic questions and contribute to biodiversity baselines 
and assessments (e.g. [29, 32–35]). Species identifications 
and their ecological interactions are crucial for contri-
butions to crenobiology, community ecology, develop-
ing reliable bioindicators and understanding population 
dynamics. Moreover, newly developed methods to moni-
tor invertebrate assemblages in freshwater environments, 
such as the simultaneous identification of bulk sampled 
individuals (metabarcoding) [36] or the indirect com-
munity reconstruction by analyzing environmental DNA 
(eDNA) [37], rely on previously established genetic spe-
cies reference databases. Thus, a proper taxonomical 
knowledge and species description is greatly needed.

Several factors are important to account for when using 
genetic species identification methods [38], such as the 
presence of endosymbionts like the alpha-proteobacteria 
Wolbachia sp. [39, 40] or the presence of pseudogenes 
and nuclear copies of mitochondrial DNA (numts) [41–
43], which compromise the suitability of mitochondrial 
molecular markers to identify species. Standard barcod-
ing methods are mainly based on sequence similarity and 
the relation between intra- and interspecific genetic dis-
tance, which is commonly calculated by using the Kimura 
2-parameter (K2P) [44] and uncorrected (p) distances 
[31, 45, 46]. Nonetheless, the usability of genetic markers 
to identify species can vary between different taxonomic 
groups, geographical origin and sampling strategy [31, 
38, 47], which implies a taxon-specific evaluation prior 
to a broad-scale application in environmental assessment 
and conservation.

In this study we use an integrative taxonomy approach 
to verify the species status and validity of the most com-
mon spring related Hydrachnidia species in Europe. We 
tested the reliability of techniques commonly used to 
identify and delimit species using fragments of the mito-
chondrial cytochrome c oxidase subunit 1 gene (cox1) 
[31, 48] and the D1-D2 region of the LSU rDNA gene 
(28S) [49], or using both (e.g. [28, 50–52]). This study 
aims at improving knowledge and analytical techniques 
for assessing Hydrachnidia diversity in springs and 
explores the strength and weaknesses of standardized 
barcoding loci to identify water mite species.

Methods
Water mite sampling
The studied crenobiontic and crenophilous Hydrachnidia 
species were sampled between 2008 and 2018 in 87 dif-
ferent sampling sites across Europe during multiple sam-
pling occasions (Additional file 1: Table S1). Most of the 
specimens were collected from springs located within the 
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protected areas Berchtesgaden National Park (Germany), 
Black Forest National Park (Germany), Gesäuse National 
Park (Austria) and in the Swiss National Park (Switzer-
land). Samples were manually collected with a 200-µm 
hand net. Water mites were either sampled alive in the 
field or sorted out in the laboratory under a stereomicro-
scope from mixed samples containing bulk substrate. All 
specimens were subsequently stored in ethanol (100%) 
and kept at 4 °C until further processing.

Non‑destructive DNA extraction
Total genomic DNA (gDNA) of each individual mite was 
extracted by using either GeneReleaser® (BioVentures, 
Murfreesboro, TN, USA) or the DNeasy Blood & Tis-
sue Kit (Qiagen, Hilden, Germany). Both methods allow 
a non-destructive DNA extraction, which is essential 
when voucher specimens need to be retained for mor-
phological identification in barcoding projects. Prior to 
both extraction methods, each individual was cleaned 
by using forceps and entomological needles in a small 
Petri dish filled with ethanol (100%) under a stereomi-
croscope. All instruments and vessels used were cleaned 
after processing each mite specimen by rinsing it with 
sodium hypochlorite (13%), molecular grade water and 
ethanol (80%). Afterwards, the specimens were air dried 
and soaked in molecular grade water for 3 min to ensure 
the absence of ethanol residues. The cleaned specimen 
was then transferred to either a 0.2-ml PCR tube contain-
ing 0.9 µl of molecular grade water and 0.1 µl of 1× PCR 
buffer (Qiagen) in the case of GeneReleaser® or to a 1.5-
ml tube containing 180 µl of buffer ATL (Qiagen) and 20 
µl (20 mg/ml) of Proteinase K (Qiagen) when using the 
DNeasy Blood & Tissue Kit. The GeneReleaser® method 
was conducted as originally described by Schizas et  al. 
[53] and modified by Böttger-Schnack & Machida [54], 
see also [55]. Instead of resuspending the supernatant in 
TE buffer, step 6 of the modified protocol [54], approxi-
mately 12 µl of supernatant was transferred into a new 
0.2-ml PCR tube and used directly as DNA template 
for the subsequent PCR reactions. The DNeasy Blood 
& Tissue extraction was performed according to the 
manufacturer’s protocol (Animal Tissues, Spin-Column 
Protocol, Qiagen) with minor changes. The specimens 
were incubated in buffer ATL and Proteinase K at 56 °C 
on a shaking thermomixer (400× rpm) overnight (step 
2 in the manufacturer’s protocol) and the elution buffer 
(AE) volume was decreased to 100 µl in the last step to 
increase the gDNA concentration. The concentration of 
every DNA template was measured after the extraction 
by using a Qbit 3.0 Fluorometer (Thermo Fisher Scien-
tific, Waltham, MA, USA) and the dsDNA HS Assay 
Kit (Thermo Fisher Scientific). After the first processed 
specimens it was evident that the mean amount of total 

gDNA obtained by the DNeasy procedure is higher 
(mean ± SD: 71.5 ± 2.3 ng in 100 µl of solution, n = 92) 
than when extracting gDNA by using the GeneReleaser® 
method (mean ± SD: 56.8 ± 4.8 ng in 12 µl of solution, 
n = 105). Therefore, the DNeasy method was chosen for 
all subsequent extractions.

Morphological examination
All water mite individuals were identified morphologi-
cally by the authors RG and LB using current Hydrach-
nidia identification keys [56–58]. After the DNA 
extraction, the mite specimens were dissected and 
mounted on slides in Hoyer’s medium or identified as 
whole individuals under a compound microscope when 
possible. The enzymatic DNA extraction method (Pro-
teinase K) leads to a partial digestion of the specimens 
causing discoloration and therefore improved visibility 
of morphological characters, especially of sclerotized 
parts. This often allows the morphological identification 
without dissection. However, digestion is a process that 
affects membranous parts and therefore deteriorates the 
observability of integument structures such as the papil-
lae, tubercles or lining. All voucher specimens are stored 
in the acarological collection of the Natural History 
Museum Basel (Switzerland) under the museum identifi-
cations presented in Additional file 1: Table S1.

PCR amplification and sequencing
The approximate 650 bp standard barcoding fragment of 
the cytochrome c oxidase subunit 1 (cox1) [31] mitochon-
drial gene was first amplified by using universal primers 
LCO1490 and HCO2198 [59] of a subset of Hydrachnidia 
species belonging to several genera (Atractides, Feltria, 
Hygrobates, Lebertia, Partnunia, Protzia and Sperchon). 
PCR reactions contained 0.25 µl of Phusion High Fidel-
ity DNA Polymerase (2 U/µl) (Thermo Fisher Scientific), 
5 µl of 5× Phusion HF Buffer (Thermo Fisher Scientific), 
0.5 µl of dNTP mix (10 mM) (Sigma-Aldrich, Buchs, SG, 
Switzerland), 1.25 µl of forward and reverse primers (10 
µM each), 5 µl of template DNA and ultrapure water 
to a total reaction volume of 25 µl. The PCR conditions 
were as follows: initial denaturation for 30 s at 98 °C; 35 
cycles of 10 s at 98 °C, 30 s at 50 °C and 30 s at 72 °C; 
final elongation for 2 min at 72 °C. PCR products were 
then stored at 4 °C. As this primer combination failed to 
amplify several samples we decided to design new genus-
specific cox1 barcoding primers on the basis of the previ-
ously amplified water mite specimens. This was possible 
due to a low sequence variability at the 5’ and 3’ ends of 
the barcoding fragment.

Additionally, a new set of universal barcoding primers 
was designed by degenerating and modifying several 
positions of the original LCO1490/HCO2198 primers 
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to enable a higher amplification performance when bar-
coding Hydrachnidia species. These new primer sets 
(Table  1) were used to amplify all remaining samples. 
The subsequent PCRs were performed by using 0.25 of 
µl Q5® High-Fidelity DNA Polymerase (2U/µl) (NEB, 
Ipswich, USA), 5 µl of 5× Q5® Reaction Buffer (NEB), 
0.5 µl of dNTP mix (10 mM) (Sigma-Aldrich), 1.25 µl 
of forward and reverse primers (10 µM each), 5 µl of 
template DNA and ultrapure water to a total reaction 
volume of 25 µl. The PCR conditions were the same for 
all newly designed cox1 primer sets and were as fol-
lows: initial denaturation for 30 s at 98 °C; 35 cycles 
of 10 s at 98 °C, 30 s at 51 °C and 20 s at 72 °C; and a 
final elongation step for 2 min at 72 °C. The PCR prod-
ucts were then kept at 4 °C until further processing. To 
amplify the D1-D2 domain of the LSU rRNA 28S gene 
we designed new water mite-specific primer sets on 
the basis of the D1D2fw2 forward primer [49] and by 
aligning different 28S Hydrachnidia sequences down-
loaded from GenBank. The new primers 28SHy_F and 
28SHy_R (Table 1) reliably amplified an approximately 
1.2 kbp long fragment of the 28S D1-D2 domain. The 
28S PCR reactions were done by using the same reac-
tion components and conditions as used when amplify-
ing with the new cox1 primer sets. The only difference 
was a higher annealing temperature at 68 °C instead of 
51 °C. All PCR primers (cox1 and 28S) were tailed with 
modified M13 sequences (M13: 5′-TGT AAA ACG 
ACG GCC AG-3′ and M13r: 5′-CAG GAA ACA GCT 
ATG AC-3′) [60], which has shown to improve the 
amplification and sequencing reactions in this and pre-
vious studies [61, 62]. Prior to sequencing, PCR prod-
ucts where examined on an agarose gel electrophoresis 
and purified using the QIAquick PCR Purification Kit 
(Qiagen) according to the manufacturer’s protocol on 
a QIAcube (Qiagen). The purified PCR products were 
Sanger sequenced with the above mentioned M13 
primers by Mycrosynth AG (Balgach, Switzerland).

Molecular analysis
Raw sequences were analyzed, edited and aligned in 
Geneious Prime v.2019.1.1 [63]. Low-quality base calls, 
ambiguous sites and primer binding sites at the 5′- and 
3′-ends were trimmed prior to further processing. Align-
ments were done by using MAFFT v.7.388 [64] imple-
mented in Geneious Prime. Potentially poorly aligned 
positions and divergent regions of the alignments were 
eliminated with Gblocks v.0.91b [65, 66]. All sequences 
were tested for the presence of contaminants by blast-
ing with the Nucleotide Blast Tool (BLASTn) imple-
mented on the NCBI website [67]. Because misleading 
numts can be amplified in PCRs targeting cox1 mtDNA, 
we translated the sequences into amino acids to check 

for the presence of stop codons, which is commonly 
seen as a suitable way to detect erroneous amplification 
[41]. The concatenated alignment containing cox1 and 
28S sequences was generated by Sequence Matrix v.1.8 
[68]. The suitable nucleotide substitution model for each 
marker (cox1: TPM2uf+I+G4 and 28S: TVM+I+G4) 
was selected according to the Bayesian information cri-
terion (BIC) as implemented in ModelTest-NG v.0.1.5 
[69], a novel software, which combines features of jMod-
elTest2 [70] and ProtTest3 [71] on the CIPRES Science 
Gateway v.3.3 [72]. All sequences generated in this study 
are deposited in NCBI GenBank under the accession 
numbers MK889511–MK889751 (cox1) and MK889752–
MK889992 (28S) and on BOLDsystems under the IDs 
LBCWS001-19 to LBCWS245-19 (cox1).

Distance‑based species delimitation
Intra- and interspecific Kimura 2-parameter (K2P) [44] 
and uncorrected (p) distances were calculated in MEGA 
X [73]. The species delimitation threshold was inves-
tigated by using the threshold optimization method of 
the SPIDER (Species Identity and Evolution in R) v.1.5.0 
package [74] implemented in R [75] as described in the 
tutorial (available at: http://spide​r.r-forge​.r-proje​ct.org). 
Additionally, we used the Automated Barcode Gap Dis-
covery (ABGD) procedure [76] to assign the sequences to 
hypothetical species based on the gap between intra- and 
interspecific sequence diversity, the so-called “barcod-
ing gap”. ABGD was performed on the ABGD web inter-
face [77] by using the MEGA distance files with default 
parameters, 20 steps and a modified relative gap width of 
1. Additionally, the sequences were analyzed by using the 
Bold Systems v.4 [78, 79] tools available on the Barcode 
of Life webpage [80].

Phylogenetic species delimitation
Phylogenetic relationships between the sampled 
Hydrachnidia species were examined with maximum 
likelihood (ML) and Bayesian inference (BI). RAxML-NG 
[81], which is a new improved version of RAxML [82], 
was used to infer the best fitting ML trees of the single 
markers (28S and cox1) and the concatenated alignment, 
respectively. Similar sequences were treated as duplicates 
and removed automatically by RAxML-NG at the begin-
ning of the tree calculation. ML branch support values 
were generated by the bootstrap method [83] with 1000 
replicates and bipartition support for the best ML tree. 
Bootstrapping trees were computed directly in RAxML-
NG. The BI trees were generated by using the parallel 
MPI version of MrBayes v.3.2.6 [84, 85]. Bayesian infer-
ences were run for 15 × 106 MCMC generations, sampled 
every 5000th generation after the exclusion of 25% ‘burn-
in’ by using 4 independent chains. Branches showing 

http://spider.r-forge.r-project.org
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bootstrap values below 70% and Bayesian posterior prob-
abilities below 0.95 were interpreted as resolved but not 
statistically supported [86]. The concatenated alignment 
was treated as partitioned dataset with unlinked base fre-
quencies, nucleotide substitution rates, gamma shapes 
and proportions of invariant sites. The rates and frequen-
cies were set according to the ModelTest-NG results. For 
each marker (cox1 and 28S), the appropriate nucleotide 
substitution model was used when running RAxML-
NG and MrBayes for the single and partitioned analy-
sis, respectively. To resolve the basal nodes and ensure 
a reliable rooting, several outgroup taxa were added to 
the tree inferences. The most distant taxon included 
was the terrestrial mite Labidostomma luteum Kramer, 
1879 (Labidostommatoidea) (GenBank 28S/cox1: 

KM100974/GQ864390). Additionally, Dactylothrombium 
pulcherrimum (Haller, 1882) (Trombidioidea) (Gen-
Bank: KM100939/KM100985), Valgoperuvia paradoxa 
(Robaux, 1970) (Trombidioidea) (GenBank: KM100943/
KM100988) and Stygothrombium sp. (Stygotrombid-
ioidea) (GenBank: KM100938/ KM100995) sequences 
were used as closely related terrestrial Acariformes. 
The Halacaridae species Halacarus omului (Pepato & 
Da Silveira, 2013) (GenBank: MG751425/MG696236) 
and Rhombognathus areolatus (Abé & Fernandes, 2011) 
(GenBank: MG751437/MG696244) were chosen as 
aquatic relatives to the monophyletic Hydrachnidia [87]. 
The final trees were analyzed and edited in FigTree v.1.4.4 
[88], Geneious Prime v.2019.1.1, Dendroscope v3.5.10 
[89] and Affinity Designer v.1.6.1 (Serif Europe Ltd., Not-
tingham, UK).

Results
We successfully amplified and sequenced both target 
loci (cox1 and 28S, respectively) of 241 individual water 
mite specimens representing 22 genera and 65 mor-
phologically identified crenobiontic and crenophilous 
species with 1 to 19 individuals per species (Additional 
file 1: Table S1). Three individuals belonging to the genus 
Atractides sp. (H450, H528 and H531), all representa-
tives of the loricatus species group, were not identifiable 
to species level. As also observed in other populations of 
this group collected in various parts of Europe, impor-
tant diagnostic features, i.e. large vs small dorsal muscle 
attachment sclerites, size of acetabula in the genital field 
and sclerotized or smooth excretory pore, as well as char-
acter state combinations are in disagreement with the 
identification key in Gerecke et al. [58].

cox1 final alignment length was 650 bp, 398 sites were 
polymorphic (389 parsimony informative) and no align-
ment gaps were present. The 999 bp 28S alignment 
showed 466 polymorphic sites (358 parsimony informa-
tive) and 137 gap positions. The translation of the cox1 
sequences into amino acids did not contain any stop 
codon positions and blasting the sequences confirmed 
the absence of contaminations. In a few cases, when 
using the universal primer pair (LCO1490/HCO2198), 
we amplified Chironomidae DNA instead of water mite 
DNA and discovered Wolbachia sp. infestation. These 
specimens were excluded from further analysis.

Distance‑based species delimitation and discovery
The mean overall pairwise distances were larger between 
the cox1 sequences (K2P ± SD: 0.29 ± 0.10; p-dis-
tance ± SD: 0.24 ± 0.07) compared to 28S (K2P ± SD: 
0.15 ± 0.10; p-distance ± SD: 0.14 ± 0.05). Out of the 65 
morphologically identified taxa, 11 were singletons, 7 

Table 1  Primers designed and used in this study

Abbreviations: F, forward; R, reverse

Marker Taxon Name Direction Sequence (5′–3′)

cox1 Hydrachnidia LCO_Hydr F CAA​CAA​ACC​AYA​AAG​AYA​
TTGG​

HCO_Hydr R TGG​GTG​TCC​RAA​RAA​TCA​

Atractides Atr_F F ACC​AYA​AAG​AYA​TTG​
GAA​C

Atr_R R AAA​ATC​AGA​ARA​TAT​
GTT​GA

Lebertia Leb_F F CAA​ACC​AYA​AAG​AYA​TTG​
GAAC​

Leb_R R CGA​AGA​ATC​AAA​ATA​RRT​
GTTG​

Partnunia Part_F F ACA​CTY​TAC​TTY​GCT​
TTT​GG

Part_R R CAA​AGA​ATC​AAA​ATA​ART​
GTTG​

Feltria Fe_F F ATA​TTG​GYA​CTT​TAT​ATT​
TCGG​

Fe_R R CGA​AGA​ATC​AAA​ATA​RAT​
GTTG​

Protzia Leb_F F CAA​ACC​AYA​AAG​AYA​TTG​
GAAC​

Protz_R R GAT​GTR​TTA​AAR​TTT​CGA​
TCTG​

Hydrovolzia Hydrov_F F TGG​GCW​GGA​ATT​TTA​
GGA​TC

Hydrov_R R TGT​TGA​AAG​AGG​ATT​
GGG​TC

Hygrobates Riv_F F CAA​ACC​AYA​AAG​AYA​TTG​
GTAC​

HCO_Hydr R TGG​GTG​TCC​RAA​RAA​TCA​

Wandesia Wand_F F ACC​AYA​AAG​AYA​TTG​
GGA​CC

HCO_Hydr R TGG​GTG​TCC​RAA​RAA​TCA​

28S Hydrachnidia 28SHy_F F AGT​ACC​GTG​AGG​GAA​
AGT​TG

28SHy_R R GGC​AGG​TGA​GTT​GTT​
ACA​CA
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taxa (Bandakia concreta Thor, 1913, Hygrobates nor-
vegicus (Thor, 1897), Ljania bipapillata Thor, 1898, 
Partnunia steinmanni Walter, 1906, Wandesia racovit-
zai Gledhill, 1970, Wandesia thori Schechtel, 1912 and 
Zschokkea oblonga Koenike, 1892) showed exceptionally 
high intraspecific cox1 K2P distances (> 0.05) and the 
majority (47 species) had within species K2P distances 
between 0 and 0.03 (Fig. 1). Hygrobates norvegicus exhib-
ited the largest mean genetic cox1 distances within mor-
phologically identified species (K2P ± SD: 0.12 ± 0.08; 
p-distance ± SD: 0.10 ± 0.07), whereas several species 
showed mean intraspecific K2P distanced below 0.01 
(< 1%) (Fig. 1).

The SPIDER threshold optimization procedure analy-
sis, which was conducted after the removal of singleton 
species and sequences of the seven taxa showing excep-
tionally high intraspecific variation, revealed an optimal 
K2P distance threshold at 0.056 (5.6%) and a p-distance 
threshold at 0.053 (5.3%) for species identification pur-
poses with no false positive and low false negative iden-
tifications (9 out of 225 sequences). Assuming that cox1 
species identification threshold, the individuals belong-
ing to the above-mentioned taxa, which show high 
intraspecific variation, are likely to represent more than 
one species. This threshold was confirmed by the ABGD 
method that indicated a barcoding gap between K2P and 
p-distances of 0.06 and 0.09 (Additional file 2: Figure S1). 
ABGD initial partition revealed 69 and the recursive par-
tition 70 groups, which can be seen as equivalent to spe-
cies. Each of the seven taxa showing high intraspecific 
distances were split into two separate groups. Addition-
ally, Lebertia schechteli Thor, 1913 showed clade separa-
tion in the recursive but not the initial partition causing 
the disparate number of groups between the partitions 

(Additional files 3 and 4: Figures  S2 and S3). This gen-
erally confirms the SPIDER results and indicates the 
presence of more species than the a priori identified mor-
phospecies. Contrary to that, Lebertia crenophila Viets, 
1920, Lebertia holsatica Viets, 1920 and Lebertia lativen-
tris Viets, 1922 as well as Atractides macrolaminatus/A. 
loricatus and Atractides brendle Gerecke, 2003 were 
grouped together as the same species in both ABGD par-
titions. The same analyses were conducted for the 28S 
dataset. However, neither the ABGD nor the SPIDER 
method revealed a threshold suitable for species identi-
fication purposes. ABGD indicated the absence of a clear 
barcoding gap for the 28S locus (Additional file 5: Figure 
S4) and the threshold optimization implemented in the 
SPIDER R package indicated high levels of false negative 
and false positive identifications at different thresholds.

Phylogenetic species delimitation and discovery
The results obtained by the distance-based species delim-
itations were generally confirmed by the phylogenetic 
approach. However, in contrast to the combined 28S and 
cox1 analysis, the single marker datasets alone did not 
allow to correctly reveal phylogenetic relationships at 
different taxonomic ranks and the BI trees (Additional 
files 6 and 7: Trees S1 and S2) showed several unresolved 
nodes and polytomies compared to the better resolved 
ML trees (Additional files 8 and 9: Figures  S5 and S6). 
cox1 analyses incorrectly clustered higher taxonomic 
levels (e.g. genus, family and superfamily). For example, 
the genus Protzia Piersing, 1896 was clustered together 
with Sperchon Kramer, 1877 instead of the more closely 
related Partnunia Piersing, 1896 (Additional file  8: Fig-
ure S5). 28S correctly reconstructed higher taxonomic 
levels but did not allow resolving species relationships in 

0.000

0.025

0.050

0.075

0.100

0.125

A.
fis
su
s

A.
mu
ell
eri

A.
pro

ten
de
ns

A.
ref
rac
tar
iol
us

A.
se
pa
rat
us

C.
an
ne
mi
ae

L.c
ren

op
hil
a

L.h
ols
ati
ca

L.l
ati
ve
ntr
is

L.s
efv
ei

N.
bo
rne

ri

P.a
ng
us
ta

P.c
urv
ifro
ns

P.e
xim

ia

P.m
ich
ae
li

P.s
qu
am
os
a

P.t
hie
ne
ma
nn
i

S.
lon
gir
os
tris

S.
vio
lac
eu
s

A.
ad
na
tus

A.
bre

nd
le

A.
fon
tic
olu
s

F.s
eti
ge
ra

P.d
ist
ict
a

A.
pa
nn
icu
lat
us

H.
pla
co
ph
ora

L.s
tig
ma
tife
ra

P.i
nv
alv
ari
s

P.p
alu
str
is

S.
mu
tilu
s

L.m
inu
tip
alp
is

A.
wa
lte
ri

L.e
lst
eri

L.m
ac
ulo
sa

A.
no
dip
alp
is

S.
thi
en
em
an
ni

L.c
un
eif
era

L.r
eti
cu
lat
a

P.p
ac
hy
sto
ma

F.lo
ng
isp
ina

L.s
ale
bro

sa

S.
ve
rru
co
sa

A.
va
gin
ali
s

F.m
inu
ta

L.s
ch
ec
hte
li

A.
fon
tin
ali
s

F.m
en
ze
li

W.
tho
ri

Z.o
blo
ng
a

W.
rac
ov
itz
ai

L.b
ipa
pil
lat
a

P.s
tei
nm
an
ni

B.
co
nc
ret
a

H.
no
rve
gic
us

In
tra

sp
ec

ifi
c

di
st
an

ce
s

K2P

p-dist

Fig. 1  Intraspecific cox1 distances. K2P and p-distances within morphologically identified species represented by more than one individual
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several cases, e.g. Feltria cornuta Walter, 1927 and Feltria 
longispina Motas & C. Angelier, 1927 or Lebertia holsat-
ica Viets, 1920 and Lebertia lativentris Viets, 1922 (Addi-
tional file  9: Figure S6). Compared to the single marker 
analysis, the overall taxonomic relatedness was depicted 
correctly by the combined dataset (Fig. 2). Furthermore, 
both phylogenetic methods (ML and BI) showed largely 
congruent and stable tree topologies when applied to the 
combined cox1 and 28S alignment (Additional file  10: 
Alignment S1). Due to these findings, we will focus on 
the ML tree with combined branch support data (Fig. 2).

Results showed that the superfamilies (Hydrovolzi-
oidea, Hydryphantoidea, Lebertioidea, Arrenuroidea and 
Hygrobatoidea) are monophyletic and clearly separated 
from each other. A relatively distinct clade affiliation of 
individuals belonging to the morphologically identified 
species is evident (Fig.  2). The previously mentioned 
specimens showing high intraspecific distances are also 
clearly separated into different clades. All correspond-
ing branches showed high support values, indicating 
high probabilities of these splits. In the case of Partnu-
nia steinmanni, individuals are grouped in two distinct 
clades, Partnunia cf. steinmanni A that shares a common 
ancestor with brook inhabiting (rhithrobiont) Partnunia 
angusta (Koenike, 1893) and Partnunia cf. steinmanni B. 
Both morphologically unidentifiable Atractides sp. (A & 
B) individuals represent two genetic species and also the 
individual belonging to the Atractides gr. macrolamina-
tus/loricatus is clearly separated from all other Atractides 
sp. specimens (Fig. 2).

Discussion
Morphological species identification has a long tradition 
and is commonly used to identify species for scientific 
and applied (e.g. ecosystem assessment) purposes [90]. 
Recently, it has been shown that molecular data reliably 
complement morphological species identification and 
has many advantages, especially when used to identify 
multiple species at once [36, 91]. Furthermore, molecu-
lar species delimitation resolves taxonomic uncertainties. 
When combined with other species-defining character-
istics such as morphology it produces a more complete 
conclusion (e.g. [34, 35, 92, 93]).

Our results generally confirm the morphological spe-
cies delimitation but show that Hydrachnidia species 

richness is underestimated and molecular methods are 
essential to discover currently overlooked biodiver-
sity. The distance-based species delimitation methods 
revealed an intraspecific cox1 threshold between 5.6% 
(SPIDER) and 6% (ABGD) K2P distance, which is rela-
tively high compared to other taxa [31, 48] but seems 
to be typical in water mites [28, 29, 94]. However, spe-
cies delimitation solely based on fixed genetic distance 
thresholds can be misleading and thresholds should 
be estimated individually for each dataset [38, 95, 96], 
especially in taxa with clade-specific intraspecific cox1 
distances as demonstrated for water mites in this and 
previous studies (e.g. [94, 97]). As the 28S marker region 
did not show a distinct barcoding gap and a clear species 
identification threshold was not evident, we do not rec-
ommend using it as single marker for threshold-based 
species identification of water mites.

The distance- and morphology-based results were 
confirmed by applying a phylogenetic approach. A clear 
monophyletic clade affiliation of individuals belonging to 
the same species was evident. Both, the distance-based 
and the phylogeny-based species delimitation revealed 
that seven morphologically identified species (Bandakia 
concreta, Hygrobates norvegicus, Ljania bipapillata, Part-
nunia steinmanni, Wandesia racovitzai, Wandesia thori 
and Zschokkea oblonga) show high genetic differences 
and therefore are likely to represent more than one spe-
cies. The cox1 ABGD results differed in two cases from 
the other methods. Lebertia crenophila, L. holsatica and 
L. lativentris were grouped together as one species as it 
was also the case in Atractides macrolaminatus/lorica-
tus and A. brendle. However, these species phylogeneti-
cally belong to different clades with high support values 
and we therefore assume that ABGD erroneously groups 
the respective sequences and underestimates the num-
ber of species, a tendency that has already been shown 
by other studies (e.g. [98]). Furthermore, ABGD initial 
and the recursive partition differently grouped L. schech-
teli individuals either as one single or two separate spe-
cies. The initial partition is considered as more stable and 
usually better represents the groups that are defined by 
taxonomists [76, 99]. In addition, the phylogenetic infer-
ences revealed a distinct L. schechteli clade. Therefore, we 
assume that our L. schechteli specimens belong to a sin-
gle species. However, the recursive partition results show 

(See figure on next page.)
Fig. 2  Maximum likelihood tree of the combined cox1 and 28S datasets. Support values are shown as bootstrap (BS) and posterior probability (PP) 
values (PP/BS). Nodes fully supported by PP = 1 and BS = 100 are shown as +. In the case of clear monophyletic clades, tip nodes with more than 
one individual were collapsed with the number of individuals indicated as (n = X). In the case of clade separation within morphologically identified 
species we named the corresponding specimens by using the species name, cf. and A & B. Clades containing more molecular species than the a 
priori morphospecies are marked in red. Specimen IDs and sampling data of the individuals belonging to species are provided in Additional file 1: 
Table S1
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the possibility of differentiation and indicate that further 
research is advisable. In the analysis of H. norvegicus and 
P. steinmanni we were able to include several individuals 
per genotype, whereas in the other taxa differentiation is 
based on single individuals. Therefore, further individu-
als of different populations will be processed prior to the 
final description of the potentially new species.

Results suggest the monophyly of Hydrachnidia and 
the previously defined superfamilies, supporting the 
findings of Dabert et  al. [87]. In contrast to the lat-
ter authors, and possibly due to the inclusion of more 
taxa in this study, our data support a Hydryphantoidea 
monophylum. However, the corresponding node sepa-
rating Hydryphantoidea and Lebertioidea is poorly sup-
ported in our results and therefore should be further 
questioned. Similar to the study of Dabert et  al. [87], 
we equally observed that cox1 or 28S alone are incapa-
ble of fully resolving phylogenetic relationships. This 
phenomenon can probably be caused by mito-nuclear 
discordance, which has already been recorded for mites 
and other taxa [100, 101] and was reviewed intensively 
[102]. Besides this assumption postulating diverging 
nuclear and mitochondrial phylogenies, the differ-
ent taxonomic resolution of the two marker regions is 
likely caused by the loss of phylogenetic information. 
This can be explained by the fast-evolving character of 
mitochondrial compared to nuclear DNA and there-
fore faster loss of ancestral polymorphisms in cox1 
[102–105]. Arabi et al. [105] showed exceptionally high 
mitogenomic rearrangements especially in Chelicerata, 
which fosters this assumption. Therefore, we conclude 
the necessity of complementing the standard barcoding 
marker cox1 with at least one additional genetic marker, 
e.g. 28S or 18S rDNA, to investigate species relation-
ships and fully resolve water mite taxonomy.

These findings show that the choice of species identi-
fication markers must be done with caution and should 
be adjusted to the research question. For Hydrachnidia, 
cox1 serves as a useful marker if solely species identifi-
cation is of interest. If the goal is to assign sequences to 
higher taxonomic levels, another locus should be taken 
into account. This is also crucial if the aim is to assess the 
amount of undescribed species in an environment. Cur-
rently, most metabarcoding approaches are based on cox1 
alone [106–109] and few studies investigated the perfor-
mance of alternative loci (e.g. [110–112]). Apart from 
the taxon assignment limitations when using cox1 alone, 
our findings show that the primer bias problem [36, 111] 
needs to be considered when water mites are targeted in 
metabarcoding studies as universal cox1 primers show 
unsatisfactory amplification performance. This could 
potentially be circumvented by using a combination of 

more specific cox1 primer sets as has been done in this 
study, a better matching universal one or the establish-
ment of a new metabarcoding marker for this taxon. We 
were able to show that molecular methods have a great 
potential to reveal new water mite species and more 
studies are needed to complete barcoding databases and 
refine biodiversity estimates. Fundamental knowledge of 
species diversity is an essential precondition for imple-
menting water mites in recent monitoring approaches 
and use them as powerful bioindicators [113, 114] in 
freshwater assessments as for example required by the 
European Water Framework Directive (WFD) [115], and 
may also offer an opportunity for a more nuanced under-
standing of environmental change impacts on springs 
systems.

Looking at spring inhabiting Hydrachnidia species, 
our work contributes to the accumulation of species 
barcoding data. Our data covers 47.5% of the currently 
described 137 spring water mite species in Europe [9] 
and covers the most abundant taxa, especially in the 
central Alps. Compared to other studies, which inves-
tigate Hydrachnidia diversity by applying morphologi-
cal and molecular techniques in other aquatic habitats 
than springs (e.g. [28, 87, 94, 116, 117]), we were able to 
include a large subset of different species belonging to 
different taxonomic groups including the Proto-, Eu- and 
Neohydrachnidia [87]. A relatively high proportion of 
morphologically identified species (10.8%) showed to be 
more diversified than had been assumed, which indicates 
an overall underestimation of Hydrachnidia species rich-
ness in springs and other aquatic habitats. This indicates 
that species diversity related research questions such 
as host specificity of different water mite species need 
to be reconsidered. Hygrobates norvegicus, Partnunia 
steinmanni and Ljania bipapillata were shown to have a 
rather wide host species spectrum [18, 19]. Considering 
our results, which indicate that these three morphologi-
cally described taxa consist of several novel species, the 
number of hosts per water mite species could be lower 
and reveal a tendency towards high host specificity.

The dispersal abilities of Hydrachnidia highly depend 
on the parasitic larval stage that attaches to an insect host 
that can carry it to a different habitat and therefore gov-
erns water mite presence or absence in an environment 
[2, 13, 118]. Especially in rather isolated freshwater habi-
tats like springs, water mite species dispersal is directly 
linked with their specific hosts leading to the conclu-
sion that phylogeographic patterns are shared between 
hosts and parasites. Combined with our assumption of 
increased host specificity due to the unexpected high 
degree of Hydrachnidia species diversification, future 
studies on gene flow patterns between water mite 
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populations can verify the hypothesis that springs are 
isolated island-like habitats for the mites as well as their 
insect hosts.

In Europe, 970 water mite species have been recorded 
to date [9] and, applying our findings, at least 105 addi-
tional species potentially exist. Due to the fact that 
water mite species diversity increases towards southern 
parts of Europe [9] we expect an even higher degree of 
undiscovered species as our dataset mainly consists of 
specimens collected in central Europe. On this basis, 
future water mite barcoding projects will be able to 
gradually fill the gaps of taxonomic knowledge. This 
is an important prerequisite to incorporating modern 
species identification and monitoring techniques (e.g. 
metabarcoding) in future water mite-related freshwater 
and spring assessment studies.

Conclusions
Our aim was to verify and complement the mainly 
morphology-based species delimitation of an often 
neglected, highly diverse taxon in freshwater ecosys-
tems. Our results show that water mite diversity in 
springs seems to be higher than expected. Molecular 
methods are largely congruent with morphology and 
serve as a species delimitation and identification tool. 
They are particularly powerful if species discovery is 
the main goal. cox1 as a standard barcoding marker is 
useful for identifying Hydrachnidia species but is not 
suitable for assigning them to higher taxonomic levels 
(e.g. genera, families or superfamilies). This limitation 
can be overcome by using distance- and phylogeny-
based multi marker approaches. Our data contributes 
to genetic species identification databases by adding 
crenobiontic water mite sequences, which is a precon-
dition for implementing modern methods of fresh-
water ecosystem assessment such as metabarcoding 
and eDNA species community monitoring in spring 
ecology.
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