Integrality Properties in the Moduli
Space of Elliptic Curves

Inauguraldissertation
ZUr
Erlangung der Wiirde eines Doktors der
Philosophie
vorgelegt der
Philosophisch—Naturwissenschaftlichen
Fakultat der Universitat Basel
von
Stefan Schmid
aus
Deutschland

Basel, 2019

Originaldokument gespeichert auf dem Dokumentenserver der Universitdt Basel

edoc.unibas.ch



Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultat

auf Antrag von

Prof. Dr. Philipp Habegger
Prof. Dr. Yuri Bilu

Basel, den 19. Februar 2019.

Prof. Dr. Martin Spiess
Dekan



THIS PAGE
INTENTIONALLY
LEFT BLANK.






Acknowledgements

Hereby, I would like to thank all people that accompanied me during my undergraduate
and graduate studies, inside and outside the university.

A huge thank you goes out to my PhD advisor Professor Dr. Philipp Habegger. He
offered me the PhD position, introduced me to this very interesting topic and kept me
motivated throughout the years. I am very grateful for the time he dedicated for our
meetings and the fertile discussions. His thorough read—through of the drafts of the
work in hand has helped me tremendously. I am also thankful for the oppurtinity I got
to move to Basel.

I would also like to thank Professor Dr. Yuri Bilu from the Université de Bordeaux for
his helpful comments on this manuscript and for taking the time to referee my thesis.

Special thanks also to Gabriel Dill and Teresa Schmid for proof-reading one of the first
drafts, and for their many helpful comments. Also thanks to Gabriel for the discussions
and comments throughout the last years. This thank you also goes to Fabrizio Barroero
and Francesco Veneziano.

Also thank you to the participiants of the Thematic Program on “Unlikely Intersec-
tions, Heights, and Efficient Congruencing” at the Fields Institute in Toronto, Canada.

Thank you to all people at the mathematics and computer science department of the
University of Basel and Technical University of Darmstadt. I would also like to take
the opportunity to thank my family for all the support over the years. This includes
Fabienne Teysseire for her strong support during the last months before finishing.






Summary

In the thesis at hand we discuss two problems of integral points in the moduli space
of elliptic curves. The first problem can be described as follows. We fix an algebraic
number « that is the j—invariant of an elliptic curve without complex multiplication.
We prove that the number of j—invariants with complex multiplication such that j — «
is an algebraic unit can be bounded by a computable number.

The second problem is of similar nature. For this we fix j, the j—invariant of an elliptic
curve without complex multiplication defined over some number field. We show that
there are only finitely many algebraic units j such that elliptic curves with j—invariants
j and jo are isogenous. A slight modification shows that only finitely j—invariants exists
such that j and jy are isogenous and such that j — « is a unit, where « is an arbitrary
but fixed j—invariant of an elliptic curve with complex multiplication.
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Introduction

One aim of number theory is to describe the integral solutions of algebraic equations.
One very important class of examples are diophantine equations, named after Diophantus
of Alexandria, that are polynomial equations with integer coefficients. They have been
studied since the ancient Greeks. General questions are if there are any solutions, and
if, are there infinitely many? A first example are the linear diophantine equations. A
general equation is given by aX + bY = ¢, where a,b # 0 and ¢ are integers. It is
well-known that such an equation has a solution if and only if the greatest common
divisor of a and b divides ¢. Moreover, if there is a single solution, then there must be
infinitely many.

Now that we have fully classified the linear case, we can consider polynomials in two
variables of degree 2. Those are given by aX? +bXY +cY?+dX +eY + f = 0. Again
the coefficients a,b,c,d,e, and f are integers. An example of such an equation would
be Pell’s equation X? — nY? = 1, where n is a positive integer. Obviously, z = #1
and y = 0 is a trivial solution. Amongst others, this has been studied by Fermat and
Lagrange, who proved that there are x and y > 0 satisfying the equation if n is not a
perfect square. In addition, there are infinitely many solutions. If n is a square, then
there is only the trivial solution.

Next up would be integral equations in degree 3, e.g. Fermat equations X34 Y? 73 =
0 or more general X"+Y"—2Z" = 0 for n > 3. Fermat’s last theorem says, that there are
no integer solutions other then X =Y = Z = 0. This was proven by Andrew Wiles and
others in the 1990’s and was an open problem for over 300 years. One very important
ingredient to the proof is a conjecture by Gerhard Frey. It involves the so called Frey
curves given by y? = z(z — a™)(z +b"). He conjectured that given a non—trivial solution
to a Fermat equation would mean that the associated Frey curve is not modular. This
was proved by Ribet. Later results show that Fermat’s last theorem follows from the
Shimura—Taniyama conjecture, today known as the Modularity Theorem. The Frey
curves are a special type of elliptic curves, which more generally are given by equations
of the form y? = 23 + Az + B with —4A3% — 27B? +# 0.

X1
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Elliptic Curves

Elliptic curves play a very important role in modern mathematics. They have been stud-
ied for over a century. In the modern world of technology, these curves are omnipresent
and are for example used in cryptography. But they also played a very important role
in the proof of Fermat’s last theorem, monstrous moonshine and also are involved in the
Birch and Swinnerton-Dyer conjecture. The interesting thing about these geometric ob-
jects is, that is possible to define a group structure by identifying the distinguished point
at “infinty” with the neutral element of a group. This gives them a rich structure. The
integers act on the points of an elliptic curve since they have a group structure. Most of
the time the endomorphism ring of an elliptic curve is just Z. Sometimes we have more
complex endomorphisms and in that case an elliptic curve is said to have complexr mul-
tiplication. Given an elliptic curve E: y* = 2° + Az + B we have —16(4 A% 4 27B?) # 0.
To such an equation we can associate j = 1728@%. This is an invariant of the
elliptic curve and is thus called the j—invariant. The j—invariants of elliptic curves with
complex multiplication are called singular moduli.

A classical result by Kronecker states that singular moduli are algebraic integers. So
the next natural question to ask is when are singular moduli algebraic units, i.e. units
in the ring of algebraic integers. Indeed, David Masser asked at the AIM workshop
on unlikely intersections in algebraic groups and Shimura varieties in Pisa in 2011, if
there are only finitely many singular moduli that are algebraic units. His question was
motivated by [BMZ13]. In 2014, Philipp Habegger gave an answer in [Hab15] to this
question by proving

Theorem. At most finitely many singular moduli are algebraic units.

Thus, the next question to ask would be if there are any singular moduli that are
algebraic units. His proof relies on Duke’s equidistribution theorem which is not known
to be effective. Hence, no bounds for the number of singular units were known. In his
paper he also proved that there are only finitely many singular moduli j such that j + 1
is a unit. An example of such a j would be the j-invariant of the curve y? = 23 + 1. In
2018, Yuri Bilu, Philipp Habegger, and Lars Kiihne used different methods to prove

Theorem. There are no singular moduli that are algebraic units.

The idea of the proof is as follows. They give lower and upper bounds for the height
of such singular moduli. The height of an algebraic number basically measures its
complexity. The height of an algebraic number « is defined by

1

h(a)(a) = m

> K, : Q))logmax{L, |al,}.

veMg

Here K is any field containing o and M is a set of representatives of non—trivial absolute
values extending the p-adic absolute values and the usual absolute value. Using the
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height they prove that the absolute value of discriminant associated to the elliptic curve
with j-invariant j is bound from above by 10'5. The rest of the discriminants can be
checked by refining the arguments and by computer calculations.

In the work at hand we are going to investigate a similar problem. We have previously
given an example such that j + 1 is an algebraic unit. More generally one could look
at j — a being a unit, and ask if there are finitely many singular moduli j satisfying
this. Recently, Yingkun Li proved in [Lil8] that if j and « are singular moduli with
coprime fundamental discriminants, then j — a can not be a unit. His proof relies on
different techniques based on the work of Gross—Zagier ([GZ84], [GZ86]) and Gross—
Kohnen—Zagier (|[GKZ8T]).

We give a partial answer to the question when « is fixed as in the following theorem.
We say A is the discriminant of a singular modulus if the endomorphism ring of the
elliptic curve associated to the singular modulus has discriminant A.

Theorem 2.1 Let j be a singular modulus and let A be its discriminant. Let o be an
algebraic number that is the j—invariant of an elliptic curve without complex multiplica-
tion. If we assume that j — o is an algebraic unit, then |A| is bounded from above by
a computable constant that can be found on page 36. In particular, the set of singular
moduli j such that j — « is an algebraic unit is effectively computable.

The ideas come from [BHK18]. The sketch of the proof is as follows. Write j(&) =
a € Q where the elliptic curve associated to a does not have complex multiplication.
Here j(&) denotes Klein’s j—function evaluated at £. Also we can assume that £ is in the
fundamental domain F of the standard upper half-plane. To a singular modulus 7 we
have attached an elliptic curve with complex multiplication. The endomorphism ring
of this elliptic curve is an order of discriminant A. We can write A = D f? where f is
the conductor of the endomorphism ring in the full ring of integers of Q(v/A), and D is
the discrimiant of that field. The Galois conjugates of j form a full orbit of length the
class number C(A). We write C(A;¢;¢) for the number of singular moduli that can be
written in the form j(7) with 7 € F and such that |7 — {| < e. We prove an explicit
bound on C(A;&;e) which is given by

C(A;&e) < F(A) (32|A1Y2e% loglog(|A[Y?) + 11]A]Y%e + 2) (1)
for |[A| > 10 and 0 < & < 1/2. Here
F(A) = max{Qw(a);a <|A]f2Y,

and w(n) is the number of distinct prime divisors of n. Now if j — « is an algebraic unit,
the height can be bounded as

b ) < U5 og D) - loge 2
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for some & € F associated to &. The constant in the inequality depends on «. We put
E(A) = F(log |A])* and roughly choose € to be

)
" T B[

If we substitute this and (1) into (2) and use estimates for w(n) by Robin [Rob83] we

get
1/2
b - ) < gia) g g ®)

To bound |A| from above we need lower bounds for the height of j — a. One can prove
h(j — a) > log|A|

and

| A|1 /2

c(a)

The first inequality is due to Colmez [Col98] and Nakkajima—Taguchi [NT91], and the

second inequality is elementary. Again the bounds depend on «. Combining the lower
bounds with the upper bound from (3) we obtain

h(j —a) >

A2 E(A) A2
max{C(A),log|A| < o) + log (A +log E(A)

for large |A|. Further analysis shows that E(A)|A|7Y2 = |A]°M and log E(A)/log|A| =
o(1). Thus the inequality can not hold for large values of |A|. All constants in the above
deductions can be made explicit, but some are very large.

We started this introduction with algebraic equations and integral solutions. Curves
are special algebraic equations and integral solutions of these equations correspond to
points with integral coordinates on the curves. Now the modular curve Y (1) is defined
as the quotient SL,(Z)\H. This is nothing more than the affine line. The j—function
gives a bijection from Y (1) to the moduli space of isomorphism classes of complex elliptic
curves, i.e. the space of isomorphism classes of complex elliptic curves parameterizes the
modular curve. We can compactify this curve by adding a point at infinity to get X (1),
the projective line. This is a geometrically irreducible projective smooth curve defined
over Q.

The notion of integral points generalizes as follows. See [Ser89] for more details. Let
X be a geometrically irreducible projective smooth curve defined over a number field

L. Let C C X(L) be a finite set of L-rational points on X and write L[X \ C] for

the set of rational functions that are regular on X \ C. A set M C X(L) \ C is called
quasi—algebraic—integral with respect to C if for every f € L[X \ C] there is a § € L*
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such that f(M) C B0O;, where O; is the ring of algebraic integers in L. One can think
of this as the coordinates of M having a common denominator. It is always possible to
add a finite set of rational points to a quasi—algebraic-integral set without loosing this
property. So it is not a very useful concept to aim for effective results. The theorem of
Habegger above can be reformulated in these terms: If M C Y(1)(Q) is a set of singular
moduli that is quasi-algebraic-integral with respect to {0, 00}, then M is finite.

Now assume that j is the j—invariant of an elliptic curve. Assume that j is an alge-
braic unit. Then by the work of Bilu-Habegger—Kiihne the elliptic curve does not have
complex multiplication. Thus there are infinitely many j—invariants of elliptic curves
without complex multiplication that are algebraic units. This is because we can con-
struct an elliptic curve with a given j—invariant. To prove a similar result we must find
a replacement for the absence of the discriminant. For this we fix the j—invariant j, of
an elliptic curve without complex multiplication. We say that j is isogenous to jq if the
elliptic curves with j—invariant j and jg, respectively, are isogenous. We look at the set
of all j that are isogenous to jp such that j is an algebraic unit. This set is finite and
this is one of our main theorems.

Theorem 3.21 Let jo be the j—invariant of an elliptic curve without complex multi-
plication. Then there are at most finitely many j—invariants j of elliptic curves that are
1sogenous to an elliptic curve corresponding to jo and such that j is an algebraic unit.

This problem can again be reformulated in a problem in the moduli space. Let jp €
Y (1)(Q) be fixed, but assume that jo is not a singular modulus. Since the modular j
function is a surjective we can choose 7 in the Poincaré upper half-plane with j(75) = jo.
If M C Y(1)(Q) is a set of points of the form j ((% }).7) with ged(m,n,l) = 1,
0 <[ < m, that is quasi—algebraic-integral with respect to {0, 00}, then M is finite. In
other words, M contains j—invariants isogenous to jg.

The problem with this formulation is, that we can not give explicit bounds like the
ones we will see shortly. We say that an isogeny between two elliptic curves is minimal if
its degree is minimal amongst the isogenies between the curves. Assume we have fixed a
model Ej of an elliptic curve with j—invariant j, and that it is defined over K. Further
assume j(79) = jo. For an elliptic curve Ey defined over K we let EJ for an embedding
o: K — C be the elliptic curve obtained by conjugating the coefficients. Note that in
the following 77 is closely related to 7y. Attached to the elliptic curve E, we have a
representation ps from the absolute Galois group Gx = Gal(K/K) of K to GLy(Z).
With this information the theorem above can be made explicit again and we have

Theorem 3.22 Let Ey: y* = 4a® — gox — g3 be an elliptic curve without complex
multiplication defined over a number field K of degree D. Let jo be its j—invariant
with j(19) = jo and 19 € F. We choose wy and wy with wy/wy = 19 and Ey(C) ~
C/(inZ+ weZ) and similarly for ES, o: K — C. Define h = max{1, h(1, g2, 93), h(jo)}-
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If 7 is the j—invariant of an elliptic curve isogenous to Ey such that j is a unit, then the
degree of the minimal isogeny between jo and j is bounded by

max {10180(001)20’ (Cep)'0, (CartCertes. 61202[GL2(Z):poo(GK)]27 el D} :

where the constants are given by

C'=6-10"-h-D[GLy(Z) : pso(Grk)],
c; = 2-10° D% - max{h, 67|m[}* > 1,

co =14+ 3log (maX{L w5l |w6’72|}) and
3 = 20 — h(jo) + 61og(1 + h(jo)).

For a fixed singular modulus a we can again look at the set of j—invariants j such
that 7 — « is a unit and such that j is isogenous to jy. In this case similar results hold
and the statement goes as follows.

Theorem 3.25 Assume « is the j—invariant of an elliptic curve with CM. Let jy be
the j—invariant of an elliptic curve without CM. Then there are at most finitely many
J—invariants 7 of elliptic curves that are isogenous to an elliptic curve corresponding to
Jo and such that 7 — a is an algebraic unit.

A similar bound for the minimal isogeny as in the case when a = 0 can be obtained.
The idea of the proof is related to the previous one. Given a minimal isogeny of degree
N between j and jy we give lower and upper bounds for the height of j — « in terms of
N. The bounds contradict each other for large values of V.

We discuss a couple of differences. Instead of counting CM—points in the fundamental
domain we count points isogenous to a fixed point that lie in a neighborhood of a point
in the fundamental domain. To do this we look at all the isogenous points of the fixed
one and then translate them to the fundamental domain. If a resulting point is close to
a fixed point £ in the fundamental domain, then the entries of the matrix in SLy(Z) must
be close to an ellipse. We then count the possible matrices using a result of Davenport.
We can then compare the isogeny orbit to the Galois orbit to estimate the number of
embeddings contributing most to the height of j — a. To get an explicit lower bound for
h(j — a) we use a result by Autissier [Aut03] together with a classical result that relates
the j—invariant of an elliptic curve with the Faltings height. One of the main ingredients
for the upper bound are a result on linear forms in logarithms by Sinnou David [Dav95]
and a result by Lombardo that gives an explicit upper bound for Serre’s open image
theorem. This bound is very big so that our result only gives big bounds.
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Outline

A reader is supposed to know basic algebraic number theory, abstract algebra and
complex analysis usually taught in undergraduate level. Moreover, some knowledge
on quadratic forms is useful. A good understanding of elliptic curves and Klein’s j—
function are a plus. Nevertheless, we shall give a short introduction to those topics but
we will omit one or two proofs. References can be found in the introductory chapter.
We will state the necessary definitions and theorems in the first chapter. This will also
include a section on heights in the projective space.

The second chapter is devoted to the proof of Theorem 2.1. We will workout all the
details and the constants to get explicit bounds. One can also consult [BHK18] for more
details or different perspectives.

The third chapter is a bit longer and includes a proof of Theorem 3.25 and Theorem
3.26. The chapter is split into two parts. We proof the case when o = 0 for the
sake of simplicity first and then do the general case. The first section contains some
computations on the isogenous points. The argument reduces to counting lattice points.

Notation and terminology

We introduce some basic notation. For two sets A and B we write A C B if A is a
subset of B. We denote by Z the set of (rational) integers, and by N := {1,2,3,...}
the positive integers. The sets @, R and C are the fields of rational, real and complex
numbers, respectively. The elements of C will be of the form x + iy with z,y € R and
i> = —1. Throughout this exposition ¢ will be the complex number e*™/¢. For z € C
we will denote its complex conjugate by z. We use Re(z) and Im(z) to indicate the real
and imaginary part, respectively, of a complex number z. The letter H is reserved for
the complex upper half-plane, i.e. all complex numbers satisfying Im(z) > 0. We fix
once and for all one embedding of Q into the complex numbers. For any field K the
n—dimensional projective space will be denoted by P}, and an element in there will be
written as [zg:...: 2.

For a finite field extension L over K we denote by [L : K| the degree of the extension.
By N,k we denote the norm of L over K.

For a finite set M we denote the number of elements in M by #M. For integers a
and b we write alb if a divides b, and we denote the greatest common divisor of a and
b by ged(a,b) or (a,b). The number y/a, a > 0, is the unique positive solution of the
polynomial X? — a. Moreover, /—a is defined to be iy/a. The function log denotes the
logarithm defined for positive real numbers with loge = 1. Throughout the text, we will
use ¢ := 2™ for 7 in the complex upper half-plane. As usual, I' denotes the gamma
function.

If k£ is a positive integer and R is a ring, we define the set of invertible k—by—k
matrices with entries in R by GLg(R), and write SLy(R) for the subset of matrices with
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determinant 1. For a group or module M we write Aut(M) for the set of automorphisms
on M. For v € SLy(Z) and 7 € H we write 7.7 or 7 for the usual action of SLy(Z)
on the upper half-plane by mobius transformations, also known as fractional linear
transformations. For v = (24) the action is given by (a7 + b)/(cT +d). If G is a group
and H is a subgroup of G, then the index of H in G is denoted by [G : H|. If R is a
ring, then we denote by R* the set of invertible elements.



1 Preliminaries

The aim of this chapter is to give some preliminaries for later chapters. Getting all of
the details goes beyond the scope of this work and we will thus refer to different text
books. See each section for more details. For the basics of algebraic number theory we
refer to [Neu06] or [Rib01]. In this text K will be a field extension of Q.

1.1 Quadratic forms

We want to list some of the important properties of quadratic forms since they are closely
related to elliptic curves with complex multiplication. Details can be found in [Cox11].
Let Q(x,y) = ax® + bxy + cy? be a (binary) quadratic form. We call Q primitive if
the coefficients a, b, ¢ are coprime.
Two quadratic forms Q(z,y) and @Q'(z,y) are said to be equivalent if there exists
v e GLQ(Z) with
Qz,y) = Q'((z,y)7),

where (x,y)y denotes the usual matrix multiplication. This is obviously an equivalence
relation.

The discriminant of a quadratic form Q(z,y) = ax® + bry + cy? is defined by A =
Ag = b* —4dac. If Q and Q' are equivalent as before, then it is easy to see that
AQ = (det ’)/)QAQ/ = AQ/.

A quadratic form Q(z,y) is called positive definite if Q(z,y) > 0 for all (z,y) # 0. It
is called negative definite if Q(z,y) < 0. If @ is positive definite, then the polynomial
Q(z,1) does not have any roots in R, so that we must have A < 0.

We say that a primitive positive definite quadratic form Q(z,y) = ax? + bxy + cy? is
reduced if

—a<b<a<cor0<b<a=c. (1.1)

It was Gaufl who showed in Disquisitiones Arithmeticae that every primitive positive
definite form is equivalent to exactly one reduced form. There is a simple algorithm to
determine this representative.

Let Q(z,y) be a reduced positive definite quadratic form. By ag we denote the unique
(complex) solution in the upper half-plane of the polynomial Q(z,—1). We claim that
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agq is in the fundamental domain

F={z€H;l|z| >1and |Re(z)] <1/2} U{z € H;|z] > 1 and 0 < Re(z) < 1/2}.
Lemma 1.1 We have ag € F. Moreover, a < |A/3|'/2.
PROOF. By the inequalities in (1.1) we have |b| < a and thus

bl o
R ik
[Re(ag)| = 11 <
with equality only if |b| = a and hence b = a > 0 by (1.1). The last condition means
Re(ag) = 1/2 since Re(ag) = b/(2a). In addition, the modulus of g is given by

| = |A|
@ 4@2 4a2

This is equal to 1 if and only if ¢ = a which again implies b > 0 and Re(ag) > 0.
The second claim also easily follows from (1.1) as

a=+/(4a% — a?)/3 < \/(4ac — 12)/3 = \/|A|/3. O

Define the set Q(A) to be the set of equivalence classes of primitive positive definite
quadratic forms. The previous lemma shows that for fixed A the set Q(A) is finite. This
is because a < |A/3|"/? and b satisfies —a < b < a by equation (1.1). Thus, there are
only finitely many values for a and b but ¢ is determined by a and b, since A = b% — 4ac.
We will denote the number of elements in Q(A) by C(A) and call it the class number.
Note that we do not use the usual notation h(A) for the class number, because h will
be reserved for the height.

We finish with an example. If A = —4, then a = 1 which again implies b = 0 and ¢ = 1.
Thus, C(—4) = 1 and 2% + y? is a representative of that class.

1.2 Heights

In this section we want to give some background on heights on projective varieties. We
will skip most of the proofs and refer to [BG07] as a good source for the material covered.
Another reference is [Wall3].

1.2.1 Absolute values

We want to give a brief overview on the theory of valuations on number fields. This is
also discussed in [Neu06] or in [Rib12]. In this section, K will be a number field.
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Definition. By an absolute value on K we mean a multiplicative function |-|: K —
R>¢ satisfying:

(i) |a| =0 if and only if a = 0.

(ii) |ab| = |al||b| for all a,b € K.

(i1i) |a+ b <la| +|b| for all a,b € K.

Furthermore, if it satisfies the ultrametric triangle inequality

() |a 4+ b| < max{|al,|b|} for all a,b € K,

then then it is called non—archimedean absolute value. Otherwise, we say it is archi-
medean or infinite.

Any rational number a # 0 can be written as a product of primes £p|** @, .. pff"(a),
where the v, (a) are uniquely determined integers. Fixing a prime p, and defining |a|, =
p~ (@ defines an absolute value on Q called the p-adic absolute value. We say two
absolute values |- |; and |- |3 are equivalent, if and only if there is a positive real number
s such that

|y = |3

for all x € K. Obviously, for two different prime numbers p and ¢ the absolute values
are not equivalent. Moreover, none of the p-adic absolute values is equivalent to the
standard absolute value on Q. We will also write | - | for the standard absolute value.
The trivial absolute value is equal to 1 except at 0.

By a place v of K we mean an equivalence class of non—trivial absolute values on K.
We define Mg to be the set of representatives of all non-trivial places on QQ given by
{] - |p; p rational prime} U {| - |»}. Let L be a finite extension of K and w, v be places
of L and K, respectively. We write w|v and say w divides v, if the restriction of any
element in w is equal to some element of v. We can also say that w extends v or that w
lies above v. Any v of K can be extended to a place w of L. The set My will denote a
set of representatives of places on K that restrict to an element of Mg. The set Mz is
the subset of M that contains all the infinite places.

The p-adic numbers Q, are the completion of Q with respect to the p—adic absolute
value. If we have w|v then we can look at the completions L, and K. The degree d,, of
L., over K, is called the local degree of L/K in w. We have the following lemma.

Lemma 1.2 The degree [L,, : K,| is finite and we have

> [Lo: K] =[L: K]

wlv
where the sum runs over all w € My, extending v.

The infinite places can be described well. We have the following result
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Lemma 1.3 Assume L/K is a Galois extension and Gal(L/K) its Galois group. Let
|+ |wo and | - | be absolute values of L extending v. Then there is a o € Gal(L/K) with

[%]wy = [0 ()

forallz € L.

In fact, if we look at K/Q, every infinite place of K is represented by |o(-)| for some
o: K — C. For a fixed o with o(K) € R, o and the complex conjugate & define the
same absolute value.

The set Mg defined above satisfies the product formula given by

[T fel =1

vEMK

for all x € K*. This will later be important for the definition of the height. We will in
particular be interested in the equality obtained by taking the log.

If Ok is the ring of integers of K, then the non—zero prime ideals are in bijection with
the non—archimedean absolute values on K. We define the valuation ring of v as

R, :={z € K;|z|, < 1}.
We have the following equality

v finite

where the intersection runs over all finite places of K.

1.2.2 Heights of algebraic numbers

We are now able to define the height of an algebraic number. The height of an algebraic
number basically measures its arithmetic complexity. We first start with the simplest of
them, i.e. the elements of Q. Let ¢ € Q be a rational number with coprime integers a
and b different from 0. The height is defined by

a

H (5) — max {|a], |b]} .

The height of 0 is defined to be 1. One can immediately see, that there are only finitely
many rational numbers of bounded height.
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Definition. The logarithmic (Weil) height of an algebraic number « is given by

ha)(e) = [[(1_@] > dylogmax{1,|al,},

vEMg

where K is any field containing o and d, = [K, : Q,] denotes the local degree.
If v =[xg:...:x,) € PE and K is a number field containing all coordinates of x, then

the height of x is defined by

h(xz) = [Kl@] Z d,,logmlax{l,]xi\l,}.

vEME

One can show, that the definition is independent of K and together with the product
formula, one can see that the definition is independent of the choice of representatives
of z. Occasionally, we will write log™ |a|, for logmax{1, |a|,}. We will write H(«a) for
H(a) = M), We have the following simple inequality for the height.

Lemma 1.4 Let o, 8 be algebraic numbers. Then
hap) < h(a) + h(B)

and
ha+ 8) < h(a) + h(B) + log 2.

ProOOF. Let z,y > 1. Then x +y < xy + vy = 2xy. Hence
max{1l,a} + max{1,b} < 2max{l, a} max{1,0b} (1.3)

for all a,b > 0. Assume K is a number field containing o and [, and let v be a place of
K. Then

max{1, [a + f],} < max{l,|a|,} +max{1,[5],} < 2max{1,|a|,} max{1, |3, }.
Moreover, we have
aBly = |afy[Bl, < max{1, |af,} max{1,|5],}

and therefore

max{1, |af|,} < max{l,|«|,} max{1,|5]|,}. (1.4)
Taking the logarithm on both sides of equations (1.3) and (1.4), multiplying by d,/[K :
Q] and taking the sum over all v € My shows the desired statement. O

Note that this can be generalized to » numbers by replacing log 2 with log . Moreover,
the bound is sharp. We will later need the following result.
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Proposition 1.5 Let a be an algebraic number and o € Gal(Q/Q). Then h(o(a)) =
h(c).

The same is true for points in the projective space. The following is a well-known
theorem about algebraic numbers of height 0.

Theorem 1.6 (Kronecker’s theorem)
For € Q™ we have h(p) = 0 if and only if i is a root of unity.

The definition of the logarithmic height extends the definition of the height of a
rational number when taking the logarithm. We have a similar well-known result.

Theorem 1.7 (Northcott)
Let K be a number field. Then there are only finitely many o € K of bounded height
h(a) < B, B €R.

We can split the sum of the height into the finite and infinite places and obtain

1

h(a) = m (; logmax{1, |o(a)|} + ;du log max{1, |oz|l,}> ,

where o runs over all field embeddings o: K — C and v runs over all finite places of K.
By equation (1.2), if « is an algebraic integer, then |af, < 1 for all finite places v.
Thus the height of an algebraic integer is given by
1
hla) = —— log |o(a)]. 1.5
@) =g > loslo(e) (15)

lo(a)[>1

The height also has the following symmetry. This will be important since we are going
to use units in the ring of algebraic integers.

Lemma 1.8 For any o € K* we have h(a) = h(a™!).

PROOF. We have log|al, = log" |a|, — log™ |a~!|, for all . We multiply this by the
local degree d, and take the sum over all v. Then the left-hand side is 0 because of the
product formula and the right-hand side is equal to h(a) — h(a™). O

Assume « is a unit in the ring of integers. Using (1.5) the height amounts to

bla) = hie™) = 3 st = o 3 st (1)

We will use this equality in later chapters.
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1.3 Elliptic Curves

The theory of elliptic curves is explained in [Sil86b], [Sil86a] or [ST92]. Deeper results
can be found in [Sil99]. Diamond and Shurman give a quick introduction of complex
tori and modular curves in [DS05]. Let A, B be in K such that —(A%+27B2%) # 0. Then

the equation
E:y*=42>+ Az + B

defines an elliptic curve. This is a special case of a cubic curve. The defining equation is
called Weierstrass equation. Adding a ”point at infinity “ it is possible to define a group
structure. The following picture illustrates the example 4> = 23 — 22 + 6. Note that
multiplying this equation by 4 and substituting y' = 2y gives a Weierstrass equation
y? = 4a3 — 8z + 24.

-
_

By a lattice A in C we mean a discrete subgroup of rank 2. If K C C then we can see
an elliptic curve E as a complex torus C/A by taking the quotient of the complex plane
by a lattice A. This connection is via the Weierstrass p—function

plz) = 5+ <(Z_—1w)2—é),z€€\/\.

The sum converges absolutely and uniformly on all compact subsets not intersecting A,
and hence the derivative is given by

oz)=-2 ﬁ
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It is well known that the Weierstrass g—function satisfies the differential equation

9'(2)* = 4p(2)° — g2(A)p(2) — g3(A). (1.7)

Here go(A) = 60G4(A) and g3(A) = 140G6(A) with Gy(A) = >3- gy @ ™" The func-
tions Gy, are so—called Fisenstein series. The affine algebraic curve defined by equation
(1.7) gives the complex torus C/A the structure of an algebraic curve of genus 1 defined
over C.

The discriminant of a lattice can be defined as A(A) = (g2(A))? — 27(g3(A))?. We get
a function A: H — C by A(7) = A(A;) with A, = Z + 77Z. This function is called the
(modular) discriminant.

Recall that SLy(Z) acts on H by fractional linear transformations and the fundamental
domain is defined by

F={reH;—-1/2<Re(r) <1/2and |7| > 1 or |7| =1 and 0 < Re(7) < 1/2}.

This also allows us to define the modular function

j(r): H = C, j(r) = 1728 <92((TT)))3’

which is holomorphic on H. Note that we could also define j for a lattice as g» and A
are. This function is SLy(Z)-invariant, i.e.

J((1) = 3(7)

for all v € SLy(Z) and 7 € H. We therefore can restrict j to the fundamental domain
F. Writing ¢ = €*™ we can expand j as

1
G(T) = = + 744 + 196884q + 21493760¢* + - - -
q

with all coefficients non-negative integers as mentioned for example in [Leh42].
As shown above the j—function is connected to elliptic curves, but also has well known

connections to class field theory and moonshine. We will shortly present the connection
to the former.

1.3.1 Isogenies

The notion of an isogeny is very important for the rest of the work. We will write down
important known facts which can be found in most books. In this section we are going
to treat elliptic functions over the complex numbers.
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Definition. A nonzero morphism (of varieties) @ between two elliptic curves FEi and
Es is called 1sogeny if it maps the point at infinity of Ky to the point at infinity of Es,
i.e. (0) = 0. In this case, Fy and Ey are called isogenous.

With this definition, it is possible to show that an isogeny is also a group homomor-
phism. It is well known that the kernel of such a map is finite, and that the map is
surjective. The degree deg ¢ of an isogeny is defined to be the cardinality of the kernel.

When we think about Ej, F» being the quotient of the complex plane by lattices
A1, Ay, the definition amounts to saying that an isogeny is a nonzero holomorphic homo-
morphism between complex tori. Those are of the form ¢(z + Ay) = mz + Ay for some
m € C\ {0} with mA; C Ay. The degree is equal to the index [Ay : mA;]. The map
@ is an isomorphism if and only if mA; = Ay. Isomorphic elliptic curves have the same
J—invariant.

By this definition, the maps

[N]: C/A - C/A, 2+ A— Nz+ A

define isogenies for non-zero integers N. The isogeny [N] is called multiplication-by—N
map. The elements of the kernel of [N] are called the N—torsion points of the elliptic
curve, and are denoted by E[N].

Definition. An isogeny is called cyclic if its kernel is a cyclic subgroup. We call a
cyclic isogeny of degree N an N —isogeny.

The following lemma can be found in [MW90]. We will need it in later sections, so
we will give a short proof.

Lemma 1.9 An isogeny of minimal degree between two elliptic curves over C is cyclic.

PrOOF. Assume &: C/A — C/A',z+ A — mz+ A with mA C A’ is non—cyclic. Write

A =wiZ+ weZ. Let K be the kernel of ® and N the order of K. Since K is a subgroup

of the N—torsion points, the theory of finite abelian groups implies that K is isomorphic

to Z/nZ x Z/nn'Z for positive integers n’ and n. Note that n > 1 otherwise K would

be a cyclic subgroup. We have (m/n)A C A’ because for z = aw; + bwy € A we see
n'b

Tz=m (%wl + —wg) e mK C N with K = U.exz. A similar argument shows that

p: C/A = C/N, s A Do
n

is well-defined.

Now @ factors as ¢ o [n] where [n] is the multiplication—by—n map on C/A. (This is
a special case of Corollary 4.11 in Chapter III of [Sil86b].) Now we have an isogeny ¢
from C/A to C/A’ with degree less than the degree of ®. Thus the degree of ® was not
minimal amongst the isogenies between C/A and C/A’. This proves the claim. O
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Note that the lemma is also true for two elliptic curves defined over a number field
K when considering only isogenies defined over K. See Corollary 4.11 and page 74 in
[Sil86b] or [MWIO0] for a detailed proof.

It is easy to describe an N—isogeny, by the action of integral 2—by—2 matrices on the
lattice. Such an isogeny is related by a matrix of the form

a b

0 d
with 0 < b < d and N = ad with ged(a,b,d) = 1. The number of such matrices is given
by the Dedekind 1p—function

Y(N)=N]] (1+}9)

p|N

running over all prime divisors of N. This is a multiplicative function. For details see
for example Chapter 5 of [Lan87] or Lemma 11.24 in [Cox11].
For two elliptic curves E and E’ we define

Hom(E, E') = {isogenies from E; to Es} U {[0]}

and

End(F) = Hom(E, E)

called the endomorphism ring of E. As mentioned before, if we consider a lattice A then
End(C/A) = {a € C\ {0};aA C A}. We have already seen that Z C End(E). The
question now is, if there can be more endomorphisms. This brings us to the next part.

1.3.2 Complex Multiplication

Let E: y? = 423 — gow — g3 be an elliptic curve. We can associate a lattice to it which we
assume is generated by w; and wy. One can show that either End(E) = Z or Q(w; /ws)
is an imaginary quadratic extension of Q and End(F) is an order in that field. To see
that End(FE) lies in a quadratic field we pick a, b, c,d € Z such that aw; = aw; + bws
and awy = cw; + dwy where « represents an element of End(F). Hence « is a zero of
the quadratic characteristic polynomial of (g 3) Dividing aws by w; we get a = ¢ +d
with 7 = wy /we. Since w; and wy span a lattice we can not have 7 € R. Thus if « is not
an integer, then we must have ¢ # 0 and Q(«) = Q(7). Conversely, if 7 is imaginary
quadratic and O an order in Q(7), then £ = C/O is an elliptic curve and End(E) = O.

Definition. An elliptic curve E is said to have complex multiplication, or CM for
short, if End(E) is strictly larger than Z.
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One example is the elliptic curve associated to the lattice Z[i]. The endomorphism
ring is equal to Z[i]. Note that Z[i] = iZ[i] so that g3(Z[i]) = g3(iZ[i]) = °g3(Z[i]) =
—g3(Z[i]) and hence g3(Z[i]) = 0. This implies j(i) = j(Z[i]) = 1728. Giving the elliptic
curve as an equation E: y? = 2® + x we see that it has complex multiplication because
we can define

[Z] (l’, y) = (_$7 Zy)

Another interesting example is given by y? = 23 + 1. Here we have

(@, y) = (¢, y),

where ¢ = ¢*™/6. This curve is isomorphic to the one corresponding to the lattice Z[C]

and a similar argument as before shows g3(Z[¢]) = 0. This implies j(¢) = j(Z[(]) = 0.
So the j—invariants of the elliptic curves we have seen are both in Q. This of course

can not be for all elliptic curves but we might ask for which elliptic curves the j—invariant

is in Q.

Definition. A singular modulus is the j—invariant of an elliptic curve with complex
multiplication.

Now the question is, whether or not, having complex multiplication changes under
isogeny. If we have two isogenous elliptic curves F; ~ C/A; and E; ~ C/A;, then F;
has complex multiplication if and only if Es has complex multiplication as the following
argument shows. Let ¢: C/A; — C/A5 be an isogeny between the elliptic curves given by
z4+A; — mz+Ay. Then there exists an isogeny ¢: C/Ay — C/A; called the dual-isogeny
and can be constructed as follows. We have A; C %A2 by the definition of the isogeny.
Write Ay = wiZ 4 woZ. By the theory of finite abelian groups there are positive integers
ny and ny such that Ay = Mw Z+ 2w Z. Then "2 Ay = LwnyZ+ "2won  Z C Ay, and
the dual isogeny is defined by 2+ Ay — ™22+ A;. Now if £} has complex multiplication

m
and « is a complex number representing a non—integer in End(E} ), then

ning

mao Ay € maA; € mA; C A,

Thus, the map a — ma™2 defines a group homomorphism from End(£) to End(E).
This map is injective since the composition of isogenies is again an isogeny, i.e. a non—zero
map.

Theorem 1.10 Singular moduli are algebraic integers. If A is attached to the endo-
morphism ring of the elliptic curve associated to a singular modulus, then the degree of
the singular modulus is the class number C(A). Moreover, if Q1,...,Qca) is a full set
of representatives of reduced positive definite forms, then j(aq,),...,j(Qqea,) @ a full
orbit of Galois conjugates.
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PROOF. See for example [Sil99, Chapter II, Theorem 4.3]. O

In other words, the j—invariants of elliptic curves with complex multiplication are not
only algebraic but they are algebraic integers. In fact we have the following converse. If
wy/wy is in the upper half-plane and an algebraic number of degree at least 3, then the
j—invariant of the elliptic curve associated to the lattice wiZ + woZ is transcendental. A
proof of this can be found in Corollaire 3.2.4 of [Wal79].

1.3.3 Heights: Part Il

For more details about this section see [HS13| for example. In the first section we
introduced heights on the projective space. We can consider the points of E(K) as
points in P%. There is also a canonical height associated to points on elliptic curves.

For 0 # P € E(K) we define

where z(P) € K denotes the z—coordinate of P and h,(O) = 0.

Definition. The Néron—Tate height of a point P on an elliptic curve E/K is defined
as

. . he([2"]P)

MP) = Hm =
where [2"] denotes the multiplication—by—-2" isogeny on E. Note that the limit exists. See
for example [Mil06].

One can show that x may be replaced by any nonconstant even function f in the
function field K (F) after dividing the limit by deg(f). Clearly, the height of the neutral
element of F is 0.

This gives a height for the points on an elliptic curve. We can also define the height of
an elliptic curve. One way to define the height for an elliptic curve F with j-invariant j
is h(7) since it is an invariant. This is called the modular height of E. Another definition
was given by Faltings in [Fal83]. Again, this is actually the height of a point when we
treat elliptic curves as points on modular curves. In his paper he defined the nowadays
called Faltings height for abelian varieties. Elliptic curves are the simplest example of
abelian varieties.

For an elliptic curve F/K and o: K < C we define E? by applying o on the co-
efficients of £. Then E? is defined over o(K). If j is the j-invariant of E, then the
j—invariant of E is o(j). We choose 7, € F such that o(j) = j(7,). Recall that every
infinite place of M7 gives rise to a 0: K — C.
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The minimal discriminant of E/K is defined as

Dk = H porde e

pEME\MgE
where A, is the minimal discriminant of £ at p.

Definition. Let E/K be an elliptic curve. We assume that E has everywhere semi—
stable reduction over K. (Such a number field exists.) We define the (stable) Faltings
height of E by

h(E) := log [Nk /o(®g/k)| — Z log (|A(75)] Im(Tg)6)> + %logw.

1
12[K : Q] ( it

The definition is independent of K as long as F has everywhere semi—stable reduction.
Note that in Faltings’ original definition the term %logw was not present. We use the
symbol h instead of hp since there should be no ambiguity in the text. The Faltings
height of an abelian variety can be defined as follows. Let A/K be an abelian variety
of dimension g defined over a field K that admits semi-stable reduction and let A —
Spec Ok be the Nefon model, where O is the ring of integers of K. Let s: Spec Og —
A be the zero section. We denote by w40, the pullback S*Qil / Spec Ok of the sheaf of
differential g—forms on A. This can be made into a metrized line bundle @ 4,0, and the
Faltings height h(A) of A is defined as the normalized Arakelov degree of w4,0, . Again,
the original definition by Faltings is h(A) — ¢ log 7.






2 The CM case

We fix a singular modulus 5. Elliptic curves with j-invariant j have the same endomor-
phism ring. Let A denote the discriminant of this ring. We want to prove the following
result.

Theorem 2.1 Let j be a singular modulus and let A be its discriminant. Let o be an
algebraic number that is the j—invariant of an elliptic curve without complex multipli-
cation. If we assume that j — « is an algebraic unit, then |A| is bounded from above
by

|A| S 6150.
Thus there are only finitely many singular moduli j such that j — « is an algebraic unit.
Here C' is a computable constant and can be found on page 36.

2.1 Bounding points in the fundamental domain

Let Q(A) be the set (C Z3) of coefficients representing reduced primitive, positive
definite quadratic forms with discriminant A and let C(A) be the class number defined
in Chapter 1. We will write A = Df? throughout this exposition, where D is the
discriminant of the imaginary quadratic field Q(v/A) and f € N is called the conductor.
For £ € F and € > 0 we define

_ 1/2
cagie) = # {00 € Q| EEE —gf <<}

We also define the function F' of A by
F = F(A) = max {2°;a < |A|'/?},

where w(n) is the number of distinct prime divisors of n. We also define the modified
conductor by

= Jf  D=1mod4,
f= 2f D =0mod 4.

15
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Then A/ f? is squarefree.

Let ox(n) = Zd‘n d*. We are now ready to state the first lemma that gives a bound
on the 7 in a neighborhood of a fixed point such that j(7) is a singular modulus of fixed
discriminant. While this is a generalization of Theorem 2.1 in [BHK18], the constants
are not as good as in that very paper.

Lemma 2.2 Let A be a negative integer, y = Im(&) > v/3/2 and 0 < € < 1/4. Then

o1 f AL/2 ~ A VA AL/2
C(A;&e) < F(A) | 32 <~>| | 52+800(f)‘§ 6+84|y2|—1

2
7 1?1 €+

PROOF. We start with |7 —&| < e. This implies that the real and imaginary parts satisfy

Im(7) € (Im(§) — &,Im(§) + €)
Re(7) € (Re(§) — &, Re(§) + ).

Now 7 is of the form (—b+4 v/A)/2a and thus Im(7) = |A|'/2/2a and Re(r) = —b/2a.

This amounts to
|A|1/2

2a

A1/2 AI/Q
aE(’ | A )::I.

2y +2¢’ 2y — 2¢

y—e< <y+e

or equivalently

For b we obtain
2a(Re(§) —e) < —b < 2a(Re(&) + ¢), (2.1)

so b lies in an interval of length 4ae. For two integers m and n we denote by geda(m, n)
the greatest common divisor d of m and n such that d?|m and d?|n. We have A = b*—4ac,
so in particular o> = A mod a. Thus, the residue classes modulo a/ gedy(a, A) of b € Z
satisfying b> = A mod a is at most 2¢(¢/&d(@A)+1 by [Lemma 2.4 in [BHK18]. Note that
we have w(a/ged(a, A)) < w(a). But b also lies in the interval given in equation (2.1),
so that by Lemma 2.5 of [BHK18]| there are at most

(Qa(Re(f) +¢) — 2a(Re(§) —¢)
a/ geda(a, A)

+ 1) 29 — (4e gedy(a, A) 4+ 1)2°@F (2.2)

possible b’s for any fixed a. Recall that a < |A/3|'/2 by Lemma 1.1, so that 2¢(4) < F.
Using the equality in (2.2) and applying Lemma 2.6 of [BHK18] in the second inequality
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we get

C(AsEe) <8 Y geds(a, A)2@ 2 3 290
aclINZ wcInZ
<8F > gedy(a, A) + 2F#(I N Z)
a€lNZ
<8eF Y d-#(INdL) + 2FH(I N Z).

dZ|a
da<|a/3|t/4

Here we used Lemma 1.1 in the last step again. But since A/ f 2 is square—free we obtain

C(As&e) <8F ) d(%ﬂ) +2F (1] +1),

df
a<|a/a|t/4

where || is the length of I. This can be further simplified to

C(A;&e) <8Pl Y d'+8F > d+2F([I|+1)

dlf dlf
da<|a/a|t/4 da<|a/a|t/4

a1(f) RN
§85F|I]17+85F‘§ oo(f) +2F (|I| +1).

The length of I can be estimated by

& B |A[1/2 _ |A]1/22y+ 2 — (2y — 2¢) <A 4e
2u—2¢  2y+2e 4y? — 4e? - 4?2 —1°
This gives the desired inequality. O

The next corollary gives a bound on C(A;¢&;€) just in terms of A and e.

Corollary 2.3 For |A| > 10" and 0 < € < 1/4 we have
C(A;&e) < F(A) (32’A‘1/252 loglog(|A]1/2) + 11‘A’1/28—|— 2) .

PROOF. For |A]| > 10 we can find the following results as Lemma 2.8 in [BHK18§]

Uo(

) ‘A|0'192 < |A|1/4
Ul(f)/f

<
< 1.842loglog(|A[?).
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Moreover, we have y > \/3/2 and thus 4y% — 1 > 2. Hence

7 (f) 1aps
2 1/2_2 1/2
g S A oglog(A1 )
and
~ A 1/4 |A|1/2 ] 12 o
80, <f> ‘g s 4811 S galAl e+ 44 /2
< TIA|Y? e + 4] A%,
which gives the claimed statement. O]

2.2 Height bounds

From now on « will be the j—invariant of an elliptic curve without complex multiplication.
As a preparation we will start with some properties of the j—function.

Lemma 2.4 The function j(1/2 +iy) as a function of y on the interval [/3/2, 00) is
real and decreasing. The function j(e¥) on the interval [r/3, /2] is real and increasing,
and we have j(e™/?) = j(i) = 1728. The function j(iy) on the interval [1,00) is real and
INCTeasing.

PROOF. Recall ¢ = e*™". For T = %+iy with y > 1/3/2 we have g = ¢™e 2™ = —¢ 2™,
Thus j(7) is real since all non—zero coefficients of j are positive integers. We have
§(1/2 +iv/3/2) = 0 and from page 227 of [Cox11] we know j(1/2 + /=7/2) = —15°.
But the map y — j(1/2 + iy) is continuous and injective because j is continuous and
injective as a function on F. Thus, it is monotonically decreasing.

Similarly, if 7 = iy with y > 1, then ¢ = e7*™. We know j(i) = 1728 = 123 and again
from page 227 of [Cox11] we know j(iv/2) = 203. The same argument as before shows
the claim for the map y — j(iy).

It remains to show that j(e”) is real because in that case j(e'™?3) = 0 and j(e'™/?) =
1728 imply the monotonicity. Write 7 = €. We have § = ¢*™(-7) and

i) =@+ el@ =i (7).

But j is SLg(Z)—invariant so that j(7) = j(—7) = j(7) since |7| = 1. Therefore, j(7)
must be real. This completes the proof. O]
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The next two statements tell us something about the growth of j(7) as |7| goes to
infinity.

Proposition 2.5 If 7 is in F, then |[j(7)| — e*™™)| < 2079.

This result can be found in Lemma 1 of [BMZ13]|. We are going to prove the following
result, which is of similar nature.

Lemma 2.6 Let 7 be complex with Im(7) > 1/2. Then

|15(7)| — e*" ™| < 287473,
PROOF. We have j(7) = ¢! + ¢p + c1¢ + - -+, where as usual ¢ = ¢*™". Recall from
Chapter 1 that the coefficients of the g—expansion of j are all non—negative integers.
Then [[7] — g7 < Yooy enla™ < D207 cugy with go = €*™™ = e~ and 75 = /2. The
right-hand side of the inequality is equal to j(m) — ¢ * = 66° — e™ < 287473. Note
that we have used j(79) = j(—1/70) since the j—function is SLy(Z)-invariant, and that
J(=1/79) = j(2i) = 66 by Table 12.20 in [Cox11]. O

In Lemma 2.4 we proved that the j—function is real on the vertical and unit circle
geodesics of the fundamental domain and on the imaginary axis. We can even say that
the j—function is not real outside of this set, as the following statement shows.

Corollary 2.7 If7 € F withRe(r) # 0,+1 and |7| > 1, then Im(j(7)) # 0. Moreover,
Im(j(7)) <0 for 0 < Re(r) < 1/2 and Im(j(7)) > 0 for —1/2 < Re(7) < 0.

PrROOF. The proof is just an application of the intermediate value theorem. We use
that 7 is injective on F. Assume j(7) = R real with |7| > 1 and —1/2 < Re(7) < 0
or 0 < Re(r) < 1/2. If 0 < R < 1728, then j(e?) = R for some 7/3 < § < 7/2
by the intermediate value theorem applied to the real function ¢ +— j(e®). This is a
contradiction to the injectivity of j on F since |7| > 1.

Assume R > 1728. By Lemma 2.4 j(iR) > 1728 and applying Proposition 2.5 we have
j(iR) > €™ —2079. Thus j(iR) > R and applying the intermediate value theorem again
gives a t > 1 with j(it) = R. This is a contradiction since 0 < 7 < 1/2. The case when
R < 0 follows similarly.

To show Im(j(7)) < 0 for 0 < Re(7) < 1/2 and |7| > 1 we assume we have 7, 7y
in the interior of the fundamental domain F° with positive real part and such that
Im(j(7)) < 0 and Im(j(m)) > 0. Choose a path in F°, parametrized by ~: [0, 1] — F,
such that v(0) = 79, v(1) = 7 and such that every point in ([0, 1]) is in the interior of
F and has positive real part. The function ¢ — Im(j(v(t))) is continuous and satisfies
Im(j(7(0))) = Im(j(70)) < 0 and Im(j(7(1))) = Im(j(m)) > 0. By the intermediate
value theorem we have a 0 < ¢ < 1 with Im(j(y(¢))) = 0 which is impossible by the
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choice of v and the first claim of the corollary. So it suffices to give a value of j(7) with
0 < Re(7) < 1/2 and Im(j(7)) < 0. We have

j(lz5i):—1728(\/_— ) ( —2\/>) (238\/_+—+60\/>)

by page 17 of [Adl14]. A computation with Sage shows Im ( (1+5’)) < 0. We must have
Im(j(7)) > 0 for —1/2 < Re(7) < 0 by the same argument and the fact that j: F — C
is surjective. This completes the proof. O]

The following two lemmas for h(j) can be found in [BHK18]. The proofs follow directly
from the statements in that very paper with the inequality h(j —a) > h(j)—h(a)—log 2.
For details see Proposition 4.1 and Proposition 4.3 in [BHK18].

Lemma 2.8 We have [Q(j) : Q] = C(A), and if |A| > 16, then

m|AJY2 —0.01
C(A)

h(j —a) > — h(a) — log 2.

PROOF. The first statement is a classical result, see for example Chapter 13 in [Cox11].

By Theorem 1.10 one of the conjugates of j is j(7) with 7 = AHQ” 2156 one of the
terms in the height of h(j) is logmax{1,|j(7)|}. We can forget about the other terms
and get

h0) > oy loamax{LL1j(r)]}

Proposition 2.5 implies |j(z)| > —2079 + €27 > (0.992¢27 ™) for all z € F with
Im(z) > 2. Since |A| > 16 this is the case for 7, and thus

b = gy lormax(L i (7))} >

m|A[Y2 —0.01
>
B C(A)

. (1A) log (0.99267r |A|>

The claim now follows from Lemma 1.4 since h(j) = h(j —a+ «) < h(j — a) + h(a) +
log 2. ]

Lemma 2.9 We have

3
h(j—a) > —log|A|l —9.79 — h(a) — log 2.
(7 )_\/5 g|A (o) —log

This lemma is more delicate and follows from work of Colmez [Col98] and Nakkajima—
Taguchi [NT91]. The two previous lemmas bound the height of j — « from below. Next
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we want to bound the height of j — a from above when j — « is an algebraic unit.

The following lemma says that if two points in the fundamental domain are close
together, then the difference of the images under the j—function can be bound from
below in terms of the difference of the points. Recall that ¢ = >/,

Lemma 2.10 Let (,(? #¢ € F. Put B=4-10°max{1,|j(&)|} and A = |j"(i)| in the
A

case when & =i and A = |j'(€)| otherwise. For |1 —&| < it < 3 we have

‘ : A 2
() =€) > Jlr — &P

If € # i we even have )
5(r) =3 = Sl = ¢

A
fOT’ |T—€| S GAL1SB "

Note that we can write j”(i) = —2 - 3'T'(1/4)% /7" as Kiihne shows in the appendix of
[Wiis14]. Since I'(1/4) = 3.6256... > 3 we could further estimate the first of the two
bounds in the lemma by

j(7) — 1728] > 12413|7 — i|*.

PRrOOF. This is a special case of Lemma 2.4 in [BLP16]. We take f(7) = j(7) — j(§).
Assume |7 — &| < 1/3. Then by Lemma 2.6

£ < 1G]+ 15(E)] < 15 (©)] + 2™ 4 287473
< [§(&)| 4 2O+ 4 987473,

We have e*™/3 < 9 so applying Proposition 2.5 we obtain

()] < |5(€)| + 2 ImOT/3) 4 287473
< ()] 4+ 91F(€)] + 9 - 2079 + 287473
< 10[5(€)| + 306184
< 4-10°max{1, [5(&)|}.

We treat the two cases £ = i and £ # i separately and start with the latter. By [BLP16]
we have

A/3+ B

(1/3)2 |T - 5'2 - - (3"4 + 9B> |T - §|27

3(r) =3O = Alr =&l = -
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where A = |5/(£)|. In the smaller disc |7 — ¢| < m we then obtain

i)~ ie)] = Sir —el.

Now assume ¢ =i and put A = |j”(i)|. By [BLP16] we conclude

: : A 5 A9+ B 3 3
_ _ = > _ 17 T - _ _
()= 501 = gl =€ = =S — e = — A+ 21B) I -4
and thus 4
i) =3O = I = €
in the smaller disc |7 — £| < m. O

We can also bound the j-invariants outside of a neighborhood of ¢ as the following
lemma shows. We write

Fp={r € F;0<Re(r) <1/2}
and

F_={reF;-1/2 <Re(r) <0}.

Lemma 2.11 Let( #&,7 € Fy and put A = |7"(i)] if § =i and A = |j'(§)| otherwise.
Also define B = 4 - 10°max{1, |j(€)|}. Assume |t — &| > 6, where § is defined as the
minimum of m and half the (euclidean) distance of £ to any geodesic of OF
(i.e. the vertical line segments with real part 0 and 1/2 and the part of the unit circle
between those lines) not containing £. Then

13(7) = 5 (&) = e(€)

where ¢(§) > 0 is an absolute constant depending on & and is given by

Ao /2 if € € OF \ {3}
c(§) = 4 A6*/4 if&=i
min {|Im(j(£))|, Ad/2}  otherwise.

Proor. We want to apply the maximum modulus principle. To do this we will give
lower bounds on the boundary of F,, see Figure 2.1. By the previous lemma we have

. . A
(1) = 3] = 50
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Figure 2.1: Application of the maximum modulus principle to the blue area.

or A
() = 3(@)] = 252
on the circle |7 — &| = §. Also Im(7) > 6 Im(&) implies Im(7) > Im(§) + 1, so we obtain
by applying Proposition 2.5 twice
()] < 2079 4 27O = 2079 — 20627% 1 2027 4 (27 Im(©)
< 22079 + 2027 4 27Im(©O < 9079 4 20627 Im(E) | 2rIm(©)
—2079 4 21e* M) < 2079 4 2T Im(E)
—2079 4 e ()

13(7)]

Thus, by using Proposition 2.5 twice we get

9(r) = 3] = [5(7)] = [5(E)]
> 92079 + e2mIm(r) _ (2079 + e27rIm(§))
> —92.92079 + 27 Im(r) _ g2rIm(&)

VAN VANRVAN

Now we use Im(7) > 6Im(&) to get

7 (7) — §(€)] = —2 - 2079 + 27O _ (271m(©),
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We have e** > 2¢” for any z > log2 and 27 Im(€) > 1 so that

|](7_) _](€)| 2 —92.2079 + e47rIm(§) + e27rIm(§) + e47rIm(§) . e27rIm(§)
= _92.92079 + 647rIm(§) + €4ﬂ1m(£).

But also because of Im(¢) > /3/2 we get

5(7) — (&) > '@, (2.3)

We have § < 1/12 by definition and Lemme 1 of [FP87] gives for £ # 4

Ag o A 8T ity max{im(e) m(©)}
2 T 24— 24
< 8_71-63# max{Im(f),Im({)’l}'
- 24
So if Im(&) > 1, then
) i A
7(7) = 3] = 5.

If V/3/2 < Im(€) < 1, then

A

i< 8_7T€37r1m(§)_1 < 8_7T627r/\/§ < e47r~\/§/2 < 647TIm(§).
9 = >

- 24 24
So in any case
57— 3(6)] = 59
for £ # 4. If £ =i, then as described after Lemma 2.10 we get

A
252 < 124146% < 87

which together with (2.3) gives
: . A
57) — (i) = 52

So we have treated all the 7 with large imaginary part. Now we have to go through
the different cases for £ to bound the boundary. We start with Re(§) = 1/2 so that we
are in the case of Figure 2.2.

For the remainder of the proof we will be using that j is monotonically increasing or
decreasing on the boundary as shown in Lemma 2.4. If 7 is on the same boundary com-
ponent as &, then Im(7) > Im(§) + 6 or Im(7) < Im(§) — 6. Therefore, by monotonicity



2.2 HEIGHT BOUNDS 25

C
R

Figure 2.2: £ with real part 1/2.

either [j(7)| > [j(£)| which implies

57) — )] 2 4(6) — () 2 4(O) — 4(E + i) = |§(6) — & + )| > 55
or [7(7)] < [j(§)] and
15(7) = 3| > |7(&)] = |7(T)| = 5§ —i0) — (&) = |7 (&) — j(§ —id)| > g&

Note that the last inequality of both displays follows from Lemma 2.10 on the boundary
|7 —¢&| =46. If |[7| =1 or Re(7) = 0, then j(7) > 0 and j(§) < 0, so that

7(r) =3 ()] = (1) = 3(&) = =i(§)
> j(§ —i6) = j(§) = 13(€) — j(§ — i0)]
A
> 5(5.

Here we have used Lemma 2.10 for the last estimate. Altogether, if Re(§) = 1/2 we get
by the minimum modulus principle

A
56

3(r) = 3(€)] =

as desired.

The second case is when Re(§) = 0 and £ # i. We have j(7) < 0 if Re(r) = 1/2, and
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thus

If |7| = 1, then again by monotonicity and Lemma 2.10

17(§) —3(T)] = j(&) —4(1) > 4(§) — j(§ —id)
= [5(§) — (€ —id)

J.

v
MI:>

For the case when Re(7) = 0 we have two subcases. When Im(7) > Im(&) + 6, it follows
J(7) > j(€) and hence

5€) — 3] 2 e +i) — j(6) 2 5. (2.4)
Or we have Im(7) < Im(¢) — § and we get
56) ~ 4] > &) — 3(6 — i6) > 55

In sum, by applying the minimum modulus principle we obtain

J. (2.5)

The third case is |¢| = 1 and ¢ # i. Write £ = ¢, Again we have three subcases. If
Re(7) = 1/2, then j(7) < 0 and

3(&) = J(T)] 2 5(&) — j(7) = j(€)
> ](f) : ( (60— 2arcsm(§/2)))
|] (5) : ( i(0— 2arcsm(6/2))) | (26)
A
> 55

Note that e#(?—2aresin(/2)) i one of the two points where the circle of radius § and the
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unit circle intersect. If Re(7) = 0, then j(7) > 1728 > j (!(®*+2aresin@/2)) > j(¢) and

5(6) = J(T)] 2 j(7) = j(€) = j (e OT2mE2)) —ji(¢g)
’]( ) ( (9+2arcsm(6/2)))|

IJ>

55

If |7| =1, then j(7) < j(§) or j(7) > j(£) and Lemma 2.10 tells us

56) — 37| 2 [3() — J (x| > 25 (2.7

By applying the minimum modulus principle we obtain the same result as in equation
(2.5).

If & =4, then the estimates in equations (2.4) and (2.7) hold with Ad/2 replaced by
Aé? /4. Also equation (2.6) holds with ¢ replaced by i and Ad/2 replaced by Ad?/4, and

thus by the minimum modulus principle

7(m) =3 = 52

The last case is 0 < Re(§) < 1/2 and |£| > 1. Let 7 € OF . Then j(7) is real and we
have

7€) = 3(7) = [Tm(5(€)) — Tm(G(7))| = | Tm(5(£))]-

This is the case shown in Figure 2.1. Applying the minimum modulus principle gives
the desired result. O

Note that the same claim holds for F_ since we have the symmetry Re(j(z + iy)) =
Re(j(—z +1iy)) and Im(j(z + iy)) = — Im(j(—x + dy)) which directly follows from the
g—expansion. If j(7) and j(§) are close we want |7, — &,| to be small too, but we can
not get this in general as Figure 2.3 shows.

Lemma 2.12 In the same setting as in the previous lemma, if |j(7) — j(§)]
then |7 — M¢&| < & with ME € F for some M € T where T = {((1) ), ((1)111)7 (9 01)}.

PROOF. If ¢, 7 are both in F or both in F_, then |7 —{| < 0 by Lemma 2.11. We now
can assume without loss of generality Re(¢) < 0 and Re(7) > 0. If £ is on the boundary
of F, then Re(¢) = —1/2. Then we can apply Lemma 2.11 to 7 and ({1)¢ and use
Jj&) =g+ 1). If £ = 1 and Re(§) < 0, then we can again apply Lemma 2.11 to 7
and (9 ')¢ and use (&) = 7 ((9 1)), If —=1/2 < Re(¢) < 0 and 7 € Fy, then by
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-1.0 -0.5 0 0.5 1

Figure 2.3: Neighborhoods of points on the boundary

Corollary 2.7

15(€) = 3(7) = [Im(j(£)) — Im(j(7))] = Im(5(§)) — Im(j(7))
= Im(j(£)) + | Im(j(7))|
> Im(j(¢))
> c(§)
contrary to the assumption. O

The following lemma can be found in [Hab15] as Lemma 5.

Lemma 2.13 Let 0: Q < C and let T be imaginary quadratic. Let 7, satisfy j(7,) =
o(j(r)) with 7, € F. If A is the discriminant of the endomorphism ring associated to
j(7), then 7, is imaginary quadratic and h(7,) < log\/|A|.

ProoFr. Write A = D f? where f is the conductor and D a fundamental discriminant.
The endomorphism ring of j(7) can be described by Z + wfZ with w = (D ++/D)/2.
Thus wf defines an endomorphism, i.e. wf(Z + 7,Z) C Z + 7,7Z. Hence wf = a + b7,
and wf1, = ¢+ dr, with a,b,c,d € Z and b # 0. Replacing wf in the second equality
gives

br? + (a — d)7, — c =0,

so T, is imaginary quadratic. The number wf satisfies the polynomial equation X? —
(a +d)X + ad — be = 0. This polynomial has the same discriminant as the polynomial
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P =bX?%+ (a —d)X — c. If we compute the discriminant of X2 — (a + d)X + ad — bc
we get (a4 d)? —4(ad — be) = (wf —wf)? = (w—w)%f? = A. Since P(7,) = 0 we must
have

—(a —d) £iv/|A|

Ty =
2b

This implies | Re(7,)| < 1/2 and thus |a —d| < [b|. Then |7,|> = ((a —d)?+|Al])/(2b)* <
(b*+]A|)/(2b)?. Proposition 1.6.6 in [BG07] says that 2Ah(7,) is at most the logarithmic
Mahler measure of P, i.e.

b A
2n(r) < togll*) < tog (5 + (51

We have Im(7,) = /]A[/(2|b]) > v/3/2 because 7, € F. Thus |b] < /]A]/3 < |A]

This implies
|A[ | [A] Al [A]
2h <1 —+— ] <1 — + — | <log|A]|.

This is the desired inequality. O]

With these lemmas we are now able to bound the height from above using linear
forms in logarithms. Specifically we are going to use a result by David Masser. For the
following, if 7 € F with j(7) algebraic and a field embedding o: Q(a) — C, a € Q, are
given, then 7, € F is defined by o(j(7)) = j(7,). Note that for fixed £ € F different
from ¢, (2,4 we have j/(§,) # 0. Suppose that j(£) = « is algebraic. We define the
function

P(&) =logmax {1,c(6;) 7'}, (2.8)

where o runs over all embeddings o: Q(a) — C, and ¢(&,) is defined as in Lemma 2.11
Note that the expression in the maximum is larger than 12 since ¢, < 1/12, and hence
P(£) > 0. The function is large when some &, is close to one of the three points i, ¢, ¢
or &, is close to the boundary of F or to the vertical imaginary axis.

Proposition 2.14  Assume j is a singular modulus. Let o = j(§), & € F, be an alge-
braic number that is the j—invariant of an elliptic curve without complexr multiplication.
Each embedding o: Q(a) — C gives a , as in Lemma 2.11. Assume that j — « is an
algebraic unit and let 0 < e < 1/4. We can bound the height by

Za: Q(j,a)—C ZME’TC(Aa MgU; 8)
16-C(A)

h(j — @) <cp (log [A)* +5P(€) + |logel,

where T={(49),(§%5"), (Y o')}. The constant c; > 1 is the one appearing in [Mas06,
Theorem 1] and it only depends on c.
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PROOF. Let j(£) = a. Since j — « is an algebraic unit the height can be computed by
1

h() —a) = ——— logmax {1, |0(j —a) |}, 2.9

U-0)= guray g s (LIt —a) ) 29)

where ¢ runs over all field embeddings o: Q(j,a) — C.

Let

f=¢c- (gun {1,e(&)}.

We split the sum (2.9) into terms for which |o(j — a)| < g¢ and those for which 1 >
07 = a)[ = <o

Assume |o(j — a)| < g9. Thus |o(j — )] < ¢(&,). We want to show |7, — ME,| < ¢ for
some M € T. We can apply Lemma 2.12 to get |7, — M&,| < d, for some M € T. By

e 15" (6o )l
definition of J, we have §, < e 0 ma T SO that we can apply Lemma 2.10

and j(&,) = j(M&,) to get

|j’ (éa)

V), Mey) < i) — 3(60)] < 0 < cel6y) <
which implies |7, — M¢,| < €. But we also get from this

€
2

13(76) =3 (&)| = in{[r, — M&|; M €T}

Note that the right—hand side is not 0 since j(&,) does not have complex multiplication
but j(7,) does. The same argument tells us j'(§,) # 0. By [Mas06, Theorem I| we
obtain

1J (50)\

log |j(75) — (&) = log =—>—+ C2h/(7_0)4

where h/(7,) denotes the maximum of 1 and the height of 7,. Here c¢; > 1 is the constant
from [Mas06] that depends on ¢ (and the £,.) We now use Lemma 2.13 to get

log 0(j — )| = 1oz |j(7,) ~ §(&,)] > log L5, (10g |72

- g rj'<25a>r

Co 4
¢ (og|AD". (2.10)

Since with |o(j — a)| < ¢ we also have |7, — M¢,| < ¢ for some matrix M € T as
mentioned before, we obtain that 7, corresponds to a form in C(A; M¢,;e). We have

(& _ 17(E)

2 - 2

(&) <
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so that )
1 x4 1, — <P
ogmec{ 1.y | <P
Thus, if use (2.10) we get
1
h(j — —_ 1 | — 1
=) <~ rarrg X lsloli— o)l + loga
ZO‘I Q(a)—C ZMETC(A7 Mfa; 8) 4
<o = A T E T g A+ 4P(E) + | ol

If we plug in the definition for £; we obtain

ZO’Z Q(a)—C ZMETC(A’ Mga; 5)
16 -C(A)

—logmin {1, c(&,)} + | log e

Zo’: Q(a)—C ZMGTC(Aa Mfo; 5)
16 -C(A)

h(j —a) < (log |A[)* +4P(¢)

(log |A[)* +5P(€) + [logel,

:CQ

where we also used the first claim of Lemma 2.8 for the inequality. [
The following lemmas can be found in Section 3 of [BHK18] as Lemmas 3.5 and 3.6.

Lemma 2.15  Assume that |A| > 10, Then we have F(A) > |A|034/10810s(A12) g
F(A) > 181loglog(|A[Y/2).
Lemma 2.16 For A # —3,—4 we have C(A) < 77 HA|Y2(2 + log |A|).

PROOF. Theorem 10.1 in [Hual2] says C(A) < w'é—J:/QK(d) where K (d) can be bounded
by 2 + log |A| according to Theorem 14.3 in [Hual2] and w is the number of roots of
unity in the imaginary quadratic order of discriminant A. But since A # —3, —4 we
have w = 2 and the result follows. O

We define £ := E(A) = F(A)(log |A])*.

Corollary 2.17 Assume j — « is a unit and o = j(§) with £ € F and such that « is
algebraic but not a singular modulus. For |A| > 10 we have

ED) |\, EQIAl

2C(A) cy ¢

hij — @) < [Q(a) : Q]
where C' is a constant depending on « and is given by

C" = 4|Q(a) : Qe + 5P(E).
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PROOF. We can use the previous results together with the bound for C(A;&,;¢) to

bound the height h(j — ). Put € = F(A)(lo§(|2|))4|A|1/2' Since we assume that |A] > 10

we have F'(A) > 256 and we obtain together with Lemma 2.16

7r‘1|A]1/2(2+10g|A|)< 1 2+log10™
256(log |A[)4 A2~ 256 log 104

<2-1073.

Thus we can apply Proposition 2.14 together with Corollary 2.3 and obtain

4F(A) (32|AV2e? log log(JA|Y?) 4 11| AY%e 4 2)

608 (logA))*

h(j —a) <[Q(a) : Qe
+5P(€) + | loge|
- _ 128| A[*/? log log(|A[*/?) c(4) 2
=[Q(a) : Qleo 16 - C(A) (F(A)(logIA!)4|A!1/2>
44| A1/ C(A)
16 - C(A) F(A)(log |A[)*A[/2

F(A)(log |A)1|A[1/2
g( c(A) )'

We continue the estimate by simplifying the terms to get

8loglog(|AlY?) — C(A)
F(A)  (log|A[)*A['Y2

13[Q0) : Qle + (@) : Qe

2C(A)
E’A|1/2
C(A) )

h(j —a) <[Q(e) : Qlez

+ 5P (&) + log (

Now we apply Lemma 2.15 to see

. 1 Cch)
h(j —a) <[Q(a) : Q]C2§(log|A|)4|A|1/2

+3[Q(e) : Qlez + [Q(e) = Qle

E|A|1/2
C(A) )

E
20(A)

+ 5P (&) + log (
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We continue the estimate using Lemma 2.16

1 |A]Y2(2 +log |A[)

h(j — o) <[Q(«a) :Q]C227T (log |A])4| A/

+3Q(e) : Qlex + Q) : Uergaes
1 5P(E) + log (E C|(AA|1>/2)
Simplifying again results into
b5 - @) <[0(a) s Qleay- CEOEIC]
+31Q(0) : Qor + [2(0) : Aoy
+5P(€) + log (ECL(AI)/Q)

2+log x

The function x +— Tog )1 is decreasing for > 1. Thus we can substitute z = 10'* to
continue the bound an(f get

1 35
h(j — @) <[Q(a) : Q]ngﬁ
E
+ 3[Q(a) : Qlea + [Q(a) : @]022C(A)
EIA 1/2
+ 5P(&) + log ( C’(A‘) )
This gives the desired inequality. O

2.3 Proof of the main theorem in the CM case

We now want to bound A to complete the main proof. We will do this by using the lower
and upper bounds we derived in the last section. Throughout this section we assume
|A] > 10%°.
Put
C =C" + h(a) +1og2 + 0.01. (2.11)

Combining the lower bounds for h(j — «) from Lemmas 2.8 and 2.9 with the upper



34 CHAPTER 2. THE CM CASE

bound from Corollary 2.17 we obtain the inequality

L = max {n Ca) o el - 10} < Q@) Qleagpzy Hloe =55y —+C
or equivalently
E log E+C  log(|A]M2/C(A
1ﬂ@®@bmfﬁﬁpgﬁ +%Uu/(ﬂ

For the remainder we assume that |A| is large enough so that log E+C > 0. By Lemma

2.15 this is the case when |A| > e "™ This in turn is true whenever |A| > 3. Since
\/iglog |A] =10 > 0 for |A] > 10" this allows us to replace L by \/iglog |A| — 10 in the

middle term. Similarly we can replace L in the first term by 7|A|'/2/C(A) and obtain

K log E+ C log(|AY2/C(A))
1< :
< [Q(«a) Q]CQQﬂAP/z + \%log|A| —10 L
E log log(7~'L) ¢
< : 2.12
< [Qla) : Qleag s + 2 log |A]— 10 L 2 log |A] - 10 (212)

We want to show that the right-hand side is less than 1 for large enough |A|. Before
we start, we want to give a bound on E(A) = F(A)(log|A|)*. To do this, we are going
to bound log F'(A) and log E(A). A bound for log F/(A) can be found in equation 5.7 of
[BHK18] and is given by

log F(A) < 1 log |A]
log2 — 2loglog |A| —¢; —log?2’

where ¢; < 1.1713142 is defined by

log N1

N, =
w(I) loglog Ny — ¢y

and Ny = 2-3-5---1129 is the product of the first 189 prime numbers. Then the bound
on log E(A) is given by

log 2 log |A|
2 loglog|A| —¢; — log2

log E(A) < + 4loglog |A|.
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Now we want to bound E|A|~*/2. Since the function

(z) log 2 1 L 4loglogx 1
up(x) = _Z
0 2 loglogx —c; — log 2 log x 2

is decreasing for > 10'° we obtain

log(£|A[~'/2)

< up(10%%) < —0.1085
log |A| < o )

for |A| > 10%°. This in turn implies

E’A|71/2 < |A|70.1085.

The next step is to bound the second term of (2.12). The functions

1 4log log x

= log 2
w(x) = log loglogz — ¢y —log2 log x

ua(e) = (% B lolgox>_1

are decreasing for z > 10'°. We have

and

log £
1og |A| — 10 -

for |A] > 10%.

uy (|ANua(|A]) < uy(10%°)uy(10°°) < 0.4896

35

(2.13)

(2.14)

To bound the third term of (2.12) we remark that the function z — z~!log(7~'x) is
decreasing for x > e/mw. We have L > \% log|A| =10 > e¢/m for A > 10'® and therefore

log(r~'L) 5 log (w‘l <i log |A| — 10>> |

L - % log |A] — 10
The function
log < ( 3 logx — ))
us(@) = %loga:—lo

is decreasing for x > 10*°. Thus we obtain

log(m~'L) <

1
7 uz(|A]) < uz(10') < 0.0674 < —

10

(2.15)
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for |A] > 10%.
For |A] > e10°F (C+1) e have
C 1
3 <5
“z log |A| —10 — 10

(2.16)

By equation (2.13) we can bound the first term of (2.12) by

([@(a;@]@) A[F01085 < %

for |A] > (10[Q(a) : Q]eg/(27))™.
Using these two inequalities together with (2.14) and (2.15) we obtain that (2.12) is
less than 1 for all

|A| > max {1030, 105 (C+) (10[Q(a) - Q]CQ/(ZLW))IO} . (2.17)

This contradicts the lower bound of (2.12).
The lower bound on |A| can be simplified. In equation (2.11) we have put C' = 4[Q(«) :
QJez + 5P(€) 4+ h(a) +1og 2 + 0.01. Recall that ¢ > 1. This implies C' > 4.7 and hence

6150 Z 670 Z 1030‘

Moreover, we have

?(C +1) > 10?2[@((1) : Qlep > 10%2[(@(@) : Qe

> 101og (%2[(@(@) : @]cg)-

15C > 10

Therefore, the bound on |A| from equation (2.17) simplifies to
|A] > et (2.18)
where C' > 0 is a computable constant

C =2[Q(a) : Qlea + 6P(&) + h(a) +log2 4+ 0.01.



3 The non—CM case

We fix an elliptic curve without complex multiplication, and denote by j, its j—invariant.
Assume that the curve is defined over a number field K contained in C. Our aim is to
prove the following result.

Theorem 3.1 Let jo be the j—invariant of an elliptic curve without complex multipli-
cation. Then there are at most finitely many j—invariants j of elliptic curves that are
1sogenous to an elliptic curve corresponding to jo and such that j is an algebraic unit.

Assume j(1y) = jo for 7o € F. For any embedding o: K < C there is a 7§ € F such
that j(7§) = o (jo).

For ¢ € F and 7 € H such that the curves corresponding to jo and j(7) are isogenous
we define the sets

2(&e) ={r € F:lj(r) = j(§)] < e}
and
['&e)={o: K—>C;77 € ¥(§,e)}.

We will write 3, and I', for (¢, ¢) and I'(¢, €), respectively, where ¢ = e>™/6.
The set Y. is sketched in Figure 3.1.
To estimate the number of elements in I'. one can use of the following theorem, which

is Théoreme 1 in [Ric13]. Recall the hyperbolic probability measure dyu = %%.
Theorem 3.2 Let Ei, Fs,... be pairwise isogenous elliptic curves without complex

multiplication. Let j, be the j—invariant of E, and assume that the j, are pairwise
distinct. Then the sequence of Dirac meassures ((5 Aut(@/@).jn) converges to the hyperbolic
probability measure . This amounts to saying

1
ge X @ [ s
Q) - Q) 2€Gal(Q(jn)/Q)-jn 7
as n — oo for any bounded and continuous f: F — R.

Lemma 3.3 We have #I'. < ¢£?/3D,, for sufficiently large D,, depending on e and
some ¢ > 0, where D, = [Q(j,) : Q|. Here I'. corresponds to the 1, with j(7,) = jn.

37
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1.5 1

T T T T
-1.0 -0.5 0 0.5 1

Figure 3.1: Neighborhood of (.

PROOF. By the last theorem we have |#I'./D,, — u(3.)| — 0 as n — 0o. The proof of
Lemma 2 in [Hab15] gives the estimate u(X.) < ce?/3. The claim follows. O

3.1 Isogenous points in the fundamental domain

We want to give an explicit bound for the number of elements in the Galois orbit of jg
satisfying the condition above. First, we will bound the number of points in the Hecke
orbit, and then use a result of Lombardo to estimate the total number. Two (equivalence
classes of isomorphic) elliptic curves are in the same Hecke orbit if they are isogenous.

The following lemma is of similar nature to Lemma 2.2. We translate points in the
upper half-plane into the fundamental domain with matrices in SLy(Z), and thus get
restrictions on then entries of the matrices.

Lemma 3.4 Let{ € F and ¢ € (0, W@] Let T € H satisfy |7 —&| < e, where T € F
is in the SLo(Z)—orbit of T. Pick

y = (‘é Z) € SLy(Z)

such that vy = 7. Then there exist v € {+1} such that

m(§)
m(7)

4’5‘ + 1 |§|2 81/2
V3 Im(7)’

I
a? 4+ v2| Re(€)]ac + [£]*c* — i <7 (3.1)
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Figure 3.2: Neighborhood of ellipses

and del 11 1
_|._
max {a?, *} < . 3.2
Moreover, we have
1l +1
d| <lc||Re(T)| +
|d| < [e]| Re(7)] 3
and s+ 1
+
) < Jal Re(r)]| 4+ = =

The lemma tells us, that the first column of v, considered as a point in the plane, is
close to a conic section. Since

(2v| Re(€)])* — 4[¢]* = 4(Re(&)* — Re(€)” — Im(€)*) = —4Im(¢) <0

the equation actually defines an ellipse as pictured in Figure 3.2. The ellipse is defined
in terms of £ and 7.

PRrROOF. Let R = |{] and A = Im(§). Moreover write 7 = x + iy. We have

ImT V3 V3
I = >A—e>A- >
m(y7) (cx +d)?+ c2y? — ©= 3R+2 ~ 4R+1

by definition of ¢ and A > ‘/75 Define 6; := Im(y7)~'. Then 6; < 1/(A —¢) and

(cx +d)* + 2y* = o1y, (3.3)
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This yields ¢ < §;/y < (A —e)~'y~!, which implies the bound on ¢?, and

1
lcx + d|cly < 3 ((cx+d)* + y°) = —(513/ < my
Further we get
1 4R+ 1

cr +dl|c| < < 3.4

er kel < g < (3.4)
and hence

4R+ 1

jd| < [ef[Re(T)] + 7

if ¢ # 0. Thus the inequality for d in the statement is true in the case ¢ # 0. But if

¢=0,then d=+1,and |[d| =1 < % < 4RTJ§1. Thus, the inequality for d holds in both
cases.

Put +' = (? _01) 7. Then »'7 = —%. Define &, := Im(y'7) 7, i.c.

(az + b)? + a*y® = Syy. (3.5)

We put r = |7| and B = Im(7). Now by the general rule of transformation of the
imaginary part under fractional linear transformations

(1) - (42) 5

We remark that B/r = Im(7/|7|) > v/3/2 since 7/r € F, and similarly A/R > /3/2.
This implies

2 1
<—r< (R—|—5)§ Rt )

NEHRNG V3

We proceed as before with the bound on d and ¢®. From (3.5) we obtain a® < dy/y <
(3R +1)/(v/3y), which is the desired inequality of the statement. Moreover, we obtain

|az + blla] < 8y/2 < (R+1)/V3 (3.6)
and hence R4l
b| < |al| Re + —F,
[b] < [af| Re(7)] 7
whenever a # 0. Again, if @ = 0, then |[b] =1 < %, as claimed.

It remains to prove (3.1). We deal with the case ¢ = 0 first. Then a = d = +1 and
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y=206"=Im7=Im7, and thus |y — A| < |7 — £| < . This implies

1 1 £ 1el/?

o< =<

A ylT AyT Ay
Multiplying by A shows that Equation (3.1) is true for any value of v. Now assume
¢ # 0. We want to prove |Jy — ﬁ| = |0y — %| < e. We compute

Im¢
62—R—2 _ 7“_2_52 :‘R2B—T2A'
A B A AB
_ |R°B— BRr+ BRr — ARr + ARr —r*A
| i \
r—R A—-B r—R (3.7)
< RB 1B ‘—FRT 1B ’+r 1B '
2 4
\/_5+ 6+\/§
< de,

where we have used |R —r| = ||{| — ||| < |§ = 7| < e and |A — B| = |Im(§) — Im(7)| <
|¢ — 7| < € in the second last inequality.

Suppose @ = 0 for now. Then b = —c = +1 and y = §,'. Multiplying (3.7) by

Im(¢) = A shows (3.1) as the following argument shows. We have 6, = Im(y'7) =
Im(7)

|b]?
of SLy(Z) by fractional linear transformations. Thus

Im(&)
m(7)

We have Im(7) < 2/4/3 since @ = 0 and v translates 7 into the fundamental do-
main. Therefore, the inequality remains true after multiplying the right—hand side by
2/v/31Im(7)~". This shows equation (3.1).

= Im(7) by the usual transformation formula for the imaginary part of the action

| A0, — R?| = ‘32

‘|§|2 ‘ < 4Ae < 4R\,

Finally, assume ac # 0. Put X := 2+ d/c and Y := x + b/a. Consider the difference
of the two p ) .
X-Y = (aj—i——) — (x—l——) = —.
c a ac
If we divide (3.3) by ¢? and rewrite the result in terms of Y we get

1 2 (51y
(a2 Y T e

b} 1\? b} 2
0=X2+y%— Cly (Y+ )+y2 Cly_Y2+ ~y
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Similarly, if we divide (3.5) by a® we find

5
2 2 2Y

Computing the resultant of the last two displays as polynomials in Y, and multiplying
the result by (ac)* to kill the denominators, gives us the expression

aty?6? — 2a*c*y?6,0 + ctyPos + 4a*cPy? — 2ayd; — 2Py, +1 = 0. (3.8)
Now write §; = % +¢e1 and 0y = %2 + £9. Then

2
< €
~ V3A

since Im(7) > v/3/2 and |Im(¢) — Im(7)| < |€ — 7| < e. Also |s5| < 4e by (3.7). Put
o = Re(§). If we substitute these expressions for §; and J5 in (3.8) we obtain

1 2 1 R2
0 =a4y2 (Z + 51) — 2@202y2 <Z + €1> (Z + 62)
R2 2 1 R?
+ ¢ty (7 + 52) + 4a’Py? — 2ad%y (Z + 51) —2c%y (7 + 52) + 1.

After multiplying the equation by A?/y? the terms that do not include ¢; and ey are
given by

0 —

le1] =

1| |A—Im(7)
Z' - ‘ ATm(7)

(3.9)

R? R* A R? A2 A?
4 2 9 4 42 2 9 492 2 2
-2 A— A — +4 A —2a°— — 20— — + —
a a“c A—I—c A2+ac ay CAy+y2
A A A2
=a* — 202 R? + *R* + 4a>P A% — 26— — 262 R*= + —
Yy Y Yy
A A A2
= a* — 20*°*R* + ' R* + 4d**(R* — 0%) — 2a*= — 2c*R*— + —
Yy Y Yy

= <a2 — 20ac + R*¢? — é) <a2 + 20ac + R*? — é) .
Yy Yy



3.1 ISOGENOUS POINTS IN THE FUNDAMENTAL DOMAIN 43

The terms that involve £; and €5 in (3.9) after multiplying it by A%/y? are given by

2 R? 1 1 R? 1
A? ((a‘lz — 2(12627 — 2a2§> €1 + (—2@2CQZ + 204Z — 2025) €9

4_2 2.2 4.2
+(a 51—2a05152+cez)>

2 2 1 1 2 1
= A2 <a2 (QZZ — 202% — 2;) g1 + 2 (—QaQZ + 202% — 2§> €9

+ ((I251 — 0262)2) .

Putting everything together in one equation again we obtain

A A
<a2—20ac—|—R202——) <a2—|—20ac—|—R202——)
Yy Yy
1 R? 1 1 R? 1
— A2 9g2 (22 2 2 P o7 1
(a (CLA c P y)sl—l— c < aA—i—c P y)52

+ (a’er — 0252)2) .
We are now ready to prove (3.1). Choose v € {1} such that
|

a® — 2v|o|ac + R*c® — —|.

A
a’® + 2v|olac + R*c* — —' <
Y

Then

2

A
< a’ +20ac+ R*¢* — —

A
a? —20ac + R** — = '
Yy

A
a® + 2v|olac + R*c® — =
Y

A A

1 R* 1
+2(a2—+02—+—) €
Attty )l

1 2 1
<A’max {a*, ¢’} (2 (aQ— + c2R— + —) e
Y (3.10)
T max{a®, ) (je1] + |€2|)2) |

Note that 1/4 < 2/\/3 and R?/A < 2R/\/§ as remarked on page 40. We also have
acquired a bound for max{a?, ¢*} in the beginning of the proof displayed in (3.2). There-
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fore,

b1 LR 1 _4R4111 4R411R 1
a’—+cF—+ =
A Ay~ \/_yA \/_yA

4R+11<1+R2+2)
T V3 y\A A 3
4R+16R1
=78 3y
Using the bounds for €; and 5 we get
1 R* 1 4R+ 16R1 2 4R+ 1¢
2| a® —l—c——|—> < —— e < 10——7=-,
( ategty)kl V3 V3y+/3A V3
1 ,R* 1 4R+ 16R1 4R+ 1€
2(a*= + 22—+ >5 <2————-4e < 28R——-—
<A Aty V3 3y VER!

and

2 2 2
4
OM+MW§<AJ—+%>S§(Z7ﬂ4>§§<?%)§%E§H5

since £ < 4/3/5. Using these inequalities for (3.10) and applying (3.2) again we obtain

2

< A*max {az, 02} (38R4R +1c )

A
a® + 2v|olac + R*¢® — — — + 1l max{a®, c*}e
y V3 Yy

4Rk1>25
V3 y?

Taking the square-root on both sides gets us

g@ﬁR(

4R—%1)5V2
=

A
a2+2yaac+R202——‘ < 7AR1/2(
i vyl V3

Using A < R and y = Im(7) we get

1/2
a® + 2v|olac + R*c* — é‘ <T7R? <4R+1> c
)

V3 /) Im(r)’
This proves (3.1). O

Note that the estimates might be improved slightly, especially when ¢ = ¢ or £ = (2
with ¢ = €?™/%. We are going to look at those special cases eventually, so that Im(¢) =
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V3/2.

We want to use the last lemma to prove the following proposition.

Proposition 3.5 Let N be an integer, and let Ey be an elliptic curve, and § € F.
Further, assume that 0 < e < (1007Y¢|3Im(&))%. Then the number of T € F with
|€ — 7| < e and such that Ey is N—isogenous to a curve corresponding to j(7) is bounded

by
10770/ Ig° (VNao(N) + VEB(N))

For the remainder of the section we are going to prove this proposition.
For fixed 7 € H with bounded real part we want to bound the number of matrices
that satisfy the conditions in the lemma. For this we define

M(&xyyse) = #{y € SLa(Z); Ir = & + iy, || < |2|, |y7 — £| < e and 47 € F}.

Note that the last lemma tells us that all 7 on horizontal lines in the upper half-plane
satisfy the same equation for (a,c). Thus, if we look at horizontal line segments the
number M(&; z;y;€) can be bounded independent in terms of x.

If v is as in the last lemma, then the first column (a,c) is close to one of the two

ellipses
1
X? 42| Re(§)| XY + [¢y? = 22S)
Im(7)
More precisely, we have
Im(¢) 3 gl/? 2 2 2
AN——| < h A=a“+£2 . A1
’ Im(T)‘ < 50|¢] ()’ where a | Re(&)|ac + [€]°¢c (3.11)

We need an upper bound for the number N(Im(7), €) of lattice points (a, c) € Z?* that
satisfy (3.11). Each of these points lies in a neighborhood of an ellipse defined above.
We are going to use a result by Davenport [Dav51]|. The following theorem is a special
case of the result of Davenport.

Theorem 3.6 Let R be a region in the two—dimensional plane with smooth boundary.
IfV(R) denotes the volume of R and N(R) the number of points with integral coordinates
i R, then

IN(R) - V(R)| < 4(L+1),

where L is the length of the boundary of R.

Thus, we need to compute the volume and the circumference of the ellipses that bound
the given neighborhood. Let us assume that

< (i)
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is small enough. We consider the case when v = 1. The ellipses are then given by
E.: Aa®> + Bab+ Cb* =1
with

_ Im(7) _ 2ARe@[Im(r) . [¢Im(7)
~ Im(€) £50[€[3¢1/2” ~ Im(€) £ 50|¢[3e1 /2 ~ Im(€) £ 50[¢Pel /2

The area of the bigger ellipse is then given by

2 . Im(&) +50(¢%"/ 7TIm(g) + 50|¢[31/?
VIAC — B2 Im(r)/[EF —Re(€)? ~ Im(7)Im(¢)

vol(E,) =

Similarly, we have
Im(¢) — 50[¢[*c"?
Im(7) Im()

vol(E_) =
for the smaller ellipse.
We now want to bound the circumference of E.. For this we will use the following
lemma.
Lemma 3.7 Let E be an ellipse given by Aa*+ Bac+Cc? = 1. Then the circumference
L of F is bounded by
L <\/2(A+ C)vol(E).

ProOOF. To prove this we rotate the ellipse, so that the new equation becomes

Aa® +C'v = 1. (3.12)
The coefficients are given by
A+C A-C B
, b
A = 5 + 5 cos(26) 5 sin(20)
and A+C A-C B
C' = —5 — ; cos(20) + B sin(26),

where 0 satisfies cot 20 = % or tan 20 = %. Note if B = 0, we have # = 0, so that
A" = A and C" = C. Now the circumference of an ellipse in the form of (3.12) can be

estimated by
/1 1 A+ [A"+ C"
LS\/E’]T E+5§\/§W 1C =221 TACT
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But if we put B’ =0, then A’ +C' = A+ C and 4A’C’ = 4A'C' — B”? = 4AC — B? since

the discriminant is an invariant. Thus

<
L<V2WVA+C 4AC Y Te = V2V A + Cvol(E),

as desired. O

If L, denotes the circumference of E,, then we have by the previous lemma

)+ 50[¢3¢1/2 Im(7) Im(&)

< Vor \/1+\€!2 \/Im +50|£\361/2‘

L. <V2r \/ 7) + €7 Im(7) Im(€) + 50[¢ <™

Now we use the bound on ¢ to get

1 2 /1
L. < Vin + Ifl \/ m(é) + 5 Im(¢)
1+ |§|2 1
) /Im(7)
We have % < \% since £ is in the fundamental domain. Hence IrE'(Qg) < %Im(f) and
therefore
1+ 1 .2 4 5
[ n e 2 + -~ Im(§) < - Im(¢).

Im(§) — Im(¢)  Im(§) ~ V3 3 3

Using this for the bound of L, yields

2m 2 Im(f)
- V/Im(7)

Similarly, we obtain

L < or \/1+|§|2\/Im —50|§|351/2.
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where L_ is the circumference of F_ and thus

L. <\or \/1+|§|2 f
— \V2n 1+ 1
) /Im(7)
o V2Im(E)
- Im(7)

Clearly this bound holds since L_ is the circumference of the smaller ellipse.

Let N(E.) denote the number of lattice points contained in F. as defined in Theorem
3.6. By this same theorem, the number of points contained in the elliptical annulus can
be estimated by

N(Ey)—N(E_)=N(Ey)—vol(Ey) — (N(E_) = vol(E_)) 4+ vol(E,) — vol(E_)
<A4(Ly+1)+4(L-+1)+vol(E;) — vol(E-)
1007 |¢|2e1/2

< St ) )
V2Im(E) + /Im(r)  1007|¢[*e1/2
= 10m Im(7) Im(7) Im(§)

Therefore, a bound for N(Im(7),¢) is given by twice this number since the ellipse for
v = —1 gives the same bound.

To obtain a bound for the number of matrices satisfying the conditions in Lemma 3.4,
we need to estimate the possible pairs (b, d) when (a,c) is fixed. Let (a, ¢) be fixed, and
assume that (b, d) and (V',d’) satisfy ad — bc = 1 and ad’ — b'c = 1, respectively. Then
(b—"b,d—d) = (ak,ck) for some integer k. Lemma 3.4 now implies

4/¢] + 1
V3

|k| < 2|Re(7)| + 2 < 2|Re(7)| + 6¢].

Thus, M(&; x;y;¢) is bounded by

N(y,e) - (2 2z +6[¢]) +1) < N(y,e) - (4o + 13[¢])
<9 (16 v2m(e) + VG | 100m|¢]e 1/2) Ao+ 13)).  (3.13)

NG y Im(¢§)

We now want to apply this result to estimate the number of points close to a fixed
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0.5

T T T T T T T
-1.0 -0.5 0 0.5 1 1.5 2 2.5 3

Figure 3.3: 79 and all except one 77 for N = 10

point which are given by a cyclic isogeny of degree N. Let 79 € H be fixed. Let N € N.
We will be working with matrices M of the form (73 }) with N =mn and 0 <1 < n.
We will denote M.7y by 73, We want to bound the number of points 7, satisfying
|7ar — €] < & with 7y in the SLy(Z)-orbit of 7, and in F. For this we momentarily fix
a divisor n of N with n > +v/N and a matrix M with M = (’61 ﬁ) and 0 <[ < n. Then
y :=Im(7ar) = 2 Im(7p) for any 0 <1 < n. Figure 3.1 shows an example with 7= 1+1
and N = 10.

Since y does not depend on [ and | Re(7as)| < | Re(79)|+1, the bound for M(&; | Re(mp)|+
1;y; ) is independent of I. This number does not estimate all the 7, that are translated
close to & as we will see later. The bound in (3.13) translates to

. o \/2 Im(§) + \/% Im(7p) n 257T]£\381/2 n
M(& | Re(ro)| + Liy3¢) <8 <4” Tm(r) \/; " (7o) I (©) m)
- (4| Re(mo)| + 13|¢] +4) .

But % < 1 since n > v/N and hence
M(&|Re(m0)| + Liy;€)

st + 176) 1T Y] [, e )

Tm (7o) Im(79) Im(§) m

m mi( 7 T 2.1/2
8 (4] Re(7o)| +17/¢]) ( V21Im(E) + V1 (0>\/%+mﬁ>

Im(7p) Im(ro) m
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if we also apply [£]?/Im(¢) < 4[¢]/3. Further we get

M(& | Re(70)| + 1;y3€) < 647 (4] Re(7o)[ + 17¢])
- max { v2Im(€) + yIm(n) 5 L } (3.14)

Im(T()) ’ Im<TO)
m m

Now different 75, (entry [ different) can be translated close to £ by the same matrix,
so we have to restrict those. So if 7/ is translated into the disc around £ by a matrix
(25) then the real part x of 7y satisfies

ez +df |e] <3[¢] and  az + b [a] < 3[¢|

by (3.4) and (3.6). Assume that ¢ # 0. Then |z + d/c| < 3|¢|c™2, so that z lies in an
interval I with center —d/c and of length bounded by 6|¢|c™2. This implies

{1 €{0,....,n—1}: (mRe(ry) +1)/n € I}| < n|I| +1< 6|£|C% Tl

A similar result is obtained if a # 0. So in any case
n

{1 e{0,....,n—1}: (mRe(n) +1)/n eI} < 6|§|W +1 (3.15)

independent of whether the interval is centered around —d/c or —b/a. Moreover,
max{|al, |c|}* can be bounded by

3¢ max{lal, |el}? > a? + 12| Re(©)]ac + ¢
_ Im(§) = 50j¢P< _ Tm(€) — 50)¢Pe” n

)

y a Im(79) m

where the last inequality follows from Equation (3.1). Using the upper bound on & we

obtain Im(¢)
9 9 m n
> _
3¢l macflal, ef}? 2 gy
and hence (o)
n m(7o
6|6 ———————— < 36[EPP——2m < 50|€JP T 3.16
‘€|max{‘a|7|c‘}2 = |£’ Im(ﬁ) m > |£’ m(TO)m ( )

since |¢]/Im(¢) < 2/+/3.
Recall that the matrix M is of the form (73 7l1) with N = mn and 0 < [ < n and
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Ta = M1y As before, 7y, is in the SLy(Z)-orbit of 7, and in F.

Let A(1p; N;e) be the set of 7y satisfying |7y — &| < &, where 7/ is as before. The
number of elements in A(7y; NV;¢) is surely bounded by the number of matrices M with
lower right entry greater than /N satisfying the condition plus the total number of
matrices with n < V/N. The latter is bounded by

Y n<VNY 1=vNoy(N).

n|N n|N
0<n<VvN

For n < v/N we are going to count 7,; independent of whether |Tar — €| < € or not since
the number v/N. 0o(N) does not grow too fast. Now by the arguments we just made,
we can bound the number of 7); and thus the total number of points in A(7y; V;€) as
follows. Recall that N = mn.

Ao Vi) < 3 M <g;|Re(TO)\ et %Im(m);g) (6\§|+ N 1)

max{[al. [}
n>VN

-+ \/NO'()(N>

Here, for fixed n the number M (&; | Re(7)| + 1; 25 Im(7p); £) bounds the matrices that
translate any 7, of the form (73 fz) with varying [ close to £&. But since different 75, can
be translated into the disc around ¢ by the same matrix we have to compensate this
with the inequality in (3.15). This in turn can be estimated as displayed in (3.16) so
that

A 39 < 3 M (61 Re(a)l + 1 2 e ) (50068 Tt +1)
n>vN

+ \/NO'O(N)

By the inequality for M (&;|Re(7o)| + 1; 25 Im(79); €) in (3.14) and 1 < m we get

|A(o; N;€)| < VNoo(N) + Z m - Z(7o,€) - (ng%guz)

m|N
m<vN
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where

Z(7o,€) = 647 (4] Re(r0)| + 17]¢]) (50/¢|* Im(7o) + 1)

" {\/21m(£)+\/1m(70) o _leP }

Im(7p) " Im(7)

We can continue the estimate

|A(10; N €)| < VNoo(N) + Z(10,€) Z m (ﬂ—Fﬁsl/Q)

m m?2
m|N
m<vN
N
=V Noo(N)+Z N+ —£/2) .
VNao(N) + (mf)% (W+me )
m<vN

We split the sum to get

|A(10; N;e)| < \/NO'O(N)+I(TO,£) Z VN + Z %51/2

eV m”z‘Nw
= VNoo(N)(1 +Z(10,€)) + Z(r0,€)e* Y m
By
= VNoo(N)(1 + Z(70,€)) + (70, €)' %01 (N). (3.17)

Lemma 3.8 Let N be a positive integer. Then o1(N) < %1[)(N)

ProoOF. It is well-known that oy is multlphcatlve The function 1 is also multiplicative,
see page 53 of [Lan87]. We have o, (p*) = ” Land ¢ (p*) = p* '(p+1). Thus

o1 (pk) B pk+1 -1 - p2 1
Y(pk)  (p-D@+Lptt —p*—-1 1-—p?%

For general N this yields

(V)
2
N ( )7
k||N P
where ¢ denotes the Riemann zeta function. This proves the claim. O

This proves the following claim.
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_ 2
Lemma 3.9 Fiz1g € Hand £ € F. Let 0 < ¢ < (1151(;'(5)3) . Let A(7o; N;€) be the

number of Mto, M = (3 L) with N = mn and 0 < | < n, that satisfy [yMmy —&| < e
for some v € SLy(Z). Then

A V:6)] € Vo (N) (1 + T, €)) + = T, )" ().
with

Z(70,€) = 647 (4| Re(r0)| + 17/£]) (50|¢[* Im(79) + 1)

.max{\/ZIm(f)—i—\/Im(To) _le? }

Im(7p) " TIm(7)

To complete the proof of Proposition 3.5 we restrict 7y to the fundamental domain.
Then Im(7) > v/3/2 and | Re(7g)| < 1/2. Therefore we get

V2In(E) + yim(n) _ V2O g e

Im(7p) Im(7p)

and hence

2

e { 1+ Z(00,), 2, ©) | < 04 (24 171]) - 00€PInl - 1€l < 107

Recall from Chapter 1 that an N-isogeny is related to a matrix of the form M = (73 })
with N = mn, 0 < | < n and ged(m,n,l) = 1. We have considered such matrices
without a condition on the greatest common divisor. Therefore we are done with the
proof of Proposition 3.5.

3.2 Bounding the height

Recall that we have fixed an elliptic curve without complex multiplication defined over
a number field K and jj is its j—invariant. Two points in the fundamental domain are in
the same Hecke orbit if there exists an isogeny between them. We are going to compare
the Galois orbit of j, to the Hecke orbit of all conjugates of Ey. We now want to bound
the number of elements in I'(§,¢). For this we use the connection between the isogeny
orbit and the Galois orbit of Serre’s open image theorem. See Théoreme 3 in §4 of
[Ser72].
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Galois orbit

More precisely, we will be using a version proved by Lombardo [Lom15], that gives
us an explicit bound. Let Gx = Gal(K/K) be the absolute Galois group of K. Recall
that Gk acts on the N-torsion points of N, and we thus get a representation

pn: Gk — Aut(E[N)).

The group Aut(E[N]) is isomorphic to GLy(Z/NZ). It is possible to choose a suitable
basis of GLy(Z/NZ) so that we obtain a representation

poo: G — GLy(Z)

after taking the inverse limit (over N.) Serre proved in [Ser72] that [GLy(Z) : peo(Gx)]
is finite. The result by Lombardo implies

[GLZ(Z) : pOO(GK)] <y [K Q" - max {1, h(E), log[K : Q]}*" (3.18)
where vy, = exp (102'83) and v, = 2.4 - 10'°. In particular, we obtain
[GLy(Z/NZ) : pn(Gr)] <7 - [K : Q]2 - max {1, h(E),log[K : Q]}*.

Note that Lombardo’s result actually uses the original definition of the Faltings height.
This information was acquired through a private conversation with the author. Since
the original definition of the Faltings height is smaller than the height of E we defined
in Chapter 1, we can just substitute A(E) into Lombardo’s result.

The cyclic isogenies of degree N correspond in a one-to-one fashion to the cyclic
subgroups of order N in Z/NZ x Z/NZ ~ E[N]. The action of GLy(Z/NZ) on these
subgroups is transitive as the next lemma states. We start with some group theory. We
denote by ¢ Euler’s totient function given by ¢(N) = #(Z/NZ)* = N]],y(1 —1/p),
where the product runs over all primes p dividing N. Recall (N) = N [], (1 +1/p).

Lemma 3.10 The cardinality of GLy(Z/NZ) is equal to o(N)*(N)N. Let A C
GLy(Z/NZ) denote the subgroup of upper triangular matrices. Then #A = Np(N)?.



3.2 BOUNDING THE HEIGHT 25

There are ¥(N) cyclic subgroups of Z/NZ x Z/NZ. The group GLy(Z/NZ) acts tran-
sitively on the cyclic subgroups of order N in (Z/NZ)?.

Lemma 3.11 Let E/K be an elliptic curve, N an integer, and ® C E[N] a cyclic
subgroup of N—torsion points. Put B = |{o(®) : 0 € Gal(K/K)}|. Then we have
N
D < [GLu(Z/N) : pr(G)].

PROOF. Suppose @ is generated by P € E[N]. After choosing a basis, we may assume
that P corresponds to (1,0) in Z/NZ x Z/NZ. For any o € Gal(K/K), the group o(®)
is generated by a point (a,c¢) € Z/NZ x Z/NZ where (¢Y) is the image of o under py.
Let A be the subgroup of upper triangular matrices of GLo(Z/NZ). The equality o(®) =
® holds if and only if ¢ is mapped into A under py. We thus have

#impy  #impy _ #impy

P danmm) = #A T Ne(NE

This implies

YN) _ DN)P(N)N _ (N)p(N)*N
B T #impy # GLo2(Z/NZ)
= [GL2(Z/NZ) : pn(GK)],

[GLy(Z/NZ) : pn(Gi))

as desired. m

We want to estimate a Mertens’ type of sum. In fact, we are going to use a result by
Mertens.

Lemma 3.12 Let n > 4 be a positive integer. Then

1
Z 8P < 5.25loglogn,
p

pln

where the sum runs over all prime divisors of n.
PROOF. The function logz/x is decreasing on (e, 00). Note that (log2)/2 < (log3)/3.
So let n = p® be a prime power with p # 2. Then

log p < log 3

P 3

< 5loglog3 < 5loglogp

and the claim holds. If n = 2% with a > 2, then

log 2

<1< 5loglog(4).
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Now let n = p®q® with different primes p,q and a,b > 1. We have (log5)/5 < (log2)/2
and (logp)/p < 0.5. Thus

lo lo log2 log3
gp+ g4q < g i g
p q 2

<1< 5loglog6 < 5loglogn.

So the claim is true for all 4 < n < 29. let us now assume that n is composite with
w(n) > 3. We can bound the sum by looking at the first w(n) primes

3 logp _logpr | logps l0g Puin)
p Y41 b2 Pu(n)

pln

Note that (log2)/2 < (log3)/3, so that if 3 occurs in the prime decomposition of n and
2 does not, we can just estimate the largest prime divisor of n by (log2)/2 and get the
same inequality. It is a well-known result by Cipolla in [Cip02], that the n—th prime
pn is bounded from above by n(logn + loglogn) for sufficiently large n. Indeed Rosser
proved in Theorem 2 of [Ros39] that p, < n(logn + 2loglogn) for all n > 4. Also
compare to the bound in [RS62]. Hence p, < 2nlogn for all n > 3 since this bound
also holds for p3 = 5. Since we have w(n) > 3 we can apply this to the last inequality

to obtain 1 1
ogp ogp
< .

p|n p p<2w(n)logw(n)

By Mertens’” Theorem (see [Mer74]) the sum on the right-hand side is bounded by

Z log p < 2log(2w(n) logw(n))

p<2w(n)logw(n)

for all n > 1 composite of at least 3 distinct primes. We have the trivial inequality

This gives us

1 1 1
5 1 (151 1)
o D log 2 log 2

< 2loglogn + 2log (loglogn — loglog 2) + 2.12
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and if n > 5 this gets us

lo
g gp<210g10gn+210g(210g10gn)+2 12
p
pln

< 2loglogn + 2logloglogn + 3.51.

But we have loglogn < 2%logn since z — (loglogz)/logz is decreasing for z > 16
and (loglog30)/(log 30) < 0.36. Because of 3.51 + 21og 0.36 < 1.25loglog 30 we obtain

1
Z oty < 5.25loglogn,

p<2w(n)logw(n)

as desired. ]

Proposition 3.13 Let E/Q and Ey/K be elliptic curves without CM such that there
exists a cyclic isogeny of degree N from Ey to E. Let py be the Galois representation
associated to Ey. If N > 4, we have

h(E) > h(Ep) + %logN —7-[GLa(Z/NZ) : pn(Gr)]loglog N.

PrRoOOF. We denote by h(E) and h(Ey) the stable Faltings height of E and Ey, respec-
tively. (The stated inequality does not depend on the normalization of the Faltings
height.) We consider the action of Gal(Q/K) on the set of Q-isomorphism classes of
elliptic curves. Let E' = E,..., Ey) be representatives of elliptic curves that are N—
isogenous to Ey. Note that the group Gal(Q/K) acts on the set {Ey, ..., Eyn}. By
Corollaire 3.3 in [Aut03] we have

1 P(N) 1

where N = p{* -+ p2 and Ay =), (ZPQT log p;. Rearranging and using |h(Ey) —

h(E;)| <1/2log N (e.g. [Ray85, Corollaire 2.1.4, page 207]) we obtain

w?jlv)h(El) > h(E,) + %logN — Ay — Z 2@/) Z w
= h(Ep) + %log]\f — Ay — % log N — %h@o)
= M) ¥ gy s N A
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where we have grouped curves into Qal(@ /K )—orbits, each of size n;. The number n, is
the number of elliptic curves up to Q-isomorphism that are in the Gal(Q/K)-orbit of
FE4. This implies

1 N
BB > h(Eo) + L1og N — Y
2 nq
We have 0 _ 1 o A
P — < p; _ _bi < '

(p—Dpi ™t = (P —1)pt P17 3p;
It follows from the last lemma and Lemma 3.11 that
1

h(E1) > h(FEy) + 5

log N — % |GLo(Z/NZ) : pny(Gk)]loglog N,

as desired. ]

Corollary 3.14 In the setting of the previous proposition, let jo and j be the j-—
invariants of Fy and E, respectively. We have

h(jo) — 6log(1 + h(jo)) + 6log N — 84 [GLy(Z/NZ) : px(Gi)]loglog N
< h(j) + 16.212

PROOF. Compare the proof to Proposition 2.1 in [Sil86a]. Using Proposition 3.2 of
[L6b17] in the first step and Lemme 7.8 of [GR11] on the third we obtain

1 1 1
5ho) = 5 log(1 + h(jo)) — 2,071 + S log N = T[GLa(Z/NZ) : pn(Gr)]loglog N
1 1
< h(Ep) + §logN — T7[GLo(Z/NZ) : pn(Gk)]loglog N + élogw

1
h(E)+ -logm

<

- 2

< L) = Yiog(1 4 1(j) — 072

=19 J 9 g J .
1

< —h(j) =0.72.

< 5h5) = 0.7

Note that the authors of both cited papers use the normalization of the Faltings height
of Deligne. Multiplying the inequality by 12 and rearranging the terms yields the desired
inequality. ]

In the proof of the next lemma we will use the function
D(z) = max{1,|Re(2)|,Im(z) "'}, for all z € H.

It appears in [HP12]. Note that if z is in F, then D(z) < 2/v/3. The height of an
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element in Mato(Q) will be the height of that element when regarded as a member of
Q*. The following result can be found in [HP12].

Lemma 3.15 Ifz € H, then there is a p € SLy(Z) with H(p) < 264D(z)° and pz € F.

PROOF. Write z = = + iy with 2,y € R and y > 0. We assume y < 1/2 for now and
define Q = y~/2. We can find integers ¢, d € Z with 1 < ¢ < Q and |cx 4+ d| < 1/Q by
page 1 of [Cas57]. There is no restriction in assuming that ¢ and d are coprime. Also
we can find a,b with ad — be = 1 and max{lal, [b|} < max{|c|,|d|}. Put 8 = (2}).
Then H(B) = max{|c|,|d|}. By definition we have |c| < y=*/2 < D(2)"/? and |d| <
lc||z| + Q7' < D(2)'?|2| + 1 < 2D(2)%2. This implies

H(B) < 2D(2)*2. (3.19)

If ¢ # 0 then |cz + d| > |Im(cz + d)| = |c¢|Im(z) > D(z)~'. But if ¢ = 0, then d = +1,
SO
lcz4+d| > D(2)™* (3.20)

holds in any case. Now since y < 1/2 we have
2> < 2* +1/4 <2D(2)% (3.21)

This implies |az + b| < |al|z| + |b] < 2|a|D(z) + |b| < 3H(B)D(z). Using this and (3.19)
we obtain )
laz + 0| <

ez +d| = 3H(B)D(2)? < 6D(2)7/>.

62| =

By the usual transformation law of the imaginary part under fractional linear transfor-
mations we obtain Im(z) = Im(2)|cz+d| ™2 = y((cx+d)*+2y*) ™! > y(Q2+Q**) ! =
yly+y)~" e

1
Im(Bz) > 5 (3.22)
If we apply (3.20) we obtain for the real part of 5z
24+ bd d+b
[Re(z)| = LA TOI RO gy gD ma(L, Jal, P, (323)

lcz + d|?

But |z| < |z| so that by (3.21) we get |Re(82)| < 8H(B)?D(2)*. In total we obtain
together with (3.19)
| Re(B2)| < 32D(2)". (3.24)

We have modified z so that Im(f8z) > 1/2. If y > 1/2, then equations (3.19), (3.22) and
(3.24) are true with /3 the identity matrix. There exists a matrix y = (§ {) € SLo(Z) that
translates 5z into the vertical strip {7 € H;—1/2 < Re(r) < 1/2}. The matrix 7 does
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not change the imaginary part of 3z. We have t < Re(82)|+1/2 < 33D(z)" by applying
(3.24). This implies H(y) < max{1,|t|} < 33D(z)". Now since | Re(y8z)| < 1/2 and
Im(yf5z) > 1/2 we get §v5z € F for some

5e 10 0 —1 +1 -1
0 1/’\1 0/’\1 O ’
By construction p = §v3 € SLy(Z) and pz € F. Also since H(0) = 1 we obtain
H(p) < 2H(5)H(+8) < 4H(1)H(5) < 4-33D(2)" - 2D()"/* < 264D(2)"7"

by (3.19) and the height estimate for ~. O

Let N,m,n,l be integers satisfying 1 < N = mn and 0 < [ < n. Then we have
[Re (2Zt)| < N (|Re(r)| + 1) < N(D(7) + 1), and we can similarly bound the inverse
of the imaginary part by N(D(7) + 1). Thus

D <mT i l) < N(D(7) + 1). (3.25)

n

Lemma 3.16 Let Fy: y* = 423 — gox — g3 be the Weierstrass form of an elliptic curve
without complex multiplication defined over a number field K. Let jo be the j—invariant
of Eq and put h = max{1,h(1,g2,93),h(jo)}. Let wy and wy be periods of the elliptic
curve such that 1o = wy/wy is in F. Suppose that £ is an algebraic number of degree 2.
Let N,m,n,l be integers satisfying

N > (max{eGﬂTO'/[K:Q],ee'h, [K . Q]7 (4 . 1011H(€))20})1/20 _. N(E[),g),

N =mn and 0 <1 <n. Let p € SLy(Z) satisfy p(5 }).70 € F. Write (f:f) =p(7l).
Then there ezists an explicit constant ¢, > 1 such that

log|(av — &y)ws + (B — E)wn| > —¢] - (log N)™.

The constant ¢} depends on the elliptic curve Ey.

PrOOF. This is a special case of Théoreme 2.1 in [Dav95]. We set D = [K : Q]. Also
see [DHO9] for a similar result with a computable constant. We put L(z, z1,22) =
(v = &y)z1 + (B — £§)z2. Our elliptic curve and the coefficients are in a number field of
degree at most 2D since £ is quadratic. Note that (o —&7y)ws + (5 —£)wy # 0 otherwise

we would have
To — —Og _ 5’}/ = —y a .

i.e. there is a isogeny of degree N between elliptic curves with j—invariant j(7o) and
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j(&). But one has complex multiplication and the other does not, so this is impossible.
We choose the variables uq,uy in the theorem to be wy and w;, respectively. Then
7 =7 = (0,0,1) and v = (1, ws,w;). We have to estimate the height of the coefficients
of the linear form. For this, let H denote the multiplicative height. Let p = (‘CL 3) Then
a = ma and v = c¢m, and by Lemma 1.4 we obtain

Now m < N and H(a), H(c) < H(p) so that
H(a — &) < 2H(p) H(E)N

Note that (7 }).7o does not have CM and is thus not an elliptic point for SL(Z). This
means that if p € SLy(Z) transfers the point to the same points as p does, then p’ = +p.
Since H(p) = H(—p) we can use Lemma 3.15 together with (3.25) to obtain

mty + [

9
H(p) < 264D ( ) < 264(D(79) +1)PN? <2-10°N?, (3.26)

n

because 1y € F. Altogether we have
H(a — &) < 8- 10°H(€)N.
We have S =al +bn and d = ¢l + dn. Recall 0 <1 <n < N and thus
H(B) = |al + bn| < |al] + [bn| < (|af + [b)N < 2H (p) N

and
H(5) = |el +dn| < |c| + |dn| < (|c] +|d])N < 2H(p)N.

For the height of H(S — £0) we obtain

H(p — &) < 2H(B)H (€)H (5)
< 8H(p)*H(§)N*.

Using (3.26) again this yields

H(B—&6) <4-10"H(EN.
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Put V5 = Vj = emax{hbmnol}  We have

37|y |2 3m|us|? 37| mo/?
lw1[?Tm(79)2D ~ |wi|?Im(70)D ~ Im(79)D

< 67|79

and also

37| usg|? 3r G
™
’CU1’2IH1(TO>D - Im(To)D -

since |79[2/Im(7y) < 2|70|/v/3 and Im(7p) > v/3/2 for 79 € F. Therefore, equation (3) of
Théoreme 2.1 in [Dav95] is satisfied independently of whether £ is in K or not. Assume

N Z (max{eﬁﬁlTOVD, ee-h’ ‘D7 (4 . 1011H(§))20})1/20 '

Define
B = N*.
We picked N large enough so that

B >4-10"H(EN® > max{e”, "2 H(a - &), H(B — £5)}.

This implies B > V;"/” = V;/?. Thus, equations (1) and (2) of the theorem in [Dav95]
are satisfied, and we are in the situation of the theorem to obtain as a result the lower
bound

log|L(v)| > —C - 25 D%(log B 4 1og(2D)) - (loglog B + h + log(2D))? log Vi log V,

>
> —C-2°. DY. 54 - max{h,67|r|}* - (log B)*

since h < log B and log(2D) < log B. If we substitute B and take C' from [Dav95] we
get

log|£(v)| > —C -2 - D% 54 - max{h, 67|o|}* - 21* - (log N)*
> —4-10° - D - max{h, 67|7|}* - (log N)*.
This gives the desired inequality of the lemma. O]

Recall the definitions
Fr={reF;0<Re(r) <1/2}

and
F_={reF;—1/2 <Re(r) < 0}.
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The following lemma can be found in [BLP16]. Also see Lemma 2.10.

Lemma 3.17 For 7 € F, we either have |7 — ¢| > 1073 and |j(7)| > 4.4- 1075 or
|7 —¢] <107° and
44000|7 — ¢|* < [5(7)] < 47000|7 — ¢°.

For 7 € F_ we either have |7 —(*| > 107 and |j(7)| > 4.4-107° or |7 — (*| < 107° and
44000|7 — ¢|* < |5(7)] < 47000|7 — ¢|*.

We fix Ej given by a Weierstrass equation y? = 423 — g, — g3, and assume it is defined
over a number field K. Let jy be its j—invariant and pick 79 € F with j(m) = jo. Let
E be an elliptic curve with j—invariant j that is N—isogenous to Ey. As before, we set
J(1§) = o(j(m)) with 7§ € F for any field embedding o: K — C. By EJ and E? we
denote the Galois conjugates of Ej, and FE, respectively.

Lemma 3.18 Let N > N(EJ, (). We have log|la(j)] > —c1 - (log N)¢ — ¢y for any
Q-homomorphism o: K — C, where the constants are explicit and only depend on the
fixed elliptic curve Ey. We have ¢y > 1 and we can have cg > 0.

PROOF. We assume |o(j)] < 1072 for now. We have an N-isogeny between EJ and E?
since Fy and E are N-isogenous. Let Ef(C) ~ C/(wf,Z +w{,Z) with 7§ = w§,/wg, in
the fundamental domain. Similarly, let 77 correspond to E7(C). We can choose w{ and
wg such that 77 = p(7 L)7¢ and such that 77 is in the fundamental domain F. Write

(‘;‘ g) =p( L). A similar estimate to the one in the proof of Lemma 3.16 shows

”ng,z + 5“5,1| <3N maX{W&l‘: |w8,2|}H(P)
< 792(D(75) 4+ 1) max{|wg, |, [w o} N (3.27)

< 10° max{|wg |, |w3}2\}N10,
since D(7) < 2/v/3. Note that we have 77 # ( since E does not have CM. We have

log|r” — ¢| =log|(55).75 —¢|
at§ +

s
awg o + Pwg

o g
Ywo,2 T 5“}0,1

= log

= log

—4 (3.28)

1
=log | ———— 5 lawg, + fwi; — C(ywg o + owg
gg(!vw&2+—5w&1H 02 T Bwiy — (e OJ”)

== 10g’7wg,2 + 5Wg,1| + log| (o — CV)Wg,z + (8- C5)w&1|.



64 CHAPTER 3. THE NON-CM CASE

We can use (3.27) in the first step and Lemma 3.16 the second to get

log|7” — ¢ = —log (10° max{|wg |, |wg [ }N') + log(a — (y)wq, + (8 — ¢8)w |
> —log (106 max{|wg 4, |W8,2|}N10) — ¢, - (log N)®,

where ¢ is the constant from Lemma 3.16. The same bound holds for ¢ replaced by (?
since N'(E, () = N(F,¢?). Assuming that 77 is closer to ¢, Lemma 3.17 says

lo(7)] = 1i(77)| = 44000|77 — ¢P°.
This implies

log|o(5)| =1log|j(77)| > log 44000 + log |77 — (?
>log 44000 — 3log (10° max{|wg, |, |wg,|})
—10log N — 3¢} - (log N)®
> —14 —3log (max{]wg,ﬂ, |Wg,2|})
—2-10°'D" - max{h, 67T|7‘o|}2 - (log N)°.

So we can put ¢; = 2 - 10> D° - max{h, 67|7o|}* > 1. Since |w§,| and |w§,| can be small
we put ¢ = 14 4 3log (max{1, [w§ |, [wq,|}).

If |o(j)] > 1073, then
log(lo()]) > Tog(107%) > —7 > —es,

so the bound is true. O

Lemma 3.19 We have |7{|/[K : Q] < 3max{1,h(jo)}.

PrROOF. Put D = [K : Q]. We have

g 3 - ag
7] < 5 logmaxe, (7))
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by Lemme 1 item (iv) in [FP87]. Thus

O\]q

IA

log max{e, |(77)[}

-
IN

(1 + log max{1, |5 (7¢)[})

(1 + log max{1, | (j(70))[})

(1 + Y d,logmax{L, |J(TO)|V}>

veMg

IA
Sl- Sl-ol -l -

W NW N WN|who| w

IN
NN GV

+

>
<
<

This gives the desired inequality. O]

Proposition 3.20 Let jo and j be j—invariants of elliptic curves, where jy is as-
sociated to the elliptic curve Ey/K given by Ey: y* = 42° — gow — g3. Put h =
max{1, h(1, g2, g3), h(jo)} and j(1o) = jo with o € F. Assume we have a cyclic isogeny
of degree N between Ey and an elliptic curve corresponding to j. Further assume that j
1s an algebraic unit. If

N >max {4-10", [K : Q],e*"},

then the height of j can be estimated by

h(j) <6-107A[K : Q)[GLo(Z/NZ) : pn(Gk)] (N~ + VE) (e1(log N)® + )
+ 3|log €|

where 0 < & < 1075 is arbitrary.

PROOF. Let E be an elliptic curve corresponding to j, so that there is a cyclic isogeny
of degree N between Ey and E. Let ® C Ey[N] be the kernel of the given isogeny
Ey - E. Put G = {0 € Gal(K(Fy[N])/K);c(®) = @}, and let K* = {a €
K(Ey[N]);o(a) = aforall o € G} be the fixed field of ®. By basic Galois theory
we have G = Gal(K (FEy[N])/K?), and hence o(®) = ® for all o € Gal(K®/K?®). This

implies

B = |{o(®) : 0 € Gal(K(Ey[N])/K)}|
_ | Gal(K (Eo[N))/K)|
|G|
= |Gal(K®/K)| = [K* : K].

By Remark I11.4.13.2 in [Sil86b] the elliptic curve E is defined over K®, and hence
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j € K®. Let D be the degree of K® over Q. Put gy = 44000£3. By (1.6) we have

: 1 . .
hGiy=-5| Do loglo@l+ Y loglo(h)
lo()]<eo eo<|o(4)]<1
1 .
< ) | (;K log|o(7)] + |log o] (3.29)
o(j)|<eo

Recall the definitions
I.={0c: K >C;77 ¢ X.}

with
Ye={reFi(r) <e}.

If |o(5)] = [j(79)| < &g < 1073 and 7° € F,, then by Lemma 3.17

s pc B 20 _ g 3.30
7 = <" < Ja000 < 2@000 — ¢ (3.30)

ie |79 — (| < e If 779 is not in F, but in F_, then |77 — (?| < ¢ also follows from
lo(j)| < €0 and Lemma 3.17. We have o € I'; since

l0(5)] = 5(77)| < €0 = 47000£* < 47000 - 10~ e < ¢.

Continuing the estimate of (3.29) this gives

. 1 .
h(j) <=5 D loglo(j)] + [logeol

lo(7)|<eo

#F&‘o N\ —1
max 1log|o + 3llog | — log 44000
D jo(j)l<eo { & { (j) ’} | & | &

#FEO N—1
D |01£51)3|L§€0 {log |o(j)~*|} + 3[logel. (3.31)

<

<

Since € < 107° < 3/200% we can apply Proposition 3.5 to each pair (EJ, () and (EJ,¢?)
where o runs over all embeddings o: K — C as follows. For each o € I';, the number
77 is close to either ¢ or ¢? as we have seen in (3.30) and gives an N—isogeny from Eg
to £7. Thus we can bound #I'., by

#02y <6 107h[K : @ (VNoo(N) + VER(N) )

after applying Lemma 3.19. We also have ¢y < 1073 and N > N(EJ, () by assumption
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and the previous lemma, so we can apply Lemma 3.18 to get

max {log|o(j)7"|} < c1(log N)® + co.

lo(5)|<eo
Using the last two inequalities for (3.31) we obtain
6+ 107h[K - Q] (VNoo(N) + VEU(N))
B

since we have D = [K* : Q] = B - [K : Q]. Nicolas shows on page 229 in [Nic87] that
oo(N) < N2/ for N > 107. Moreover, we have

h(j) <

(c1(log N)® + ¢3) + 3|loge]

VNoo(N) - B™L < N0 B=L < N0 (N [GLy(Z/NZ) - pn(Gi)]
< N~V [GLy(Z/NZ) : pn(Gk)).
by Lemma 3.11. Using this in the inequality for the height above, and Lemma 3.11
again, we get

h(j) <6-107- h[K : Q|[GLy(Z/NZ) : pn(Gk)] (N_l/lo + \/E) (01(10g N)® + 02)
+ 3|log ¢,

as desired. O

Theorem 3.21 Let jo be the j—invariant of an elliptic curve without complex multi-
plication. Then there are at most finitely many j—invariants j of elliptic curves that are
1sogenous to an elliptic curve corresponding to jo and such that j is an algebraic unit.

PRrOOF. Let Ejand F be elliptic curves with j—invariants jy and j, respectively. Suppose
that there is an isogeny of degree N between them. We may assume that N is minimal.
By Lemma 6.2 in [MWO90] the isogeny is cyclic. If N is large enough, then Corollary
3.14 gives a lower bound for the height of j

h(7) = h(jo) — 6log(L + h(jo)) + 6log N

3.32
— 84[GLy(Z/NZ) : pn(Gi)|loglog N — 16.212 (3:32)

Moreover, if j is an algebraic unit and N is large as in Proposition 3.20, that proposition
yields the upper bound

h(j) <6-10" - h[K : Q|[GLy(Z/NZ) : pn(G)] (N_l/lo +Ve) (c1(log N)° + ¢3)
+ 3|log ¢,

For large enough N, the preconceived restrictions on ¢ are met if we take ¢ = 1/(log N)!?
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since N > 107 and thus € < 107°. Therefore, we have

h(j) <6 - 107 - h[K : Q]|[GLy(Z/NZ) : pn(Gk)] (N_l/lo + (log;N)fi)

) (cl(log N)® + 02)
+ 36 log log N.

(3.33)

Recall that Serre proved that [GL2(Z/NZ) : pn(Gk)] is uniformly bounded in N. Also
Lombardo gives an explicit bound in [Lom15]. As we have seen in Corollary 3.14 the
lower bound for A(j) grows as log N and the upper bound as loglog N. This clearly
gives a contradiction for large enough N, which leaves us with only finitely many N,
and hence finitely many isogenies. ]

The next proposition bounds the number of j satisfying the conditions in the theorem.
Note that the index [GLo(Z) : poo(Gk)] can be bounded explicitly by the result of
Lombardo. See [Lom15] or page 54.

Proposition 3.22 Let Ey: y? = 423 — gox — g3 be an elliptic curve without complex
multiplication defined over a number field K of degree D. Let jo be its j—invariant
with j(19) = jo and 19 € F. We choose wy and we with wy/wy = 79 and Ey(C) =~
C/(inZ + weZ) and similarly for ES, o: K — C. Define h = max{1, h(1, g2, 93), h(jo)}-
If j is the j—invariant of an elliptic curve isogenous to Ey such that j is a unit, then the
degree of the minimal isogeny between jo and j is bounded by

max {10180(001)207 (ch)w, eCC1+CC2+CS’ elQOQ[GL2(Z)ZPoo(GK)P7 61871'/17 D} 7

where the constants are given by

C'=6-10"-h- D[GLy(Z) : pos (G )],
c; = 2-10°' D% - max{h, 67|m|}*> > 1,

cy =14+ 3log (max{l, |wgals |Wg,2|}> and
c3 =20 — h(jo) + 61og(1 + h(jo))-

Note that ¢3 < 26 since —z + 61og(1 + ) has a maximum at 5 and —5+ 6log(6) < 6.

PROOF. We proceed as in the proof of the theorem. The inequalities (3.32) and (3.33)
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in the proof of the theorem give

1
—1/10 6
6log N <C (N EUNE (logN)6) (cl(logN) —|—02)
+ 361oglog N + 84 [GLy(Z/NZ) : pn(Gi)]loglog N
— h(jo) + 61og(1 + h(jy)) + 16.212
and thus

1
~log

CCQ
(log N)©

N (CclN_l/lo(log N)® + CesN~Y10 4 Cey +

+(84[GLy(Z/NZ) : pn(Gk)] + 36)loglog N + 63)

N0 Cey+ Cey + ¢
log N * log N
loglog N
log N )

< <001N—1/ V(log N)? + Ccy

+120[GLy(Z/NZ) : pn(Gi)] (3.34)

We are going to bound each term by 1 individually. This will give a contradiction
to the lower bound 6. We will work our way from the back to the front. We have
loglog z < (log x)"/? for all z > 10. Thus

120[GLy(Z/NZ) : pn(Gk)| < log N/loglog N
follows from
120[GLy(Z/NZ) : pn(Gk)] < (log N)/? <log N/loglog N,

which is true for all N > (120[GLa(2):p0 (Gi)D?
The next term is (C'c; + Ccy + ¢3)/log N. This is bounded by 1 for all N > e“ertCeates,
The second term is less than 1 if C'cy < N¥/10 ig satisfied and N > 3. This is true for
all N > max{(Cc2)', 3}.
For the first term we need

We have log z < 402'/1% for all > 10*. Thus the bound holds if

Nl/lO Nl/lO

Cey < 107NV = 107940° < .
a= (AON1/100)5 = (log N5

This is true for N > 10'%(C¢;)?.
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All those assumptions on N together with the constraint
N >max {4-10", [K : Q],e*}

we made in the previous proposition gives the desired bound. O]

This finishes the case j —«a when « is zero. In the next section we are going to discuss
the case when « is different from 0.

3.3 Translates

Fix o € Q the j-invariant of an elliptic curve with complex multiplication, and let j, be
the j—invariant of an elliptic curve without complex multiplication. We further assume
a # 0 since this is the case discussed in the last section. We now want to bound the
j—invariants j such that the corresponding elliptic curve is isogenous to the elliptic curve
Ey, and such that j — « is an algebraic unit. Note that the previous case is a special
case of this where & = 0. Let £ be imaginary quadratic with j(§) = . We proceed as
before, i.e. we want to give lower and upper bounds of h(j — a) that contradict each
other.

On the one hand we have

h(j —a) > h(j) — h(a) —log2 (3.35)

by Lemma 1.4. So if there is a cyclic N-isogeny between the curves corresponding to j
and jo, then Corollary 3.14 yields

h(j — ) > h(jo) — 6log(1 + h(jo)) + 6log N
— 84 [GLy(Z/NZ) : pn(Gk)|loglog N — 20 — h(«).

Now we want to bound the height from above. We need a similar statement to the
one in Lemma 3.18. First, recall the definition of ¢(§) in Lemma 2.11

15'(§)16/2 if £ € 0F,\ {i}
(€)= { 157)162 /4 if ¢ = i
min {| Im(5(£))|, |7 (€)|d/2} otherwise
where ¢ is defined as the minimum of m and half the distance of £ to any geodesic

of OF, not containing ¢, B is defined as 4 - 10° max{1, |[j(£)|} and A = |7"(:)] if £ =i
and A = [5/(£)| otherwise. We also assumed ¢ # ¢, (2.
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Recall the definition

1/20

N(Ey, &) := (max{eGﬂTO'/[K:@], e K - Q,(4- 10" H(£))*})

Lemma 3.23 Let j(7) be N—isogenous to Ey and N > N(EJ,&7).
log |o(j — )] > —c1(log N)® — ¢,

for any embedding o: K — C. Here the constants are effective and depend on the fixed
elliptic curve Ey and co additionally depends on &. We also have ¢ > 1 and we can
have co > 0.

ProOF. The setup is the same as in Lemma 3.18. Let E be an elliptic curve with
j—invariant j(7) and E° be the elliptic curve E conjugated by o. Then there is an
N-isogeny between FEy = EJ and E? since Ey and E are N-isogenous. Let EJ(C) ~
C/(W§1Z + wioZ) with 7§ = w§,/wg, in the fundamental domain. Similarly, let 77
correspond to E7(C). We can choose w{, w§ and p € SLy(Z) such that 77 = p(73 L)1

and such that 77 is in the fundamental domain F. Write (5 D=p(wl).

Assume |o(j — a)| < ¢(£9) for a moment. Put A7 = [j”(£9)] if £&7 = i and A7 =
|7/(€7)| otherwise. By Lemma 2.12 we obtain |77 — ME7| < 67 for some M € T with
T={(59), (%), (973")} The number 67 is the & stated above but associated to £°.

Since 07 satisfies by definition §7 < mvﬁﬁv where B? = 4 - 10° max{1, [j(£7)|}, we

obtain by Lemma 2.10 the inequality

g

A
§(7) = 3E€ = 7|7 = MEP? (3.36)

for some M € T.

Equation (3.27) says |yw§, + 0w ;| < 10°max{|wg,|, |wg,|}N'. Note that we also
have 77 # ME? since € comes from a curve with complex multiplication. We can
substitute M7 for ¢ in (3.28) to get the equality

log|77 — M¢7| = — IOg”YWg,Q + 5“3,1‘ + log|(a — MfU’Y)Wg,Q + (8 — Mfgé)Wg,1|~
Since £7 is algebraic of degree two so is M&7. We have
log |77 — M&7| > —log (10° max{|wg |, |wg [} N'?) — ¢, - (log N)°.

as in the proof of Lemma 3.18. Here ¢ is the constant from Lemma 3.16.
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As before we obtain by (3.36)

[

. . o . o A o (on
log|o(j — )| =log|i(77) = j(¢7)] = log —= + log |77 — M¢ ?

AO’
> tog (47 ) = 210g (10° max((uf, . [5.)

—10log N — 2¢} - (log N)°

A° -
> tog () - 21og (10°max{lef |, 7.1
— 3¢, - (log N)°

where we have used the fact that N > N(Ep, £7) > 4 - 10", If we put

4 4
ex = ogmx {1,6(67), 107 . 1070

the claim holds independently of whether |o(j — «)| < ¢(£7) or not. O

We want to apply this lemma. Recall that o = j(£) is a singular modulus. Let A be
the discriminant of the associated endomorphism ring. For any o: K — C the singular
moduli j(£7) have the same associated discriminant. Recall the definition of P(£) on
page 29

P(E) = log max {1,c(&)7'}.

Proposition 3.24 Let jo and j be j—invariants of elliptic curves, where jo is as-
sociated to the elliptic curve Eo/K defined by Ey: y* = 4a° — gox — g3. Put h =
max{1, h(1, g2, 93), h(jo)}. Assume we have a cyclic isogeny of degree N between Ey and
an elliptic curve corresponding to j. Further assume that j is an algebraic unit. If

N > max{e®" [K : Q],4-10"/]Al}
then the height of j can be estimated by

108h[K : QP|AP[GLy(Z/NZ) : pn(Gk))]
[Q(a) : Q]
+ P(£) + 2| logel.

h(j —a) <

(N_l/lo + \/g) <01<10g N)G + Cg)

where
—4 . o|—4
0<e<10 U:IIIl(l‘IiC{lg | }

15 arbitrary.
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PROOF. Recall from the proof of Proposition 3.20 the field K® for which we have j €
K?®. We also showed that [K?®: Q] = B[K : Q] and B = [K?® : K]. Let

go=¢>- min {1,c(£7)}.

JK(C

Let |o(j — a)| < g9 < ¢(£7). We have N > N(Eg,£7) since we have \/|A| > H(£7) b
Lemma 2.13 and the statement of Lemma 3.19. So the previous lemma says

log|o(j —a)| > —ci(log N)6 — ¢y,

where we now can take ¢y to be the maximum over all constants that we get from the
lemma for each £7. We have o € I'(£7,¢) since we assumed |o(j — a)| < g9 < &. The
same argument as in the proof of Proposition 3.20 shows

, 1 .
hj—a)<—5 ) logo(j—a)| + [logsy|
lo(—a)l<zo
>0 ks #L(E7,€0)
< Lo Kot ’ max {log|o(j —a)7t|} + |loge
= D oG- a|<e{ glo; o ozl
. I'(€7,
< 2o Kot ;é (€7, 20) (c1(log N)S + ¢5) + |log |, (3.37)

where D is the degree of K®(a) over Q. Now if p € I'(£7, ), then |j(7°) — j(£7)| <
g0 < ¢(£7). With §7 as in Lemma 2.11 we get from Lemma 2.12

VP

for some M € T. As before we put A7 = |j”(i)| if &7 = i and A7 = |j'(£)| otherwise.
Recall that 07 < 1 so that ¢(£7) < A7/2 or ¢(£7) < A% /4. Lemma 2.10 then implies
Do~ M < 1j(r%) = J(E)] < 20 < cl€T)e" < e,

where k € {1,2} depending on whether M¢? = i or not. Therefore we have |77 — ME7| <
e. So every p € I'(£7,¢g) gives a point satisfying |77 — ME?] < ¢ and an N-isogeny
between Ef and E?. Note that M can only be different from the identity if £7 lies
on the boundary of F. In any case since £ (and all M¢7) is imaginary quadratic, some
conjugate lies on the imaginary axis and is the largest with respect to the absolute value.
By the explicit description in Chapter 1 it is given by i|A['/2/2. Moreover, ¢ satisfies
the conditions of Proposition 3.5. We thus can apply Proposition 3.5 to bound

AT(E7,20) < 4-107[K ]\A]h(\/_ao( )+\/E¢(N)).
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Note that ¢ < (1007 |M&7] Tm(ME7))? holds since if M is different from the identity,
then £ lies on the boundary of the fundamental domain and we obtain |ME7| = [£7|
and Im(ME7) = Im(€7). We can continue the height estimate in (3.37)

A[K - QP107APh (VNao(N) + VEG(N))
D

h(j — o) <[K : Q) (cr(log N)® + ¢»)
+ |log &o|
AIK - QPIO7|APR (VNoo(N) + VEG(N))

K™ Q@) Q)

IN

(K : Q]

(cl(log N)6 + 02)
+ |log &o|

A QPI0TIAPH (VNoo(N) + VEu (V)

= B[Q(a) : Q]

(c1(log N)® + ¢3) + [log gql.

We have bounded the term <\/NO’0(N) + \/Ew(N)) /B in Proposition 3.20, so that we
obtain

J10°[K: QPP|APRIGLA(Z/NZ) : pn(G)]

) — « —1/10 c1(lo 61
M- a) < a0 (N0 4+ V2) (e (log N)P + c2)

+ |log o]
Now
|log eo| = 2| loge| + [logmin {1, ¢(£7)} | = 2| loge| + P(&).

Replacing this into the height bound be obtain

10°[K : QP|APAIGLAZ/NZ) : px (Gl 110 4 /2 (o (0w N6 4 ¢
[Q(a) : Q] (N1 4 /&) (er(log N)° + ¢)

+ P(&) + 2| loge]. O

h(j—a) <

Theorem 3.25 Assume « is the j—invariant of an elliptic curve with CM. Let jo be
the j—invariant of an elliptic curve without CM. Then there are at most finitely many
J—tnvariants 7 of elliptic curves that are isogenous to an elliptic curve corresponding to
Jo and such that j — « is an algebraic unit.

PROOF. In the same situation as before we get an additional —log2 — h(a) term from
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(3.35) for the lower bound and obtain

h(jo) — 6log(1 + h(jo)) + 6log N — 84 [GLy(Z/NZ) : pn(Gr)]loglog N
— 20— h(a) < h(j — ).
We want to pick ¢ = 1/(log N)'? again. Thus, N must be large enough so that
e =1/(log N)** < 10" min{|¢7|~*}
or equivalently
(log N)'? > 10* max{|¢7[*}.

But as mentioned in the previous proof, £ and |[£7| are imaginary quadratic and one of

its conjugates is i|A|/2 and has maximal modulus amongst them. Hence it suffices for
N to satisfy log N > 3|A|, i.e.
N > e3lAl

If N additionally satisfies the conditions of the previous proposition then

108h[K : QP|AP[GLo(Z/NZ) - pn(Gr)]
[Q(a) : Q]

: (N—l/m " oz N)G) (c1(log N)® + )

+ P(€) + 241oglog N.

h(j —a) <

The growth of the bounds for h(j—a) is as before, and we get the same contradiction. [

In total we obtain the following result. We also recall that c3 < 26.

Proposition 3.26 Let Ey: y? = 42 — gax — g3 be an elliptic curve without complex
multiplication defined over a number field K of degree D. Let jo be its j—invariant with
Jj(10) = jo and 19 € F. Define h = max{1,h(1,92,93),h(jo)}. Let & € F be imaginary
quadratic and let A be the discriminant of the endomorphism ring. Put o = j(§). If j
1s the j—invariant of an elliptic curve isogenous to the elliptic curve Ey and j — « is a
unit, then the degree of the minimal isogeny is bounded by

max {10180(601)207 (6’02)10, 6éc1+écQ+C3+P(§)’ 61202[GL2(Z):,000(GK)]2’

e [K 1 @), ¢, 410" AT}

where C' = 10%h[K : QP2|APIGLAZ) : poe(Gr)]/[Q() : Q] and ¢5 = 20 — h(jo) +
6log(1 + h(j0)).
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PROOF. The bounds from the previous proof give the same inequality as in (3.34) with
C replaced by the new constant C' and the third term becomes

C’cl + éCQ + C3 +7) (f)
log N '

Also we have the additional prerequisites N > €4l and N > 4-10'',/|A] from the
proof of the last theorem. O
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