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Summary

In the thesis at hand we discuss two problems of integral points in the moduli space
of elliptic curves. The first problem can be described as follows. We fix an algebraic
number α that is the j–invariant of an elliptic curve without complex multiplication.
We prove that the number of j–invariants with complex multiplication such that j − α
is an algebraic unit can be bounded by a computable number.

The second problem is of similar nature. For this we fix j0 the j–invariant of an elliptic
curve without complex multiplication defined over some number field. We show that
there are only finitely many algebraic units j such that elliptic curves with j–invariants
j and j0 are isogenous. A slight modification shows that only finitely j–invariants exists
such that j and j0 are isogenous and such that j − α is a unit, where α is an arbitrary
but fixed j–invariant of an elliptic curve with complex multiplication.
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Introduction

One aim of number theory is to describe the integral solutions of algebraic equations.
One very important class of examples are diophantine equations, named after Diophantus
of Alexandria, that are polynomial equations with integer coefficients. They have been
studied since the ancient Greeks. General questions are if there are any solutions, and
if, are there infinitely many? A first example are the linear diophantine equations. A
general equation is given by aX + bY = c, where a, b 6= 0 and c are integers. It is
well–known that such an equation has a solution if and only if the greatest common
divisor of a and b divides c. Moreover, if there is a single solution, then there must be
infinitely many.

Now that we have fully classified the linear case, we can consider polynomials in two
variables of degree 2. Those are given by aX2 + bXY + cY 2 + dX + eY + f = 0. Again
the coefficients a, b, c, d, e, and f are integers. An example of such an equation would
be Pell’s equation X2 − nY 2 = 1, where n is a positive integer. Obviously, x = ±1
and y = 0 is a trivial solution. Amongst others, this has been studied by Fermat and
Lagrange, who proved that there are x and y > 0 satisfying the equation if n is not a
perfect square. In addition, there are infinitely many solutions. If n is a square, then
there is only the trivial solution.

Next up would be integral equations in degree 3, e.g. Fermat equations X3+Y 3−Z3 =
0 or more general Xn+Y n−Zn = 0 for n ≥ 3. Fermat’s last theorem says, that there are
no integer solutions other then X = Y = Z = 0. This was proven by Andrew Wiles and
others in the 1990’s and was an open problem for over 300 years. One very important
ingredient to the proof is a conjecture by Gerhard Frey. It involves the so called Frey
curves given by y2 = x(x−an)(x+ bn). He conjectured that given a non–trivial solution
to a Fermat equation would mean that the associated Frey curve is not modular. This
was proved by Ribet. Later results show that Fermat’s last theorem follows from the
Shimura–Taniyama conjecture, today known as the Modularity Theorem. The Frey
curves are a special type of elliptic curves, which more generally are given by equations
of the form y2 = x3 + Ax+B with −4A3 − 27B2 6= 0.

xi
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Elliptic Curves

Elliptic curves play a very important role in modern mathematics. They have been stud-
ied for over a century. In the modern world of technology, these curves are omnipresent
and are for example used in cryptography. But they also played a very important role
in the proof of Fermat’s last theorem, monstrous moonshine and also are involved in the
Birch and Swinnerton–Dyer conjecture. The interesting thing about these geometric ob-
jects is, that is possible to define a group structure by identifying the distinguished point
at “infinty” with the neutral element of a group. This gives them a rich structure. The
integers act on the points of an elliptic curve since they have a group structure. Most of
the time the endomorphism ring of an elliptic curve is just Z. Sometimes we have more
complex endomorphisms and in that case an elliptic curve is said to have complex mul-
tiplication. Given an elliptic curve E : y2 = x3 +Ax+B we have −16(4A3 + 27B2) 6= 0.
To such an equation we can associate j = 1728 4A3

4A3+27B2 . This is an invariant of the
elliptic curve and is thus called the j–invariant. The j–invariants of elliptic curves with
complex multiplication are called singular moduli.

A classical result by Kronecker states that singular moduli are algebraic integers. So
the next natural question to ask is when are singular moduli algebraic units, i.e. units
in the ring of algebraic integers. Indeed, David Masser asked at the AIM workshop
on unlikely intersections in algebraic groups and Shimura varieties in Pisa in 2011, if
there are only finitely many singular moduli that are algebraic units. His question was
motivated by [BMZ13]. In 2014, Philipp Habegger gave an answer in [Hab15] to this
question by proving

Theorem. At most finitely many singular moduli are algebraic units.

Thus, the next question to ask would be if there are any singular moduli that are
algebraic units. His proof relies on Duke’s equidistribution theorem which is not known
to be effective. Hence, no bounds for the number of singular units were known. In his
paper he also proved that there are only finitely many singular moduli j such that j+ 1
is a unit. An example of such a j would be the j–invariant of the curve y2 = x3 + 1. In
2018, Yuri Bilu, Philipp Habegger, and Lars Kühne used different methods to prove

Theorem. There are no singular moduli that are algebraic units.

The idea of the proof is as follows. They give lower and upper bounds for the height
of such singular moduli. The height of an algebraic number basically measures its
complexity. The height of an algebraic number α is defined by

h(α)(α) =
1

[K : Q]

∑
ν∈MK

[Kν : Qν ] log max{1, |α|ν}.

Here K is any field containing α and MK is a set of representatives of non–trivial absolute
values extending the p–adic absolute values and the usual absolute value. Using the
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height they prove that the absolute value of discriminant associated to the elliptic curve
with j–invariant j is bound from above by 1015. The rest of the discriminants can be
checked by refining the arguments and by computer calculations.

In the work at hand we are going to investigate a similar problem. We have previously
given an example such that j + 1 is an algebraic unit. More generally one could look
at j − α being a unit, and ask if there are finitely many singular moduli j satisfying
this. Recently, Yingkun Li proved in [Li18] that if j and α are singular moduli with
coprime fundamental discriminants, then j − α can not be a unit. His proof relies on
different techniques based on the work of Gross–Zagier ([GZ84], [GZ86]) and Gross–
Kohnen–Zagier ([GKZ87]).

We give a partial answer to the question when α is fixed as in the following theorem.
We say ∆ is the discriminant of a singular modulus if the endomorphism ring of the
elliptic curve associated to the singular modulus has discriminant ∆.

Theorem 2.1 Let j be a singular modulus and let ∆ be its discriminant. Let α be an
algebraic number that is the j–invariant of an elliptic curve without complex multiplica-
tion. If we assume that j − α is an algebraic unit, then |∆| is bounded from above by
a computable constant that can be found on page 36. In particular, the set of singular
moduli j such that j − α is an algebraic unit is effectively computable.

The ideas come from [BHK18]. The sketch of the proof is as follows. Write j(ξ) =
α ∈ Q̄ where the elliptic curve associated to α does not have complex multiplication.
Here j(ξ) denotes Klein’s j–function evaluated at ξ. Also we can assume that ξ is in the
fundamental domain F of the standard upper half–plane. To a singular modulus j we
have attached an elliptic curve with complex multiplication. The endomorphism ring
of this elliptic curve is an order of discriminant ∆. We can write ∆ = Df 2 where f is
the conductor of the endomorphism ring in the full ring of integers of Q(

√
∆), and D is

the discrimiant of that field. The Galois conjugates of j form a full orbit of length the
class number C(∆). We write C(∆; ξ; ε) for the number of singular moduli that can be
written in the form j(τ) with τ ∈ F and such that |τ − ξ| < ε. We prove an explicit
bound on C(∆; ξ; ε) which is given by

C(∆; ξ; ε) ≤ F (∆)
(
32|∆|1/2ε2 log log(|∆|1/2) + 11|∆|1/2ε+ 2

)
(1)

for |∆| ≥ 1014 and 0 < ε < 1/2. Here

F (∆) = max
{

2ω(a); a ≤ |∆|1/2
}
,

and ω(n) is the number of distinct prime divisors of n. Now if j−α is an algebraic unit,
the height can be bounded as

h(j − α)� C(∆; ξ′; ε)

C(∆)
(log |∆|)4 − log ε (2)
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for some ξ′ ∈ F associated to ξ. The constant in the inequality depends on α. We put
E(∆) = F (log |∆|)4 and roughly choose ε to be

ε =
C(∆)

E(∆)|∆|1/2
.

If we substitute this and (1) into (2) and use estimates for ω(n) by Robin [Rob83] we
get

h(j − α)� E(∆)

C(∆)
+ log

E(∆)|∆|1/2

C(∆)
. (3)

To bound |∆| from above we need lower bounds for the height of j − α. One can prove

h(j − α)� log |∆|

and

h(j − α)� |∆|
1/2

C(∆)
.

The first inequality is due to Colmez [Col98] and Nakkajima–Taguchi [NT91], and the
second inequality is elementary. Again the bounds depend on α. Combining the lower
bounds with the upper bound from (3) we obtain

max

{
|∆|1/2

C(∆)
, log |∆|

}
� E(∆)

C(∆)
+ log

|∆|1/2

C(∆)
+ logE(∆)

for large |∆|. Further analysis shows that E(∆)|∆|−1/2 = |∆|o(1) and logE(∆)/ log |∆| =
o(1). Thus the inequality can not hold for large values of |∆|. All constants in the above
deductions can be made explicit, but some are very large.

We started this introduction with algebraic equations and integral solutions. Curves
are special algebraic equations and integral solutions of these equations correspond to
points with integral coordinates on the curves. Now the modular curve Y (1) is defined
as the quotient SL2(Z)\H. This is nothing more than the affine line. The j–function
gives a bijection from Y (1) to the moduli space of isomorphism classes of complex elliptic
curves, i.e. the space of isomorphism classes of complex elliptic curves parameterizes the
modular curve. We can compactify this curve by adding a point at infinity to get X(1),
the projective line. This is a geometrically irreducible projective smooth curve defined
over Q.

The notion of integral points generalizes as follows. See [Ser89] for more details. Let
X be a geometrically irreducible projective smooth curve defined over a number field
L. Let C ⊆ X(L̄) be a finite set of L̄–rational points on X and write L̄[X \ C] for
the set of rational functions that are regular on X \ C. A set M ⊆ X(L̄) \ C is called
quasi–algebraic–integral with respect to C if for every f ∈ L̄[X \ C] there is a β ∈ L̄×



xv

such that f(M) ⊆ βOL̄, where OL̄ is the ring of algebraic integers in L̄. One can think
of this as the coordinates of M having a common denominator. It is always possible to
add a finite set of rational points to a quasi–algebraic–integral set without loosing this
property. So it is not a very useful concept to aim for effective results. The theorem of
Habegger above can be reformulated in these terms: If M ⊆ Y (1)(Q̄) is a set of singular
moduli that is quasi–algebraic–integral with respect to {0,∞}, then M is finite.

Now assume that j is the j–invariant of an elliptic curve. Assume that j is an alge-
braic unit. Then by the work of Bilu–Habegger–Kühne the elliptic curve does not have
complex multiplication. Thus there are infinitely many j–invariants of elliptic curves
without complex multiplication that are algebraic units. This is because we can con-
struct an elliptic curve with a given j–invariant. To prove a similar result we must find
a replacement for the absence of the discriminant. For this we fix the j–invariant j0 of
an elliptic curve without complex multiplication. We say that j is isogenous to j0 if the
elliptic curves with j–invariant j and j0, respectively, are isogenous. We look at the set
of all j that are isogenous to j0 such that j is an algebraic unit. This set is finite and
this is one of our main theorems.

Theorem 3.21 Let j0 be the j–invariant of an elliptic curve without complex multi-
plication. Then there are at most finitely many j–invariants j of elliptic curves that are
isogenous to an elliptic curve corresponding to j0 and such that j is an algebraic unit.

This problem can again be reformulated in a problem in the moduli space. Let j0 ∈
Y (1)(Q̄) be fixed, but assume that j0 is not a singular modulus. Since the modular j
function is a surjective we can choose τ0 in the Poincaré upper half–plane with j(τ0) = j0.
If M ⊆ Y (1)(Q̄) is a set of points of the form j

((
m l
0 n

)
.τ0

)
with gcd(m,n, l) = 1,

0 ≤ l < m, that is quasi–algebraic–integral with respect to {0,∞}, then M is finite. In
other words, M contains j–invariants isogenous to j0.

The problem with this formulation is, that we can not give explicit bounds like the
ones we will see shortly. We say that an isogeny between two elliptic curves is minimal if
its degree is minimal amongst the isogenies between the curves. Assume we have fixed a
model E0 of an elliptic curve with j–invariant j0 and that it is defined over K. Further
assume j(τ0) = j0. For an elliptic curve E0 defined over K we let Eσ

0 for an embedding
σ : K ↪→ C be the elliptic curve obtained by conjugating the coefficients. Note that in
the following τσ0 is closely related to τ0. Attached to the elliptic curve E0 we have a
representation ρ∞ from the absolute Galois group GK = Gal(K̄/K) of K to GL2(Ẑ).
With this information the theorem above can be made explicit again and we have

Theorem 3.22 Let E0 : y2 = 4x3 − g2x − g3 be an elliptic curve without complex
multiplication defined over a number field K of degree D. Let j0 be its j–invariant
with j(τ0) = j0 and τ0 ∈ F . We choose ω1 and ω2 with ω2/ω1 = τ0 and E0(C) '
C/(ω1Z+ω2Z) and similarly for Eσ

0 , σ : K ↪→ C. Define h = max{1, h(1, g2, g3), h(j0)}.
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If j is the j–invariant of an elliptic curve isogenous to E0 such that j is a unit, then the
degree of the minimal isogeny between j0 and j is bounded by

max
{

10180(Cc1)20, (Cc2)10, eCc1+Cc2+c3 , e1202[GL2(Ẑ):ρ∞(GK)]2 , e18πh, D
}
,

where the constants are given by

C = 6 · 107 · h ·D[GL2(Ẑ) : ρ∞(GK)],

c1 = 2 · 1051D6 ·max{h, 6π|τ0|}2 ≥ 1,

c2 = 14 + 3 log
(

max
σ
{1, |ωσ0,1|, |ωσ0,2|}

)
and

c3 = 20− h(j0) + 6 log(1 + h(j0)).

For a fixed singular modulus α we can again look at the set of j–invariants j such
that j − α is a unit and such that j is isogenous to j0. In this case similar results hold
and the statement goes as follows.

Theorem 3.25 Assume α is the j–invariant of an elliptic curve with CM. Let j0 be
the j–invariant of an elliptic curve without CM. Then there are at most finitely many
j–invariants j of elliptic curves that are isogenous to an elliptic curve corresponding to
j0 and such that j − α is an algebraic unit.

A similar bound for the minimal isogeny as in the case when α = 0 can be obtained.
The idea of the proof is related to the previous one. Given a minimal isogeny of degree
N between j and j0 we give lower and upper bounds for the height of j − α in terms of
N . The bounds contradict each other for large values of N .

We discuss a couple of differences. Instead of counting CM–points in the fundamental
domain we count points isogenous to a fixed point that lie in a neighborhood of a point
in the fundamental domain. To do this we look at all the isogenous points of the fixed
one and then translate them to the fundamental domain. If a resulting point is close to
a fixed point ξ in the fundamental domain, then the entries of the matrix in SL2(Z) must
be close to an ellipse. We then count the possible matrices using a result of Davenport.
We can then compare the isogeny orbit to the Galois orbit to estimate the number of
embeddings contributing most to the height of j−α. To get an explicit lower bound for
h(j−α) we use a result by Autissier [Aut03] together with a classical result that relates
the j–invariant of an elliptic curve with the Faltings height. One of the main ingredients
for the upper bound are a result on linear forms in logarithms by Sinnou David [Dav95]
and a result by Lombardo that gives an explicit upper bound for Serre’s open image
theorem. This bound is very big so that our result only gives big bounds.
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Outline

A reader is supposed to know basic algebraic number theory, abstract algebra and
complex analysis usually taught in undergraduate level. Moreover, some knowledge
on quadratic forms is useful. A good understanding of elliptic curves and Klein’s j–
function are a plus. Nevertheless, we shall give a short introduction to those topics but
we will omit one or two proofs. References can be found in the introductory chapter.
We will state the necessary definitions and theorems in the first chapter. This will also
include a section on heights in the projective space.

The second chapter is devoted to the proof of Theorem 2.1. We will workout all the
details and the constants to get explicit bounds. One can also consult [BHK18] for more
details or different perspectives.

The third chapter is a bit longer and includes a proof of Theorem 3.25 and Theorem
3.26. The chapter is split into two parts. We proof the case when α = 0 for the
sake of simplicity first and then do the general case. The first section contains some
computations on the isogenous points. The argument reduces to counting lattice points.

Notation and terminology

We introduce some basic notation. For two sets A and B we write A ⊆ B if A is a
subset of B. We denote by Z the set of (rational) integers, and by N := {1, 2, 3, . . . }
the positive integers. The sets Q, R and C are the fields of rational, real and complex
numbers, respectively. The elements of C will be of the form x + iy with x, y ∈ R and
i2 = −1. Throughout this exposition ζ will be the complex number e2πi/6. For z ∈ C
we will denote its complex conjugate by z̄. We use Re(z) and Im(z) to indicate the real
and imaginary part, respectively, of a complex number z. The letter H is reserved for
the complex upper half–plane, i.e. all complex numbers satisfying Im(z) > 0. We fix
once and for all one embedding of Q̄ into the complex numbers. For any field K the
n–dimensional projective space will be denoted by PnK , and an element in there will be
written as [x0 : . . . : xn].

For a finite field extension L over K we denote by [L : K] the degree of the extension.
By NL/K we denote the norm of L over K.

For a finite set M we denote the number of elements in M by #M . For integers a
and b we write a|b if a divides b, and we denote the greatest common divisor of a and
b by gcd(a, b) or (a, b). The number

√
a, a ≥ 0, is the unique positive solution of the

polynomial X2 − a. Moreover,
√
−a is defined to be i

√
a. The function log denotes the

logarithm defined for positive real numbers with log e = 1. Throughout the text, we will
use q := e2πiτ for τ in the complex upper half–plane. As usual, Γ denotes the gamma
function.

If k is a positive integer and R is a ring, we define the set of invertible k–by–k
matrices with entries in R by GLk(R), and write SLk(R) for the subset of matrices with
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determinant 1. For a group or module M we write Aut(M) for the set of automorphisms
on M . For γ ∈ SL2(Z) and τ ∈ H we write γ.τ or γτ for the usual action of SL2(Z)
on the upper half–plane by möbius transformations, also known as fractional linear
transformations. For γ =

(
a b
c d

)
the action is given by (aτ + b)/(cτ + d). If G is a group

and H is a subgroup of G, then the index of H in G is denoted by [G : H]. If R is a
ring, then we denote by R× the set of invertible elements.



1 Preliminaries

The aim of this chapter is to give some preliminaries for later chapters. Getting all of
the details goes beyond the scope of this work and we will thus refer to different text
books. See each section for more details. For the basics of algebraic number theory we
refer to [Neu06] or [Rib01]. In this text K will be a field extension of Q.

1.1 Quadratic forms

We want to list some of the important properties of quadratic forms since they are closely
related to elliptic curves with complex multiplication. Details can be found in [Cox11].

Let Q(x, y) = ax2 + bxy + cy2 be a (binary) quadratic form. We call Q primitive if
the coefficients a, b, c are coprime.

Two quadratic forms Q(x, y) and Q′(x, y) are said to be equivalent if there exists
γ ∈ GL2(Z) with

Q(x, y) = Q′((x, y)γ),

where (x, y)γ denotes the usual matrix multiplication. This is obviously an equivalence
relation.

The discriminant of a quadratic form Q(x, y) = ax2 + bxy + cy2 is defined by ∆ =
∆Q = b2 − 4ac. If Q and Q′ are equivalent as before, then it is easy to see that
∆Q = (det γ)2∆Q′ = ∆Q′ .

A quadratic form Q(x, y) is called positive definite if Q(x, y) > 0 for all (x, y) 6= 0. It
is called negative definite if Q(x, y) < 0. If Q is positive definite, then the polynomial
Q(x, 1) does not have any roots in R, so that we must have ∆ < 0.

We say that a primitive positive definite quadratic form Q(x, y) = ax2 + bxy + cy2 is
reduced if

−a < b ≤ a < c or 0 ≤ b ≤ a = c. (1.1)

It was Gauß who showed in Disquisitiones Arithmeticae that every primitive positive
definite form is equivalent to exactly one reduced form. There is a simple algorithm to
determine this representative.

Let Q(x, y) be a reduced positive definite quadratic form. By αQ we denote the unique
(complex) solution in the upper half–plane of the polynomial Q(x,−1). We claim that

1



2 CHAPTER 1. PRELIMINARIES

αQ is in the fundamental domain

F = {z ∈ H; |z| > 1 and |Re(z)| < 1/2} ∪ {z ∈ H; |z| ≥ 1 and 0 ≤ Re(z) ≤ 1/2}.

Lemma 1.1 We have αQ ∈ F . Moreover, a ≤ |∆/3|1/2.

Proof. By the inequalities in (1.1) we have |b| ≤ a and thus

|Re(αQ)| = |b|
2a
≤ 1

2
,

with equality only if |b| = a and hence b = a > 0 by (1.1). The last condition means
Re(αQ) = 1/2 since Re(αQ) = b/(2a). In addition, the modulus of αQ is given by

|αQ| =
√

b2

4a2
+
|∆|
4a2

=

√
c

a
.

This is equal to 1 if and only if c = a which again implies b ≥ 0 and Re(αQ) ≥ 0.
The second claim also easily follows from (1.1) as

a =
√

(4a2 − a2)/3 ≤
√

(4ac− b2)/3 =
√
|∆|/3.

Define the set Q(∆) to be the set of equivalence classes of primitive positive definite
quadratic forms. The previous lemma shows that for fixed ∆ the set Q(∆) is finite. This
is because a ≤ |∆/3|1/2 and b satisfies −a < b ≤ a by equation (1.1). Thus, there are
only finitely many values for a and b but c is determined by a and b, since ∆ = b2− 4ac.
We will denote the number of elements in Q(∆) by C(∆) and call it the class number.
Note that we do not use the usual notation h(∆) for the class number, because h will
be reserved for the height.
We finish with an example. If ∆ = −4, then a = 1 which again implies b = 0 and c = 1.
Thus, C(−4) = 1 and x2 + y2 is a representative of that class.

1.2 Heights

In this section we want to give some background on heights on projective varieties. We
will skip most of the proofs and refer to [BG07] as a good source for the material covered.
Another reference is [Wal13].

1.2.1 Absolute values

We want to give a brief overview on the theory of valuations on number fields. This is
also discussed in [Neu06] or in [Rib12]. In this section, K will be a number field.
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Definition. By an absolute value on K we mean a multiplicative function | · | : K →
R≥0 satisfying:

(i) |a| = 0 if and only if a = 0.
(ii) |ab| = |a||b| for all a, b ∈ K.
(iii) |a+ b| ≤ |a|+ |b| for all a, b ∈ K.

Furthermore, if it satisfies the ultrametric triangle inequality

(iv) |a+ b| ≤ max{|a|, |b|} for all a, b ∈ K,

then then it is called non–archimedean absolute value. Otherwise, we say it is archi-
medean or infinite.

Any rational number a 6= 0 can be written as a product of primes ±pνp1 (a)
1 · · · pνpn (a)

n ,
where the νpi(a) are uniquely determined integers. Fixing a prime p, and defining |a|p =
p−νp(a) defines an absolute value on Q called the p–adic absolute value. We say two
absolute values | · |1 and | · |2 are equivalent, if and only if there is a positive real number
s such that

|x|1 = |x|s2
for all x ∈ K. Obviously, for two different prime numbers p and q the absolute values
are not equivalent. Moreover, none of the p–adic absolute values is equivalent to the
standard absolute value on Q. We will also write | · |∞ for the standard absolute value.
The trivial absolute value is equal to 1 except at 0.

By a place ν of K we mean an equivalence class of non–trivial absolute values on K.
We define MQ to be the set of representatives of all non–trivial places on Q given by
{| · |p; p rational prime} ∪ {| · |∞}. Let L be a finite extension of K and ω, ν be places
of L and K, respectively. We write ω|ν and say ω divides ν, if the restriction of any
element in ω is equal to some element of ν. We can also say that ω extends ν or that ω
lies above ν. Any ν of K can be extended to a place ω of L. The set MK will denote a
set of representatives of places on K that restrict to an element of MQ. The set M∞

K is
the subset of MK that contains all the infinite places.

The p–adic numbers Qp are the completion of Q with respect to the p–adic absolute
value. If we have ω|ν then we can look at the completions Lω and Kν . The degree dν of
Lω over Kν is called the local degree of L/K in ω. We have the following lemma.

Lemma 1.2 The degree [Lω : Kν ] is finite and we have∑
ω|ν

[Lω : Kν ] = [L : K]

where the sum runs over all ω ∈ML extending ν.

The infinite places can be described well. We have the following result
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Lemma 1.3 Assume L/K is a Galois extension and Gal(L/K) its Galois group. Let
| · |ω0 and | · |ω be absolute values of L extending ν. Then there is a σ ∈ Gal(L/K) with

|x|ω0 = |σ(x)|ω

for all x ∈ L.

In fact, if we look at K/Q, every infinite place of K is represented by |σ(·)| for some
σ : K ↪→ C. For a fixed σ with σ(K) 6⊆ R, σ and the complex conjugate σ̄ define the
same absolute value.

The set MK defined above satisfies the product formula given by∏
ν∈MK

|x|dνν = 1

for all x ∈ K×. This will later be important for the definition of the height. We will in
particular be interested in the equality obtained by taking the log.

If OK is the ring of integers of K, then the non–zero prime ideals are in bijection with
the non–archimedean absolute values on K. We define the valuation ring of ν as

Rν := {x ∈ K; |x|ν ≤ 1}.

We have the following equality

OK =
⋂

ν finite

Rν , (1.2)

where the intersection runs over all finite places of K.

1.2.2 Heights of algebraic numbers

We are now able to define the height of an algebraic number. The height of an algebraic
number basically measures its arithmetic complexity. We first start with the simplest of
them, i.e. the elements of Q. Let a

b
∈ Q be a rational number with coprime integers a

and b different from 0. The height is defined by

H
(a
b

)
= max {|a|, |b|} .

The height of 0 is defined to be 1. One can immediately see, that there are only finitely
many rational numbers of bounded height.
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Definition. The logarithmic (Weil) height of an algebraic number α is given by

h(α)(α) =
1

[K : Q]

∑
ν∈MK

dν log max{1, |α|ν},

where K is any field containing α and dν = [Kν : Qν ] denotes the local degree.
If x = [x0 : . . . : xn] ∈ PnQ̄ and K is a number field containing all coordinates of x, then
the height of x is defined by

h(x) =
1

[K : Q]

∑
ν∈MK

dν log max
i
{1, |xi|ν}.

One can show, that the definition is independent of K and together with the product
formula, one can see that the definition is independent of the choice of representatives
of x. Occasionally, we will write log+ |α|ν for log max{1, |α|ν}. We will write H(α) for
H(α) = eh(α). We have the following simple inequality for the height.

Lemma 1.4 Let α, β be algebraic numbers. Then

h(αβ) ≤ h(α) + h(β)

and
h(α + β) ≤ h(α) + h(β) + log 2.

Proof. Let x, y ≥ 1. Then x+ y ≤ xy + xy = 2xy. Hence

max{1, a}+ max{1, b} ≤ 2 max{1, a}max{1, b} (1.3)

for all a, b ≥ 0. Assume K is a number field containing α and β, and let ν be a place of
K. Then

max{1, |α + β|ν} ≤ max{1, |α|ν}+ max{1, |β|ν} ≤ 2 max{1, |α|ν}max{1, |β|ν}.

Moreover, we have

|αβ|ν = |α|ν |β|ν ≤ max{1, |α|ν}max{1, |β|ν}

and therefore
max{1, |αβ|ν} ≤ max{1, |α|ν}max{1, |β|ν}. (1.4)

Taking the logarithm on both sides of equations (1.3) and (1.4), multiplying by dν/[K :
Q] and taking the sum over all v ∈MK shows the desired statement.

Note that this can be generalized to r numbers by replacing log 2 with log r. Moreover,
the bound is sharp. We will later need the following result.
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Proposition 1.5 Let α be an algebraic number and σ ∈ Gal(Q̄/Q). Then h(σ(α)) =
h(α).

The same is true for points in the projective space. The following is a well–known
theorem about algebraic numbers of height 0.

Theorem 1.6 (Kronecker’s theorem)
For µ ∈ Q̄× we have h(µ) = 0 if and only if µ is a root of unity.

The definition of the logarithmic height extends the definition of the height of a
rational number when taking the logarithm. We have a similar well–known result.

Theorem 1.7 (Northcott)
Let K be a number field. Then there are only finitely many α ∈ K of bounded height
h(α) ≤ B, B ∈ R.

We can split the sum of the height into the finite and infinite places and obtain

h(α) =
1

[K : Q]

(∑
σ

log max{1, |σ(α)|}+
∑
ν

dν log max{1, |α|ν}

)
,

where σ runs over all field embeddings σ : K ↪→ C and ν runs over all finite places of K.
By equation (1.2), if α is an algebraic integer, then |α|ν ≤ 1 for all finite places ν.

Thus the height of an algebraic integer is given by

h(α) =
1

[K : Q]

∑
|σ(α)|>1

log |σ(α)|. (1.5)

The height also has the following symmetry. This will be important since we are going
to use units in the ring of algebraic integers.

Lemma 1.8 For any α ∈ K× we have h(α) = h(α−1).

Proof. We have log |α|ν = log+ |α|ν − log+ |α−1|ν for all ν. We multiply this by the
local degree dν and take the sum over all ν. Then the left–hand side is 0 because of the
product formula and the right–hand side is equal to h(α)− h(α−1).

Assume α is a unit in the ring of integers. Using (1.5) the height amounts to

h(α) = h(α−1) =
1

[K : Q]

∑
|σ(α−1)|>1

log|σ(α−1)| = − 1

[K : Q]

∑
|σ(α)|<1

log|σ(α)|. (1.6)

We will use this equality in later chapters.
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1.3 Elliptic Curves

The theory of elliptic curves is explained in [Sil86b], [Sil86a] or [ST92]. Deeper results
can be found in [Sil99]. Diamond and Shurman give a quick introduction of complex
tori and modular curves in [DS05]. Let A,B be in K such that −(A3 +27B2) 6= 0. Then
the equation

E : y2 = 4x3 + Ax+B

defines an elliptic curve. This is a special case of a cubic curve. The defining equation is
called Weierstrass equation. Adding a ”point at infinity“ it is possible to define a group
structure. The following picture illustrates the example y2 = x3 − 2x + 6. Note that
multiplying this equation by 4 and substituting y′ = 2y gives a Weierstrass equation
y2 = 4x3 − 8x+ 24.

By a lattice Λ in C we mean a discrete subgroup of rank 2. If K ⊆ C then we can see
an elliptic curve E as a complex torus C/Λ by taking the quotient of the complex plane
by a lattice Λ. This connection is via the Weierstrass ℘–function

℘(z) =
1

z2
+

∑
ω∈Λ\{0}

(
1

(z − ω)2
− 1

ω2

)
, z ∈ C \ Λ.

The sum converges absolutely and uniformly on all compact subsets not intersecting Λ,
and hence the derivative is given by

℘′(z) = −2
∑
ω∈Λ

1

(z − ω)3
.
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It is well known that the Weierstrass ℘–function satisfies the differential equation

℘′(z)2 = 4℘(z)3 − g2(Λ)℘(z)− g3(Λ). (1.7)

Here g2(Λ) = 60G4(Λ) and g3(Λ) = 140G6(Λ) with Gk(Λ) =
∑

ω∈Λ\{0} ω
−k. The func-

tions Gk are so–called Eisenstein series. The affine algebraic curve defined by equation
(1.7) gives the complex torus C/Λ the structure of an algebraic curve of genus 1 defined
over C.

The discriminant of a lattice can be defined as ∆(Λ) = (g2(Λ))3− 27(g3(Λ))2. We get
a function ∆: H → C by ∆(τ) = ∆(Λτ ) with Λτ = Z + τZ. This function is called the
(modular) discriminant.

Recall that SL2(Z) acts on H by fractional linear transformations and the fundamental
domain is defined by

F = {τ ∈ H;−1/2 < Re(τ) ≤ 1/2 and |τ | > 1 or |τ | = 1 and 0 ≤ Re(τ) ≤ 1/2}.

This also allows us to define the modular function

j(τ) : H→ C, j(τ) = 1728
(g2(τ))3

∆(τ)
,

which is holomorphic on H. Note that we could also define j for a lattice as g2 and ∆
are. This function is SL2(Z)–invariant, i.e.

j(γ(τ)) = j(τ)

for all γ ∈ SL2(Z) and τ ∈ H. We therefore can restrict j to the fundamental domain
F . Writing q = e2πiτ we can expand j as

j(τ) =
1

q
+ 744 + 196884q + 21493760q4 + · · ·

with all coefficients non–negative integers as mentioned for example in [Leh42].

As shown above the j–function is connected to elliptic curves, but also has well known
connections to class field theory and moonshine. We will shortly present the connection
to the former.

1.3.1 Isogenies

The notion of an isogeny is very important for the rest of the work. We will write down
important known facts which can be found in most books. In this section we are going
to treat elliptic functions over the complex numbers.
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Definition. A nonzero morphism (of varieties) ϕ between two elliptic curves E1 and
E2 is called isogeny if it maps the point at infinity of E1 to the point at infinity of E2,
i.e. ϕ(O) = O. In this case, E1 and E2 are called isogenous.

With this definition, it is possible to show that an isogeny is also a group homomor-
phism. It is well known that the kernel of such a map is finite, and that the map is
surjective. The degree degϕ of an isogeny is defined to be the cardinality of the kernel.

When we think about E1, E2 being the quotient of the complex plane by lattices
Λ1,Λ2, the definition amounts to saying that an isogeny is a nonzero holomorphic homo-
morphism between complex tori. Those are of the form ϕ(z + Λ1) = mz + Λ2 for some
m ∈ C \ {0} with mΛ1 ⊆ Λ2. The degree is equal to the index [Λ2 : mΛ1]. The map
ϕ is an isomorphism if and only if mΛ1 = Λ2. Isomorphic elliptic curves have the same
j–invariant.

By this definition, the maps

[N ] : C/Λ→ C/Λ, z + Λ 7→ Nz + Λ

define isogenies for non–zero integers N . The isogeny [N ] is called multiplication–by–N
map. The elements of the kernel of [N ] are called the N–torsion points of the elliptic
curve, and are denoted by E[N ].

Definition. An isogeny is called cyclic if its kernel is a cyclic subgroup. We call a
cyclic isogeny of degree N an N–isogeny.

The following lemma can be found in [MW90]. We will need it in later sections, so
we will give a short proof.

Lemma 1.9 An isogeny of minimal degree between two elliptic curves over C is cyclic.

Proof. Assume Φ: C/Λ→ C/Λ′, z + Λ 7→ mz + Λ′ with mΛ ⊆ Λ′ is non–cyclic. Write
Λ = ω1Z+ω2Z. Let K be the kernel of Φ and N the order of K. Since K is a subgroup
of the N–torsion points, the theory of finite abelian groups implies that K is isomorphic
to Z/nZ × Z/nn′Z for positive integers n′ and n. Note that n > 1 otherwise K would
be a cyclic subgroup. We have (m/n)Λ ⊆ Λ′ because for z = aω1 + bω2 ∈ Λ we see
m
n
z = m

(
a
n
ω1 + n′b

nn′
ω2

)
∈ mK̃ ⊆ Λ′ with K̃ = ∪z∈Kz. A similar argument shows that

ϕ : C/Λ→ C/Λ′, z + Λ 7→ m

n
z + Λ′

is well–defined.
Now Φ factors as ϕ ◦ [n] where [n] is the multiplication–by–n map on C/Λ. (This is

a special case of Corollary 4.11 in Chapter III of [Sil86b].) Now we have an isogeny ϕ
from C/Λ to C/Λ′ with degree less than the degree of Φ. Thus the degree of Φ was not
minimal amongst the isogenies between C/Λ and C/Λ′. This proves the claim.
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Note that the lemma is also true for two elliptic curves defined over a number field
K when considering only isogenies defined over K. See Corollary 4.11 and page 74 in
[Sil86b] or [MW90] for a detailed proof.

It is easy to describe an N–isogeny, by the action of integral 2–by–2 matrices on the
lattice. Such an isogeny is related by a matrix of the form(

a b
0 d

)
with 0 ≤ b < d and N = ad with gcd(a, b, d) = 1. The number of such matrices is given
by the Dedekind ψ–function

ψ(N) = N
∏
p|N

(
1 +

1

p

)

running over all prime divisors of N . This is a multiplicative function. For details see
for example Chapter 5 of [Lan87] or Lemma 11.24 in [Cox11].

For two elliptic curves E and E ′ we define

Hom(E,E ′) = {isogenies from E1 to E2} ∪ {[0]}

and
End(E) = Hom(E,E)

called the endomorphism ring of E. As mentioned before, if we consider a lattice Λ then
End(C/Λ) = {α ∈ C \ {0};αΛ ⊆ Λ}. We have already seen that Z ⊆ End(E). The
question now is, if there can be more endomorphisms. This brings us to the next part.

1.3.2 Complex Multiplication

Let E : y2 = 4x3−g2x−g3 be an elliptic curve. We can associate a lattice to it which we
assume is generated by ω1 and ω2. One can show that either End(E) = Z or Q(ω1/ω2)
is an imaginary quadratic extension of Q and End(E) is an order in that field. To see
that End(E) lies in a quadratic field we pick a, b, c, d ∈ Z such that αω1 = aω1 + bω2

and αω2 = cω1 + dω2 where α represents an element of End(E). Hence α is a zero of
the quadratic characteristic polynomial of

(
a b
c d

)
. Dividing αω2 by ω1 we get α = cτ + d

with τ = ω1/ω2. Since ω1 and ω2 span a lattice we can not have τ ∈ R. Thus if α is not
an integer, then we must have c 6= 0 and Q(α) = Q(τ). Conversely, if τ is imaginary
quadratic and O an order in Q(τ), then E = C/O is an elliptic curve and End(E) = O.

Definition. An elliptic curve E is said to have complex multiplication, or CM for
short, if End(E) is strictly larger than Z.
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One example is the elliptic curve associated to the lattice Z[i]. The endomorphism
ring is equal to Z[i]. Note that Z[i] = iZ[i] so that g3(Z[i]) = g3(iZ[i]) = i6g3(Z[i]) =
−g3(Z[i]) and hence g3(Z[i]) = 0. This implies j(i) = j(Z[i]) = 1728. Giving the elliptic
curve as an equation E : y2 = x3 + x we see that it has complex multiplication because
we can define

[i](x, y) = (−x, iy).

Another interesting example is given by y2 = x3 + 1. Here we have

[ζ2](x, y) = (ζ2x, y),

where ζ = e2πi/6. This curve is isomorphic to the one corresponding to the lattice Z[ζ]
and a similar argument as before shows g2(Z[ζ]) = 0. This implies j(ζ) = j(Z[ζ]) = 0.

So the j–invariants of the elliptic curves we have seen are both in Q. This of course
can not be for all elliptic curves but we might ask for which elliptic curves the j–invariant
is in Q̄.

Definition. A singular modulus is the j–invariant of an elliptic curve with complex
multiplication.

Now the question is, whether or not, having complex multiplication changes under
isogeny. If we have two isogenous elliptic curves E1 ' C/Λ1 and E1 ' C/Λ1, then E1

has complex multiplication if and only if E2 has complex multiplication as the following
argument shows. Let ϕ : C/Λ1 → C/Λ2 be an isogeny between the elliptic curves given by
z+Λ1 7→ mz+Λ2. Then there exists an isogeny ϕ̂ : C/Λ2 → C/Λ1 called the dual–isogeny
and can be constructed as follows. We have Λ1 ⊆ 1

m
Λ2 by the definition of the isogeny.

Write Λ2 = ω1Z+ω2Z. By the theory of finite abelian groups there are positive integers
n1 and n2 such that Λ1 = n1

m
ω1Z+ n2

m
ω2Z. Then n1n2

m
Λ2 = n1

m
ω1n2Z+ n2

m
ω2n1Z ⊆ Λ1, and

the dual isogeny is defined by z+Λ2 7→ n1n2

m
z+Λ1. Now if E1 has complex multiplication

and α is a complex number representing a non–integer in End(E1), then

mα
n1n2

m
Λ2 ⊆ mαΛ1 ⊆ mΛ1 ⊆ Λ2.

Thus, the map α 7→ mαn1n2

m
defines a group homomorphism from End(E1) to End(E2).

This map is injective since the composition of isogenies is again an isogeny, i.e. a non–zero
map.

Theorem 1.10 Singular moduli are algebraic integers. If ∆ is attached to the endo-
morphism ring of the elliptic curve associated to a singular modulus, then the degree of
the singular modulus is the class number C(∆). Moreover, if Q1, . . . , QC(∆) is a full set
of representatives of reduced positive definite forms, then j(αQ1), . . . , j(αQC(∆)

) is a full
orbit of Galois conjugates.
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Proof. See for example [Sil99, Chapter II, Theorem 4.3].

In other words, the j–invariants of elliptic curves with complex multiplication are not
only algebraic but they are algebraic integers. In fact we have the following converse. If
ω1/ω2 is in the upper half–plane and an algebraic number of degree at least 3, then the
j–invariant of the elliptic curve associated to the lattice ω1Z+ω2Z is transcendental. A
proof of this can be found in Corollaire 3.2.4 of [Wal79].

1.3.3 Heights: Part II

For more details about this section see [HS13] for example. In the first section we
introduced heights on the projective space. We can consider the points of E(K) as
points in P2

K . There is also a canonical height associated to points on elliptic curves.
For 0 6= P ∈ E(K̄) we define

hx(P ) = h([x(P ) : 1]),

where x(P ) ∈ K denotes the x–coordinate of P and hx(O) = 0.

Definition. The Néron–Tate height of a point P on an elliptic curve E/K is defined
as

ĥ(P ) := lim
n→∞

hx([2
n]P )

4n
,

where [2n] denotes the multiplication–by–2n isogeny on E. Note that the limit exists. See
for example [Mil06].

One can show that x may be replaced by any nonconstant even function f in the
function field K(E) after dividing the limit by deg(f). Clearly, the height of the neutral
element of E is 0.

This gives a height for the points on an elliptic curve. We can also define the height of
an elliptic curve. One way to define the height for an elliptic curve E with j–invariant j
is h(j) since it is an invariant. This is called the modular height of E. Another definition
was given by Faltings in [Fal83]. Again, this is actually the height of a point when we
treat elliptic curves as points on modular curves. In his paper he defined the nowadays
called Faltings height for abelian varieties. Elliptic curves are the simplest example of
abelian varieties.

For an elliptic curve E/K and σ : K ↪→ C we define Eσ by applying σ on the co-
efficients of E. Then Eσ is defined over σ(K). If j is the j–invariant of E, then the
j–invariant of Eσ is σ(j). We choose τσ ∈ F such that σ(j) = j(τσ). Recall that every
infinite place of M∞

K gives rise to a σ : K ↪→ C.
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The minimal discriminant of E/K is defined as

DE/K =
∏

p∈MK\M∞K

pordp ∆p ,

where ∆p is the minimal discriminant of E at p.

Definition. Let E/K be an elliptic curve. We assume that E has everywhere semi–
stable reduction over K. (Such a number field exists.) We define the (stable) Faltings
height of E by

h(E) :=
1

12[K : Q]

(
log |NK/Q(DE/K)| −

∑
σ : K↪→C

log
(
|∆(τσ)| Im(τσ)6

))
+

1

2
log π.

The definition is independent of K as long as E has everywhere semi–stable reduction.
Note that in Faltings’ original definition the term 1

2
log π was not present. We use the

symbol h instead of hF since there should be no ambiguity in the text. The Faltings
height of an abelian variety can be defined as follows. Let A/K be an abelian variety
of dimension g defined over a field K that admits semi–stable reduction and let A →
SpecOK be the Neŕon model, where OK is the ring of integers of K. Let s : SpecOK →
A be the zero section. We denote by ωA/OK the pullback s∗Ωg

A/ SpecOK of the sheaf of
differential g–forms on A. This can be made into a metrized line bundle ω̄A/OK and the
Faltings height h(A) of A is defined as the normalized Arakelov degree of ω̄A/OK . Again,
the original definition by Faltings is h(A)− g

2
log π.





2 The CM case

We fix a singular modulus j. Elliptic curves with j–invariant j have the same endomor-
phism ring. Let ∆ denote the discriminant of this ring. We want to prove the following
result.

Theorem 2.1 Let j be a singular modulus and let ∆ be its discriminant. Let α be an
algebraic number that is the j–invariant of an elliptic curve without complex multipli-
cation. If we assume that j − α is an algebraic unit, then |∆| is bounded from above
by

|∆| ≤ e15C .

Thus there are only finitely many singular moduli j such that j−α is an algebraic unit.
Here C is a computable constant and can be found on page 36.

2.1 Bounding points in the fundamental domain

Let Q(∆) be the set (⊆ Z3) of coefficients representing reduced primitive, positive
definite quadratic forms with discriminant ∆ and let C(∆) be the class number defined
in Chapter 1. We will write ∆ = Df 2 throughout this exposition, where D is the
discriminant of the imaginary quadratic field Q(

√
∆) and f ∈ N is called the conductor.

For ξ ∈ F and ε > 0 we define

C(∆; ξ; ε) = #

{
(a, b, c) ∈ Q(∆);

∣∣∣∣−b+ ∆1/2

2a
− ξ
∣∣∣∣ < ε

}
.

We also define the function F of ∆ by

F = F (∆) = max
{

2ω(a); a ≤ |∆|1/2
}
,

where ω(n) is the number of distinct prime divisors of n. We also define the modified
conductor by

f̃ =

{
f D ≡ 1 mod 4,

2f D ≡ 0 mod 4.

15
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Then ∆/f̃ 2 is square–free.

Let σk(n) =
∑

d|n d
k. We are now ready to state the first lemma that gives a bound

on the τ in a neighborhood of a fixed point such that j(τ) is a singular modulus of fixed
discriminant. While this is a generalization of Theorem 2.1 in [BHK18], the constants
are not as good as in that very paper.

Lemma 2.2 Let ∆ be a negative integer, y = Im(ξ) ≥
√

3/2 and 0 < ε < 1/4. Then

C(∆; ξ; ε) ≤ F (∆)

32
σ1

(
f̃
)

f̃

|∆|1/2

4y2 − 1
ε2 + 8σ0

(
f̃
) ∣∣∣∣∆3

∣∣∣∣1/4 ε+ 8
|∆|1/2

4y2 − 1
ε+ 2


Proof. We start with |τ−ξ| < ε. This implies that the real and imaginary parts satisfy

Im(τ) ∈ (Im(ξ)− ε, Im(ξ) + ε)

Re(τ) ∈ (Re(ξ)− ε,Re(ξ) + ε).

Now τ is of the form (−b +
√

∆)/2a and thus Im(τ) = |∆|1/2/2a and Re(τ) = −b/2a.
This amounts to

y − ε < |∆|
1/2

2a
< y + ε

or equivalently

a ∈
(
|∆|1/2

2y + 2ε
,
|∆|1/2

2y − 2ε

)
=: I.

For b we obtain
2a(Re(ξ)− ε) < −b < 2a(Re(ξ) + ε), (2.1)

so b lies in an interval of length 4aε. For two integers m and n we denote by gcd2(m,n)
the greatest common divisor d ofm and n such that d2|m and d2|n. We have ∆ = b2−4ac,
so in particular b2 ≡ ∆ mod a. Thus, the residue classes modulo a/ gcd2(a,∆) of b ∈ Z
satisfying b2 ≡ ∆ mod a is at most 2ω(a/ gcd(a,∆))+1 by Lemma 2.4 in [BHK18]. Note that
we have ω(a/ gcd(a,∆)) ≤ ω(a). But b also lies in the interval given in equation (2.1),
so that by Lemma 2.5 of [BHK18] there are at most(

2a(Re(ξ) + ε)− 2a(Re(ξ)− ε)
a/ gcd2(a,∆)

+ 1

)
2ω(a)+1 = (4ε gcd2(a,∆) + 1)2ω(a)+1 (2.2)

possible b’s for any fixed a. Recall that a ≤ |∆/3|1/2 by Lemma 1.1, so that 2ω(a) ≤ F .
Using the equality in (2.2) and applying Lemma 2.6 of [BHK18] in the second inequality
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we get

C(∆; ξ; ε) ≤ 8ε
∑
a∈I∩Z

gcd2(a,∆)2ω(a) + 2
∑
a∈I∩Z

2ω(a)

≤ 8εF
∑
a∈I∩Z

gcd2(a,∆) + 2F#(I ∩ Z)

≤ 8εF
∑
d2|∆

d≤|∆/3|1/4

d ·#(I ∩ d2Z) + 2F#(I ∩ Z).

Here we used Lemma 1.1 in the last step again. But since ∆/f̃ 2 is square–free we obtain

C(∆; ξ; ε) ≤ 8εF
∑
d|f̃

d≤|∆/3|1/4

d

(
|I|
d2

+ 1

)
+ 2F (|I|+ 1) ,

where |I| is the length of I. This can be further simplified to

C(∆; ξ; ε) ≤ 8εF |I|
∑
d|f̃

d≤|∆/3|1/4

d−1 + 8εF
∑
d|f̃

d≤|∆/3|1/4

d+ 2F (|I|+ 1)

≤ 8εF |I|σ1(f̃)

f̃
+ 8εF

∣∣∣∣∆3
∣∣∣∣1/4 σ0(f̃) + 2F (|I|+ 1) .

The length of I can be estimated by

|∆|1/2

2y − 2ε
− |∆|

1/2

2y + 2ε
= |∆|1/2 2y + 2ε− (2y − 2ε)

4y2 − 4ε2
≤ |∆|1/2 4ε

4y2 − 1
.

This gives the desired inequality.

The next corollary gives a bound on C(∆; ξ; ε) just in terms of ∆ and ε.

Corollary 2.3 For |∆| ≥ 1014 and 0 < ε < 1/4 we have

C(∆; ξ; ε) ≤ F (∆)
(
32|∆|1/2ε2 log log(|∆|1/2) + 11|∆|1/2ε+ 2

)
.

Proof. For |∆| ≥ 1014 we can find the following results as Lemma 2.8 in [BHK18]

σ0(f̃) ≤ |∆|0.192 ≤ |∆|1/4

σ1(f̃)/f̃ ≤ 1.842 log log(|∆|1/2).
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Moreover, we have y ≥
√

3/2 and thus 4y2 − 1 ≥ 2. Hence

σ1

(
f̃
)

f̃

|∆|1/2

4y2 − 1
ε2 ≤ |∆|1/2ε2 log log(|∆|1/2)

and

8σ0

(
f̃
) ∣∣∣∣∆3

∣∣∣∣1/4 ε+ 8
|∆|1/2

4y2 − 1
ε ≤ 8

31/4
|∆|1/2 ε+ 4|∆|1/2ε

≤ 7 |∆|1/2 ε+ 4|∆|1/2ε,

which gives the claimed statement.

2.2 Height bounds

From now on α will be the j–invariant of an elliptic curve without complex multiplication.
As a preparation we will start with some properties of the j–function.

Lemma 2.4 The function j(1/2 + iy) as a function of y on the interval [
√

3/2,∞) is
real and decreasing. The function j(eiθ) on the interval [π/3, π/2] is real and increasing,
and we have j(eiπ/2) = j(i) = 1728. The function j(iy) on the interval [1,∞) is real and
increasing.

Proof. Recall q = e2πiτ . For τ = 1
2

+ iy with y ≥
√

3/2 we have q = eπie−2πy = −e−2πy.
Thus j(τ) is real since all non–zero coefficients of j are positive integers. We have
j(1/2 + i

√
3/2) = 0 and from page 227 of [Cox11] we know j(1/2 +

√
−7/2) = −153.

But the map y 7→ j(1/2 + iy) is continuous and injective because j is continuous and
injective as a function on F . Thus, it is monotonically decreasing.

Similarly, if τ = iy with y ≥ 1, then q = e−2πy. We know j(i) = 1728 = 123 and again
from page 227 of [Cox11] we know j(i

√
2) = 203. The same argument as before shows

the claim for the map y 7→ j(iy).

It remains to show that j(eiθ) is real because in that case j(eiπ/3) = 0 and j(eiπ/2) =
1728 imply the monotonicity. Write τ = eiθ. We have q̄ = e2πi(−τ̄) and

j(τ) = (q̄)−1 +
∞∑
n=0

cn(q̄)n = j(−τ̄).

But j is SL2(Z)–invariant so that j(τ) = j(−τ̄) = j(τ) since |τ | = 1. Therefore, j(τ)
must be real. This completes the proof.
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The next two statements tell us something about the growth of j(τ) as |τ | goes to
infinity.

Proposition 2.5 If τ is in F , then
∣∣|j(τ)| − e2π Im(τ)

∣∣ ≤ 2079.

This result can be found in Lemma 1 of [BMZ13]. We are going to prove the following
result, which is of similar nature.

Lemma 2.6 Let τ be complex with Im(τ) ≥ 1/2. Then∣∣|j(τ)| − e2π Im(τ)
∣∣ ≤ 287473.

Proof. We have j(τ) = q−1 + c0 + c1q + · · · , where as usual q = e2πiτ . Recall from
Chapter 1 that the coefficients of the q–expansion of j are all non–negative integers.
Then ||j| − |q−1|| ≤

∑∞
n=0 cn|q|n ≤

∑∞
n=0 cnq

n
0 with q0 = e2πiτ0 = e−π and τ0 = i/2. The

right–hand side of the inequality is equal to j(τ0) − q−1
0 = 663 − eπ ≤ 287473. Note

that we have used j(τ0) = j(−1/τ0) since the j–function is SL2(Z)–invariant, and that
j(−1/τ0) = j(2i) = 663 by Table 12.20 in [Cox11].

In Lemma 2.4 we proved that the j–function is real on the vertical and unit circle
geodesics of the fundamental domain and on the imaginary axis. We can even say that
the j–function is not real outside of this set, as the following statement shows.

Corollary 2.7 If τ ∈ F with Re(τ) 6= 0,±1
2

and |τ | > 1, then Im(j(τ)) 6= 0. Moreover,
Im(j(τ)) < 0 for 0 < Re(τ) < 1/2 and Im(j(τ)) > 0 for −1/2 < Re(τ) < 0.

Proof. The proof is just an application of the intermediate value theorem. We use
that j is injective on F . Assume j(τ) = R real with |τ | > 1 and −1/2 < Re(τ) < 0
or 0 < Re(τ) < 1/2. If 0 ≤ R ≤ 1728, then j(eiθ) = R for some π/3 ≤ θ ≤ π/2
by the intermediate value theorem applied to the real function t 7→ j(eit). This is a
contradiction to the injectivity of j on F since |τ | > 1.

Assume R ≥ 1728. By Lemma 2.4 j(iR) ≥ 1728 and applying Proposition 2.5 we have
j(iR) ≥ e2πR−2079. Thus j(iR) ≥ R and applying the intermediate value theorem again
gives a t ≥ 1 with j(it) = R. This is a contradiction since 0 < τ < 1/2. The case when
R < 0 follows similarly.

To show Im(j(τ)) < 0 for 0 < Re(τ) < 1/2 and |τ | > 1 we assume we have τ0, τ1

in the interior of the fundamental domain F◦ with positive real part and such that
Im(j(τ0)) < 0 and Im(j(τ1)) > 0. Choose a path in F◦, parametrized by γ : [0, 1]→ F ,
such that γ(0) = τ0, γ(1) = τ1 and such that every point in γ([0, 1]) is in the interior of
F and has positive real part. The function t 7→ Im(j(γ(t))) is continuous and satisfies
Im(j(γ(0))) = Im(j(τ0)) < 0 and Im(j(γ(1))) = Im(j(τ1)) > 0. By the intermediate
value theorem we have a 0 < t < 1 with Im(j(γ(t))) = 0 which is impossible by the
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choice of γ and the first claim of the corollary. So it suffices to give a value of j(τ) with
0 < Re(τ) < 1/2 and Im(j(τ)) < 0. We have

j

(
1 + 5i

4

)
= −1728

(√
5− 2

)20
(

3− 2

√√
5i

)6(
238
√

5 +
861

2
+ 60

√√
5i

)3

by page 17 of [Adl14]. A computation with Sage shows Im
(
j
(

1+5i
4

))
< 0. We must have

Im(j(τ)) > 0 for −1/2 < Re(τ) < 0 by the same argument and the fact that j : F → C
is surjective. This completes the proof.

The following two lemmas for h(j) can be found in [BHK18]. The proofs follow directly
from the statements in that very paper with the inequality h(j−α) ≥ h(j)−h(α)−log 2.
For details see Proposition 4.1 and Proposition 4.3 in [BHK18].

Lemma 2.8 We have [Q(j) : Q] = C(∆), and if |∆| ≥ 16, then

h(j − α) ≥ π|∆|1/2 − 0.01

C(∆)
− h(α)− log 2.

Proof. The first statement is a classical result, see for example Chapter 13 in [Cox11].

By Theorem 1.10 one of the conjugates of j is j(τ) with τ =
∆+i
√
|∆|

2
. So one of the

terms in the height of h(j) is log max{1, |j(τ)|}. We can forget about the other terms
and get

h(j) ≥ 1

C(∆)
log max{1, |j(τ)|}.

Proposition 2.5 implies |j(z)| ≥ −2079 + e2π Im(z) ≥ 0.992e2π Im(z) for all z ∈ F with
Im(z) ≥ 2. Since |∆| ≥ 16 this is the case for τ , and thus

h(j) ≥ 1

C(∆)
log max{1, |j(τ)|} ≥ 1

C(∆)
log
(

0.992eπ
√
|∆|
)

≥ π|∆|1/2 − 0.01

C(∆)
.

The claim now follows from Lemma 1.4 since h(j) = h(j − α + α) ≤ h(j − α) + h(α) +
log 2.

Lemma 2.9 We have

h(j − α) ≥ 3√
5

log |∆| − 9.79− h(α)− log 2.

This lemma is more delicate and follows from work of Colmez [Col98] and Nakkajima–
Taguchi [NT91]. The two previous lemmas bound the height of j −α from below. Next
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we want to bound the height of j − α from above when j − α is an algebraic unit.

The following lemma says that if two points in the fundamental domain are close
together, then the difference of the images under the j–function can be bound from
below in terms of the difference of the points. Recall that ζ = e2πi/6.

Lemma 2.10 Let ζ, ζ2 6= ξ ∈ F̄ . Put B = 4 · 105 max{1, |j(ξ)|} and A = |j′′(i)| in the
case when ξ = i and A = |j′(ξ)| otherwise. For |τ − ξ| ≤ A

12A+108B
≤ 1

3
we have

|j(τ)− j(ξ)| ≥ A

4
|τ − ξ|2.

If ξ 6= i we even have

|j(τ)− j(ξ)| ≥ A

2
|τ − ξ|

for |τ − ξ| ≤ A
6A+18B

.

Note that we can write j′′(i) = −2 · 34Γ(1/4)8/π4 as Kühne shows in the appendix of
[Wüs14]. Since Γ(1/4) = 3.6256 . . . > 3 we could further estimate the first of the two
bounds in the lemma by

|j(τ)− 1728| ≥ 12413|τ − i|2.

Proof. This is a special case of Lemma 2.4 in [BLP16]. We take f(τ) = j(τ) − j(ξ).
Assume |τ − ξ| ≤ 1/3. Then by Lemma 2.6

|f(τ)| ≤ |j(τ)|+ |j(ξ)| ≤ |j(ξ)|+ e2π Im(τ) + 287473

≤ |j(ξ)|+ e2π(Im(ξ)+1/3) + 287473.

We have e2π/3 < 9 so applying Proposition 2.5 we obtain

|f(τ)| ≤ |j(ξ)|+ e2π(Im(ξ)+1/3) + 287473

≤ |j(ξ)|+ 9|j(ξ)|+ 9 · 2079 + 287473

≤ 10|j(ξ)|+ 306184

≤ 4 · 105 max{1, |j(ξ)|}.

We treat the two cases ξ = i and ξ 6= i separately and start with the latter. By [BLP16]
we have

|j(τ)− j(ξ)| − A|τ − ξ| ≥ −A/3 +B

(1/3)2
|τ − ξ|2 = − (3A+ 9B) |τ − ξ|2,
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where A = |j′(ξ)|. In the smaller disc |τ − ξ| ≤ A
2·(3A+9B)

we then obtain

|j(τ)− j(ξ)| ≥ A

2
|τ − ξ|.

Now assume ξ = i and put A = |j′′(i)|. By [BLP16] we conclude

|j(τ)− j(ξ)| − A

2
|τ − ξ|2 ≥ −A/9 +B

(1/3)3
|τ − ξ|3 = − (3A+ 27B) |τ − ξ|3

and thus

|j(τ)− j(ξ)| ≥ A

4
|τ − ξ|2.

in the smaller disc |τ − ξ| ≤ A
4·(3A+27B)

.

We can also bound the j–invariants outside of a neighborhood of ξ as the following
lemma shows. We write

F+ = {τ ∈ F ; 0 ≤ Re(τ) ≤ 1/2}

and
F− = {τ ∈ F ;−1/2 ≤ Re(τ) ≤ 0}.

Lemma 2.11 Let ζ 6= ξ, τ ∈ F+ and put A = |j′′(i)| if ξ = i and A = |j′(ξ)| otherwise.
Also define B = 4 · 105 max{1, |j(ξ)|}. Assume |τ − ξ| ≥ δ, where δ is defined as the
minimum of A

12A+108B
and half the (euclidean) distance of ξ to any geodesic of ∂F+

(i.e. the vertical line segments with real part 0 and 1/2 and the part of the unit circle
between those lines) not containing ξ. Then

|j(τ)− j(ξ)| ≥ c(ξ)

where c(ξ) > 0 is an absolute constant depending on ξ and is given by

c(ξ) =


Aδ/2 if ξ ∈ ∂F+ \ {i}
Aδ2/4 if ξ = i

min {| Im(j(ξ))|, Aδ/2} otherwise.

Proof. We want to apply the maximum modulus principle. To do this we will give
lower bounds on the boundary of F+, see Figure 2.1. By the previous lemma we have

|j(τ)− j(ξ)| ≥ A

2
δ
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ξ
δ

Figure 2.1: Application of the maximum modulus principle to the blue area.

or

|j(τ)− j(i)| ≥ A

4
δ2

on the circle |τ − ξ| = δ. Also Im(τ) ≥ 6 Im(ξ) implies Im(τ) ≥ Im(ξ) + 1, so we obtain
by applying Proposition 2.5 twice

|j(ξ)| ≤ 2079 + e2π Im(ξ) = 2079− 20e2π
√

3
2 + 20e2π

√
3

2 + e2π Im(ξ)

< −2079 + 20e2π
√

3
2 + e2π Im(ξ) ≤ −2079 + 20e2π Im(ξ) + e2π Im(ξ)

≤ −2079 + 21e2π Im(ξ) < −2079 + e2πe2π Im(ξ)

≤ −2079 + e2π Im(τ)

≤ |j(τ)|.

Thus, by using Proposition 2.5 twice we get

|j(τ)− j(ξ)| ≥ |j(τ)| − |j(ξ)|
≥ −2079 + e2π Im(τ) − (2079 + e2π Im(ξ))

≥ −2 · 2079 + e2π Im(τ) − e2π Im(ξ).

Now we use Im(τ) ≥ 6 Im(ξ) to get

|j(τ)− j(ξ)| ≥ −2 · 2079 + e12π Im(ξ) − e2π Im(ξ).
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We have e2x ≥ 2ex for any x ≥ log 2 and 2π Im(ξ) ≥ 1 so that

|j(τ)− j(ξ)| ≥ −2 · 2079 + e4π Im(ξ) + e2π Im(ξ) + e4π Im(ξ) − e2π Im(ξ)

= −2 · 2079 + e4π Im(ξ) + e4π Im(ξ).

But also because of Im(ξ) ≥
√

3/2 we get

|j(τ)− j(ξ)| ≥ e4π Im(ξ). (2.3)

We have δ ≤ 1/12 by definition and Lemme 1 of [FP87] gives for ξ 6= i

A

2
δ ≤ A

24
≤ 8π

24
e2(π+1) max{Im(ξ),Im(ξ)−1}

≤ 8π

24
e3πmax{Im(ξ),Im(ξ)−1}.

So if Im(ξ) ≥ 1, then

|j(τ)− j(ξ)| ≥ A

2
δ.

If
√

3/2 ≤ Im(ξ) ≤ 1, then

A

2
δ ≤ 8π

24
e3π Im(ξ)−1 ≤ 8π

24
e2π/

√
3 ≤ e4π·

√
3/2 ≤ e4π Im(ξ).

So in any case

|j(τ)− j(ξ)| ≥ A

2
δ

for ξ 6= i. If ξ = i, then as described after Lemma 2.10 we get

A

4
δ2 ≤ 12414δ2 ≤ 87

which together with (2.3) gives

|j(τ)− j(i)| ≥ A

4
δ2.

So we have treated all the τ with large imaginary part. Now we have to go through
the different cases for ξ to bound the boundary. We start with Re(ξ) = 1/2 so that we
are in the case of Figure 2.2.

For the remainder of the proof we will be using that j is monotonically increasing or
decreasing on the boundary as shown in Lemma 2.4. If τ is on the same boundary com-
ponent as ξ, then Im(τ) ≥ Im(ξ) + δ or Im(τ) ≤ Im(ξ)− δ. Therefore, by monotonicity
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ξ
δ

Figure 2.2: ξ with real part 1/2.

either |j(τ)| > |j(ξ)| which implies

|j(τ)− j(ξ)| ≥ j(ξ)− j(τ) ≥ j(ξ)− j(ξ + iδ) = |j(ξ)− j(ξ + iδ)| ≥ A

2
δ

or |j(τ)| < |j(ξ)| and

|j(τ)− j(ξ)| ≥ |j(ξ)| − |j(τ)| ≥ j(ξ − iδ)− j(ξ) = |j(ξ)− j(ξ − iδ)| ≥ A

2
δ.

Note that the last inequality of both displays follows from Lemma 2.10 on the boundary
|τ − ξ| = δ. If |τ | = 1 or Re(τ) = 0, then j(τ) ≥ 0 and j(ξ) < 0, so that

|j(τ)− j(ξ)| = j(τ)− j(ξ) ≥ −j(ξ)
≥ j(ξ − iδ)− j(ξ) = |j(ξ)− j(ξ − iδ)|

≥ A

2
δ.

Here we have used Lemma 2.10 for the last estimate. Altogether, if Re(ξ) = 1/2 we get
by the minimum modulus principle

|j(τ)− j(ξ)| ≥ A

2
δ

as desired.

The second case is when Re(ξ) = 0 and ξ 6= i. We have j(τ) ≤ 0 if Re(τ) = 1/2, and
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thus

|j(ξ)− j(τ)| ≥ j(ξ) ≥ j(ξ)− j(ξ − iδ)
= |j(ξ)− j(ξ − iδ)|

≥ A

2
δ.

If |τ | = 1, then again by monotonicity and Lemma 2.10

|j(ξ)− j(τ)| ≥ j(ξ)− j(τ) ≥ j(ξ)− j(ξ − iδ)
= |j(ξ)− j(ξ − iδ)|

≥ A

2
δ.

For the case when Re(τ) = 0 we have two subcases. When Im(τ) ≥ Im(ξ) + δ, it follows
j(τ) > j(ξ) and hence

|j(ξ)− j(τ)| ≥ j(ξ + iδ)− j(ξ) ≥ A

2
δ. (2.4)

Or we have Im(τ) ≤ Im(ξ)− δ and we get

|j(ξ)− j(τ)| ≥ j(ξ)− j(ξ − iδ) ≥ A

2
δ.

In sum, by applying the minimum modulus principle we obtain

|j(τ)− j(ξ)| ≥ A

2
δ. (2.5)

The third case is |ξ| = 1 and ξ 6= i. Write ξ = eiθ. Again we have three subcases. If
Re(τ) = 1/2, then j(τ) ≤ 0 and

|j(ξ)− j(τ)| ≥ j(ξ)− j(τ) ≥ j(ξ)

≥ j(ξ)− j
(
ei(θ−2 arcsin(δ/2))

)
= |j(ξ)− j

(
ei(θ−2 arcsin(δ/2))

)
|

≥ A

2
δ.

(2.6)

Note that ei(θ−2 arcsin(δ/2)) is one of the two points where the circle of radius δ and the
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unit circle intersect. If Re(τ) = 0, then j(τ) ≥ 1728 > j
(
ei(θ+2 arcsin(δ/2))

)
> j(ξ) and

|j(ξ)− j(τ)| ≥ j(τ)− j(ξ) ≥ j
(
ei(θ+2 arcsin(δ/2))

)
− j(ξ)

= |j(ξ)− j
(
ei(θ+2 arcsin(δ/2))

)
|

≥ A

2
δ.

If |τ | = 1, then j(τ) < j(ξ) or j(τ) > j(ξ) and Lemma 2.10 tells us

|j(ξ)− j(τ)| ≥
∣∣j(ξ)− j (ei(θ±2 arcsin(δ/2))

)∣∣ ≥ A

2
δ. (2.7)

By applying the minimum modulus principle we obtain the same result as in equation
(2.5).

If ξ = i, then the estimates in equations (2.4) and (2.7) hold with Aδ/2 replaced by
Aδ2/4. Also equation (2.6) holds with ξ replaced by i and Aδ/2 replaced by Aδ2/4, and
thus by the minimum modulus principle

|j(τ)− j(i)| ≥ A

4
δ2.

The last case is 0 < Re(ξ) < 1/2 and |ξ| > 1. Let τ ∈ ∂F+. Then j(τ) is real and we
have

|j(ξ)− j(τ)| ≥ | Im(j(ξ))− Im(j(τ))| = | Im(j(ξ))|.

This is the case shown in Figure 2.1. Applying the minimum modulus principle gives
the desired result.

Note that the same claim holds for F− since we have the symmetry Re(j(x + iy)) =
Re(j(−x + iy)) and Im(j(x + iy)) = − Im(j(−x + iy)) which directly follows from the
q–expansion. If j(τ) and j(ξ) are close we want |τσ − ξσ| to be small too, but we can
not get this in general as Figure 2.3 shows.

Lemma 2.12 In the same setting as in the previous lemma, if |j(τ) − j(ξ)| < c(ξ),
then |τ −Mξ| < δ with Mξ ∈ F̄ for some M ∈ T where T = {

(
1 0
0 1

)
,
(

1 ±1
0 1

)
,
(

0 −1
1 0

)
}.

Proof. If ξ, τ are both in F+ or both in F−, then |τ − ξ| ≤ δ by Lemma 2.11. We now
can assume without loss of generality Re(ξ) < 0 and Re(τ) > 0. If ξ is on the boundary
of F , then Re(ξ) = −1/2. Then we can apply Lemma 2.11 to τ and

(
1 1
0 1

)
ξ and use

j(ξ) = j(ξ + 1). If |ξ| = 1 and Re(ξ) < 0, then we can again apply Lemma 2.11 to τ
and

(
0 −1
1 0

)
ξ and use j(ξ) = j

((
0 −1
1 0

)
ξ
)
. If −1/2 < Re(ξ) < 0 and τ ∈ F+, then by
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ξσ̂− 1
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Figure 2.3: Neighborhoods of points on the boundary

Corollary 2.7

|j(ξ)− j(τ)| ≥ | Im(j(ξ))− Im(j(τ))| = Im(j(ξ))− Im(j(τ))

= Im(j(ξ)) + | Im(j(τ))|
≥ Im(j(ξ))

≥ c(ξ)

contrary to the assumption.

The following lemma can be found in [Hab15] as Lemma 5.

Lemma 2.13 Let σ : Q̄ ↪→ C and let τ be imaginary quadratic. Let τσ satisfy j(τσ) =
σ(j(τ)) with τσ ∈ F . If ∆ is the discriminant of the endomorphism ring associated to
j(τ), then τσ is imaginary quadratic and h(τσ) ≤ log

√
|∆|.

Proof. Write ∆ = Df 2 where f is the conductor and D a fundamental discriminant.
The endomorphism ring of j(τ) can be described by Z + ωfZ with ω = (D +

√
D)/2.

Thus ωf defines an endomorphism, i.e. ωf(Z + τσZ) ⊆ Z + τσZ. Hence ωf = a + bτσ
and ωfτσ = c + dτσ with a, b, c, d ∈ Z and b 6= 0. Replacing ωf in the second equality
gives

bτ 2
σ + (a− d)τσ − c = 0,

so τσ is imaginary quadratic. The number ωf satisfies the polynomial equation X2 −
(a + d)X + ad− bc = 0. This polynomial has the same discriminant as the polynomial
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P = bX2 + (a − d)X − c. If we compute the discriminant of X2 − (a + d)X + ad − bc
we get (a+ d)2 − 4(ad− bc) = (ωf − ωf)2 = (ω − ω̄)2f 2 = ∆. Since P (τσ) = 0 we must
have

τσ =
−(a− d)± i

√
|∆|

2b
.

This implies |Re(τσ)| ≤ 1/2 and thus |a−d| ≤ |b|. Then |τσ|2 = ((a−d)2 + |∆|)/(2b)2 ≤
(b2 + |∆|)/(2b)2. Proposition 1.6.6 in [BG07] says that 2h(τσ) is at most the logarithmic
Mahler measure of P , i.e.

2h(τσ) ≤ log(|b||τσ|2) ≤ log

(
|b|
4

+
|∆|
4|b|

)
.

We have Im(τσ) =
√
|∆|/(2|b|) ≥

√
3/2 because τσ ∈ F . Thus |b| ≤

√
|∆|/3 ≤ |∆|.

This implies

2h(τσ) ≤ log

(
|∆|
4

+
|∆|
4|b|

)
≤ log

(
|∆|
4

+
|∆|
4

)
≤ log |∆|.

This is the desired inequality.

With these lemmas we are now able to bound the height from above using linear
forms in logarithms. Specifically we are going to use a result by David Masser. For the
following, if τ ∈ F with j(τ) algebraic and a field embedding σ : Q(α) ↪→ C, α ∈ Q̄, are
given, then τσ ∈ F is defined by σ(j(τ)) = j(τσ). Note that for fixed ξ ∈ F different
from ζ, ζ2, i we have j′(ξσ) 6= 0. Suppose that j(ξ) = α is algebraic. We define the
function

P(ξ) = log max
σ

{
1, c(ξσ)−1

}
, (2.8)

where σ runs over all embeddings σ : Q(α) ↪→ C, and c(ξσ) is defined as in Lemma 2.11
Note that the expression in the maximum is larger than 12 since δσ ≤ 1/12, and hence
P(ξ) > 0. The function is large when some ξσ is close to one of the three points i, ζ, ζ2

or ξσ is close to the boundary of F or to the vertical imaginary axis.

Proposition 2.14 Assume j is a singular modulus. Let α = j(ξ), ξ ∈ F , be an alge-
braic number that is the j–invariant of an elliptic curve without complex multiplication.
Each embedding σ : Q(α) ↪→ C gives a δσ as in Lemma 2.11. Assume that j − α is an
algebraic unit and let 0 < ε < 1/4. We can bound the height by

h(j − α) ≤c2

∑
σ : Q(j,α)→C

∑
M∈T C(∆;Mξσ; ε)

16 · C(∆)
(log |∆|)4 + 5P(ξ) + | log ε|,

where T = {
(

1 0
0 1

)
,
(

1 ±1
0 1

)
,
(

0 −1
1 0

)
}. The constant c2 ≥ 1 is the one appearing in [Mas06,

Theorem I] and it only depends on α.
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Proof. Let j(ξ) = α. Since j − α is an algebraic unit the height can be computed by

h(j − α) =
1

[Q(j, α) : Q]

∑
σ

log max
{

1, |σ(j − α)−1|
}
, (2.9)

where σ runs over all field embeddings σ : Q(j, α)→ C.

Let
ε0 = ε · min

σ : Q(α)→C
{1, c(ξσ)} .

We split the sum (2.9) into terms for which |σ(j − α)| < ε0 and those for which 1 ≥
|σ(j − α)| ≥ ε0.
Assume |σ(j − α)| < ε0. Thus |σ(j − α)| < c(ξσ). We want to show |τσ −Mξσ| < ε for
some M ∈ T . We can apply Lemma 2.12 to get |τσ −Mξσ| < δσ for some M ∈ T . By

definition of δσ we have δσ ≤ |j′(ξσ)|
6|j′(ξσ)|+72·105 max{1,|j(ξσ)|} , so that we can apply Lemma 2.10

and j(ξσ) = j(Mξσ) to get

|j′(ξσ)|
2
|τσ −Mξσ| ≤ |j(τσ)− j(ξσ)| < ε0 ≤ εc(ξσ) ≤ ε

|j′(ξσ)|
2

δσ ≤ ε
|j′(ξσ)|

2
,

which implies |τσ −Mξσ| < ε. But we also get from this

|j(τσ)− j(ξσ)| ≥ |j
′(ξσ)|
2

min {|τσ −Mξσ|;M ∈ T } .

Note that the right–hand side is not 0 since j(ξσ) does not have complex multiplication
but j(τσ) does. The same argument tells us j′(ξσ) 6= 0. By [Mas06, Theorem I] we
obtain

log |j(τσ)− j(ξσ)| ≥ log
|j′(ξσ)|

2
− c2h

′(τσ)4

where h′(τσ) denotes the maximum of 1 and the height of τσ. Here c2 ≥ 1 is the constant
from [Mas06] that depends on ξ (and the ξσ.) We now use Lemma 2.13 to get

log |σ(j − α)| = log |j(τσ)− j(ξσ)| ≥ log
|j′(ξσ)|

2
− c2

(
log |∆|1/2

)4

≥ log
|j′(ξσ)|

2
− c2

16
(log |∆|)4 . (2.10)

Since with |σ(j − α)| < ε0 we also have |τσ −Mξσ| < ε for some matrix M ∈ T as
mentioned before, we obtain that τσ corresponds to a form in C(∆;Mξσ; ε). We have

c(ξσ) ≤ |j
′(ξσ)|
2

δ ≤ |j
′(ξσ)|
2
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so that

log max

{
1,

2

|j′(ξσ)|

}
≤ P(ξ).

Thus, if use (2.10) we get

h(j − α) ≤− 1

[Q(j, α) : Q]

∑
|σ(j−α)|<ε0

log|σ(j − α)|+ |log ε0|

≤c2

∑
σ : Q(α)↪→C

∑
M∈T C(∆;Mξσ; ε)

16 · [Q(j, α) : Q]
(log |∆|)4 + 4P(ξ) + | log ε0|.

If we plug in the definition for ε0 we obtain

h(j − α) ≤c2

∑
σ : Q(α)↪→C

∑
M∈T C(∆;Mξσ; ε)

16 · C(∆)
(log |∆|)4 + 4P(ξ)

− log min
σ
{1, c(ξσ)}+ | log ε|

=c2

∑
σ : Q(α)↪→C

∑
M∈T C(∆;Mξσ; ε)

16 · C(∆)
(log |∆|)4 + 5P(ξ) + | log ε|,

where we also used the first claim of Lemma 2.8 for the inequality.

The following lemmas can be found in Section 3 of [BHK18] as Lemmas 3.5 and 3.6.

Lemma 2.15 Assume that |∆| ≥ 1014. Then we have F (∆) ≥ |∆|0.34/ log log(|∆|1/2) and
F (∆) ≥ 18 log log(|∆|1/2).

Lemma 2.16 For ∆ 6= −3,−4 we have C(∆) ≤ π−1|∆|1/2(2 + log |∆|).

Proof. Theorem 10.1 in [Hua12] says C(∆) ≤ ω|∆|1/2
2π

K(d) where K(d) can be bounded
by 2 + log |∆| according to Theorem 14.3 in [Hua12] and ω is the number of roots of
unity in the imaginary quadratic order of discriminant ∆. But since ∆ 6= −3,−4 we
have ω = 2 and the result follows.

We define E := E(∆) = F (∆)(log |∆|)4.

Corollary 2.17 Assume j − α is a unit and α = j(ξ) with ξ ∈ F and such that α is
algebraic but not a singular modulus. For |∆| ≥ 1014 we have

h(j − α) ≤ c2[Q(α) : Q]
E(∆)

2C(∆)
+ log

E(∆)|∆|1/2

C(∆)
+ C ′

where C ′ is a constant depending on α and is given by

C ′ = 4[Q(α) : Q]c2 + 5P(ξ).
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Proof. We can use the previous results together with the bound for C(∆; ξσ; ε) to

bound the height h(j − α). Put ε = C(∆)

F (∆)(log |∆|)4|∆|1/2 . Since we assume that |∆| ≥ 1014

we have F (∆) ≥ 256 and we obtain together with Lemma 2.16

ε ≤ π−1|∆|1/2(2 + log |∆|)
256(log |∆|)4|∆|1/2

≤ 1

256π

2 + log 1014

log 1014
< 2 · 10−3.

Thus we can apply Proposition 2.14 together with Corollary 2.3 and obtain

h(j − α) ≤[Q(α) : Q]c2

4F (∆)
(
32|∆|1/2ε2 log log(|∆|1/2) + 11|∆|1/2ε+ 2

)
16 · C(∆)

(log |∆|)4

+ 5P(ξ) + | log ε|

=[Q(α) : Q]c2E
128|∆|1/2 log log(|∆|1/2)

16 · C(∆)

(
C(∆)

F (∆)(log |∆|)4|∆|1/2

)2

+ [Q(α) : Q]c2E
44|∆|1/2

16 · C(∆)

C(∆)

F (∆)(log |∆|)4|∆|1/2

+ [Q(α) : Q]c2
E

2C(∆)

+ 5P(ξ) + log

(
F (∆)(log |∆|)4|∆|1/2

C(∆)

)
.

We continue the estimate by simplifying the terms to get

h(j − α) ≤[Q(α) : Q]c2
8 log log(|∆|1/2)

F (∆)

C(∆)

(log |∆|)4|∆|1/2

+ 3[Q(α) : Q]c2 + [Q(α) : Q]c2
E

2C(∆)

+ 5P(ξ) + log

(
E|∆|1/2

C(∆)

)
.

Now we apply Lemma 2.15 to see

h(j − α) ≤[Q(α) : Q]c2
1

2

C(∆)

(log |∆|)4|∆|1/2

+ 3[Q(α) : Q]c2 + [Q(α) : Q]c2
E

2C(∆)

+ 5P(ξ) + log

(
E|∆|1/2

C(∆)

)
.
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We continue the estimate using Lemma 2.16

h(j − α) ≤[Q(α) : Q]c2
1

2π

|∆|1/2(2 + log |∆|)
(log |∆|)4|∆|1/2

+ 3[Q(α) : Q]c2 + [Q(α) : Q]c2
E

2C(∆)

+ 5P(ξ) + log

(
E|∆|1/2

C(∆)

)
.

Simplifying again results into

h(j − α) ≤[Q(α) : Q]c2
1

2π

(2 + log |∆|)
(log |∆|)4

+ 3[Q(α) : Q]c2 + [Q(α) : Q]c2
E

2C(∆)

+ 5P(ξ) + log

(
E|∆|1/2

C(∆)

)
The function x 7→ 2+log x

(log x)4 is decreasing for x > 1. Thus we can substitute x = 1014 to
continue the bound and get

h(j − α) ≤[Q(α) : Q]c2
1

2π

35
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+ 3[Q(α) : Q]c2 + [Q(α) : Q]c2
E

2C(∆)

+ 5P(ξ) + log

(
E|∆|1/2

C(∆)

)
.

This gives the desired inequality.

2.3 Proof of the main theorem in the CM case

We now want to bound ∆ to complete the main proof. We will do this by using the lower
and upper bounds we derived in the last section. Throughout this section we assume
|∆| ≥ 1030.

Put
C = C ′ + h(α) + log 2 + 0.01. (2.11)

Combining the lower bounds for h(j − α) from Lemmas 2.8 and 2.9 with the upper
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bound from Corollary 2.17 we obtain the inequality

L := max

{
π
|∆|1/2

C(∆)
,

3√
5

log |∆| − 10

}
≤ [Q(α) : Q]c2

E(∆)

2C(∆)
+ log

E(∆)|∆|1/2

C(∆)
+ C

or equivalently

1 ≤ [Q(α) : Q]c2
E

2L · C(∆)
+

logE + C

L
+

log(|∆|1/2/C(∆))

L
.

For the remainder we assume that |∆| is large enough so that logE+C ≥ 0. By Lemma

2.15 this is the case when |∆| ≥ ee
e−C/18

. This in turn is true whenever |∆| ≥ 3. Since
3√
5

log |∆| − 10 > 0 for |∆| ≥ 1014 this allows us to replace L by 3√
5

log |∆| − 10 in the

middle term. Similarly we can replace L in the first term by π|∆|1/2/C(∆) and obtain

1 ≤ [Q(α) : Q]c2
E

2π|∆|1/2
+

logE + C
3√
5

log |∆| − 10
+

log(|∆|1/2/C(∆))

L

≤ [Q(α) : Q]c2
E

2π|∆|1/2
+

logE
3√
5

log |∆| − 10
+

log(π−1L)

L
+

C
3√
5

log |∆| − 10
(2.12)

We want to show that the right–hand side is less than 1 for large enough |∆|. Before
we start, we want to give a bound on E(∆) = F (∆)(log |∆|)4. To do this, we are going
to bound logF (∆) and logE(∆). A bound for logF (∆) can be found in equation 5.7 of
[BHK18] and is given by

logF (∆)

log 2
≤ 1

2

log |∆|
log log |∆| − c1 − log 2

,

where c1 < 1.1713142 is defined by

ω(N1) =
logN1

log logN1 − c1

and N1 = 2 · 3 · 5 · · · 1129 is the product of the first 189 prime numbers. Then the bound
on logE(∆) is given by

logE(∆) ≤ log 2

2

log |∆|
log log |∆| − c1 − log 2

+ 4 log log |∆|.
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Now we want to bound E|∆|−1/2. Since the function

u0(x) =
log 2

2

1

log log x− c1 − log 2
+

4 log log x

log x
− 1

2

is decreasing for x ≥ 1010 we obtain

log(E|∆|−1/2)

log |∆|
≤ u0(1030) < −0.1085

for |∆| ≥ 1030. This in turn implies

E|∆|−1/2 < |∆|−0.1085. (2.13)

The next step is to bound the second term of (2.12). The functions

u1(x) = log 2
1

log log x− c1 − log 2
+ 4

log log x

log x

and

u2(x) =

(
3√
5
− 10

log x

)−1

are decreasing for x ≥ 1010. We have

logE
3√
5

log |∆| − 10
≤ u1(|∆|)u2(|∆|) ≤ u1(1030)u2(1030) ≤ 0.4896 (2.14)

for |∆| ≥ 1030.

To bound the third term of (2.12) we remark that the function x 7→ x−1 log(π−1x) is
decreasing for x ≥ e/π. We have L ≥ 3√

5
log |∆| − 10 ≥ e/π for ∆ ≥ 1015 and therefore

log(π−1L)

L
≤

log
(
π−1

(
3√
5

log |∆| − 10
))

3√
5

log |∆| − 10
.

The function

u3(x) :=
log
(
π−1

(
3√
5

log x− 10
))

3√
5

log x− 10

is decreasing for x ≥ 1015. Thus we obtain

log(π−1L)

L
≤ u3(|∆|) ≤ u3(1015) < 0.0674 <

1

10
(2.15)
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for |∆| ≥ 1030.

For |∆| ≥ e10
√

5
3

(C+1) we have

C
3√
5

log |∆| − 10
≤ 1

10
. (2.16)

By equation (2.13) we can bound the first term of (2.12) by(
[Q(α) : Q]c2

2π

)
|∆|−0.1085 ≤ 1

10

for |∆| ≥ (10[Q(α) : Q]c2/(2π))10.
Using these two inequalities together with (2.14) and (2.15) we obtain that (2.12) is

less than 1 for all

|∆| ≥ max
{

1030, e10
√

5
3

(C+1), (10[Q(α) : Q]c2/(4π))10
}
. (2.17)

This contradicts the lower bound of (2.12).
The lower bound on |∆| can be simplified. In equation (2.11) we have put C = 4[Q(α) :
Q]c2 + 5P(ξ) + h(α) + log 2 + 0.01. Recall that c2 ≥ 1. This implies C ≥ 4.7 and hence

e15C ≥ e70 ≥ 1030.

Moreover, we have

15C ≥ 10

√
5

3
(C + 1) ≥ 10

√
5

3
2[Q(α) : Q]c2 ≥ 10

5

4π
2[Q(α) : Q]c2

≥ 10 log

(
5

4π
2[Q(α) : Q]c2

)
.

Therefore, the bound on |∆| from equation (2.17) simplifies to

|∆| ≥ e15C , (2.18)

where C > 0 is a computable constant

C = 2[Q(α) : Q]c2 + 6P(ξ) + h(α) + log 2 + 0.01.



3 The non–CM case

We fix an elliptic curve without complex multiplication, and denote by j0 its j–invariant.
Assume that the curve is defined over a number field K contained in C. Our aim is to
prove the following result.

Theorem 3.1 Let j0 be the j–invariant of an elliptic curve without complex multipli-
cation. Then there are at most finitely many j–invariants j of elliptic curves that are
isogenous to an elliptic curve corresponding to j0 and such that j is an algebraic unit.

Assume j(τ0) = j0 for τ0 ∈ F . For any embedding σ : K ↪→ C there is a τσ0 ∈ F such
that j(τσ0 ) = σ(j0).

For ξ ∈ F̄ and τ ∈ H such that the curves corresponding to j0 and j(τ) are isogenous
we define the sets

Σ(ξ, ε) = {τ ∈ F ; |j(τ)− j(ξ)| < ε}

and
Γ(ξ, ε) = {σ : K → C; τσ ∈ Σ(ξ, ε)} .

We will write Σε and Γε for Σ(ζ, ε) and Γ(ζ, ε), respectively, where ζ = e2πi/6.
The set Σε is sketched in Figure 3.1.

To estimate the number of elements in Γε one can use of the following theorem, which
is Théorème 1 in [Ric13]. Recall the hyperbolic probability measure dµ = 3

π
dxdy
y2 .

Theorem 3.2 Let E1, E2, . . . be pairwise isogenous elliptic curves without complex
multiplication. Let jn be the j–invariant of En and assume that the jn are pairwise
distinct. Then the sequence of Dirac meassures

(
δAut(C/Q)·jn

)
converges to the hyperbolic

probability measure µ. This amounts to saying

1

[Q(jn) : Q]

∑
z∈Gal(Q(jn)/Q)·jn

f(z)→
∫
F
fdµ

as n→∞ for any bounded and continuous f : F → R.

Lemma 3.3 We have #Γε ≤ cε2/3Dn for sufficiently large Dn depending on ε and
some c > 0, where Dn = [Q(jn) : Q]. Here Γε corresponds to the τn with j(τn) = jn.

37
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Figure 3.1: Neighborhood of ζ.

Proof. By the last theorem we have |#Γε/Dn − µ(Σε)| → 0 as n → ∞. The proof of
Lemma 2 in [Hab15] gives the estimate µ(Σε) ≤ cε2/3. The claim follows.

3.1 Isogenous points in the fundamental domain

We want to give an explicit bound for the number of elements in the Galois orbit of j0

satisfying the condition above. First, we will bound the number of points in the Hecke
orbit, and then use a result of Lombardo to estimate the total number. Two (equivalence
classes of isomorphic) elliptic curves are in the same Hecke orbit if they are isogenous.

The following lemma is of similar nature to Lemma 2.2. We translate points in the
upper half–plane into the fundamental domain with matrices in SL2(Z), and thus get
restrictions on then entries of the matrices.

Lemma 3.4 Let ξ ∈ F̄ and ε ∈ (0,
√

3
3|ξ|+2

]. Let τ ∈ H satisfy |τ̃ − ξ| ≤ ε, where τ̃ ∈ F
is in the SL2(Z)–orbit of τ . Pick

γ =

(
a b
c d

)
∈ SL2(Z)

such that γτ = τ̃ . Then there exist ν ∈ {±1} such that∣∣∣∣a2 + ν2|Re(ξ)|ac+ |ξ|2c2 − Im(ξ)

Im(τ)

∣∣∣∣ ≤ 7
4|ξ|+ 1√

3
|ξ|2 ε1/2

Im(τ)
, (3.1)
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√ ε
√ ε

Figure 3.2: Neighborhood of ellipses

and

max
{
a2, c2

}
≤ 4|ξ|+ 1√

3

1

Im(τ)
. (3.2)

Moreover, we have

|d| ≤ |c||Re(τ)|+ 4|ξ|+ 1√
3

and

|b| ≤ |a||Re(τ)|+ 4|ξ|+ 1√
3

.

The lemma tells us, that the first column of γ, considered as a point in the plane, is
close to a conic section. Since

(2ν|Re(ξ)|)2 − 4|ξ|2 = 4(Re(ξ)2 − Re(ξ)2 − Im(ξ)2) = −4 Im(ξ) < 0

the equation actually defines an ellipse as pictured in Figure 3.2. The ellipse is defined
in terms of ξ and τ .

Proof. Let R = |ξ| and A = Im(ξ). Moreover write τ = x+ iy. We have

Im(γτ) =
Im τ

(cx+ d)2 + c2y2
≥ A− ε ≥ A−

√
3

3R + 2
≥
√

3

4R + 1

by definition of ε and A ≥
√

3
2

. Define δ1 := Im(γτ)−1. Then δ1 ≤ 1/(A− ε) and

(cx+ d)2 + c2y2 = δ1y. (3.3)
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This yields c2 ≤ δ1/y ≤ (A− ε)−1y−1, which implies the bound on c2, and

|cx+ d||c|y ≤ 1

2

(
(cx+ d)2 + c2y2

)
=

1

2
δ1y ≤

1

2(A− ε)
y.

Further we get

|cx+ d||c| ≤ 1

2(A− ε)
≤ 4R + 1√

3
(3.4)

and hence

|d| ≤ |c||Re(τ)|+ 4R + 1√
3

if c 6= 0. Thus the inequality for d in the statement is true in the case c 6= 0. But if
c = 0, then d = ±1, and |d| = 1 ≤ 5√

3
≤ 4R+1√

3
. Thus, the inequality for d holds in both

cases.

Put γ′ =

(
0 −1
1 0

)
γ. Then γ′τ = − 1

τ̃
. Define δ2 := Im(γ′τ)−1, i.e.

(ax+ b)2 + a2y2 = δ2y. (3.5)

We put r = |τ̃ | and B = Im(τ̃). Now by the general rule of transformation of the
imaginary part under fractional linear transformations

δ2 = Im(γ′τ)−1 = Im

(
−1

τ̃

)−1

=

(
Im(τ̃)

|τ̃ |2

)−1

=
r2

B
.

We remark that B/r = Im(τ̃ /|τ̃ |) ≥
√

3/2 since τ̃ /r ∈ F̄ , and similarly A/R ≥
√

3/2.
This implies

δ2 ≤
2√
3
r ≤ 2√

3
(R + ε) ≤ 2R + 1√

3
.

We proceed as before with the bound on d and c2. From (3.5) we obtain a2 ≤ δ2/y ≤
(3R+ 1)/(

√
3y), which is the desired inequality of the statement. Moreover, we obtain

|ax+ b||a| ≤ δ2/2 ≤ (R + 1)/
√

3 (3.6)

and hence

|b| ≤ |a||Re(τ)|+ R + 1√
3
,

whenever a 6= 0. Again, if a = 0, then |b| = 1 ≤ 4R+1√
3

, as claimed.

It remains to prove (3.1). We deal with the case c = 0 first. Then a = d = ±1 and
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y = δ−1
1 = Im τ̃ = Im τ , and thus |y − A| ≤ |τ̃ − ξ| ≤ ε. This implies∣∣∣∣ 1

A
− 1

y

∣∣∣∣ ≤ ε

Ay
≤ 1

A

ε1/2

y
.

Multiplying by A shows that Equation (3.1) is true for any value of ν. Now assume

c 6= 0. We want to prove |δ2 − |ξ|2
Im ξ
| = |δ2 − |ξ|

2

A
| � ε. We compute∣∣∣∣δ2 −

R2

A

∣∣∣∣ =

∣∣∣∣r2

B
− R2

A

∣∣∣∣ =

∣∣∣∣R2B − r2A

AB

∣∣∣∣
=

∣∣∣∣R2B −BRr +BRr − ARr + ARr − r2A

AB

∣∣∣∣
≤ RB

∣∣∣∣r −RAB

∣∣∣∣+Rr

∣∣∣∣A−BAB

∣∣∣∣+ rA

∣∣∣∣r −RAB

∣∣∣∣
≤ 2√

3
ε+

4

3
ε+

2√
3
ε

≤ 4ε,

(3.7)

where we have used |R− r| = ||ξ| − |τ̃ || ≤ |ξ − τ̃ | ≤ ε and |A−B| = | Im(ξ)− Im(τ̃)| ≤
|ξ − τ̃ | ≤ ε in the second last inequality.

Suppose a = 0 for now. Then b = −c = ±1 and y = δ−1
2 . Multiplying (3.7) by

Im(ξ) = A shows (3.1) as the following argument shows. We have δ−1
2 = Im(γ′τ) =

Im(τ)
|b|2 = Im(τ) by the usual transformation formula for the imaginary part of the action

of SL2(Z) by fractional linear transformations. Thus

|Aδ2 −R2| =
∣∣∣∣R2 − A

Im(τ)

∣∣∣∣ =

∣∣∣∣|ξ|2 − Im(ξ)

Im(τ)

∣∣∣∣ ≤ 4Aε ≤ 4Rε1/2.

We have Im(τ) ≤ 2/
√

3 since a = 0 and γ translates τ into the fundamental do-
main. Therefore, the inequality remains true after multiplying the right–hand side by
2/
√

3 Im(τ)−1. This shows equation (3.1).

Finally, assume ac 6= 0. Put X := x+ d/c and Y := x+ b/a. Consider the difference
of the two

X − Y =

(
x+

d

c

)
−
(
x+

b

a

)
=

1

ac
.

If we divide (3.3) by c2 and rewrite the result in terms of Y we get

0 = X2 + y2 − δ1y

c2
=

(
Y +

1

ac

)2

+ y2 − δ1y

c2
= Y 2 +

2

ac
Y +

1

(ac)2
+ y2 − δ1y

c2
.
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Similarly, if we divide (3.5) by a2 we find

0 = Y 2 + y2 − δ2y

a2

Computing the resultant of the last two displays as polynomials in Y , and multiplying
the result by (ac)4 to kill the denominators, gives us the expression

a4y2δ2
1 − 2a2c2y2δ1δ2 + c4y2δ2

2 + 4a2c2y2 − 2a2yδ1 − 2c2yδ2 + 1 = 0. (3.8)

Now write δ1 = 1
A

+ ε1 and δ2 = R2

A
+ ε2. Then

|ε1| =
∣∣∣∣δ1 −

1

A

∣∣∣∣ =

∣∣∣∣A− Im(τ̃)

A Im(τ̃)

∣∣∣∣ ≤ 2√
3A

ε

since Im(τ̃) ≥
√

3/2 and | Im(ξ) − Im(τ̃)| ≤ |ξ − τ̃ | ≤ ε. Also |ε2| ≤ 4ε by (3.7). Put
σ = Re(ξ). If we substitute these expressions for δ1 and δ2 in (3.8) we obtain

0 =a4y2

(
1

A
+ ε1

)2

− 2a2c2y2

(
1

A
+ ε1

)(
R2

A
+ ε2

)
+ c4y2

(
R2

A
+ ε2

)2

+ 4a2c2y2 − 2a2y

(
1

A
+ ε1

)
− 2c2y

(
R2

A
+ ε2

)
+ 1.

(3.9)

After multiplying the equation by A2/y2 the terms that do not include ε1 and ε2 are
given by

a4 − 2a2c2A
R2

A
+ c4A2R

4

A2
+ 4a2c2A2 − 2a2A

y
− 2c2R

2

A

A2

y
+
A2

y2

= a4 − 2a2c2R2 + c4R4 + 4a2c2A2 − 2a2A

y
− 2c2R2A

y
+
A2

y2

= a4 − 2a2c2R2 + c4R4 + 4a2c2(R2 − σ2)− 2a2A

y
− 2c2R2A

y
+
A2

y2

=

(
a2 − 2σac+R2c2 − A

y

)(
a2 + 2σac+R2c2 − A

y

)
.
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The terms that involve ε1 and ε2 in (3.9) after multiplying it by A2/y2 are given by

A2

((
a4 2

A
− 2a2c2R

2

A
− 2a2 1

y

)
ε1 +

(
−2a2c2 1

A
+ 2c4R

2

A
− 2c2 1

y

)
ε2

+
(
a4ε2

1 − 2a2c2ε1ε2 + c4ε2
2

))
= A2

(
a2

(
a2 2

A
− 2c2R

2

A
− 2

1

y

)
ε1 + c2

(
−2a2 1

A
+ 2c2R

2

A
− 2

1

y

)
ε2

+
(
a2ε1 − c2ε2

)2
)
.

Putting everything together in one equation again we obtain(
a2 − 2σac+R2c2 − A

y

)(
a2 + 2σac+R2c2 − A

y

)
= −A2

(
2a2

(
a2 1

A
− c2R

2

A
− 1

y

)
ε1 + 2c2

(
−a2 1

A
+ c2R

2

A
− 1

y

)
ε2

+
(
a2ε1 − c2ε2

)2
)
.

We are now ready to prove (3.1). Choose ν ∈ {±1} such that∣∣∣∣a2 + 2ν|σ|ac+R2c2 − A

y

∣∣∣∣ ≤ ∣∣∣∣a2 − 2ν|σ|ac+R2c2 − A

y

∣∣∣∣ .
Then∣∣∣∣a2 + 2ν|σ|ac+R2c2 − A

y

∣∣∣∣2 ≤ ∣∣∣∣a2 − 2σac+R2c2 − A

y

∣∣∣∣ ∣∣∣∣a2 + 2σac+R2c2 − A

y

∣∣∣∣
≤A2 max

{
a2, c2

}(
2

(
a2 1

A
+ c2R

2

A
+

1

y

)
|ε1|

+ 2

(
a2 1

A
+ c2R

2

A
+

1

y

)
|ε2|

+ max{a2, c2} (|ε1|+ |ε2|)2

)
.

(3.10)

Note that 1/A ≤ 2/
√

3 and R2/A ≤ 2R/
√

3 as remarked on page 40. We also have
acquired a bound for max{a2, c2} in the beginning of the proof displayed in (3.2). There-
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fore,

a2 1

A
+ c2R

2

A
+

1

y
≤ 4R + 1√

3

1

y

1

A
+

4R + 1√
3

1

y

R2

A
+

1

y

≤ 4R + 1√
3

1

y

(
1

A
+
R2

A
+

2√
3

)
≤ 4R + 1√

3

6R√
3

1

y
.

Using the bounds for ε1 and ε2 we get

2

(
a2 1

A
+ c2R

2

A
+

1

y

)
|ε1| ≤ 2

4R + 1√
3

6R√
3

1

y

2√
3A

ε ≤ 10
4R + 1√

3

ε

y
,

2

(
a2 1

A
+ c2R

2

A
+

1

y

)
|ε2| ≤ 2

4R + 1√
3

6R√
3

1

y
4ε ≤ 28R

4R + 1√
3

ε

y

and

(|ε1|+ |ε2|)2 ≤
(

1

A

2√
3
ε+ 4ε

)2

≤ ε2

(
1

A

2√
3

+ 4

)2

≤ ε2

(
4

3
+ 4

)2

≤ 29ε2 ≤ 11ε

since ε ≤
√

3/5. Using these inequalities for (3.10) and applying (3.2) again we obtain∣∣∣∣a2 + 2ν|σ|ac+R2c2 − A

y

∣∣∣∣2 ≤ A2 max
{
a2, c2

}(
38R

4R + 1√
3

ε

y
+ 11 max{a2, c2}ε

)
≤ 49A2R

(
4R + 1√

3

)2
ε

y2
.

Taking the square–root on both sides gets us∣∣∣∣a2 + 2ν|σ|ac+R2c2 − A

y

∣∣∣∣ ≤ 7AR1/2

(
4R + 1√

3

)
ε1/2

y
.

Using A ≤ R and y = Im(τ) we get∣∣∣∣a2 + 2ν|σ|ac+R2c2 − A

y

∣∣∣∣ ≤ 7R2

(
4R + 1√

3

)
ε1/2

Im(τ)
.

This proves (3.1).

Note that the estimates might be improved slightly, especially when ξ = ζ or ξ = ζ2

with ζ = e2πi/6. We are going to look at those special cases eventually, so that Im(ζ) =
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√
3/2.

We want to use the last lemma to prove the following proposition.

Proposition 3.5 Let N be an integer, and let E0 be an elliptic curve, and ξ ∈ F̄ .
Further, assume that 0 ≤ ε ≤ (100−1|ξ|−3 Im(ξ))2. Then the number of τ ∈ F̄ with
|ξ− τ | ≤ ε and such that E0 is N–isogenous to a curve corresponding to j(τ) is bounded
by

107|τ0||ξ|5
(√

Nσ0(N) +
√
εψ(N)

)
.

For the remainder of the section we are going to prove this proposition.
For fixed τ ∈ H with bounded real part we want to bound the number of matrices

that satisfy the conditions in the lemma. For this we define

M(ξ;x; y; ε) = #{γ ∈ SL2(Z);∃τ = x̃+ iy, |x̃| ≤ |x|, |γτ − ξ| ≤ ε and γτ ∈ F̄}.

Note that the last lemma tells us that all τ on horizontal lines in the upper half–plane
satisfy the same equation for (a, c). Thus, if we look at horizontal line segments the
number M(ξ;x; y; ε) can be bounded independent in terms of x.

If γ is as in the last lemma, then the first column (a, c) is close to one of the two
ellipses

X2 ± 2|Re(ξ)|XY + |ξ|2Y 2 =
Im(ξ)

Im(τ)
.

More precisely, we have∣∣∣∣λ− Im(ξ)

Im(τ)

∣∣∣∣ ≤ 50|ξ|3 ε1/2

Im(τ)
, where λ = a2 ± 2|Re(ξ)|ac+ |ξ|2c2. (3.11)

We need an upper bound for the number N(Im(τ), ε) of lattice points (a, c) ∈ Z2 that
satisfy (3.11). Each of these points lies in a neighborhood of an ellipse defined above.
We are going to use a result by Davenport [Dav51]. The following theorem is a special
case of the result of Davenport.

Theorem 3.6 Let R be a region in the two–dimensional plane with smooth boundary.
If V (R) denotes the volume ofR and N(R) the number of points with integral coordinates
in R, then

|N(R)− V (R)| < 4(L+ 1),

where L is the length of the boundary of R.

Thus, we need to compute the volume and the circumference of the ellipses that bound
the given neighborhood. Let us assume that

ε ≤
(

Im(ξ)

100|ξ|3

)2
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is small enough. We consider the case when ν = 1. The ellipses are then given by

E± : Aa2 +Bab+ Cb2 = 1

with

A =
Im(τ)

Im(ξ)± 50|ξ|3ε1/2
, B =

2|Re(ξ)| Im(τ)

Im(ξ)± 50|ξ|3ε1/2
, C =

|ξ|2 Im(τ)

Im(ξ)± 50|ξ|3ε1/2
.

The area of the bigger ellipse is then given by

vol(E+) =
2π√

4AC −B2
= π

Im(ξ) + 50|ξ|3ε1/2

Im(τ)
√
|ξ|2 − Re(ξ)2

= π
Im(ξ) + 50|ξ|3ε1/2

Im(τ) Im(ξ)
.

Similarly, we have

vol(E−) = π
Im(ξ)− 50|ξ|3ε1/2

Im(τ) Im(ξ)

for the smaller ellipse.

We now want to bound the circumference of E±. For this we will use the following
lemma.

Lemma 3.7 Let E be an ellipse given by Aa2 +Bac+Cc2 = 1. Then the circumference
L of E is bounded by

L ≤
√

2(A+ C) vol(E).

Proof. To prove this we rotate the ellipse, so that the new equation becomes

A′a2 + C ′b2 = 1. (3.12)

The coefficients are given by

A′ =
A+ C

2
+
A− C

2
cos(2θ)− B

2
sin(2θ)

and

C ′ =
A+ C

2
− A− C

2
cos(2θ) +

B

2
sin(2θ),

where θ satisfies cot 2θ = A−C
B

or tan 2θ = B
A−C . Note if B = 0, we have θ = 0, so that

A′ = A and C ′ = C. Now the circumference of an ellipse in the form of (3.12) can be
estimated by

L ≤
√

2π

√
1

A′
+

1

C ′
≤
√

2π

√
A′ + C ′

A′C ′
= 2
√

2π

√
A′ + C ′

4A′C ′
.
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But if we put B′ = 0, then A′+C ′ = A+C and 4A′C ′ = 4A′C ′−B′2 = 4AC−B2 since
the discriminant is an invariant. Thus

L ≤
√

2
√
A+ C

2π

4AC −B2
=
√

2
√
A+ C vol(E),

as desired.

If L+ denotes the circumference of E+, then we have by the previous lemma

L+ ≤
√

2π

√
Im(τ) + |ξ|2 Im(τ)

Im(ξ) + 50|ξ|3ε1/2

Im(ξ) + 50|ξ|3ε1/2

Im(τ) Im(ξ)

≤
√

2π

√
1 + |ξ|2
Im(ξ)

√
Im(ξ) + 50|ξ|3ε1/2

Im(τ)
.

Now we use the bound on ε to get

L+ ≤
√

2π

√
1 + |ξ|2
Im(ξ)

√
Im(ξ) + 1

2
Im(ξ)

Im(τ)

=
√

3π

√
1 + |ξ|2
Im(ξ)

1√
Im(τ)

.

We have |ξ|
Im(ξ)

≤ 2√
3

since ξ is in the fundamental domain. Hence |ξ|2
Im(ξ)

≤ 4
3

Im(ξ) and
therefore

1 + |ξ|2

Im(ξ)
=

1

Im(ξ)
+
|ξ|2

Im(ξ)
≤ 2√

3
+

4

3
Im(ξ) ≤ 8

3
Im(ξ).

Using this for the bound of L+ yields

L+ ≤ 2π

√
2 Im(ξ)√
Im(τ)

.

Similarly, we obtain

L− ≤
√

2π

√
1 + |ξ|2
Im(ξ)

√
Im(ξ)− 50|ξ|3ε1/2

Im(τ)
.
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where L− is the circumference of E− and thus

L− ≤
√

2π

√
1 + |ξ|2
Im(ξ)

√
Im(ξ)

Im(τ)

=
√

2π

√
1 + |ξ|2
Im(ξ)

1√
Im(τ)

≤ 2π

√
2 Im(ξ)√
Im(τ)

.

Clearly this bound holds since L− is the circumference of the smaller ellipse.

Let N(E±) denote the number of lattice points contained in E± as defined in Theorem
3.6. By this same theorem, the number of points contained in the elliptical annulus can
be estimated by

N(E+)−N(E−) = N(E+)− vol(E+)− (N(E−)− vol(E−)) + vol(E+)− vol(E−)

≤ 4(L+ + 1) + 4(L− + 1) + vol(E+)− vol(E−)

≤ 8(L+ + 1) +
100π|ξ|3ε1/2

Im(τ) Im(ξ)

≤ 16π

√
2 Im(ξ) +

√
Im(τ)√

Im(τ)
+

100π|ξ|3ε1/2

Im(τ) Im(ξ)
.

Therefore, a bound for N(Im(τ), ε) is given by twice this number since the ellipse for
ν = −1 gives the same bound.

To obtain a bound for the number of matrices satisfying the conditions in Lemma 3.4,
we need to estimate the possible pairs (b, d) when (a, c) is fixed. Let (a, c) be fixed, and
assume that (b, d) and (b′, d′) satisfy ad − bc = 1 and ad′ − b′c = 1, respectively. Then
(b− b′, d− d′) = (ak, ck) for some integer k. Lemma 3.4 now implies

|k| ≤ 2|Re(τ)|+ 2
4|ξ|+ 1√

3
≤ 2|Re(τ)|+ 6|ξ|.

Thus, M(ξ;x; y; ε) is bounded by

N(y, ε) · (2 · (2x+ 6|ξ|) + 1) ≤ N(y, ε) · (4x+ 13|ξ|)

≤ 2

(
16π

√
2 Im(ξ) +

√
y

√
y

+
100π|ξ|3ε1/2

y Im(ξ)

)
(4x+ 13|ξ|) . (3.13)

We now want to apply this result to estimate the number of points close to a fixed
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Figure 3.3: τ0 and all except one τM for N = 10

point which are given by a cyclic isogeny of degree N . Let τ0 ∈ H be fixed. Let N ∈ N.
We will be working with matrices M of the form

(
m l
0 n

)
with N = mn and 0 ≤ l < n.

We will denote M.τ0 by τM . We want to bound the number of points τM satisfying
|τ̃M − ξ| ≤ ε with τ̃M in the SL2(Z)–orbit of τM and in F̄ . For this we momentarily fix
a divisor n of N with n ≥

√
N and a matrix M with M =

(
m l
0 n

)
and 0 ≤ l < n. Then

y := Im(τM) = m
n

Im(τ0) for any 0 ≤ l < n. Figure 3.1 shows an example with τ = 1 + i
and N = 10.

Since y does not depend on l and |Re(τM)| ≤ |Re(τ0)|+1, the bound forM(ξ; |Re(τ0)|+
1; y; ε) is independent of l. This number does not estimate all the τM that are translated
close to ξ as we will see later. The bound in (3.13) translates to

M(ξ; |Re(τ0)|+ 1; y; ε) ≤ 8

(
4π

√
2 Im(ξ) +

√
m
n

Im(τ0)√
Im(τ0)

√
n

m
+

25π|ξ|3ε1/2

Im(τ0) Im(ξ)

n

m

)
· (4|Re(τ0)|+ 13|ξ|+ 4) .

But m
n
≤ 1 since n ≥

√
N and hence

M(ξ;|Re(τ0)|+ 1; y; ε)

≤ 8 (4|Re(τ0)|+ 17|ξ|)

(
4π

√
2 Im(ξ) +

√
Im(τ0)√

Im(τ0)

√
n

m
+

25π|ξ|3ε1/2

Im(τ0) Im(ξ)

n

m

)

≤ 8 (4|Re(τ0)|+ 17|ξ|)

(
8π

√
2 Im(ξ) +

√
Im(τ0)√

Im(τ0)

√
n

m
+

35π|ξ|2ε1/2

Im(τ0)

n

m

)
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if we also apply |ξ|2/ Im(ξ) ≤ 4|ξ|/3. Further we get

M(ξ; |Re(τ0)|+ 1; y; ε) ≤ 64π (4|Re(τ0)|+ 17|ξ|)

·max

{√
2 Im(ξ) +

√
Im(τ0)√

Im(τ0)
, 5
|ξ|2

Im(τ0)

}
(3.14)

·
(√

n

m
+
n

m
ε1/2

)
.

Now different τM (entry l different) can be translated close to ξ by the same matrix,
so we have to restrict those. So if τM is translated into the disc around ξ by a matrix(
a b
c d

)
then the real part x of τM satisfies

|cx+ d| |c| ≤ 3|ξ| and |ax+ b| |a| ≤ 3|ξ|

by (3.4) and (3.6). Assume that c 6= 0. Then |x+ d/c| ≤ 3|ξ|c−2, so that x lies in an
interval I with center −d/c and of length bounded by 6|ξ|c−2. This implies

|{l ∈ {0, . . . , n− 1} : (mRe(τ0) + l)/n ∈ I}| ≤ n|I|+ 1 ≤ 6|ξ| n
c2

+ 1.

A similar result is obtained if a 6= 0. So in any case

|{l ∈ {0, . . . , n− 1} : (mRe(τ0) + l)/n ∈ I}| ≤ 6|ξ| n

max{|a|, |c|}2
+ 1 (3.15)

independent of whether the interval is centered around −d/c or −b/a. Moreover,
max{|a|, |c|}2 can be bounded by

3|ξ|2 max{|a|, |c|}2 ≥ a2 + ν2|Re(ξ)|ac+ |ξ|2c2

≥ Im(ξ)− 50|ξ|3ε1/2

y
=

Im(ξ)− 50|ξ|3ε1/2

Im(τ0)

n

m
,

where the last inequality follows from Equation (3.1). Using the upper bound on ε we
obtain

3|ξ|2 max{|a|, |c|}2 ≥ Im(ξ)

2 Im(τ0)

n

m
,

and hence

6|ξ| n

max{|a|, |c|}2
≤ 36|ξ|3 Im(τ0)

Im(ξ)
m ≤ 50|ξ|2 Im(τ0)m (3.16)

since |ξ|/ Im(ξ) ≤ 2/
√

3.

Recall that the matrix M is of the form
(
m l
0 n

)
with N = mn and 0 ≤ l < n and
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τM = Mτ0. As before, τ̃M is in the SL2(Z)–orbit of τM and in F̄ .

Let Λ(τ0;N ; ε) be the set of τM satisfying |τ̃M − ξ| ≤ ε, where τM is as before. The
number of elements in Λ(τ0;N ; ε) is surely bounded by the number of matrices M with
lower right entry greater than

√
N satisfying the condition plus the total number of

matrices with n ≤
√
N . The latter is bounded by∑

n|N
0<n≤

√
N

n ≤
√
N
∑
n|N

1 =
√
Nσ0(N).

For n ≤
√
N we are going to count τ̃M independent of whether |τ̃M − ξ| ≤ ε or not since

the number
√
Nσ0(N) does not grow too fast. Now by the arguments we just made,

we can bound the number of τM and thus the total number of points in Λ(τM ;N ; ε) as
follows. Recall that N = mn.

|Λ(τ0;N ; ε)| ≤
∑
n|N
n≥
√
N

M
(
ξ; |Re(τ0)|+ 1;

N

n2
Im(τ0); ε

)(
6|ξ| n

max{|a|, |c|}2
+ 1

)

+
√
Nσ0(N).

Here, for fixed n the number M
(
ξ; |Re(τ0)|+ 1; N

n2 Im(τ0); ε
)

bounds the matrices that
translate any τM of the form

(
m l
0 n

)
with varying l close to ξ. But since different τM can

be translated into the disc around ξ by the same matrix we have to compensate this
with the inequality in (3.15). This in turn can be estimated as displayed in (3.16) so
that

|Λ(τ0;N ; ε)| ≤
∑
n|N
n≥
√
N

M
(
ξ; |Re(τ0)|+ 1;

N

n2
Im(τ0); ε

)(
50|ξ|2 Im(τ0)

N

n
+ 1

)

+
√
Nσ0(N).

By the inequality for M
(
ξ; |Re(τ0)|+ 1; N

n2 Im(τ0); ε
)

in (3.14) and 1 ≤ m we get

|Λ(τ0;N ; ε)| ≤
√
Nσ0(N) +

∑
m|N
m≤
√
N

m · I(τ0, ξ) ·

(√
N

m2
+
N

m2
ε1/2

)
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where

I(τ0, ξ) = 64π (4|Re(τ0)|+ 17|ξ|)
(
50|ξ|2 Im(τ0) + 1

)
·max

{√
2 Im(ξ) +

√
Im(τ0)√

Im(τ0)
, 5
|ξ|2

Im(τ0)

}
.

We can continue the estimate

|Λ(τ0;N ; ε)| ≤
√
Nσ0(N) + I(τ0, ξ)

∑
m|N
m≤
√
N

m

(√
N

m
+
N

m2
ε1/2

)

=
√
Nσ0(N) + I(τ0, ξ)

∑
m|N
m≤
√
N

(√
N +

N

m
ε1/2

)
.

We split the sum to get

|Λ(τ0;N ; ε)| ≤
√
Nσ0(N) + I(τ0, ξ)

∑
m|N
m≤
√
N

√
N +

∑
m|N
m≤
√
N

N

m
ε1/2


=
√
Nσ0(N)(1 + I(τ0, ξ)) + I(τ0, ξ)ε

1/2
∑
n|N
n≥
√
N

n

=
√
Nσ0(N)(1 + I(τ0, ξ)) + I(τ0, ξ)ε

1/2σ1(N). (3.17)

Lemma 3.8 Let N be a positive integer. Then σ1(N) ≤ π2

6
ψ(N).

Proof. It is well–known that σ1 is multiplicative. The function ψ is also multiplicative,

see page 53 of [Lan87]. We have σ1(pk) = pk+1−1
p−1

and ψ(pk) = pk−1(p+ 1). Thus

σ1(pk)

ψ(pk)
=

pk+1 − 1

(p− 1)(p+ 1)pk−1
≤ p2

p2 − 1
=

1

1− p−2
.

For general N this yields

σ1(N)

ψ(N)
≤
∏
pk‖N

1

1− p−2
≤
∏
p

1

1− p−2
= ζ(2),

where ζ denotes the Riemann zeta function. This proves the claim.

This proves the following claim.
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Lemma 3.9 Fix τ0 ∈ H and ξ ∈ F̄ . Let 0 < ε ≤
(

Im(ξ)
100|ξ|3

)2

. Let Λ(τ0;N ; ε) be the

number of Mτ0, M =
(
m l
0 n

)
with N = mn and 0 ≤ l < n, that satisfy |γMτ0 − ξ| ≤ ε

for some γ ∈ SL2(Z). Then

|Λ(τ0;N ; ε)| ≤
√
Nσ0(N)(1 + I(τ0, ξ)) +

π2

6
I(τ0, ξ)ε

1/2ψ(N).

with

I(τ0, ξ) = 64π (4|Re(τ0)|+ 17|ξ|)
(
50|ξ|2 Im(τ0) + 1

)
·max

{√
2 Im(ξ) +

√
Im(τ0)√

Im(τ0)
, 5
|ξ|2

Im(τ0)

}
.

To complete the proof of Proposition 3.5 we restrict τ0 to the fundamental domain.
Then Im(τ0) ≥

√
3/2 and |Re(τ0)| ≤ 1/2. Therefore we get√

2 Im(ξ) +
√

Im(τ0)√
Im(τ0)

= 1 +

√
2 Im(ξ)√
Im(τ0)

≤ 1 + 2
√

Im(ξ) ≤ 6|ξ|2

and hence

max

{
1 + I(τ0, ξ),

π2

6
I(τ0, ξ)

}
≤ 64π (2 + 17|ξ|) · 60|ξ|2|τ0| · 6|ξ|2 ≤ 107|τ0||ξ|5.

Recall from Chapter 1 that an N–isogeny is related to a matrix of the form M =
(
m l
0 n

)
with N = mn, 0 ≤ l < n and gcd(m,n, l) = 1. We have considered such matrices
without a condition on the greatest common divisor. Therefore we are done with the
proof of Proposition 3.5.

3.2 Bounding the height

Recall that we have fixed an elliptic curve without complex multiplication defined over
a number field K and j0 is its j–invariant. Two points in the fundamental domain are in
the same Hecke orbit if there exists an isogeny between them. We are going to compare
the Galois orbit of j0 to the Hecke orbit of all conjugates of E0. We now want to bound
the number of elements in Γ(ξ, ε). For this we use the connection between the isogeny
orbit and the Galois orbit of Serre’s open image theorem. See Théorème 3 in §4 of
[Ser72].
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Galois orbit

Hecke orbit

More precisely, we will be using a version proved by Lombardo [Lom15], that gives
us an explicit bound. Let GK = Gal(K̄/K) be the absolute Galois group of K. Recall
that GK acts on the N–torsion points of N , and we thus get a representation

ρN : GK → Aut(E[N ]).

The group Aut(E[N ]) is isomorphic to GL2(Z/NZ). It is possible to choose a suitable
basis of GL2(Z/NZ) so that we obtain a representation

ρ∞ : GK → GL2(Ẑ)

after taking the inverse limit (over N .) Serre proved in [Ser72] that [GL2(Ẑ) : ρ∞(GK)]
is finite. The result by Lombardo implies[

GL2(Ẑ) : ρ∞(GK)
]
< γ1 · [K : Q]γ2 ·max {1, h(E), log[K : Q]}2γ2 (3.18)

where γ1 = exp (1021483) and γ2 = 2.4 · 1010. In particular, we obtain

[GL2(Z/NZ) : ρN(GK)] < γ1 · [K : Q]γ2 ·max {1, h(E), log[K : Q]}2γ2 .

Note that Lombardo’s result actually uses the original definition of the Faltings height.
This information was acquired through a private conversation with the author. Since
the original definition of the Faltings height is smaller than the height of E we defined
in Chapter 1, we can just substitute h(E) into Lombardo’s result.

The cyclic isogenies of degree N correspond in a one–to–one fashion to the cyclic
subgroups of order N in Z/NZ × Z/NZ ' E[N ]. The action of GL2(Z/NZ) on these
subgroups is transitive as the next lemma states. We start with some group theory. We
denote by ϕ Euler’s totient function given by ϕ(N) = #(Z/NZ)× = N

∏
p|N(1 − 1/p),

where the product runs over all primes p dividing N . Recall ψ(N) = N
∏

p|N(1 + 1/p).

Lemma 3.10 The cardinality of GL2(Z/NZ) is equal to ϕ(N)2ψ(N)N . Let ∆ ⊆
GL2(Z/NZ) denote the subgroup of upper triangular matrices. Then #∆ = Nϕ(N)2.
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There are ψ(N) cyclic subgroups of Z/NZ × Z/NZ. The group GL2(Z/NZ) acts tran-
sitively on the cyclic subgroups of order N in (Z/NZ)2.

Lemma 3.11 Let E/K be an elliptic curve, N an integer, and Φ ⊆ E[N ] a cyclic
subgroup of N–torsion points. Put B = |{σ(Φ) : σ ∈ Gal(K̄/K)}|. Then we have

ψ(N)

B
≤ [GL2(Z/NZ) : ρN(GK)] .

Proof. Suppose Φ is generated by P ∈ E[N ]. After choosing a basis, we may assume
that P corresponds to (1, 0) in Z/NZ×Z/NZ. For any σ ∈ Gal(K̄/K), the group σ(Φ)
is generated by a point (a, c) ∈ Z/NZ× Z/NZ where ( a bc d ) is the image of σ under ρN .
Let ∆ be the subgroup of upper triangular matrices of GL2(Z/NZ). The equality σ(Φ) =
Φ holds if and only if σ is mapped into ∆ under ρN . We thus have

B =
# im ρN

#(∆ ∩ im ρN)
≥ # im ρN

#∆
=

# im ρN
Nϕ(N)2

.

This implies

ψ(N)

B
≤ ψ(N)ϕ(N)2N

# im ρN
=

ψ(N)ϕ(N)2N

# GL2(Z/NZ)
[GL2(Z/NZ) : ρN(GK)]

= [GL2(Z/NZ) : ρN(GK)] ,

as desired.

We want to estimate a Mertens’ type of sum. In fact, we are going to use a result by
Mertens.

Lemma 3.12 Let n ≥ 4 be a positive integer. Then∑
p|n

log p

p
≤ 5.25 log log n,

where the sum runs over all prime divisors of n.

Proof. The function log x/x is decreasing on (e,∞). Note that (log 2)/2 < (log 3)/3.
So let n = pa be a prime power with p 6= 2. Then

log p

p
≤ log 3

3
≤ 5 log log 3 ≤ 5 log log p

and the claim holds. If n = 2a with a ≥ 2, then

log 2

2
< 1 ≤ 5 log log(4).
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Now let n = paqb with different primes p, q and a, b ≥ 1. We have (log 5)/5 < (log 2)/2
and (log p)/p < 0.5. Thus

log p

p
+

log q

q
≤ log 2

2
+

log 3

3
≤ 1 < 5 log log 6 ≤ 5 log log n.

So the claim is true for all 4 ≤ n ≤ 29. let us now assume that n is composite with
ω(n) ≥ 3. We can bound the sum by looking at the first ω(n) primes∑

p|n

log p

p
≤ log p1

p1

+
log p2

p2

+ · · ·+
log pω(n)

pω(n)

.

Note that (log 2)/2 < (log 3)/3, so that if 3 occurs in the prime decomposition of n and
2 does not, we can just estimate the largest prime divisor of n by (log 2)/2 and get the
same inequality. It is a well–known result by Cipolla in [Cip02], that the n–th prime
pn is bounded from above by n(log n + log log n) for sufficiently large n. Indeed Rosser
proved in Theorem 2 of [Ros39] that pn ≤ n(log n + 2 log log n) for all n ≥ 4. Also
compare to the bound in [RS62]. Hence pn ≤ 2n log n for all n ≥ 3 since this bound
also holds for p3 = 5. Since we have ω(n) ≥ 3 we can apply this to the last inequality
to obtain ∑

p|n

log p

p
≤

∑
p≤2ω(n) logω(n)

log p

p
.

By Mertens’ Theorem (see [Mer74]) the sum on the right–hand side is bounded by∑
p≤2ω(n) logω(n)

log p

p
≤ 2 log(2ω(n) logω(n))

for all n ≥ 1 composite of at least 3 distinct primes. We have the trivial inequality

ω(n) ≤ log n

log 2
.

This gives us ∑
p|n

log p

p
≤ 2 log

(
2

log n

log 2
log

log n

log 2

)
≤ 2 log log n+ 2 log (log log n− log log 2) + 2.12
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and if n ≥ 5 this gets us∑
p|n

log p

p
≤ 2 log log n+ 2 log (2 log log n) + 2.12

≤ 2 log log n+ 2 log log log n+ 3.51.

But we have log log n ≤ 36
100

log n since x 7→ (log log x)/ log x is decreasing for x ≥ 16
and (log log 30)/(log 30) < 0.36. Because of 3.51 + 2 log 0.36 < 1.25 log log 30 we obtain∑

p≤2ω(n) logω(n)

log p

p
≤ 5.25 log log n,

as desired.

Proposition 3.13 Let E/Q̄ and E0/K be elliptic curves without CM such that there
exists a cyclic isogeny of degree N from E0 to E. Let ρN be the Galois representation
associated to E0. If N ≥ 4, we have

h(E) ≥ h(E0) +
1

2
logN − 7 · [GL2(Z/NZ) : ρN(GK)] log logN.

Proof. We denote by h(E) and h(E0) the stable Faltings height of E and E0, respec-
tively. (The stated inequality does not depend on the normalization of the Faltings
height.) We consider the action of Gal(Q̄/K) on the set of Q̄–isomorphism classes of
elliptic curves. Let E = E1, . . . , Eψ(N) be representatives of elliptic curves that are N–
isogenous to E0. Note that the group Gal(Q̄/K) acts on the set {E1, . . . , Eψ(N)}. By
Corollaire 3.3 in [Aut03] we have

1

ψ(N)

ψ(N)∑
i=1

h(Ei) = h(E0) +
1

2
logN − λN

where N = pα1
1 · · · pαrr and λN =

∑r
i=1

p
αi
i −1

(p2
i−1)p

αi−1
i

log pi. Rearranging and using |h(E0)−
h(Ei)| ≤ 1/2 logN (e.g. [Ray85, Corollaire 2.1.4, page 207]) we obtain

n1

ψ(N)
h(E1) ≥ h(E0) +

1

2
logN − λN −

∑
j

nj
2ψ(N)

logN −
∑
j

nj
ψ(N)

h(E0)

= h(E0) +
1

2
logN − λN −

ψ(N)− n1

2ψ(N)
logN − ψ(N)− n1

ψ(N)
h(E0)

=
n1

ψ(N)
h(E0) +

n1

2ψ(N)
logN − λN ,
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where we have grouped curves into Gal(Q̄/K)–orbits, each of size nj. The number n1 is
the number of elliptic curves up to Q̄–isomorphism that are in the Gal(Q̄/K)–orbit of
E1. This implies

h(E1) ≥ h(E0) +
1

2
logN − ψ(N)

n1

λN .

We have
pαii − 1

(p2
i − 1)pαi−1

i

≤ pαii
(p2
i − 1)pαi−1

i

=
pi

p2
i − 1

≤ 4

3pi
.

It follows from the last lemma and Lemma 3.11 that

h(E1) ≥ h(E0) +
1

2
logN − 21

3
[GL2(Z/NZ) : ρN(GK)] log logN,

as desired.

Corollary 3.14 In the setting of the previous proposition, let j0 and j be the j–
invariants of E0 and E, respectively. We have

h(j0)− 6 log(1 + h(j0)) + 6 logN − 84 [GL2(Z/NZ) : ρN(GK)] log logN

≤ h(j) + 16.212

Proof. Compare the proof to Proposition 2.1 in [Sil86a]. Using Proposition 3.2 of
[Löb17] in the first step and Lemme 7.8 of [GR11] on the third we obtain

1

12
h(j0)− 1

2
log(1 + h(j0))− 2.071 +

1

2
logN − 7 [GL2(Z/NZ) : ρN(GK)] log logN

≤ h(E0) +
1

2
logN − 7 [GL2(Z/NZ) : ρN(GK)] log logN +

1

2
log π

≤ h(E) +
1

2
log π

≤ 1

12
h(j)− 1

2
log(1 + h(j))− 0.72

≤ 1

12
h(j)− 0.72.

Note that the authors of both cited papers use the normalization of the Faltings height
of Deligne. Multiplying the inequality by 12 and rearranging the terms yields the desired
inequality.

In the proof of the next lemma we will use the function

D(z) = max{1, |Re(z)|, Im(z)−1}, for all z ∈ H.

It appears in [HP12]. Note that if z is in F̄ , then D(z) ≤ 2/
√

3. The height of an
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element in Mat2(Q) will be the height of that element when regarded as a member of
Q4. The following result can be found in [HP12].

Lemma 3.15 If z ∈ H, then there is a ρ ∈ SL2(Z) with H(ρ) ≤ 264D(z)9 and ρz ∈ F .

Proof. Write z = x + iy with x, y ∈ R and y > 0. We assume y ≤ 1/2 for now and
define Q = y−1/2. We can find integers c, d ∈ Z with 1 ≤ c < Q and |cx + d| ≤ 1/Q by
page 1 of [Cas57]. There is no restriction in assuming that c and d are coprime. Also
we can find a, b with ad − bc = 1 and max{|a|, |b|} ≤ max{|c|, |d|}. Put β =

(
a b
c d

)
.

Then H(β) = max{|c|, |d|}. By definition we have |c| < y−1/2 ≤ D(z)1/2 and |d| ≤
|c||x|+Q−1 ≤ D(z)1/2|x|+ 1 ≤ 2D(z)3/2. This implies

H(β) ≤ 2D(z)3/2. (3.19)

If c 6= 0 then |cz + d| ≥ | Im(cz + d)| = |c| Im(z) ≥ D(z)−1. But if c = 0, then d = ±1,
so

|cz + d| ≥ D(z)−1 (3.20)

holds in any case. Now since y ≤ 1/2 we have

|z|2 ≤ x2 + 1/4 ≤ 2D(z)2. (3.21)

This implies |az + b| ≤ |a||z|+ |b| ≤ 2|a|D(z) + |b| ≤ 3H(β)D(z). Using this and (3.19)
we obtain

|βz| = |az + b|
|cz + d|

≤ 3H(β)D(z)2 ≤ 6D(z)7/2.

By the usual transformation law of the imaginary part under fractional linear transfor-
mations we obtain Im(βz) = Im(z)|cz+d|−2 = y((cx+d)2+c2y2)−1 ≥ y(Q−2+Q2y2)−1 =
y(y + y)−1, i.e.

Im(βz) ≥ 1

2
. (3.22)

If we apply (3.20) we obtain for the real part of βz

|Re(βz)| = |ac|z|
2 + bd+ x(ad+ bc)|
|cz + d|2

≤ 4H(β)2D(z)2 max{1, |x|, |z|2}. (3.23)

But |x| ≤ |z| so that by (3.21) we get |Re(βz)| ≤ 8H(β)2D(z)4. In total we obtain
together with (3.19)

|Re(βz)| ≤ 32D(z)7. (3.24)

We have modified z so that Im(βz) ≥ 1/2. If y > 1/2, then equations (3.19), (3.22) and
(3.24) are true with β the identity matrix. There exists a matrix γ =

(
1 t
0 1

)
∈ SL2(Z) that

translates βz into the vertical strip {τ ∈ H;−1/2 < Re(τ) ≤ 1/2}. The matrix γ does
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not change the imaginary part of βz. We have t ≤ Re(βz)|+1/2 ≤ 33D(z)7 by applying
(3.24). This implies H(γ) ≤ max{1, |t|} ≤ 33D(z)7. Now since |Re(γβz)| ≤ 1/2 and
Im(γβz) ≥ 1/2 we get δγβz ∈ F for some

δ ∈
{(

1 0
0 1

)
,

(
0 −1
1 0

)
,

(
±1 −1
1 0

)}
.

By construction ρ = δγβ ∈ SL2(Z) and ρz ∈ F . Also since H(δ) = 1 we obtain

H(ρ) ≤ 2H(δ)H(γβ) ≤ 4H(γ)H(β) ≤ 4 · 33D(z)7 · 2D(z)3/2 ≤ 264D(z)17/2

by (3.19) and the height estimate for γ.

Let N,m, n, l be integers satisfying 1 < N = mn and 0 ≤ l < n. Then we have
|Re

(
mτ+l
n

)
| ≤ N (|Re(τ)|+ 1) ≤ N(D(τ) + 1), and we can similarly bound the inverse

of the imaginary part by N(D(τ) + 1). Thus

D

(
mτ + l

n

)
≤ N(D(τ) + 1). (3.25)

Lemma 3.16 Let E0 : y2 = 4x3− g2x− g3 be the Weierstrass form of an elliptic curve
without complex multiplication defined over a number field K. Let j0 be the j–invariant
of E0 and put h = max{1, h(1, g2, g3), h(j0)}. Let ω1 and ω2 be periods of the elliptic
curve such that τ0 = ω2/ω1 is in F . Suppose that ξ is an algebraic number of degree 2.
Let N,m, n, l be integers satisfying

N ≥
(
max{e6π|τ0|/[K:Q], ee·h, [K : Q], (4 · 1011H(ξ))20}

)1/20
=: N (E0, ξ),

N = mn and 0 ≤ l < n. Let ρ ∈ SL2(Z) satisfy ρ
(
m l
0 n

)
.τ0 ∈ F̄ . Write

(
α β
γ δ

)
= ρ
(
m l
0 n

)
.

Then there exists an explicit constant c′1 ≥ 1 such that

log|(α− ξγ)ω2 + (β − ξδ)ω1| ≥ −c′1 · (logN)4.

The constant c′1 depends on the elliptic curve E0.

Proof. This is a special case of Théorème 2.1 in [Dav95]. We set D = [K : Q]. Also
see [DH09] for a similar result with a computable constant. We put L(z0, z1, z2) =
(α− ξγ)z1 + (β − ξδ)z2. Our elliptic curve and the coefficients are in a number field of
degree at most 2D since ξ is quadratic. Note that (α− ξγ)ω2 +(β− ξδ)ω1 6= 0 otherwise
we would have

τ0 =
ξδ − β
α− ξγ

=

(
δ −β
−γ α

)
.ξ

i.e. there is a isogeny of degree N between elliptic curves with j–invariant j(τ0) and
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j(ξ). But one has complex multiplication and the other does not, so this is impossible.
We choose the variables u1, u2 in the theorem to be ω2 and ω1, respectively. Then
γ1 = γ2 = (0, 0, 1) and v = (1, ω2, ω1). We have to estimate the height of the coefficients
of the linear form. For this, let H denote the multiplicative height. Let ρ =

(
a b
c d

)
. Then

α = ma and γ = cm, and by Lemma 1.4 we obtain

H(α− ξγ) ≤ 2H(α)H(−ξγ)

≤ 2H(α)H(ξ)H(γ)

= 2H(am)H(ξ)H(cm)

≤ 2H(a)H(m)H(ξ)H(c)H(m)

= 2H(a)H(ξ)H(c)m2.

Now m ≤ N and H(a), H(c) ≤ H(ρ) so that

H(α− ξγ) ≤ 2H(ρ)2H(ξ)N2.

Note that
(
m l
0 n

)
.τ0 does not have CM and is thus not an elliptic point for SL2(Z). This

means that if ρ′ ∈ SL2(Z) transfers the point to the same points as ρ does, then ρ′ = ±ρ.
Since H(ρ) = H(−ρ) we can use Lemma 3.15 together with (3.25) to obtain

H(ρ) ≤ 264D

(
mτ0 + l

n

)9

≤ 264(D(τ0) + 1)9N9 ≤ 2 · 105N9, (3.26)

because τ0 ∈ F . Altogether we have

H(α− ξγ) ≤ 8 · 1010H(ξ)N20.

We have β = al + bn and δ = cl + dn. Recall 0 ≤ l < n ≤ N and thus

H(β) = |al + bn| ≤ |al|+ |bn| ≤ (|a|+ |b|)N ≤ 2H(ρ)N

and
H(δ) = |cl + dn| ≤ |cl|+ |dn| ≤ (|c|+ |d|)N ≤ 2H(ρ)N.

For the height of H(β − ξδ) we obtain

H(β − ξδ) ≤ 2H(β)H(ξ)H(δ)

≤ 8H(ρ)2H(ξ)N2.

Using (3.26) again this yields

H(β − ξδ) ≤ 4 · 1011H(ξ)N20.
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Put V1 = V2 = emax{h,6π|τ0|}. We have

3π|u1|2

|ω1|2 Im(τ0)2D
≤ 3π|u1|2

|ω1|2 Im(τ0)D
≤ 3π|τ0|2

Im(τ0)D
≤ 6π|τ0|

and also

3π|u2|2

|ω1|2 Im(τ0)D
≤ 3π

Im(τ0)D
≤ 6π

since |τ0|2/ Im(τ0) ≤ 2|τ0|/
√

3 and Im(τ0) ≥
√

3/2 for τ0 ∈ F̄ . Therefore, equation (3) of
Théorème 2.1 in [Dav95] is satisfied independently of whether ξ is in K or not. Assume

N ≥
(
max{e6π|τ0|/D, ee·h, D, (4 · 1011H(ξ))20}

)1/20
.

Define
B = N21.

We picked N large enough so that

B ≥ 4 · 1011H(ξ)N20 ≥ max{eeh, e6π|τ0|/D, H(α− ξγ), H(β − ξδ)}.

This implies B ≥ V
1/D

1 = V
1/D

2 . Thus, equations (1) and (2) of the theorem in [Dav95]
are satisfied, and we are in the situation of the theorem to obtain as a result the lower
bound

log|L(v)| ≥ −C · 26 ·D6(logB + log(2D)) · (log logB + h+ log(2D))3 log V1 log V2

≥ −C · 26 ·D6 · 54 ·max{h, 6π|τ0|}2 · (logB)4

since h ≤ logB and log(2D) ≤ logB. If we substitute B and take C from [Dav95] we
get

log|L(v)| ≥ −C · 26 ·D6 · 54 ·max{h, 6π|τ0|}2 · 214 · (logN)4

≥ −4 · 1050 ·D6 ·max{h, 6π|τ0|}2 · (logN)4.

This gives the desired inequality of the lemma.

Recall the definitions

F+ = {τ ∈ F ; 0 ≤ Re(τ) ≤ 1/2}

and
F− = {τ ∈ F ;−1/2 ≤ Re(τ) ≤ 0}.
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The following lemma can be found in [BLP16]. Also see Lemma 2.10.

Lemma 3.17 For τ ∈ F+ we either have |τ − ζ| ≥ 10−3 and |j(τ)| ≥ 4.4 · 10−5 or
|τ − ζ| ≤ 10−3 and

44000|τ − ζ|3 ≤ |j(τ)| ≤ 47000|τ − ζ|3.

For τ ∈ F− we either have |τ − ζ2| ≥ 10−3 and |j(τ)| ≥ 4.4 · 10−5 or |τ − ζ2| ≤ 10−3 and

44000|τ − ζ|3 ≤ |j(τ)| ≤ 47000|τ − ζ|3.

We fix E0 given by a Weierstrass equation y2 = 4x3−g2x−g3, and assume it is defined
over a number field K. Let j0 be its j–invariant and pick τ0 ∈ F with j(τ0) = j0. Let
E be an elliptic curve with j–invariant j that is N–isogenous to E0. As before, we set
j(τσ0 ) = σ(j(τ0)) with τσ0 ∈ F for any field embedding σ : K → C. By Eσ

0 and Eσ we
denote the Galois conjugates of E0 and E, respectively.

Lemma 3.18 Let N ≥ N (Eσ
0 , ζ). We have log|σ(j)| ≥ −c1 · (logN)6 − c2 for any

Q–homomorphism σ : K → C, where the constants are explicit and only depend on the
fixed elliptic curve E0. We have c1 ≥ 1 and we can have c2 ≥ 0.

Proof. We assume |σ(j)| ≤ 10−3 for now. We have an N–isogeny between Eσ
0 and Eσ

since E0 and E are N–isogenous. Let Eσ
0 (C) ' C/(ωσ0,1Z+ωσ0,2Z) with τσ0 = ωσ0,2/ω

σ
0,1 in

the fundamental domain. Similarly, let τσ correspond to Eσ(C). We can choose ωσ1 and
ωσ2 such that τσ = ρ

(
m l
0 n

)
τσ0 and such that τσ is in the fundamental domain F . Write(

α β
γ δ

)
= ρ
(
m l
0 n

)
. A similar estimate to the one in the proof of Lemma 3.16 shows

|γωσ0,2 + δωσ0,1| ≤ 3N max{|ωσ0,1|, |ωσ0,2|}H(ρ)

≤ 792(D(τσ0 ) + 1)9 max{|ωσ0,1|, |ωσ0,2|}N10

≤ 106 max{|ωσ0,1|, |ωσ0,2|}N10,

(3.27)

since D(τσ0 ) ≤ 2/
√

3. Note that we have τσ 6= ζ since E does not have CM. We have

log|τσ − ζ| = log
∣∣( α β

γ δ

)
.τσ0 − ζ

∣∣
= log

∣∣∣∣ατσ0 + β

γτσ0 + δ
− ζ
∣∣∣∣

= log

∣∣∣∣αωσ0,2 + βωσ0,1
γωσ0,2 + δωσ0,1

− ζ
∣∣∣∣

= log

(
1

|γωσ0,2 + δωσ0,1|
|αωσ0,2 + βωσ0,1 − ζ(γωσ0,2 + δωσ0,1)|

)
= − log|γωσ0,2 + δωσ0,1|+ log|(α− ζγ)ωσ0,2 + (β − ζδ)ωσ0,1|.

(3.28)
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We can use (3.27) in the first step and Lemma 3.16 the second to get

log|τσ − ζ| ≥ − log
(
106 max{|ωσ0,1|, |ωσ0,2|}N10

)
+ log|(α− ζγ)ωσ0,2 + (β − ζδ)ωσ0,1|

≥ − log
(
106 max{|ωσ0,1|, |ωσ0,2|}N10

)
− c′1 · (logN)6,

where c′1 is the constant from Lemma 3.16. The same bound holds for ζ replaced by ζ2

since N (E, ζ) = N (E, ζ2). Assuming that τσ is closer to ζ, Lemma 3.17 says

|σ(j)| = |j(τσ)| ≥ 44000|τσ − ζ|3.

This implies

log|σ(j)| = log|j(τσ)| ≥ log 44000 + log |τσ − ζ|3

≥ log 44000− 3 log
(
106 max{|ωσ0,1|, |ωσ0,2|}

)
− 10 logN − 3c′1 · (logN)6

≥− 14− 3 log
(
max{|ωσ0,1|, |ωσ0,2|}

)
− 2 · 1051D6 ·max{h, 6π|τ0|}2 · (logN)6.

So we can put c1 = 2 · 1051D6 ·max{h, 6π|τ0|}2 ≥ 1. Since |ωσ0,1| and |ωσ0,2| can be small

we put c2 = 14 + 3 log
(
max{1, |ωσ0,1|, |ωσ0,2|}

)
.

If |σ(j)| ≥ 10−3, then

log(|σ(j)|) ≥ log(10−3) ≥ −7 > −c2,

so the bound is true.

Lemma 3.19 We have |τσ0 |/[K : Q] ≤ 3 max{1, h(j0)}.

Proof. Put D = [K : Q]. We have

|τσ0 | ≤
3

2
log max{e, |j(τσ0 )|}
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by Lemme 1 item (iv) in [FP87]. Thus

|τσ0 |
D
≤ 3

2

1

D
log max{e, |j(τσ0 )|}

≤ 3

2

1

D
(1 + log max{1, |j(τσ0 )|})

=
3

2

1

D
(1 + log max{1, |σ(j(τ0))|})

≤ 3

2

1

D

(
1 +

∑
ν∈MK

dν log max{1, |j(τ0)|ν}

)

≤ 3

2
+

3

2
h(j0).

This gives the desired inequality.

Proposition 3.20 Let j0 and j be j–invariants of elliptic curves, where j0 is as-
sociated to the elliptic curve E0/K given by E0 : y2 = 4x3 − g2x − g3. Put h =
max{1, h(1, g2, g3), h(j0)} and j(τ0) = j0 with τ0 ∈ F . Assume we have a cyclic isogeny
of degree N between E0 and an elliptic curve corresponding to j. Further assume that j
is an algebraic unit. If

N ≥ max
{

4 · 1011, [K : Q], e3h
}
,

then the height of j can be estimated by

h(j) ≤6 · 107h[K : Q][GL2(Z/NZ) : ρN(GK)]
(
N−1/10 +

√
ε
) (
c1(logN)6 + c2

)
+ 3|log ε|

where 0 < ε < 10−5 is arbitrary.

Proof. Let E be an elliptic curve corresponding to j, so that there is a cyclic isogeny
of degree N between E0 and E. Let Φ ⊆ E0[N ] be the kernel of the given isogeny
E0 → E. Put G = {σ ∈ Gal(K(E0[N ])/K);σ(Φ) = Φ}, and let KΦ = {α ∈
K(E0[N ]);σ(α) = α for all σ ∈ G} be the fixed field of Φ. By basic Galois theory
we have G = Gal(K(E0[N ])/KΦ), and hence σ(Φ) = Φ for all σ ∈ Gal(KΦ/KΦ). This
implies

B = |{σ(Φ) : σ ∈ Gal(K(E0[N ])/K)}|

=
|Gal(K(E0[N ])/K)|

|G|
= |Gal(KΦ/K)| = [KΦ : K].

By Remark III.4.13.2 in [Sil86b] the elliptic curve E is defined over KΦ, and hence
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j ∈ KΦ. Let D be the degree of KΦ over Q. Put ε0 = 44000ε3. By (1.6) we have

h(j) = − 1

D

 ∑
|σ(j)|<ε0

log|σ(j)|+
∑

ε0≤|σ(j)|<1

log|σ(j)|


≤ − 1

D

∑
|σ(j)|<ε0

log|σ(j)|+ |log ε0|. (3.29)

Recall the definitions
Γε = {σ : K → C; τσ ∈ Σε}

with
Σε = {τ ∈ F ; |j(τ)| < ε} .

If |σ(j)| = |j(τσ)| < ε0 ≤ 10−3 and τσ ∈ F+, then by Lemma 3.17

|τσ − ζ|3 ≤ |j(τ
σ)|

44000
<

ε0

44000
= ε3, (3.30)

i.e. |τσ − ζ| < ε. If τσ is not in F+ but in F−, then |τσ − ζ2| < ε also follows from
|σ(j)| < ε0 and Lemma 3.17. We have σ ∈ Γε since

|σ(j)| = |j(τσ)| < ε0 = 47000ε3 ≤ 47000 · 10−10ε ≤ ε.

Continuing the estimate of (3.29) this gives

h(j) ≤ − 1

D

∑
|σ(j)|<ε0

log|σ(j)|+ |log ε0|

≤ #Γε0
D

max
|σ(j)|<ε0

{
log
∣∣σ(j)−1

∣∣}+ 3|log ε| − log 44000

≤ #Γε0
D

max
|σ(j)|<ε0

{
log
∣∣σ(j)−1

∣∣}+ 3|log ε|. (3.31)

Since ε ≤ 10−5 < 3/2002 we can apply Proposition 3.5 to each pair (Eσ
0 , ζ) and (Eσ

0 , ζ
2)

where σ runs over all embeddings σ : K ↪→ C as follows. For each σ ∈ Γε0 the number
τσ is close to either ζ or ζ2 as we have seen in (3.30) and gives an N–isogeny from Eσ

0

to Eσ. Thus we can bound #Γε0 by

#Γε0 ≤ 6 · 107h[K : Q]2
(√

Nσ0(N) +
√
εψ(N)

)
.

after applying Lemma 3.19. We also have ε0 ≤ 10−3 and N ≥ N (Eσ
0 , ζ) by assumption
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and the previous lemma, so we can apply Lemma 3.18 to get

max
|σ(j)|<ε0

{
log
∣∣σ(j)−1

∣∣} ≤ c1(logN)6 + c2.

Using the last two inequalities for (3.31) we obtain

h(j) ≤
6 · 107h[K : Q]

(√
Nσ0(N) +

√
εψ(N)

)
B

(
c1(logN)6 + c2

)
+ 3|log ε|

since we have D = [KΦ : Q] = B · [K : Q]. Nicolas shows on page 229 in [Nic87] that
σ0(N) ≤ N2/5 for N ≥ 107. Moreover, we have

√
Nσ0(N) ·B−1 ≤ N9/10 ·B−1 ≤ N9/10 · ψ(N)−1 · [GL2(Z/NZ) : ρN(GK)]

≤ N−1/10 · [GL2(Z/NZ) : ρN(GK)].

by Lemma 3.11. Using this in the inequality for the height above, and Lemma 3.11
again, we get

h(j) ≤6 · 107 · h[K : Q][GL2(Z/NZ) : ρN(GK)]
(
N−1/10 +

√
ε
) (
c1(logN)6 + c2

)
+ 3|log ε|,

as desired.

Theorem 3.21 Let j0 be the j–invariant of an elliptic curve without complex multi-
plication. Then there are at most finitely many j–invariants j of elliptic curves that are
isogenous to an elliptic curve corresponding to j0 and such that j is an algebraic unit.

Proof. Let E0 and E be elliptic curves with j–invariants j0 and j, respectively. Suppose
that there is an isogeny of degree N between them. We may assume that N is minimal.
By Lemma 6.2 in [MW90] the isogeny is cyclic. If N is large enough, then Corollary
3.14 gives a lower bound for the height of j

h(j) ≥ h(j0)− 6 log(1 + h(j0)) + 6 logN

− 84 [GL2(Z/NZ) : ρN(GK)] log logN − 16.212
(3.32)

Moreover, if j is an algebraic unit and N is large as in Proposition 3.20, that proposition
yields the upper bound

h(j) ≤6 · 107 · h[K : Q][GL2(Z/NZ) : ρN(GK)]
(
N−1/10 +

√
ε
) (
c1(logN)6 + c2

)
+ 3|log ε|,

For large enough N , the preconceived restrictions on ε are met if we take ε = 1/(logN)12
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since N ≥ 107 and thus ε < 10−5. Therefore, we have

h(j) ≤ 6 · 107 · h[K : Q][GL2(Z/NZ) : ρN(GK)]

(
N−1/10 +

1

(logN)6

)
·
(
c1(logN)6 + c2

)
+ 36 log logN.

(3.33)

Recall that Serre proved that [GL2(Z/NZ) : ρN(GK)] is uniformly bounded in N . Also
Lombardo gives an explicit bound in [Lom15]. As we have seen in Corollary 3.14 the
lower bound for h(j) grows as logN and the upper bound as log logN . This clearly
gives a contradiction for large enough N , which leaves us with only finitely many N ,
and hence finitely many isogenies.

The next proposition bounds the number of j satisfying the conditions in the theorem.
Note that the index [GL2(Ẑ) : ρ∞(GK)] can be bounded explicitly by the result of
Lombardo. See [Lom15] or page 54.

Proposition 3.22 Let E0 : y2 = 4x3 − g2x − g3 be an elliptic curve without complex
multiplication defined over a number field K of degree D. Let j0 be its j–invariant
with j(τ0) = j0 and τ0 ∈ F . We choose ω1 and ω2 with ω2/ω1 = τ0 and E0(C) '
C/(ω1Z+ω2Z) and similarly for Eσ

0 , σ : K ↪→ C. Define h = max{1, h(1, g2, g3), h(j0)}.
If j is the j–invariant of an elliptic curve isogenous to E0 such that j is a unit, then the
degree of the minimal isogeny between j0 and j is bounded by

max
{

10180(Cc1)20, (Cc2)10, eCc1+Cc2+c3 , e1202[GL2(Ẑ):ρ∞(GK)]2 , e18πh, D
}
,

where the constants are given by

C = 6 · 107 · h ·D[GL2(Ẑ) : ρ∞(GK)],

c1 = 2 · 1051D6 ·max{h, 6π|τ0|}2 ≥ 1,

c2 = 14 + 3 log
(

max
σ
{1, |ωσ0,1|, |ωσ0,2|}

)
and

c3 = 20− h(j0) + 6 log(1 + h(j0)).

Note that c3 < 26 since −x+ 6 log(1 + x) has a maximum at 5 and −5 + 6 log(6) < 6.

Proof. We proceed as in the proof of the theorem. The inequalities (3.32) and (3.33)
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in the proof of the theorem give

6 logN ≤C
(
N−1/10 +

1

(logN)6

)(
c1(logN)6 + c2

)
+ 36 log logN + 84 [GL2(Z/NZ) : ρN(GK)] log logN

− h(j0) + 6 log(1 + h(j0)) + 16.212

and thus

6 ≤ 1

logN

(
Cc1N

−1/10(logN)6 + Cc2N
−1/10 + Cc1 +

Cc2

(logN)6

+(84[GL2(Z/NZ) : ρN(GK)] + 36) log logN + c3

)
≤
(
Cc1N

−1/10(logN)5 + Cc2
N−1/10

logN
+
Cc1 + Cc2 + c3

logN

+120[GL2(Z/NZ) : ρN(GK)]
log logN

logN

)
(3.34)

We are going to bound each term by 1 individually. This will give a contradiction
to the lower bound 6. We will work our way from the back to the front. We have
log log x < (log x)1/2 for all x ≥ 10. Thus

120[GL2(Z/NZ) : ρN(GK)] ≤ logN/ log logN

follows from

120[GL2(Z/NZ) : ρN(GK)] ≤ (logN)1/2 ≤ logN/ log logN,

which is true for all N ≥ e(120[GL2(Ẑ):ρ∞(GK)])2
.

The next term is (Cc1 +Cc2 + c3)/ logN . This is bounded by 1 for all N ≥ eCc1+Cc2+c3 .

The second term is less than 1 if Cc2 ≤ N1/10 is satisfied and N ≥ 3. This is true for
all N ≥ max{(Cc2)10, 3}.

For the first term we need

Cc1 ≤
N1/10

(logN)5
.

We have log x ≤ 40x1/100 for all x ≥ 1045. Thus the bound holds if

Cc1 ≤ 10−9N1/20 = 10−9405 N1/10

(40N1/100)5
≤ N1/10

(logN)5
.

This is true for N ≥ 10180(Cc1)20.
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All those assumptions on N together with the constraint

N ≥ max
{

4 · 1011, [K : Q], e3h
}

we made in the previous proposition gives the desired bound.

This finishes the case j−α when α is zero. In the next section we are going to discuss
the case when α is different from 0.

3.3 Translates

Fix α ∈ Q̄ the j–invariant of an elliptic curve with complex multiplication, and let j0 be
the j–invariant of an elliptic curve without complex multiplication. We further assume
α 6= 0 since this is the case discussed in the last section. We now want to bound the
j–invariants j such that the corresponding elliptic curve is isogenous to the elliptic curve
E0, and such that j − α is an algebraic unit. Note that the previous case is a special
case of this where α = 0. Let ξ be imaginary quadratic with j(ξ) = α. We proceed as
before, i.e. we want to give lower and upper bounds of h(j − α) that contradict each
other.
On the one hand we have

h(j − α) ≥ h(j)− h(α)− log 2 (3.35)

by Lemma 1.4. So if there is a cyclic N–isogeny between the curves corresponding to j
and j0, then Corollary 3.14 yields

h(j − α) ≥ h(j0)− 6 log(1 + h(j0)) + 6 logN

− 84 [GL2(Z/NZ) : ρN(GK)] log logN − 20− h(α).

Now we want to bound the height from above. We need a similar statement to the
one in Lemma 3.18. First, recall the definition of c(ξ) in Lemma 2.11

c(ξ) =


|j′(ξ)|δ/2 if ξ ∈ ∂F+ \ {i}
|j′′(i)|δ2/4 if ξ = i

min {| Im(j(ξ))|, |j′(ξ)|δ/2} otherwise

where δ is defined as the minimum of A
12A+108B

and half the distance of ξ to any geodesic
of ∂F+ not containing ξ, B is defined as 4 · 105 max{1, |j(ξ)|} and A = |j′′(i)| if ξ = i
and A = |j′(ξ)| otherwise. We also assumed ξ 6= ζ, ζ2.
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Recall the definition

N (E0, ξ) :=
(
max{e6π|τ0|/[K:Q], ee·h, [K : Q], (4 · 1011H(ξ))20}

)1/20
.

Lemma 3.23 Let j(τ) be N–isogenous to E0 and N ≥ N (Eσ
0 , ξ

σ).

log |σ(j − α)| ≥ −c1(logN)6 − c2

for any embedding σ : K ↪→ C. Here the constants are effective and depend on the fixed
elliptic curve E0 and c2 additionally depends on ξ. We also have c1 ≥ 1 and we can
have c2 ≥ 0.

Proof. The setup is the same as in Lemma 3.18. Let E be an elliptic curve with
j–invariant j(τ) and Eσ be the elliptic curve E conjugated by σ. Then there is an
N–isogeny between E0 = Eσ

0 and Eσ since E0 and E are N–isogenous. Let Eσ
0 (C) '

C/(ωσ0,1Z + ωσ0,2Z) with τσ0 = ωσ0,2/ω
σ
0,1 in the fundamental domain. Similarly, let τσ

correspond to Eσ(C). We can choose ωσ1 , ωσ2 and ρ ∈ SL2(Z) such that τσ = ρ
(
m l
0 n

)
τσ0

and such that τσ is in the fundamental domain F . Write
(
α β
γ δ

)
= ρ
(
m l
0 n

)
.

Assume |σ(j − α)| < c(ξσ) for a moment. Put Aσ = |j′′(ξσ)| if ξσ = i and Aσ =
|j′(ξσ)| otherwise. By Lemma 2.12 we obtain |τσ −Mξσ| < δσ for some M ∈ T with
T = {

(
1 0
0 1

)
,
(

1 ±1
0 1

)
,
(

0 −1
1 0

)
}. The number δσ is the δ stated above but associated to ξσ.

Since δσ satisfies by definition δσ ≤ Aσ

12Aσ+108Bσ
, where Bσ = 4 · 105 max{1, |j(ξσ)|}, we

obtain by Lemma 2.10 the inequality

|j(τσ)− j(ξσ)| ≥ Aσ

4
|τσ −Mξσ|2 (3.36)

for some M ∈ T .

Equation (3.27) says |γωσ0,2 + δωσ0,1| ≤ 106 max{|ωσ0,1|, |ωσ0,2|}N10. Note that we also
have τσ 6= Mξσ since ξ comes from a curve with complex multiplication. We can
substitute Mξσ for ζ in (3.28) to get the equality

log|τσ −Mξσ| = − log|γωσ0,2 + δωσ0,1|+ log|(α−Mξσγ)ωσ0,2 + (β −Mξσδ)ωσ0,1|.

Since ξσ is algebraic of degree two so is Mξσ. We have

log |τσ −Mξσ| ≥ − log
(
106 max{|ωσ0,1|, |ωσ0,2|}N10

)
− c′1 · (logN)6.

as in the proof of Lemma 3.18. Here c′1 is the constant from Lemma 3.16.
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As before we obtain by (3.36)

log|σ(j − α)| = log|j(τσ)− j(ξσ)| ≥ log
Aσ

4
+ log |τσ −Mξσ|2

≥ log

(
Aσ

4

)
− 2 log

(
106 max{|ωσ0,1|, |ωσ0,2|}

)
− 10 logN − 2c′1 · (logN)6

≥ log

(
Aσ

4

)
− 2 log

(
106 max{|ωσ0,1|, |ωσ0,2|}

)
− 3c′1 · (logN)6

where we have used the fact that N ≥ N (E0, ξ
σ) ≥ 4 · 1011. If we put

c2 = log max

{
1, c(ξσ),

4

Aσ
1012|ωσ0,1|2,

4

Aσ
1012|ωσ0,1|2

}
the claim holds independently of whether |σ(j − α)| < c(ξσ) or not.

We want to apply this lemma. Recall that α = j(ξ) is a singular modulus. Let ∆ be
the discriminant of the associated endomorphism ring. For any σ : K ↪→ C the singular
moduli j(ξσ) have the same associated discriminant. Recall the definition of P(ξ) on
page 29

P(ξ) = log max
σ

{
1, c(ξσ)−1

}
.

Proposition 3.24 Let j0 and j be j–invariants of elliptic curves, where j0 is as-
sociated to the elliptic curve E0/K defined by E0 : y2 = 4x3 − g2x − g3. Put h =
max{1, h(1, g2, g3), h(j0)}. Assume we have a cyclic isogeny of degree N between E0 and
an elliptic curve corresponding to j. Further assume that j is an algebraic unit. If

N ≥ max{e3h, [K : Q], 4 · 1011
√
|∆|}

then the height of j can be estimated by

h(j − α) ≤108h[K : Q]2|∆|5[GL2(Z/NZ) : ρN(GK)]

[Q(α) : Q]
(N−1/10 +

√
ε)
(
c1(logN)6 + c2

)
+ P(ξ) + 2| log ε|.

where
0 < ε < 10−4 min

σ : K↪→C
{|ξσ|−4}

is arbitrary.
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Proof. Recall from the proof of Proposition 3.20 the field KΦ for which we have j ∈
KΦ. We also showed that [KΦ : Q] = B[K : Q] and B = [KΦ : K]. Let

ε0 = ε2 · min
σ : K↪→C

{1, c(ξσ)} .

Let |σ(j − α)| < ε0 < c(ξσ). We have N ≥ N (Eσ
0 , ξ

σ) since we have
√
|∆| ≥ H(ξσ) by

Lemma 2.13 and the statement of Lemma 3.19. So the previous lemma says

log |σ(j − α)| ≥ −c1(logN)6 − c2,

where we now can take c2 to be the maximum over all constants that we get from the
lemma for each ξσ. We have σ ∈ Γ(ξσ, ε) since we assumed |σ(j − α)| < ε0 < ε. The
same argument as in the proof of Proposition 3.20 shows

h(j − α) ≤ − 1

D

∑
|σ(j−α)|<ε0

log|σ(j − α)|+ |log ε0|

≤
∑

σ : K↪→C #Γ(ξσ, ε0)

D
max

|σ(j−α)|<ε0

{
log
∣∣σ(j − α)−1

∣∣}+ |log ε0|

≤
∑

σ : K↪→C #Γ(ξσ, ε0)

D

(
c1(logN)6 + c2

)
+ |log ε0|, (3.37)

where D is the degree of KΦ(α) over Q. Now if ρ ∈ Γ(ξσ, ε0), then |j(τ ρ) − j(ξσ)| <
ε0 ≤ c(ξσ). With δσ as in Lemma 2.11 we get from Lemma 2.12

|τ ρ −Mξσ| < δσ

for some M ∈ T . As before we put Aσ = |j′′(i)| if ξσ = i and Aσ = |j′(ξ)| otherwise.
Recall that δσ ≤ 1 so that c(ξσ) ≤ Aσ/2 or c(ξσ) ≤ Aσ/4. Lemma 2.10 then implies

Aσ

2k
|τ ρ −Mξσ|2 ≤ |j(τ ρ)− j(ξσ)| < ε0 ≤ c(ξσ)ε2 ≤ Aσ

2k
ε2,

where k ∈ {1, 2} depending on whether Mξσ = i or not. Therefore we have |τ ρ−Mξσ| <
ε. So every ρ ∈ Γ(ξσ, ε0) gives a point satisfying |τ ρ −Mξσ| ≤ ε and an N–isogeny
between Eρ

0 and Eρ. Note that M can only be different from the identity if ξσ lies
on the boundary of F . In any case since ξ (and all Mξσ) is imaginary quadratic, some
conjugate lies on the imaginary axis and is the largest with respect to the absolute value.
By the explicit description in Chapter 1 it is given by i|∆|1/2/2. Moreover, ε satisfies
the conditions of Proposition 3.5. We thus can apply Proposition 3.5 to bound

#Γ(ξσ, ε0) ≤ 4 · 107[K : Q]2|∆|5h
(√

Nσ0(N) +
√
εψ(N)

)
.
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Note that ε ≤ (100−1|Mξσ| Im(Mξσ))2 holds since if M is different from the identity,
then ξσ lies on the boundary of the fundamental domain and we obtain |Mξσ| = |ξσ|
and Im(Mξσ) = Im(ξσ). We can continue the height estimate in (3.37)

h(j − α) ≤[K : Q]
4[K : Q]2107|∆|5h

(√
Nσ0(N) +

√
εψ(N)

)
D

(
c1(logN)6 + c2

)
+ |log ε0|

≤[K : Q]
4[K : Q]2107|∆|5h

(√
Nσ0(N) +

√
εψ(N)

)
[KΦ : Q][Q(α) : Q]

(
c1(logN)6 + c2

)
+ |log ε0|

≤
4[K : Q]2107|∆|5h

(√
Nσ0(N) +

√
εψ(N)

)
B[Q(α) : Q]

(
c1(logN)6 + c2

)
+ |log ε0|.

We have bounded the term
(√

Nσ0(N) +
√
εψ(N)

)
/B in Proposition 3.20, so that we

obtain

h(j − α) ≤108[K : Q]2|∆|5h[GL2(Z/NZ) : ρN(GK)]

[Q(α) : Q]
(N−1/10 +

√
ε)
(
c1(logN)6 + c2

)
+ |log ε0|.

Now

| log ε0| = 2| log ε|+ | log min
σ
{1, c(ξσ)} | = 2| log ε|+ P(ξ).

Replacing this into the height bound be obtain

h(j − α) ≤108[K : Q]2|∆|5h[GL2(Z/NZ) : ρN(GK)]

[Q(α) : Q]
(N−1/10 +

√
ε)
(
c1(logN)6 + c2

)
+ P(ξ) + 2| log ε|.

Theorem 3.25 Assume α is the j–invariant of an elliptic curve with CM. Let j0 be
the j–invariant of an elliptic curve without CM. Then there are at most finitely many
j–invariants j of elliptic curves that are isogenous to an elliptic curve corresponding to
j0 and such that j − α is an algebraic unit.

Proof. In the same situation as before we get an additional − log 2− h(α) term from
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(3.35) for the lower bound and obtain

h(j0)− 6 log(1 + h(j0)) + 6 logN − 84 [GL2(Z/NZ) : ρN(GK)] log logN

− 20− h(α) ≤ h(j − α).

We want to pick ε = 1/(logN)12 again. Thus, N must be large enough so that

ε = 1/(logN)12 ≤ 10−4 min
σ
{|ξσ|−4}

or equivalently
(logN)12 ≥ 104 max

σ
{|ξσ|4}.

But as mentioned in the previous proof, ξ and |ξσ| are imaginary quadratic and one of
its conjugates is i|∆|/2 and has maximal modulus amongst them. Hence it suffices for
N to satisfy logN ≥ 3|∆|, i.e.

N ≥ e3|∆|.

If N additionally satisfies the conditions of the previous proposition then

h(j − α) ≤108h[K : Q]2|∆|5[GL2(Z/NZ) : ρN(GK)]

[Q(α) : Q]

·
(
N−1/10 +

1

(logN)6

)(
c1(logN)6 + c2

)
+ P(ξ) + 24 log logN.

The growth of the bounds for h(j−α) is as before, and we get the same contradiction.

In total we obtain the following result. We also recall that c3 < 26.

Proposition 3.26 Let E0 : y2 = 4x3 − g2x − g3 be an elliptic curve without complex
multiplication defined over a number field K of degree D. Let j0 be its j–invariant with
j(τ0) = j0 and τ0 ∈ F . Define h = max{1, h(1, g2, g3), h(j0)}. Let ξ ∈ F be imaginary
quadratic and let ∆ be the discriminant of the endomorphism ring. Put α = j(ξ). If j
is the j–invariant of an elliptic curve isogenous to the elliptic curve E0 and j − α is a
unit, then the degree of the minimal isogeny is bounded by

max
{

10180(Ĉc1)20, (Ĉc2)10, eĈc1+Ĉc2+c3+P(ξ), e1202[GL2(Ẑ):ρ∞(GK)]2 ,

e3h, [K : Q], e3|∆|, 4 · 1011
√
|∆|
}
,

where Ĉ = 108h[K : Q]2|∆|5[GL2(Ẑ) : ρ∞(GK)]/[Q(α) : Q] and c3 = 20 − h(j0) +
6 log(1 + h(j0)).
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Proof. The bounds from the previous proof give the same inequality as in (3.34) with
C replaced by the new constant Ĉ and the third term becomes

Ĉc1 + Ĉc2 + c3 + P (ξ)

logN
.

Also we have the additional prerequisites N ≥ e3|∆| and N ≥ 4 · 1011
√
|∆| from the

proof of the last theorem.
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