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Abstract 

1-octadecene is a widely used solvent for high temperature nanocrystal synthesis (120 – 320 

°C). Here, we show that 1-octadecene spontaneously polymerizes under these conditions and 

the resulting poly(1-octadecene) has a comparable solubility and size to nanocrystals stabilized 

by hydrophobic ligands. Typical purification procedures (precipitation/redispersion cycles or 

size exclusion chromatography) fail to separate the poly(1-octadecene) impurity from the 

nanocrystal product. To avoid formation of poly(1-octadecene), we replace 1-octadecene with 

saturated, aliphatic solvents. Alternatively, the nanocrystals’ native ligands are exchanged for 

polar ligands, leading to significant solubility differences between nanocrystals and poly(1-

octadecene), therefore allowing isolation of pure nanocrystals, free from polymer impurities. 

These results will help design superior syntheses and improve nanocrystal purity, an important 

factor in many applications. 
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Main text 

In the last 25 years, colloidal nanocrystals (NCs) have matured from an interesting physical 

phenomenon to a rich multidisciplinary field.1-6 While the chemical identity of the core 

determines most of the NC properties, the large surface-to-volume ratio makes surface 

chemistry a key enabler for applications.7-13 There are many synthetic techniques available for 

NCs, but solution phase synthesis stands out since it allows for crystallization at relatively low 

temperatures (< 400 °C) with high yield and versatility.14 An essential component of this 

approach is the solvent, which should be inert and have a high boiling point. In this respect, tri-

n-octylphosphine oxide (TOPO) is a commonly used, coordinating solvent for nanocrystal 

synthesis. However, commercial TOPO contains many impurities that bind to the NC surface 

and direct the crystal growth, yielding anisotropic structures.15-16 Even purified TOPO (obtained 

by recrystallization),17 can still decompose into by-products with high affinity for the surface.18 

The resulting heterogeneous surface chemistry is disadvantageous as it complicates ligand 

exchange reactions.18 Non-coordinating 1-octadecene (ODE) is another frequently used solvent 

and seems to be plagued less by impurities.19-49 Apart from its role as solvent, ODE has often 

been used as reagent in NC synthesis since ODE’s terminal alkene (vinyl) has inherent 

reactivity. For example, its redox properties have been harnessed to reduce elemental sulfur or 

selenium to its –II oxidation state, prior to incorporation in metal sulphide or selenide NCs.3, 37, 

43, 50-52 Furthermore, vinyl moieties can be polymerized by metallocene53-56 or inorganic57 

catalysts. For this reason, Talapin et al. opted for saturated solvents and saturated ligands to 

avoid the gallium catalysed polymerization of ODE in the synthesis of GaAs NCs.58 

Here, we study ODE’s propensity to polymerize in the absence of catalysts, at temperatures 

relevant for NC synthesis. We find that ODE auto-polymerizes above 120 °C with a temperature 

dependant molecular weight. Poly(ODE) is detected in the reaction product of five different NC 

syntheses; ZnS:Mn/ZnS,19 CuInS2,
20 CdS,14, 21 TiO2,

22 and Fe3O4.
23 We thus conclude that 
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poly(ODE) is routinely contaminating NC production. To avoid the formation of poly(ODE), 

saturated solvents are used in those cases where ODE does not participate in the reaction. When 

ODE is necessary as reagent (and cannot be avoided), we show that a surface functionalization 

can provide a pathway to easily separate NCs from poly(ODE). 

We heated ODE under argon to temperatures ranging from 100 °C to 320 °C. Whereas there is 

no reaction at 100 °C, a colourless oil can be separated after 24 hours at 120 °C (or higher) by 

the addition of acetone and subsequent centrifugation, a process not unlike the isolation of NCs 

from a crude reaction mixture. The 1H NMR (nuclear magnetic resonance) spectrum of the oil 

confirms that an alkene resonance is absent (Figure S1), and the compound only consists of -

CH2- and -CH3 moieties, with a relative intensity of 33:3, consistent with the polymerization of 

ODE into poly(ODE) (Figure 1A). To study the kinetics of the reaction, aliquots are taken at 

regular time intervals and analysed by quantitative 1H NMR. The conversion of ODE to 

poly(ODE) is determined from the disappearance of the alkene resonance with respect to the 

methyl groups (Figure 1B). While the conversion becomes appreciable at 240 °C, the 

conversion rate is dramatically high at 320 °C (the boiling point of ODE). After 24 hours, 

conversions of 0.64%, 6.58%, 24.01%, and 88.51% are reached at 120, 160, 240, and 320 °C 

respectively. After precipitation with acetone and purification, a yield by mass of respectively 

0.1%, 3.4%, 14.8%, and 66.3% is obtained. We also assessed the recovered yield (at 240 °C) 

using other common non-solvents; ethanol (15.61%), isopropanol (10.04%), methyl acetate 

(9.22%). We thus conclude that poly(ODE) has a higher solubility in isopropanol and methyl 

acetate, while the solubility in ethanol is similar to that in acetone. Acetonitrile and methanol 

were also considered but, giving their high polarity, formed a biphasic system with ODE. 

Poly(ODE), synthesized at various temperatures, is subsequently analysed by size exclusion 

chromatography (SEC), revealing that the molecular weight is inversely related to the reaction 

temperature (Figure 1C). This indicates that the reaction is thermodynamically controlled.59 At 



4 
 

higher reaction temperatures, the entropic factor dominates the free energy, thus favouring 

polymer chains with a lower molecular weight. Note that similar molecular weights are obtained 

using ODE which was either vacuum distilled or simply degassed (Figure S2). In addition to 

SEC, 2D diffusion ordered spectroscopy (DOSY) NMR has also been established as a technique 

to determine the molecular weight of polymers.60 DOSY organizes NMR resonances according 

to their diffusion coefficient, which is related to their solvodynamic size. Indeed, 2D DOSY 

NMR of the poly(ODE), synthesized at 240 °C, yields a lower diffusion coefficient (265 µm²/s) 

compared to the parent ODE (Figure 1D). Using the Stokes-Einstein relation, we calculate a 

corresponding solvodynamic diameter of about 3.0 nm. 

 

Figure 1. (A) Poly(ODE) is obtained at temperatures between 120 and 320°C. (B) The conversion kinetics were 

determined from the disappearance of the alkene resonance in quantitative 1H NMR spectra of 10 µL aliquots in 

CDCl3. (C) The molecular weight of poly(ODE), measured by SEC in tetrahydrofuran, with their standard 

deviation calculated from the average molecular weight and dispersity (Đ = 1 +
𝜎²

𝜇²
), is inversely correlated to the 

reaction temperature. (D) 2D DOSY NMR in CDCl3 of poly(ODE) formed at 240 °C after 24 hours. The diffusion 

coefficient of 1-octadecene is added as a reference point (Figure S3). 
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Since the polymerization of ODE proceeds without catalyst and is controlled by temperature 

and time, poly(ODE) is most likely formed in many NC syntheses. To demonstrate this, we 

analysed the reaction products of a broad range of NC syntheses, including core, core-shell and 

doped NCs: ZnS:Mn/ZnS,19 CuInS2,
20 CdS,14, 21 TiO2,

22 and Fe3O4.
23 These NC syntheses are 

well-established and the synthetic protocols are widely used. Based solely on the duration and 

temperature of the reaction (absent any metal catalysis), we expect a conversion to poly(ODE) 

of 0.72%, 0.43%, 2.37%, 2.45%, and 3.28% for the different NC syntheses respectively. The 

NCs were purified using acetone as non-solvent and TEM analysis confirmed the successful 

synthesis of the NCs (Figure 2). However, the 1H NMR spectra of the purified nanocrystals 

reveal that the integrals of the resonances are not consistent with the expected ligand. 

Consistently, the integrals for the -CH2- and -CH3 resonances were too high, indicating an 

aliphatic impurity. 

It is challenging to unambiguously confirm the presence of the polymer because of (i) the 

difficulty in physically separating the hydrophobic NCs from the hydrophobic polymer, and (ii) 

the spectral overlap between the aliphatic NMR resonances of the ligands and the polymer. 

Again, we use DOSY NMR to virtually separate the resonances according to their diffusion 

constant (Figure 2). In every nanocrystal sample we retrieved two sets of resonances, each 

diffusing with a different speed, one corresponding to the colloidal NCs and one to the 

poly(ODE). The ligand-capped NCs are larger in size than poly(ODE), and therefore have a 

lower diffusion coefficient. Note that the case of Fe3O4 NCs is special since the NCs are 

magnetic, thus prohibiting direct NMR analysis. To circumvent this limitation, we exchanged 

the native oleate ligand for trifluoroacetic acid, causing the Fe3O4 NCs to precipitate. The 

exchange is driven by a difference in pKa (trifluoroacetic acid is a stronger acid compared to 

oleic acid).7 The small trifluoroacetate ligand do not support colloidal stability and as a result, 

the NCs precipitate.61-62 The supernatant contains the free, unbound oleic acid (with a high 
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diffusion coefficient) and the poly(ODE) (Figure 2). In the case of TiO2 NCs, the production of 

poly(ODE) is most noticeable compared to the other syntheses. This is most likely due to the 

catalytic properties of titanium halide precursors with respect to the polymerization of olefins.57 

Overall, we conclude that poly(ODE) is present in all studied NC samples. 

 

Figure 2. 2D DOSY NMR spectra and TEM images of NCs synthesized in ODE; ZnS:Mn/ZnS (oleate and 

oleylamine capped), CuInS2 (oleate capped), CdS (oleate capped), TiO2 (oleylamine capped), and Fe3O4 (oleate 

capped). The presence of acetone in the TiO2 NCs sample is due to the NMR sample procedure (see experimental 

section). Since the Fe3O4 NCs are magnetic, the DOSY measurement is performed after a ligand stripping. 

To simply avoid the polymerization of ODE, we explored the substitution of ODE by 

alternative, saturated solvents. The most obvious candidate is n-octadecane, which has a similar 

boiling point (317°C). However, n-octadecane is a solid at room temperature (Tm = 26-29°C), 

which is inconvenient and especially problematic in procedures involving syringe pump 

addition of stock solutions. More convenient (i.e., liquid at room temperature) solvents are n-

hexadecane (Tb = 287°C) or 2,6,10,15,19,23-hexamethyltetracosane (also known as squalane, 

Tb = 350 °C). If the solvent is merely a heat transfer medium and does not partake in the 

reaction, it should be straightforward to substitute ODE. Indeed, for the CuInS2, CdS, and TiO2 

NC syntheses in n-hexadecane and for the Fe3O4 NC synthesis in n-octadecane we observe no 

obvious differences in NC morphology, size and dispersity (Figure 3). DOSY NMR of those 
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four cases confirms that poly(ODE) is absent (Figure 3) and the nanocrystal dispersion is thus 

pure. Unfortunately, the synthesis of ZnS:Mn/ZnS core/shell NCs is not controlled in n-

hexadecane and results in highly polydisperse NCs (Figure 3 left). In this type of synthesis, the 

terminal alkene group of ODE is responsible for the controlled reduction of elemental sulfur.50 

Therefore, ODE is a necessary component of the synthesis and the formation of poly(ODE) 

cannot be avoided without compromising the NC quality. 

 

Figure 3. 2D DOSY NMR spectra and TEM images of NCs synthesized in n-hexadecane (ZnS:Mn/ZnS core/shell, 

CuInS2, CdS, and TiO2 NCs) or n-octadecane (Fe3O4 NCs), evidencing the absence of poly(ODE). Since the Fe3O4 

NCs are magnetic, the DOSY measurement is performed after a ligand stripping. All DOSY measurements are 

performed in a similar NC concentration as in Figure 2. 

Nanocrystal syntheses are complex and it is clear that changing the solvent can have significant 

effects on the NC product. On the other hand, poly(ODE) hampers charge transfer in solid films 

of NCs63, distorts NMR spectra (thus hampering surface chemistry studies), and generally 

decreases sample purity. Since poly(ODE) was observed in samples that were purified via the 

classical precipitation-redispersion cycles (Figure 2), it is desirable to develop alternative 

purification procedures. In literature, subtle ‘tricks’ and delicate procedures are reported, giving 

nanocrystal purification the aura of art instead of science.21-22, 64 While size exclusion 
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chromatography has been proposed as an interesting new purification technique,64-65 we did not 

succeed in separating the poly(ODE) from ligand capped nanocrystals (Figure S4). 

The difficulty in obtaining pure NCs lies with the comparable size and polarity of poly(ODE) 

and ligand-capped-NCs. While the size cannot be changed, the polarity can be adjust by 

modification of the surface. We thus exchange the native hydrophobic oleate ligands for the 

slightly more polar ligand 1: (6-[2-[2-(2-methoxy-ethoxy)-ethoxy]-ethoxy]hexyl) phosphonic 

acid (Figure 4A). Ligands with multiple ethylene glycol moieties are highly versatile since they 

provide colloidal stability in a variety of solvents with different polarity, excluding hexanes.17, 

66-68 Since poly(ODE) is highly soluble in hexanes, this provides a pathway to separate 

poly(ODE) from the NCs. 

To illustrate the procedure, we functionalize the surface of CdS NCs, synthesized in ODE, with 

1 (Figure 4A). The as-synthesized CdS NCs are capped with oleate ligands, as evidenced by 1H 

NMR (Figure 4B). We infer from the high intensity in the aliphatic region of the NMR spectrum 

(0.5 – 1.5 ppm) that a substantial amount of poly(ODE) is present. To exchange the oleates for 

1, we only added a slight excess of 1 because phosphonates have a stronger binding affinity to 

the NC surface.67, 69-70 Subsequently, the NCs are precipitated by hexanes and redispersed in 

chloroform. The supernatant containing poly(ODE) is discarded. The 1H NMR spectrum of the 

NCs confirms a successful purification since only the bound (broadened) resonances of 1 are 

observed and the aliphatic signals of poly(ODE) are absent (Figure 4B). The purity of the 

sample is further confirmed by 2D DOSY NMR which shows only 1 set of resonances with a 

low diffusion coefficient, corresponding to bound 1 (Figure 4C). This is also reflected in the 

single exponential fit of the DOSY decay curve for the region from 1.7 to 1.2 ppm (Figure 4D). 
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Figure 4. (A) Ligand exchange of oleate for 1 on CdS NCs. (B) The corresponding 1H NMR spectra of CdS NCs 

capped with oleate and with poly(ODE) present, purified CdS NCs after ligand exchange with 1 and a reference 

spectrum of 1, all in CDCl3. (C) 2D DOSY NMR spectrum shows only the presence of the purified CdS NCs 

functionalized with ligand 1. (D) The analysis of the DOSY decay curve of the region from 1.7 to 1.2 ppm confirms 

the presence of only one component, i.e., the purified NCs. 

The same procedure can be applied to ZnS:Mn/ZnS NCs but the surface chemistry of the as-

synthesized NCs is more complex (Figure S6). By stripping the surface ligands with a strong 

acid, we determined a relative surface composition of 81% oleate and 19% oleylamine.61-62 We 

infer that oleate binds as an X-type ligand while oleylamine binds as an L-type ligand.7 This 

complicates ligand exchange because upon addition of 1, both an X-for-X ligand exchange with 

oleate occurs and an ion pair is formed with oleylamine. Nevertheless, the functionalized NCs 

can be precipitated with hexanes and redispersed in chloroform. In the 31P NMR spectrum, a 

broadened resonance at 30 ppm (FWHM = 1113.51 Hz) is observed, which is assigned to bound 

X-type phosphonate. The smaller and sharper resonance at 35 ppm (FWHM = 366.45 Hz) is 

assigned to the ion pair of 1 and oleylamine. It is not surprising that ion pairs are still  present 
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given their low solubility in hexanes and their reasonably high affinity for the nanocrystal 

surface.71-72 Finally, the 1H NMR spectrum confirms these conclusions as the spectrum is 

dominated by the resonances of 1, but the resonances of oleylamine remain present. As 

hypothesized, this procedure allowed for the purification of the NCs from the poly(ODE) 

produced during the synthesis. 

In conclusion, ODE spontaneously polymerizes at temperatures above 120°C and we have 

identified its presence in established syntheses of five types of nanocrystals, i.e., ZnS:Mn/ZnS, 

CuInS2, CdS, TiO2, and Fe3O4 NCs. Standard purification procedures were unable to separate 

the poly(ODE) impurity from the NC product. While the use of saturated solvents can prevent 

poly(ODE) from forming, we also developed a surface modification strategy to increase to 

polarity of the NCs. As such, the nonpolar poly(ODE) could be readily separated from the polar 

NCs based on solubility differences. In general, the contamination of NC products by 

poly(ODE) is a problem for NC-based applications. Here we have provided the tools to design 

improved synthetic protocols towards pure nanocrystals. 
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