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SIEGEL’S LEMMA IS SHARP FOR ALMOST ALL
LINEAR SYSTEMS

ROGER BAKER† AND DAVID MASSER

Abstract. The well-known Siegel Lemma gives an upper bound
cUm/(n−m) for the size of the smallest non-zero integral solution
of a linear system of m ≥ 1 equations in n > m unknowns whose
coefficients are integers of absolute value at most U ≥ 1; here
c = c(m,n) ≥ 1. In this paper we show that a better upper bound
Um/(n−m)/B is relatively rare for large B ≥ 1; for example there
are θ = θ(m,n) > 0 and c′ = c′(m,n) such that this happens for at
most c′Umn/Bθ out of the roughly (2U)mn possible such systems.

1. Introduction

Siegel’s Lemma concerns the existence of a small solution x of a
system of m linear equations in n variables, 1 ≤ m < n, with integer
coefficients. Let U ≥ 1. Let

(1.1)
n∑

j=1

aijxj = 0 (1 ≤ i ≤ m)

be a linear system such that

(1.2) aij ∈ [−U,U ] ∩ Z for all i, j.

These had occurred in the groundbreaking work of Thue, and Siegel in
1929 (see [16] for references and an English translation) had formulated
as a lemma the fact that there exists a solution x ∈ Zn such that

(1.3) 0 < ‖x‖ := max
1≤j≤n

|xj| ≤ 1 + (nU)
m

n−m

(if U is an integer, even 0).
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This lemma and its variants are key tools in diophantine approx-
imation and transcendence theory, where they are used to construct
functions with many zeroes.

Pretty soon (1.3) was improved to ‖x‖ ≤ (nU)m/(n−m) (for all real
U ≥ 1); but not until 1982 did van der Poorten and Vaaler [14] obtain
(
√
n+ 1U)m/(n−m). The record so far is

(
√
nU)

m
n−m

found by Bombieri and Vaaler [4] in 1983 (see also Schmidt 1991 [12]
and Bombieri and Gubler 2006 [3] as well as some remarks below). See
also Beck 2017 [1] for a proof (along completely different lines) with
(70

√
nU)m/(n−m).

It is known that hardly any more improvements are possible.
Thus Schmidt 1991 [12] (p.2) proved that the exponent m/(n −m)

is sharp for every m and n.
Then Bombieri and Cohen 1997 [2] (p.159) considered from a similar

viewpoint certain situations where m,n and logU all grow at compa-
rable rates (with emphasis on m close to n).

And Beck 2017 [1] (p.170) proved that the factor
√
n is sharp for

every m and n with n ≥ 3m/2; more precisely the upper bound
2−98e−4(

√
nU)m/(n−m) cannot hold even for U = 1 (provided n is suffi-

ciently large).
It should be remarked that Beck’s work is specific to the supremum

norm in (1.3) and implicit in (1.2). Indeed that is the main source of
difficulty. For results specific to the euclidean norm see Vaaler [13].

The above proofs all construct linear systems that are somewhat
special: thus Schmidt uses coefficients aij that are products of few
primes, Beck has coefficients aij = ±1, while Bombieri and Cohen go
back to the problem of functions with many zeroes.

In the present paper we are interested in the totality of the

(2[U ] + 1)mn

linear systems with (1.2). We show that for a large positive B and
‘almost all’ matrices

(1.4) A = (aij)1≤i≤m, 1≤j≤n

with (1.2), there is no solution in integers of (1.1) with

(1.5) 0 < ‖x‖ ≤ U
m

n−m

B
.
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The precise statement of our results is as follows. We assume through-
out the paper that m, n are integers with 1 ≤ m ≤ n (n = m is allowed
in Proposition 2 below) and that U ≥ 1.

Theorem 1. Let n > m, 1 ≤ B ≤ Um/(n−m). There are at most

c1(n)
Umn(log 3U)δ

Bn−m

m×n matrices A with (1.2), such that there is a solution x = (x1, . . . , xn)
of the system (1.1) for which (1.5) holds. Here δ = 0 for n > m + 1,
δ = 1 for n = m+ 1.

Theorem 2. Let n = m+ 1, 1 ≤ B ≤ U/ log 3U . There are at most

c2(n)
Un2−n

B

(n − 1) × n matrices A with (1.2), such that there is a solution x =
(x1, . . . , xn) of the system (1.1) for which (1.5) holds.

These imply the assertion in the abstract. Namely, if n > m+1 then
we get θ = n−m at least for B ≤ Um/(n−m); but if B > Um/(n−m) then
(1.5) is impossible so there are no A at all. Similarly if n = m + 1 we
get θ = 1 for B ≤ U/ log 3U ; but if B > U/ log 3U then we can assume
B < Um and we get the bound

c2(n)U
n2−n−1 log 3U ≤ c3(n, θ)

Umn

Bθ

for any θ < 1/m.
Here is a curious application of our results. In 1949 Feldman and

Gelfond [7] obtained what are probably the first effective results on
linear forms

(1.6) b1 logα1 + b2 logα2 + b3 logα3

in three logarithms of algebraic numbers. But they had a condition on
b = (b1, b2, b3) 6= 0 in Z3: that for some fixed λ > 0 there should be
a = (a1, a2, a3) in Z3 with 0 < ‖a‖ ≤ ‖b‖1/2/(log 3‖b‖)λ and a1b1 +
a2b2 + a3b3 = 0 (which they use to eliminate b3 in (1.6) and reduce to
two logarithms).

Thus from Theorem 1 we see that the order of magnitude of the
number of b with ‖b‖ ≤ U to which their result applies is at most
U3/(log 3U)2λ.
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For the proof of Theorem 1, the work of Schmidt [11] on heights of
subspaces of Qn plays a key role (note that Schmidt treats Kn rather
than Qn, where K is an algebraic number field of finite degree over Q).

The proof of Theorem 2 is longer, which seems paradoxical because
when A has maximal rank m the smallest non-zero solution is unique
(up to sign) and can be written down explicitly. In fact we require two
subsidiary results, Proposition 1 on the number of solutions of deter-
minantal congruences, and Proposition 2 on the number of matrices A
satisfying (1.2) for which a certain generalized determinant is small.

For any matrix A, let

A(i1,...,ir) , A(j1,...,js)

denote the matrix obtained by deleting rows i1, . . . , ir, respectively
columns j1, . . . , js, of A; similarly for A

(i1,...,ir)
(j1,...,js)

. We write #S for the
number of elements in a finite set S and detE for the determinant of
a square matrix E.

Proposition 1. Let % be the multiplicative function defined by

%(p) = 1 +
2

p
, %(pk) = (k + 1)n−2 (k ≥ 2)

for all primes p. Let Tn(d) be the set of (n−1)×n matrices A (mod d)
for which the maximal minors det(A(j)) satisfy

det(A(j)) ≡ 0 (mod d) (j = 1, . . . , n).

Then for d = 1, 2, . . .,

# Tn(d) ≤ %(d)dn
2−n−2.

The generalized determinant mentioned above is (for any real m×n
matrix A)

D(A) =
√
det(AAt)

for the transpose At; the expression under the square root is non-
negative due to the classical identity (Cauchy-Binet - see also [12] p.15)

(1.7) det(AAt) =
∑(

detA(j1,...,js)

)2

where s = n−m and the sum is over all (distinct) j1, . . . , js. It makes
sense even if n = m (which we allow in the next result), when it is just
| detA|.
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In fact the result of Bombieri and Vaaler implies the upper bound
D(A)1/(n−m) on the right of (1.3) provided A has maximal rank m.
By Fischer’s inequality D(A) is at most the product of the euclidean
lengths of the row vectors of A, and so

(1.8) D(A) ≤ (
√
nU)m.

This gives the required bound, which extends to rank m̃ < m simply
by throwing away m− m̃ equations.

Proposition 2. Let d be a positive integer and C a positive number
such that

(1.9) U ≥ dC.

Let A0 be a given m×n integer matrix. The number of m×n matrices
A satisfying (1.2) together with

(1.10) A ≡ A0 (mod d)

and

(1.11) D(A) ≤ Um

C

is at most
c4(n)

Umn

dmnCn−m+1
.

For fixed p and large k, it is reasonable to hope that the factor
(k + 1)n−2 in Proposition 1 can be improved using the theory of local
zeta functions (see also the end of Section 3). See Igusa [8] for the
background and Meuser [10] for the rationality of the relevant zeta
function. However, such an improvement does not lead to a sharpening
of Theorem 2, because it is k = 1 that carries the most weight.

In relation to the case m = n, d = 1 of Proposition 2, there are
results on the distribution of matrices with a particular value of the
determinant which we mention for completeness. Duke, Rudnick, and
Sarnak [6] (p.147) obtained asymptotics for the number of n × n ma-
trices having determinant ∆ 6= 0; however they use a euclidean norm,
so a priori their result implies only that the number with (1.2) lies
between positive multiples of Un2−n. For ∆ = 0 Katznelson [9] (p.122)
worked with more general norms and his result gives the asymptotics
cUn2−n logU for (1.2).

We thank Arulsaravana Jeyaraj in the Computer Science Depart-
ment at UCLA for correspondence (about a single linear form of a
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particular shape coming from his theoretical investigations in compu-
tational number theory with consequences in computer science) which
prompted the investigations of our paper.

2. Proof of Theorem 1

We require some preliminaries from the theory of heights of subspaces
and generalized determinants, which we take from Schmidt’s [11] and
[12].

Let S be a subspace of Qn of dimension m. If m = 0 or m = n we
define H(S) = 1. If 0 < m < n then

Λ = S ∩ Zn

is a lattice in the space spanned by S over R (see [12] p.9) and we
define

H(S) = detΛ

for the determinant of the lattice. If Λ = Za1 + · · · + Zam and we
interpret a1, . . . ,am as rows of a matrix A then this determinant is
just D(A) (see [12] p.4).

As in [12] p.10 we have

(2.1) H(S) = H(S⊥),

where

S⊥ = {y ∈ Qn : x · y := x1y1 + · · ·+ xnyn = 0 ∀x ∈ S}

is the orthogonal complement of S. (In Section 4 we use this nota-
tion for the orthogonal complement of a subspace of Rn.) It will be
convenient for us sometimes to use the euclidean length |x| = √

x · x.
From a theorem of Minkowski (see [12] p.6), we can estimate the

successive minima λ1, . . . , λm of Λ, where λj is the least positive number
such that Λ contains j linearly independent points of length at most
λj. We have

(2.2) 2m

m!Vm

d(Λ) ≤ λ1 . . . λm ≤ 2m

Vm

d(Λ)

where Vm is the volume of the unit ball in Rm.
It follows that

(2.3) H(S) ≤ m!Vm

2m
|`1| . . . |`m|
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for any linearly independent vectors `1, . . . , `m in Λ; this we see by
ordering them by increasing length.

Let S(n,m,H) denote the set of subspaces of Qn of dimension m with
height at most H. Schmidt proved the following satisfying estimates for
its cardinality, where henceforth in this paper the (positive) constants
implicit in � (and �) depend only on n.

Lemma 1. For H ≥ 1 and 1 ≤ m ≤ n− 1 we have

Hn � #S(n,m,H) � Hn.

Proof. See Theorem 3 of [11] (p.440) for K = Q. In fact we will use
only the upper bound. �

Here is another cardinality estimate.

Lemma 2. Let R > 0. Let λ1, . . . , λm be the successive minima of
the m-dimensional lattice Λ in Qn. Then the number of points of Λ
satisfying |x| ≤ R is

� 1 +
m∑

i=1

Ri

λ1 . . . λi

.

Proof. For m = n, see Theorem 5.4 of Widmer [15] (p.4808), noting
(2.2) and that the Lipschitz parameters M � 1 and L � R. We can
deduce the general case by remarking that balls centred at the origin
intersect subspaces in balls of the same radius. �

Proof of Theorem 1. Let X = Um/(n−m)/B. For x ∈ Zn we define
M(x, U) to be the number of vectors a = (a1, . . . , an) in Zn satisfying

‖a‖ ≤ U, x · a = 0.

If there is a solution of (1.1) satisfying (1.5) for a given matrix A, then
there is a primitive solution x satisfying (1.5), that is,

x ∈ Zn, gcd(x1, . . . , xn) = 1.

The number of m × n matrices A satisfying (1.2) associated to a par-
ticular vector x is M(x, U)m. Hence it suffices to show that

∑

x primitive
‖x‖≤X

M(x, U)m � Umn(log 3U)δ

Bn−m
.
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By Lemma 2 we have

(2.4) M(x, U) � 1 +
n−1∑

j=1

U j

λ1 . . . λj

,

where λ1, . . . , λn−1 are the successive minima of the lattice 〈x〉⊥∩Zn for
〈x〉 = Qx. Let `1, . . . , `n−1 be linearly independent vectors in 〈x〉⊥∩Zn

with |`j| = λj. By (2.2) and (2.1)

λ1 . . . λn−1 � d(〈x〉⊥ ∩ Zn) = H(〈x〉⊥) = H(〈x〉) = |x|.

Let T j be the subspace of 〈x〉⊥ generated by `1, . . . , `j; then using (2.3)
we get

(2.5) H(T j) � λ1 . . . λj ≤ (λ1 . . . λn−1)
j

n−1 ≤ c|x|j/(n−1)

for c depending only on n. Thus from (2.4)

M(x, U) � 1 +
n−1∑

j=1

U j

H(T j)

and indeed

(2.6) M(x, U)m � 1 +
n−1∑

j=1

U jm

H(T j)m
.

From (2.5) and (2.6), we deduce that

∑

x primitive
‖x‖≤X

M(x, U)m � Xm +
n−1∑

j=1

Yj

for
Yj = U jm

∑

0<‖x‖≤X
x∈Zn

∑

T∈S(n,j,c|x|j/(n−1))

T⊂〈x〉⊥

H(T )−m.

We first verify that

(2.7) Xm � Umn

Bn−m
,
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that is,

(2.8) Bn−2m � Umn− m2

n−m .

Since m2/(n −m) ≤ mn, it suffices to prove (2.8) for n > 2m. Since
B < Um/(n−m), this follows from the simple inequality

m(n− 2m)

n−m
≤ mn− m2

n−m
.

It now suffices to show for a fixed j, 1 ≤ j ≤ n− 1 that

(2.9) Yj �
Umn(log 3U)δ

Bn−m
.

Since the relation T j ⊂ 〈x〉⊥ may be rewritten as x ∈ (T j)⊥, a reversal
of the order of summation gives

(2.10) Yj � U jm
∑

T∈S(n,j,cX
j

n−1 )

H(T )−m
∑

x∈T⊥∩Zn

|x|≤X

1.

Given T as in (2.10), let ΛT = T⊥ ∩ Zn, so that

d(ΛT ) = H(T⊥) = H(T )

from (2.1). Since X ≥ 1, it follows at once from Lemma 2 that

(2.11) #{x ∈ ΛT : |x| ≤ X} � Xn−j

d(ΛT )
+Xn−j−1 � Xn−j

H(T )
,

where in the last step we use H(T ) � Xj/(n−1) � X.
From (2.10), (2.11),

Yj � U jmXn−j
∑

T∈S(n,j,cX
j

n−1 )

H(T )−m−1.

The contribution to the last sum from 2k ≤ H(T ) < 2k+1 (where
1 ≤ 2k � Xj/(n−1)) is � 2k(n−m−1) from Lemma 1. It follows that

(2.12) Yj � U jmXn−j(log 3U)δX
j
(

n−m−1
n−1

)
.

The ratio of terms with successive j on the right hand side is

UmX− m
n−1 ≥ Um− m2

(n−1)(n−m) ≥ 1.
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Hence (2.12) yields

Yj � Um(n−1)X1+(n−m−1)(log 3U)δ = Umn(log 3U)δB−(n−m).

This completes the proof of Theorem 1. �

3. Proof of Proposition 1

By the Chinese remainder theorem, we need only show that

#Tn(p) ≤
(
1 +

2

p

)
pn

2−n−2 (n = 2, 3, . . .)(3.1)

and, including k = 0, 1 for convenience,

#Tn(p
k) ≤ (k + 1)n−2pk(n

2−n−2) (n = 2, 3, . . . ; k ≥ 0)(3.2)

where p is prime.
For (3.1) we are counting the number of (n− 1)×n matrices of rank

≤ n− 2, where n ≥ 2, over the field Z/pZ with p elements. For n = 2
only the zero matrix is counted.

Now let n ≥ 3. We divide the matrices counted as follows:
(i) A has zero first row. Since the other rows are arbitrary, there are

pn(n−2) of these matrices.
(ii) For some i, 3 ≤ i ≤ n, the rows a1, . . . ,ai−2 are linearly inde-

pendent, while ai−1 is in the linear span of a1, . . . ,ai−2. There are

(pn − 1)(pn − p) . . . (pn − pi−3)

possibilities for a1, . . . ,ai−2; then pi−2 possibilities for ai−1; and ai, . . . ,an

are arbitrary. This yields

(pn − 1) . . . (pn − pi−3)pi−2pn(n−i)

matrices.
In total we obtain

# Tn(p) = pn(n−2) +
n∑

i=3

pn(n−i)pi−2

i−3∏

j=0

(pn − pj)

which is at most (ignoring subtracted terms)

pn(n−2) +
n∑

i=3

pn
2−2n+i−2 = pn(n−2) + pn

2−n−2 1− p−(n−2)

1− p−1
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and so at most

pn
2−n−2

(
1 +

1

p− 1

)
≤ pn

2−n−2

(
1 +

2

p

)
.

We prove (3.2) for all k ≥ 0 by induction on n. Let 0 ≤ j ≤ k.
We shall use the notation pj || (a1, . . . , an), where ai is in Z/pkZ, to
mean pj | ai (i = 1, . . . , n) and pj+1 - ai for some i; except when j = k,
when pk || (a1, . . . , an) means pk | ai for i = 1, . . . , n. Thus for any
(a1, . . . , an) and k ≥ 0, there is exactly one j with 0 ≤ j ≤ k and
pj || (a1, . . . , an).

The first step of the induction, n = 2, is easy, since for A ∈ T2(p
k)

we have
A = (a11 a12) , a1j ≡ 0 (mod pk) (j = 1, 2),

and #T2(p
k) = 1.

Let n ≥ 3. For the induction step, we partition Tn(p
k) into subsets

C` (` = 0, 1, . . . , k), where A ∈ C` if

p` ||
(
detA

(1)
(1,n), . . . , detA

(n−1)
(1,n)

)
.

By the induction hypothesis applied to the transpose of A(1,n), for A ∈
C` there are at most

J` := p`((n−1)(n−2)−2)(`+ 1)n−3

possibilities (mod p`) for A(1,n). Modulo pk, of course, the number of
possible A(1,n) is

(3.3) ≤ p(n−1)(n−2)(k−`)J` ≤ (k + 1)n−3pk(n−1)(n−2)−2`.

For A ∈ C`, if we fix A(1,n), it will suffice to show that there are at
most

(3.4) pk(n−2)+`

possibilities for the first column, and the same number of possibilities
for the last column. For

k∑

`=0

(k + 1)n−3pk(n−1)(n−2)−2`pk(2n−4)+2` = (k + 1)n−2pk(n
2−n−2).
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We need only treat the first column. There is a det(A
(i)
(1,n)) divisible

by p`, but not p`+1 (if ` < k), and by pk (if ` = k). For simplicity of
writing we suppose that i = 1.

The number of possible vectors (a2,1, . . . , an−1,1) (mod pk) is pk(n−2).
Fix one of these vectors. We expand detA(n) by the first column.
Modulo pk the vanishing detA(n) is

a11 det
(
A

(1)
(1,n)

)
− a21 det

(
A

(2)
(1,n)

)
+ · · ·+ (−1)n−2an−1,1 det

(
A

(n−1)
(1,n)

)
.

Every quantity in this congruence except a11 has been fixed. Clearly
there are at most p` possibilities for a11 (mod pk), both for ` < k and
` = k. Combining this with the factor pk(n−2) yields the bound (3.4) and
completes the induction step. This finishes the proof of Proposition 1.

We found by direct computation that

#T3(p
k) = p4k + p4k−1 + p4k−2 − p3k−1 − p3k−2.

This is at most p4k(1 + 2/p) and so

#T3(d) ≤ ρ3(d)d
4

for ρ3 defined as in Proposition 1 but with ρ3(p
k) = 1 + 2/p (k ≥ 2).

We did not succeed in computing #T4(p
k) or in finding such things in

the literature. A naive application of Igusa Theory leads to #Tn(p
k) ≤

pc(n)pk(n
2−n−2) in place of (3.2); but this would not suffice for us.

4. Distribution of matrices with small determinant

We note a bound for the number of lattice points in a compact subset
E of Rn that is simpler than Lemma 2. Let

E ′ =

{
x : min

y∈E
‖x− y‖ ≤ 1

2

}
,

then

(4.1) # E ∩ Zn ≤ µ(E ′)

where µ(. . .) is Lebesgue measure. For the left-hand side of (4.1) is
∑

a∈E∩Zn

µ

(
a+

[
−1

2
,
1

2

)n)
.
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This sum is at most µ(E ′) because the a + [−1/2, 1/2)n are pairwise
disjoint subsets of E ′.

It is now convenient to write D(a1, . . . ,am) for D(A) when the
matrix A has rows a1, . . . ,am, even in Rn. We note that this is
det(ai · ai′)1≤i,i′≤m.

Lemma 3. Let 1 ≤ m < n. Let d ≥ 1 and c ∈ Rn, ‖c‖ < d. Let
W ≥ 0 and let Z, U be positive numbers with

(4.2) U � d , Z � Wd.

Let a1, . . . ,am ∈ Rn with D(a1, . . . ,am) = W . Let E be the set of y
in Rn with ‖dy + c‖ ≤ U and

(4.3) D(a1, . . . ,am , dy + c) ≤ Z.

Then in the above notation

(4.4) µ(E ′) � min

(
Un

dn
,
UmZn−m

dnW n−m

)
.

We interpret the right-hand side of (4.4) as Un/dn when W = 0.

Proof. Clearly µ(E ′) � Un/dn. Hence we may assume that W > 0
and

Z

W
< U.

For y ∈ E and x = dy + c, we write

x = xV + xV ⊥ xV ∈ V, xV ⊥ ∈ V ⊥

when V := Ra1 + · · ·+ Ram has dimension m. We have

D(a1, . . . ,am , dy + c) = D(a1, . . . ,am) |xV ⊥| ≤ Z,

hence
|xV ⊥| ≤ Z

W
.

Now take any h with ‖h‖ ≤ 1/2, then decomposing h as hV +hV ⊥ as
above, and recalling (4.2), we have

‖xV + dhV ‖ � U , ‖xV ⊥ + dhV ⊥‖ � Z

W
.
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Since a typical point of E ′ has the form x+ dh, it follows that

µ(dE ′ + c) � Um

(
Z

W

)n−m

,

and then at once
µ(E ′) � Um

dn

(
Z

W

)n−m

. �

Corollary. Let 1 ≤ m ≤ n. Let d ≥ 1 be in Z, let W ≥ 0, and let
a1, . . . ,am be in Rn with D(a1, . . . ,am) = W . Let C,U be positive
numbers with

(4.5) C � 1 , U � dC.

Suppose further that ‖ai‖ ≤ U for 1 ≤ i ≤ m. Let cm+1 ∈ Zn. Then
the number of am+1 in [−U,U ]n ∩ Zn satisfying

am+1 ≡ cm+1 (mod d)

and

(4.6) D(a1, . . . ,am,am+1) ≤
Um+1

C

is

� d−n min

(
Un,

U (m+1)n−m2

Cn−mW n−m

)
.

Proof. We can assume ‖cm+1‖ < d. We combine Lemma 3 and (4.1),
taking Z = Um+1/C. We need only verify that Z � Wd, that is,
Um+1 � WdC. Since W � Um, this follows from the hypothesis (4.5).

�

Proof of Proposition 2. We may assume C > (
√
n)−m, because other-

wise (1.11) holds for all A by (1.8) and the number of such A with
(1.10) is trivially � Umn/dmn.

Now we use induction on m. Denote the rows of A0 by ci (i =
1, . . . ,m), with 0 ≤ cij < d. When m = 1, the condition D(a1) ≤ U/C
implies |a1j| ≤ U/C (j = 1, . . . , n). There are

� U

Cd
+ 1 � U

Cd

possible a1j with a1j ≡ c1j (mod d), giving � (U/Cd)n possible vectors
a1.
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Suppose we have proved the result for a given m < n. Consider a
value of W with

W ∈
[
Um

C
, (
√
nU)m

]
.

We give an upper bound for NW , the number of sets of vectors a1, . . .am,am+1

in [−U,U ]n ∩ Zn such that

(4.7) ai ≡ ci (mod d) (i = 1, . . . ,m+ 1)

and
W ≤ D(a1, . . . ,am) < 2W.

Let us write W = Um/C1, then 1 � C1 ≤ C. By the induction
hypothesis, the number of possibilities for a1, . . . ,am is

� Umn

dmnCn−m+1
1

since dC1 ≤ dC ≤ U . Given a1, . . . ,am, the number of possibilities for
am+1 with (4.6) is

� U (m+1)n−m2

dnCn−mW n−m
=

UnCn−m
1

dnCn−m

by the Corollary.
Overall for this W , the number of possibilities for a1, . . .am+1 is

NW � U (m+1)nC−1
1

d(m+1)nCn−m
.

We now take C1 = 2k with 1 � 2k ≤ C. Summing over k we obtain a
total of

(4.8) � U (m+1)n

d(m+1)nCn−m
=

U (m+1)n

d(m+1)nCn−(m+1)+1

sets of vectors a1, . . . ,am+1 with ai ∈ [−U,U ]n∩Zn (i = 1, . . . ,m+1),
(4.7), and

D(a1, . . . ,am) ≥
Um

C
again by (1.8).
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It remains to count those a1, . . . ,am+1 with ai ∈ [−U,U ]n ∩ Zn

(i = 1, . . . ,m+ 1), (4.6), (4.7) and

D(a1, . . . ,am) <
Um

C
.

We use the bounds
� Umn

dmnCn−m+1
,
Un

dn

(again by induction) for the respective number of possible a1, . . .am

and possible am+1. This leads to a stronger upper bound than (4.8),
and the proof of the induction step is complete. This finishes the proof
of Proposition 2. �

5. Proof of Theorem 2

We first note a consequence of Proposition 2. Recall from (1.7) that
for an (n− 1)× n matrix A with rows a1, . . . ,an−1, we have

(5.1) D(a1, . . . ,an−1)
2 =

n∑

j=1

detA2
(j).

Lemma 4. Let n ≥ 2, C � 1, d ∈ N, U � dC. Let A0 be an (n−1)×n
integer matrix. The number of (n− 1)× n matrices A with entries in
[−U,U ] ∩ Z and

A ≡ A0 (mod d)

such that
|(detA(1), . . . , detA(n))| ≤

Un−1

C
is

� Un2−n

dn2−nC2
.

Proof. In view of (5.1), this is a restatement of Proposition 2 in the
case m = n− 1. �
Lemma 5. Define the multiplicative function % as in Proposition 1.
Then for x ≥ 1 we have

∑

d≤x

%(d) � x.

Proof. Let A be the set of squarefull natural numbers, B the set of
squarefree natural numbers. A natural number d can be written uniquely
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as
d = uv , u ∈ A , v ∈ B , (u, v) = 1,

so that

(5.2)
∑

d≤x

ρ(d) =
∑

u≤x

u∈A

ρ(u)
∑

v≤x/u

v∈B
(v,u)=1

ρ(v).

We next prove that

(5.3)
∑

v≤y

v∈B

ρ(v) � y (y ≥ 1).

Let τ(e) denote the number of divisors of r and ω(e) the number of
distinct primes dividing e. The sum on the left of (5.3) is at most

∑

v≤y

∏

p|v

(
1 +

2

p

)
≤
∑

v≤y

∑

e|v

2ω(e)

e
=
∑

e≤y

2ω(e)

e

[y
e

]
≤ y

∞∑

e=1

τ(e)

e2
.

This proves (5.3).
By writing u = w′2w′′3 we see that

(5.4)
∑

u∈A
u−3/4 ≤ ζ

(
3

2

)
ζ

(
9

4

)
.

Since ρ(u) = τ(u)n−2 for u ∈ A, the right-hand side of (5.2) is

�
∑

u≤x

u∈A

u1/4
∑

v≤ x
u

v∈B

ρ(v) � x
∑

u∈A
u−3/4

using (5.3), which by (5.4) is � x. �

Proof of Theorem 2. Let M be the number of (n−1)×n matrices with
entries in [−U,U ] ∩ Z for which the system

(5.5)
n∑

j=1

aijxj = 0 (i = 1, . . . , n− 1)

has a nontrivial solution x with

‖x‖ <
Un−1

B
.
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The matrices A with D(a1, . . . ,an−1) < Un−1/B make a contribution
to M of � Un2−n/B2 by Proposition 2 with d = 1, which is acceptable.
Let M0 be the contribution from A with D(a1, . . . ,an−1) ≥ Un−1/B.
In particular, these A have rank n− 1; the vector space of solutions of
(5.5) has dimension 1 and is spanned by

xA := (detA(1),− detA(2), . . . , (−1)n−1 detA(n)).

To see that this last statement holds, we observe that

0 = det(ai,a1, . . . ,an−1) =
n∑

j=1

(−1)j−1aij detA(j)

for i = 1, . . . , n− 1. The integer solutions of smallest length are there-
fore

± 1

gA
xA

where gA is the greatest common divisor of detA(1), . . . , detA(n).
Thus M0 ≤ N0 where N0 is the number of matrices A with aij ∈

[−U,U ] ∩ Z and
‖xA‖
gA

<
Un−1

B
.

The contribution to N0 from matrices with

‖xA‖
gA

< Un−2

is 0 for n = 2, and is

� Un2−n log 3U

U
� Un2−n

B

for n ≥ 3, by Theorem 1. Thus it remains to consider the contribution
to N0 from matrices with

(5.6) Un−2 ≤ ‖xA‖
gA

<
Un−1

B
.

Let N0(l, k) be the contribution to N0 from matrices with

Un−12−k ≤ |xA| < Un−12−k+1

(the change in norm will not matter) and

2l−1 ≤ gA < 2l.
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Here l ≥ 1, 2k � 1 and moreover

U � 2l+k � B

from (5.6).
The contribution to N0(l, k) from A for which gA takes a particular

value d and A lies in a particular congruence class (mod d) is

� Un2−n

dn2−n22k

by Lemma 4. The number of congruence classes (mod d) permitted by
the condition gA | xA is at most

%(d)dn
2−n−2

by Proposition 1. Hence

N0(l, k) �
∑

2l−1≤d<2l

Un2−n

dn2−n22k
%(d)dn

2−n−2 � Un2−n

22k+2l

∑

d<2l

%(d) � Un2−n2−l−2k

by Lemma 5.
We now sum over k with

2−lU � 2k � max(1, 2−lB),

obtaining
∑

k

N0(l, k) �
Un2−n

max(1, 2−lB)2
2−l.

Finally we sum over l. The contribution from l with 2l < B is

� Un2−n

B2

∑

2l<B

2l � Un2−n

B
.

The contribution from l with 2l ≥ B is

� Un2−n
∑

2l≥B

2−l � Un2−n

B
.

This completes the proof of Theorem 2. �
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