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Abstract. Recent work in stochastic programming draws on interaction
with Algebraic and Combinatorial Models, Numerical Analysis of PDEs, Risk
Analysis, Mathematical Equilibrium, Minimax, and Stochastic Games. For
the first time ever, the workshop brought together scholars from these fields
to exchange experience and identify promising topics for future research.
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Introduction by the Organisers

The workshop New Directions in Stochastic Optimisation organized by Jesús De
Loera (Davis), Darinka Dentcheva (Hoboken), Georg Ch. Pflug (Vienna) and
Rüdiger Schultz (Essen) was well attended by 54 participants with broad geo-
graphic representation. By a surprising coincidence, the workshop took place
precisely 50 years after the first Oberwolfach Workshop in Operations Research
(Organizers: R. Henn (Karlsruhe), H. P. Künzi (Zurich) and H. Schubert (Kiel)).

Topic: Stochastic programming offers mathematically rigorous optimisation mod-
els incorporating probabilistic information with uncertain data. Decisions are
based exclusively on the information that is available at the moment of taking
decisions (nonanticipativity). Depending on when missing information is unveiled
and on how this interacts with decision making over time, different principal model
setups arise, e.g., one-stage, two-stage, or multi-stage models. Selection and place-
ment (in the objective or the constraints) of the statistical parameters according
to which relevant random variables are to be evaluated is another important issue.
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This allows to express perceptions such as reliability, risk neutrality, or risk aver-
sion. Finally, the nature of the initial uncertain optimisation problem (linear or
nonlinear, with or without integer variables, living in finite or infinite dimension)
has crucial impact on the arising stochastic programming model. These aspects
lead to a wide variety of stochastic optimization programs as well as to a wide
variety of mathematical techniques for their analysis and algorithmic treatment.

Course of the workshop: On the one hand, the workshop reflected the diversity
of the involved areas. On the other hand, there was enough overlap among indi-
vidual expertise to generate new ideas and obtain input from other directions. In
particular, the 35 talks together with a brainstorming session on Thursday evening
provided the basic ideas for stimulating discussions covering a broad spectrum of
topics. We now will discuss some contributions on specific topics.

Numerical Analysis of PDEs: The rapid development of PDE-constrained
optimisation is accompanied by approaches to handle uncertainty in appropriate
fashion. The approach via stochastic programming aims at finding best possi-
ble decisions under data uncertainty. Procedures for reaching optimality in terms
of stochastic criteria may incorporate user attitudes such as being risk averse,
risk neutral or risk seeking. A related contemporary approach to handling uncer-
tainty, also discussed at the workshop, is uncertainty quantification that looks for
“a computational framework for quantifying input and response uncertainties in
a manner that facilitates predictions with quantified and reduced uncertainty”1.
Shape optimization under stochastic loading for elastic materials have been dis-
cussed in several talks. Risk neutral and risk averse objective functionals have
been investigated and the concept of stochastic dominance constraints was ex-
plored. Thereby the expected excess and the excess probability are taken into
account, first as objective functional involving the compliance cost of an elastic
object under stochastic loading and then as a constraint when comparing a shape
with a benchmark shape.

Open problems concern the identification of subclasses allowing for duality
and resulting algorithmic shortcuts; exploiting problem similarities for efficient
repeated solution of PDE-constrained optimisation problems differing in the re-
alisations of the random data; mathematical foundation and algorithm design of
approximation via linearisation of full models, arriving at linear models, devel-
opment of numerical PDE-solvers taking into account specifics of this problem
class.

PDE-constrained optimization under uncertainty has been addressed from fur-
ther points of view. We mention convergence of projected gradient methods in
Hilbert spaces, reduced-order models/incorporating risk functionals /(CVaR) and
risk averse optimization; optimal boundary control under uncertain initial data;
general characterizations of feasibility, stationarity, optimality, and stability in
PDE-constrained optimization.

1R.C. Smith: Uncertainty Quantification, SIAM, 2014, page ix.
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Shape optimization under uncertainty

Helmut Harbrecht

Introduction. Shape optimization is indispensable for designing and constructing
industrial components. Many problems that arise in application, particularly in
structural mechanics and in the optimal control of distributed parameter systems,
can be formulated as the minimization of functionals which are defined over a class
of admissible domains.

Shape optimization problems can be solved by means of gradient based mini-
mization algorithms, which involve the shape functionals’ derivative with respect
to the domain under consideration. The computation of the shape gradient and
the implementation of appropriate numerical optimization algorithms is meanwhile
well understood, provided that the state equation’s input data are given exactly.
In practice, however, input data for numerical simulations in engineering are often
not exactly known. One must thus address how to account for uncertain input
data in the state equation.

Uncertainty in the state equation might arise from three different sources:

• Uncertainty might arise from geometric entities like a certain part of
boundary which has not to be optimized but is prescribed.

• The right-hand side of the state equation might be random.
• The material parameters, entering the partial differential operator, might
be not exactly known.

We separately consider these sources of uncertainty and discuss their impact on
the shape optimization problem. Especially, we show the well-posedness of the
problem formulations and present numerical solution methods.

Shape optimization under geometric uncertainty. Bernoulli’s free boundary
problem is concerned with finding the exterior (free) boundary Γ of an annular
domainD ⊂ Rn for a given interior (fixed) boundary Σ such that, besides Dirichlet
boundary conditions at both boundaries, also a Neumann boundary condition is
satisfied at the exterior boundary. The problem under consideration models for
example the growth of anodes in electrochemical processes and can be seen as the
prototype of a free boundary problem arising in many applications.

We shall consider the situation that the interior boundary is random, i.e., it is
Σ = Σ(ω) with an additional parameter ω ∈ Ω. Such an assumption arises when
treating tolerances in fabrication processes or when the interior boundary is only
known by measurements which typically contain errors. We are thus looking for a
tuple

(
D(ω), u(ω)

)
such that there holds

(1)

∆u(ω) = 0 in D(ω),

u(ω) = 1 on Σ(ω),

− ∂u

∂n
(ω) = g, u(ω) = 0 on Γ(ω).

The questions which have to be addressed are the following:
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(1) What is a suitable model for the domain D(ω)? Is the problem well-posed
in the sense of D(ω) being almost surely well-defined?

(2) How to define the expectation of a random domain? The main difficulty
to deal with here is that the space of domains is not linear.

(3) How to compute the solution to the random free boundary problem nu-
merically?

We provide the theoretical background that ensures the well-posedness of the
problem under consideration and describe two different frameworks to define the
expectation and the deviation of the resulting annular domain. The first approach
is based on the Vorob’ev expectation, which can be defined for arbitrary sets.
The second approach is based on a particular parametrization. We compare these
approaches by analytical computations for circular interior domains and by nu-
merical experiments for more general geometric configurations. For the numerical
approximation of the domain’s expectation and deviation, we propose a sampling
method like the (quasi-) Monte Carlo quadrature. Then, each particular realiza-
tion Σi of the interior boundary leads to an exterior boundary Γi via the solution
of Bernoulli’s free boundary problem. It is computed by solving the shape opti-
mization problem

J(Di) =

∫

Di

{
‖∇ui‖2 + g2

}
dx → min

subject to ∆ui = 0 in Di, ui = 1 on Σi, ui = 0 on Γi.

Shape optimization in case of random diffusion. We consider again Ber-
noulli’s free boundary problem (1), but now the situation that the material con-
tained in the domain D is not perfectly homogeneous. Hence, we arrive at the
following random free boundary problem: seek the free boundary Γ, such that

(2)

div
(
α(ω)∇u(ω)

)
= 0 in D,

u(ω) = 1 on Σ,

−α(ω)
∂u

∂n
(ω) = g, u(ω) = 0 on Γ,

holds for almost all ω ∈ Ω. Since we intend to model a uniformly elliptic random
perturbation of the Laplace operator, the random diffusion is assumed to satisfy

0 < αmin ≤ α(ω) ≤ αmax < ∞
almost everywhere in D.

For solving the random free boundary problem (2), we first show that the
minimizer of the shape optimization problem

(3)
J(D,ω) =

∫

D

{
α(ω)‖∇u(ω)‖2 + g2

α(ω)

}
dx → min

subject to div
(
α(ω)∇u(ω)

)
= 0 in D, u(ω) = 1 on Σ, u(ω) = 0 on Γ

solves the free boundary problem (2) for each particular ω ∈ Ω. This is done by
deriving the Hadamard representation of the associated shape gradient and proving
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that the necessary optimality condition imposes the desired Neumann boundary
condition.

Therefore, since the random diffusion induces a random state and thus a random
shape functional, we are going to minimize the ensemble average E

[
J(D,ω)

]
of the

random shape functional. Note that this shape optimization problem is well-posed
since we are minimizing a continuous energy functional.

Shape optimization in case of random right-hand sides. We shall next con-
sider shape optimization problems where the right-hand side in the state equation
is random. Then, the state is random, but depends linearly on the randomness.
In this situation, the expectation and variance of a quadratic objective can be
reformulated as deterministic expressions by exploiting the state’s moments. This
leads to cheap, deterministic algorithms to minimize such objectives.

Consider, for example, Bernoulli’s free boundary problem in case of random
Dirichlet data at the interior boundary:

(4)

∆u(ω) = 0 in D,

u(ω) = f(ω) on Σ,

− ∂u

∂n
(ω) = g, u(ω) = 0 on Γ.

We show that the random shape optimization problem

(5)
E[J(D,ω)] = E

[ ∫

D

{
‖∇u(ω)‖2 + g2

}
dx

]
→ min

subject to ∆u(ω) = 0 in D, u(ω) = f(ω) on Σ, u(ω) = 0 on Γ

can be reformulated into the deterministic shape optimization problem

E[J(D,ω)] =

∫

D

{(
‖(∇⊗∇)Cor[u](x,y)‖

∣∣∣
y=x

)2

+ g2
}
dx → min,

where Cor[u](x,y) denotes the two-point correlation of random state u(ω) given
by (5).
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