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 28 

ABSTRACT  29 

The effect of recent climatic warming is significant in the Mediterranean region, especially in 30 

high mountain areas. This study uses multiple sedimentary proxies from Río Seco Lake, a remote alpine 31 

lake in the Sierra Nevada, southeastern Spain, to reconstruct recent environmental and ecological changes 32 

in the lake and catchment. Two main climatic periods can be distinguished during the past 180 years: 33 

Period One (1820- ~1920s) characterized by colder and wetter conditions than the more recent Period 34 

Two (~1920s to the present), characterized by warmer and drier conditions. Independent proxies such as 35 

subfossil chironomid assemblages, n-alkane indices, pollen data and/or spectrally-inferred chlorophyll-a 36 

concentrations indicate a longer ice-cover period, colder water temperature and more pronounced 37 

accumulation of snow in the catchment during Period One than in Period Two, likely producing water 38 

stress for catchment plant growth because of the low rate of ice melting in Period One. As temperatures 39 

increase and precipitation decreases from the 1920s onwards, a wider development of wetland plants 40 

observed, which is associated with the longer warm season that contributed to snow and ice melting in 41 

the catchment. This continuing temperature rise and precipitation decrease over the past 60-years by ~0.24 42 

°C per decade and –0.92 mm/yr, respectively, lead to an important increase in chlorophyll-a and changes 43 

in lake biotic assemblages. Major chironomid community structure changes to warmer water taxa were 44 

recorded, resulting in a 2 ºC increase in mean July air temperature inferred by chironomids from ~1950 45 

onwards. An inferred increase in primary production for the past few decades is consistent with higher 46 

temperatures, whilst wider development of wetland plants is associated to longer warm season. The 47 

coherence between independent environmental proxies, each associated with distinct mechanistic 48 

linkages to climatic shifts, strengthens our interpretations of a recent warming trend and an intensification 49 

of summer drought in this high mountain area leading to distinct changes in the lake and its catchment. 50 
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The impact of this climate change on the summits of Sierra Nevada and its influence transcends its 51 

geographical limits because these systems provide ecosystem services to a vast area.  52 

  53 

Keywords: alpine lakes, Sierra Nevada, warming, chironomids, n-alkanes, chlorophyll-a, primary 54 
production 55 
 56 
 57 
INTRODUCTION  58 

 Over the last 150 years, the global average air temperature at the Earth's surface has increased by 59 

~0.8 ºC, while in the Northern Hemisphere the last 30-year period was the warmest period on record 60 

(IPCC 2013). High mountain areas are among the most sensitive to anthropogenic climate change and are 61 

experiencing some of the highest rates of warming due to the elevation-dependent warming (EDW), i.e. 62 

the rate of warming is amplified with altitude (Pepin and others 2015). The Mediterranean region is 63 

considered to be the largest "climate change hot-spot" in the world (Giorgi 2006). In particular, 64 

Mediterranean high mountain ecosystems have been identified as especially susceptible to global 65 

warming (Lionello, 2012; Pauli and others, 2012). This susceptibility is partially associated to the 66 

increased risk of summer drought in this region, caused by the rise in average summer air temperature 67 

and the reduction in annual rainfall (Nogués-Bravo and others, 2012). 68 

Remote areas, referred as unpopulated high altitude regions above the tree line as well as high 69 

latitude areas, are excellent sites to study climate change effects because the climate signal is not as 70 

strongly obscured by other human impacts as in more populated areas (Battarbee and others 2002) and 71 

because they are sensitive to both natural and anthropogenic factors (Pauli and others 1996; Adrian and 72 

others, 2009; Smol, 2008).High mountain ecosystems are strongly influenced by physical conditions and 73 

strongly limited by nutrients, exhibiting steep ecological gradients and narrow ecotonal boundaries. 74 



 

4 
 

Therefore, changes in environmental conditions (e.g. temperature patterns, ice-free period duration, water 75 

thermal regime, habitat and water availability) are expected to have great effects in them (Beniston 2003; 76 

Rühland and others 2015).  77 

 One way to assess the pressures influencing these remote sites is through the study of lake 78 

sediments, which are excellent archives of long-term environmental changes and allow environmental 79 

and ecosystem conditions to be reconstructed from limnological, ecological and geochemical lake-80 

sediment proxies (Smol 2008). Ecosystem responses to warming are complex and show many direct and 81 

indirect interactions, with numerous climate-related processes affecting to different biotic and abiotic 82 

parameters. The analysis of independent proxies allows for the tracking of processes within lakes and 83 

their catchment. Since individual proxies can have different mechanistic links that determine their 84 

response to external stressors, studies based on multiple proxies offer a holistic approach to interpreting 85 

past lake and catchment-related changes.   86 

The Sierra Nevada of southernmost Spain is a protected high-mountain area situated where alpine 87 

conditions and the influence of Mediterranean climate coexists. It is one of the most important 88 

biodiversity hotspots in Europe and plant species loss in its summits attributed to climate change in the 89 

last decades has been reported (Pauli and others 2012). This Mediterranean mountain range has shown a 90 

rapid response to the recent warming with the disappearance of permanent ice from the highest north-91 

facing cirques (Oliva and others 2016). A trend in declining mean annual rainfall (Ruiz-Sinoga and others 92 

2011) and a reduction of snow and ice cover since the 1960s (Pérez-Palazón and others 2015) has become 93 

more pronounced since the onset of the 21st century (Bonet and others 2016). In addition, climate models 94 

project an ongoing warming trend in this region for the end of the 21st century (Pérez-Luque and others 95 

2016).  96 

With this background, alpine ecosystems in the Sierra Nevada have become the focus of several 97 
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paleoecological research projects over the Holocene in order to understand their post-glacial 98 

environmental responses. Most of the wetlands and peatlands in the Sierra Nevada developed in 99 

depressions carved during glacial times. Actually, the studied site, Río Seco Lake, bears the longest 100 

sedimentary record in Sierra Nevada, registering the Pleistocene-Holocene transition (between ~11000-101 

12000 cal yr BP) (Anderson and others 2011). All the paleoenvironmental studies in Sierra Nevada alpine 102 

wetlands agree with the Holocene climatic evolution of the western Mediterranean region, with an humid 103 

early-middle Holocene that changes towards more arid conditions in the middle-late Holocene. Saharan 104 

dust inputs in the Sierra Nevada after 6000 cal yr BP affected alpine aquatic primary production (Jiménez-105 

Espejo and others 2014; García-Alix and others 2017), as well as local vegetation and landscape 106 

(Anderson and others 2011; Jiménez-Moreno and Anderson 2012; García-Alix and others 2017). Most 107 

of the available long-term studies are not available at high resolution for the last hundred years, more 108 

specifically for the period after the end of the Little Ice Age, when the current environmental conditions 109 

of Sierra Nevada were established (García-Alix and others 2017; Oliva and others 2018). Some short-110 

term surveys (~150 years) based on biological proxies, such as cladocerans, diatoms and sedimentary 111 

algal pigments (Jiménez and others 2015; Pérez-Martínez 2016; Jiménez and others 2018), have shown 112 

significant response of biotic assemblages to direct and indirect effects of temperature increases at the 113 

turn of 20th century, and especially over the past ~50 years. As yet, detailed comparisons of the communal 114 

response of chironomids to climate variability have not been conducted in the Sierra Nevada. 115 

Paleolimnological studies combining chironomids with organic geochemical indices may further our 116 

understanding of climate and landscape processes in this alpine ecosystem.  117 

This study aims to provide a high-resolution multi-proxy reconstruction of recent 118 

palaeoenvironmental conditions from an alpine Mediterranean environment of the Sierra Nevada for the 119 

first time, helping to understand past changes and constrain future environmental scenarios. The aim is to 120 
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put effects of recent climate changes in the context of a record extending back over the last 180 years to 121 

assess the extent that lake and catchment-related processes are linked to direct and indirect climate-driven 122 

changes. To accomplish this, we use a combination of stratigraphic records of sub-fossil chironomid 123 

assemblages, leaf wax biomarkers (n-alkanes), spectrally-inferred chlorophyll-a concentrations, pollen, 124 

cladocera, diatoms, organic matter content, organic matter C/N ratio and organic carbon isotopic 125 

composition (Online Appendix 3). 126 

MATERIALS AND METHODS  127 

Study site  128 

 Sierra Nevada (SE Spain, maximum altitude 3482 masl) is the highest mountain range of the 129 

Southern Europe. Sierra Nevada summits experience a high mountain Mediterranean semi-arid climate 130 

characterized by a warm and dry season (from ~June to October). The meteorological station at the 131 

summit (2507 masl) reports a mean annual temperature of 3.9 ºC and total precipitation of 693 mm, with 132 

80% occurring as snow between October and April (Worldwide Bioclimatic Classification System, 1996-133 

2018). There are ~50 small lakes of glacial origin and many alpine meadows around lakes, streams and 134 

depressions. These high-mountain meadow ecosystems represents a small area of the mountain range but 135 

have a high rate of plant endemicity and host many threatened taxa (Pérez-Luque and others 2015).136 

 Río Seco (RS) Lake (37º 03’N, 3º 20’W) is a small, low primary production and shallow lake of 137 

glacial origin located above tree line at 3020 masl in the Sierra Nevada (southern Spain) (Fig. 1). The 138 

catchment bedrock is siliceous and largely comprised of mica-schist with graphite and/or feldspar. The 139 

soil is poorly developed and does not support agriculture or forestry. The catchment area is partially 140 

covered (~15%) by alpine meadows, consisting primarily of sedges (Cyperaceae) and grasses (Poaceae). 141 

The lake has no clearly differentiated littoral zone, but its shoreline is covered by bryophytes. With the 142 

exception of the meadows, most of the catchment vegetation consists of scarce xerophytic shrubland (see 143 
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Anderson and others 2011).  144 

The lake has diffuse inflows that provide water to the basin, and a small outlet. The inflow and 145 

outflow of water can disappear as the ice-free season progresses. The lake is ice covered from around 146 

October-November until June-July with a large interannual variability. Further details of physicochemical 147 

and biological features are shown in Online Appendix 1. During the ice-free period, Secchi disk visibility 148 

exceeds the water depth, the lake is not thermally stratified, and the maximum temperature is 16–18 ºC. 149 

It is a fishless lake, with low plankton diversity. Among chironomids, the species Psectrocladius 150 

limbatellus and Micropsectra radialis (as M. coracina) have been recorded in RS Lake (Laville and 151 

Vílchez-Quero 1986).  152 

 There are a few signs of significant human activity in the area. RS Lake is relatively remote, with 153 

local human activity currently limited to infrequent sheep herding around surrounding meadows during 154 

summer months. A dirt road, constructed between 1964 and 1965 and lying upgradient from RS Lake, 155 

experiences only foot traffic since the establishment of the Sierra Nevada National Park in 1999. A 156 

mountain hut was situated close to the shoreline and operated for three decades (1967-1997). The 157 

demolition of the hut at 1997 produced a large amount of inorganic material, which clouded the lake and 158 

had a major effect on biota and geochemical variables (Jiménez and others 2015). 159 

Sediment sampling, analyses and dating 160 

 A sediment core was collected from the deepest part of the lake in September 2008 using a slide-161 

hammer gravity corer (Aquatic Research Instruments, Hope, Idaho, USA) with an inner core-tube 162 

diameter of 6.8 cm. The core (16 cm long), was extracted in a methacrylate cylinder and immediately 163 

wrapped in a dark bag to keep it protected from the light, sectioned into 0.5 cm slices using an extruder, 164 

and sealed in sterile Whirlpak® bags, which were stored and transported in a cold box to the laboratory. 165 

Subsamples were collected at each interval in the laboratory and kept in a cold (4 ºC) and dark room until 166 
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analysis. The sediment was dated by gamma (210Pb, 137Cs, and 226Ra) and alpha spectroscopy (210Pb in 167 

deepest part of core) (Eakins and Morrison 1978) establishing a chronology for the past ~180 years. The 168 

dating and sedimentation rate were calculated by using the constant flux: constant sedimentation (cf:cs) 169 

model (Appleby and Oldfield 1983). The core was analyzed at the Center for Research, Innovation and 170 

Technology (CITIUS) of the University of Sevilla, Spain.   171 

Instrumental climate data  172 

 We use MAAT Madrid (mean annual air temperature series from Madrid station) and AP San 173 

Fernando (annual precipitation series from San Fernando station) as representative of air temperature and 174 

precipitation tendencies of the larger region around the Sierra Nevada during the last 170 years throughout 175 

the analyses. Geographical distance between Madrid and San Fernando climate stations from RS Lake 176 

are 376 and 262 km, respectively, while altitude differences are 2356 and 2992 m, respectively (Online 177 

Appendix 2).  178 

Sedimentary proxy record   179 

Sedimentary chlorophyll-a was inferred by visible reflectance spectroscopy using a FOSS 180 

NIRSystems Model 6500 series Rapid Content Analyzer (Tidestone Technologies, Inc.) to measure 181 

spectral reflectance of sediments that had been freeze-dried and sieved through a 125 µm-mesh, following 182 

the methods described by Michelutti and others (2005). The chlorophyll-a concentration includes native 183 

chlorophyll-a, as well as all chlorophyll isomers and its major derivatives (pheophytin a and 184 

pheophorbide a), and therefore accounts for the major diagenetic products (Michelutti and Smol 2016). 185 

 Loss on ignition (LOI) was measured to calculate the organic matter and carbonate content in the 186 

sediments (Heiri and others 2001). LOI was assessed sequentially on all core intervals (every 0.5 cm) 187 

using a muffle furnace. Samples were dried in an oven at 105 ºC for 24 h and weighed. The content of 188 
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the organic and carbonate matter was analysed by incinerating the samples at 550 ºC for 4 h and at 900 189 

ºC for 2 h, respectively (see detailed methods in Dean 1974 and Heiri and others 2001). 190 

 Total and inorganic carbon, and nitrogen content were analyzed with a CARLO ERBA EA 1108 191 

CHNSO Elemental Analyzer system. The organic fraction was determined as the difference between the 192 

total and the inorganic carbon fraction (Meyers and Teranes 2001). The carbon/nitrogen (C/N) ratio was 193 

calculated from the mass data and expressed as atomic ratio.  194 

Prior to the carbon isotope analysis from the bulk sediment organic matter (δ13Corg), 1 g of freeze-195 

dried sediment was extracted by drying the samples (50 ºC) for 24h. The carbonate fraction was then 196 

removed by addition of 10% HCl to the solution. The C isotopic composition (13C/12C) of acid-treated 197 

samples was analyzed using a mass multicollector spectrometer (Isoprime; GV Instruments) equipped 198 

with a EuroVector elemental analyzer (mod. Euro EA 3000) and continuous flow inlet. The results are 199 

expressed as δ13Corg in the conventional delta (δ) notation versus Vienna PeeDee Belemnite (V-PDB). 200 

Reproducibility measured for working standards during each run was better than ± 0.15 ‰.  201 

The total lipid extract (TLE) from 32 freeze-dried sediment samples was extracted with a Thermo 202 

Scientific™ Dionex™ ASE™ 350 Accelerated Solvent Extractor system using 9:1 DCM:methanol. The 203 

obtained TLE was separated in neutral and acid fractions by aminopropyl-silica gel chromatography using 204 

1:1 DCM:isopropanol and ether with 4% acetic acid, respectively. Afterwards, the n-alkanes were 205 

obtained by eluting the neutral fraction with hexane through a 230-400 mesh/35-70 micron silica-gel 206 

chromatographic column and analyzed using a GC-FID (Shimadzu 2010) and a GC-MS (Shimadzu 207 

QP2010-Plus Mass Spectrometer interfaced with a Shimadzu 2010 GC). To check the reproducibility of 208 

the measurements and to quantify the n-alkane content, a mixture of n-alkanes (C16, C18, C19, C20, C23, 209 

C25, C26, C28, C30, C32, and C37) was measured every five samples. The measurement error was lower than 210 

1.5%.  211 
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For fossil pollen, a modified Faegri and Iversen (1989) procedure was followed using 1 cm3 of 212 

sediment. Pre-treatment included (NaPO3)6 to deflocculate clays and the addition of Lycopodium spores 213 

for calculation of pollen concentration. Sediments were suspended in Na4P2O7 and sieved, then treated 214 

with HCl, HF and acetolysis solution. Samples were stained and suspended in silicone oil and identified 215 

at 400-1,000x to their lowest taxonomic level – mostly genus, sometimes family or other grouping – using 216 

a light microscope. For more details on the methodology see Anderson and others (2011).  217 

 For chironomid analysis, samples (~0.3 g dry weight) for each analysed interval of sediment were 218 

immersed in 10% KOH for 2-3 hours and subsequently sieved through a 100 µm fraction. The head 219 

capsules were sorted from other sieve residue under a dissection microscope. Chironomids were prepared 220 

in Eurapal mounting medium and identified at 100-400x magnification with a compound microscope. 221 

The minimum count threshold was 40 (range 43-83.5), except for the uppermost sample, which only 222 

consisted of 32 head capsules. Taxonomy mainly followed Oliver and Roussel (1983) and Brooks and 223 

others (2007). Comparatively, fewer intervals were counted for chironomids (10 samples) than for the 224 

other proxies (32 samples). Chironomid samples were analyzed every 2 cm from 0 to 16 cm.  225 

Cladoceran and diatom assemblages from the sediment core of RS Lake were previously analyzed 226 

and published in Pérez-Martínez (2016) and Jiménez and others (2018). In this study we use the PCA 227 

axis 1 sample scores of both assemblages to compare with the rest of the proxies.  228 

Interpretation of selected sedimentary proxies in RS Lake can be found in Online Appendix 3.   229 

Data analyses 230 

 Principal component analysis (PCA) was used to summarize the dominant pattern of assemblage 231 

variability in chironomid, cladocera and diatom assemblages, as detrended correspondence analysis 232 

(DCA) indicated relatively short lengths of the first two compositional gradients (1.43 and 0.73 standard 233 
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deviation units on the DCA axis 1 and 2, respectively). Chironomid relative abundances were square root 234 

transformed prior to analyses to equalize variance among taxa. Ordinations were conducted using the 235 

vegan package (Oksanen and others 2015) for the R software environment (R Development Core Team, 236 

2015). The annually resolved climate series (MAAT Madrid and AP San Fernando) were averaged over 237 

the period of accumulation for each dated interval, thereby integrating the instrumental data with the 238 

paleolimnological data (Sorvari and others 2002). The relationships between sedimentary proxies 239 

(downcore PCA axis 1 sample scores, organic geochemical proxies and sedimentary chlorophyll-a 240 

record) and changes in climatic series (MAAT Madrid and AP San Fernando) were then examined. 241 

STATISTICA v.7 (Statsoft) software was used to test the data normality and calculate Pearson 242 

correlations. The Kolmogorov-Smirnov test with Lilliefor's correction was performed to determine the 243 

normality of the data distribution. Pearson correlation coefficients were used to provide an indication of 244 

the strength of the relationships between parameters. For the sedimentary chlorophyll-a record, the 245 

uppermost sedimentary interval (0-0.5 cm) was excluded because it could not be reliably identified as 246 

exclusively representing sedimentary chlorophyll-a due to the presence of algal mat material. Lake 247 

sediment records can be affected by bioturbation and other factors which can to some extent smooth out 248 

short-term variability (e.g. between year variability). We therefore do not report p values for correlations 249 

between lake sediment records as well as between lake sediment records and instrumental data series, 250 

since statistical testing of correlation coefficients assumes statistical independence of the data points. 251 

However, all of the discussed relationships would have been statistically significant if tested using 252 

standard tests for statistical significance of p values. 253 

A stratigraphically constrained cluster analysis was carried out in the R software environment (R 254 

Development Core Team 2015), using the Rioja package (Juggins, 2012) to identify the periods with 255 

homogeneous response of the different proxies. Stratigraphic zonation was done by a cluster analysis with 256 
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a constrained incremental sum of squares (coniss method), using the chclust() function (method=‘coniss’) 257 

of the Rioja package. The cluster analysis was applied using the combination of all biogeochemical 258 

proxies. To characterize the timing of largest change in MAAT Madrid and AP San Fernando series data, 259 

breakpoint analyses using a two-segment piecewise linear regression were applied to each series to 260 

identify where the slope changes (Toms and Lesperance 2003). 261 

   Zonation of the stratigraphic profiles of chironomid data was performed by a cluster analysis with 262 

a constrained incremental sum of squares (CONISS), square root transformation of data and chord 263 

distance as the dissimilarity coefficient, using Tiliagraph View (TGView) version 2.02 (Grimm 2004) 264 

and determining the number of significant zones by means of the broken stick model (Bennett 1996). 265 

Chironomid-inferred mean July air temperature (MJAT) reconstruction was performed using the program 266 

C2 (Juggins 2007) based on a 274-lake chironomid-temperature calibration dataset from Switzerland and 267 

Norway (Heiri and others 2011) and a temperature inference model (transfer function) developed from 268 

these data. The calibration dataset covers a mean July air temperature gradient from 4 to 18.4°C and a 269 

wide range of arctic, alpine, subalpine and temperate lowland lakes. The applied transfer function was 270 

based on weighted averaging-partial least squares regression (WA-PLS; ter Braak and Juggins 1993; ter 271 

Braak and others 1993). The model featured a cross-validated r2 of 0.84 and a root mean square error of 272 

prediction (RMSEP) of 1.55°C. RMSEP, r2, and sample-specific errors of prediction (eSEPs) were 273 

calculated based on 9999 bootstrapping cycles in C2. Chironomid assemblage percentage data were 274 

square root transformed before calculation of WA-PLS and distance metrics. To assess the trajectory of 275 

RS chironomid assemblages relative to summer temperature, we compare the RS data to mountain lakes 276 

in the Swiss Alps, see details in Online Appendix 4 (Fig S2).  277 

RESULTS  278 

Chronology 279 
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 The 210Pb dating of the sediment core from RS Lake shows sedimentation rates of 0.9-1.1 mm 280 

year-1 from 0 to 6 cm depth (from ca. 2008 to 1948) and 0.7-0.8 mm year-1 from 6 cm to 15.5 cm depth 281 

(from ca. 1948 to 1821) (Jiménez and others 2018). For further details see Online Appendix 5. 282 

Instrumental climate data  283 

Over the 143-year record, mean annual air temperature (MAAT) from the Madrid climate station 284 

indicates a warming trend beginning at the turn of the 20th century (Fig. 2 and Fig. S1 in Online Appendix 285 

2). Total annual precipitation (AP) from the San Fernando climate station indicates that over the 172-year 286 

record, the second half of the 19th century was wet, reaching a maximum around 1860-70 and then 287 

decreasing from the late 19th century to the present, interrupted only by positive anomalies in the 1960s 288 

(Fig. 2 and Fig. S1 in Online Appendix 2). The last 40 years of the AP San Fernando record exhibit 289 

persistent low precipitation values that were particularly low from 1985-1995.  290 

According to main shifts in climatic data, consistent with noticeable changes in direction, 291 

magnitude and timing in the major paleoenvironmental proxies in the present study, two distinct climatic 292 

periods are indicated for the climate data: Period One from 1820 to ~1920s, a period of relatively high 293 

precipitation and low and decreasing temperature; and Period Two from ~1920s to the present, a warmer 294 

and drier period, particularly since the mid-70s (Fig. 2).  295 

Sedimentary proxy record   296 

 A similar trend is observed in % organic matter content (estimated by Loss on ignition; LOI550) 297 

and sedimentary chlorophyll-a through the entire profile (Pearson r=0.52, n=32). The two variables show 298 

a progressive decrease from 1820 to ~1920s followed by an increase to the present, except for the abrupt 299 

decrease of LOI550 in the 1990s (Fig. 2). The trend of sedimentary chlorophyll-a is parallel to MAAT 300 

Madrid for the entire record (Pearson r=0.76, n=24), and also similar between LOI550 and MAAT Madrid 301 
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until the late 1980s (Pearson r=0.46, n=20). The abrupt decrease of LOI550 values from ~1990s is 302 

responsible for the decoupling of trends between LOI550 and sedimentary chlorophyll-a record and MAAT 303 

Madrid, and is associated with the demolition of the mountain hut in 1998, altering sediment composition 304 

as is also apparent in the 210Pb activity profile (Jiménez and others 2015) (Fig. S3; Online Appendix 5). 305 

 From 1860 to the ~1920s, the C/N ratio shows the lowest values of the entire period (11.7±2.1, 306 

mean±SD), coincident with high values of AP San Fernando and low values of MAAT Madrid, while 307 

higher values are recorded from ~1920s to the present (15.6±2.6) coincident with a warmer and drier 308 

period. C/N ratio and δ13Corg show opposite tendencies for almost all the record. C/N peaks in the mid-309 

19th century (1860-1870s) and ~1920s, associated with δ13Corg decreases, except for the last four decades 310 

(from mid-1970s to the present), a period in which the C/N ratio shows the highest persistent values and 311 

δ13Corg exhibits a decreasing trend after maximum values (Fig. 2). 312 

 The RS Lake record shows a predominance of n-alkanes with odd carbon chains. The CPI ranges 313 

from 3.6 to 4.4 and Paq values are higher than 0.28 for the whole period (Fig. 2). From 1820 to ~1920, Paq 314 

shows the lowest and very homogeneous (∼0.3) values, while ACL shows the highest values of the record. 315 

ACL values show an opposite trend than Paq values (Pearson r=-0.97, n=32) for the entire record. The 316 

main difference between ACL and Paq values is observed during the first period, between ~1850 and 317 

~1880, with a small increase (0.32) of Paq in the 1860s, agreeing with decreasing ACL values during this 318 

period (~1850-1880) and coincident with the highest persistent precipitation. CPI and Paq do not show 319 

any correspondence before ~1915, but from ~1920s to the present CPI and Paq have an opposite trend. 320 

The most important change in the n-alkane record is indicated by the maximum Paq value (∼0.48) and 321 

minimum ACL values (~28.30) recorded at ~1963, agreeing with increase in the AP San Fernando record, 322 

followed by a Paq decrease and ACL increase after ~1970s (Fig. 2). This Paq decrease is coeval with the 323 

drop of δ13Corg and increase of the C/N ratio of bulk sediment around 1978. Just after ~1988, the increase 324 



 

15 
 

in CPI and ACL values, as well as the decrease in Paq agrees with the MAAT Madrid increase and AP 325 

San Fernando decrease which reflects a severe and long drought period from the late 1980s to mid-1990 326 

(Fig. 2). 327 

In the pollen assemblages, the Cyperaceae/Poaceae (C/P) ratio shows low values (0.17±0.04) 328 

from 1820 to 1920s coincident with low values of Paq and MAAT Madrid, together with high values of 329 

AP San Fernando. Higher values (0.27±0.1) are recorded from ~1920s to the present, agreeing with 330 

MAAT Madrid increase and AP San Fernando decrease. A similar trend is observed between C/P ratio 331 

and Paq (Pearson r=0.41, n=31). In addition, the appearance of the green alga Pediastrum from ca. 1950 332 

onwards is noticeable (Fig 2). 333 

 Major changes in aquatic organism groups are observed for the last 60 years preceded by a period 334 

of minor changes. A total number of 7 morphotypes of chironomids were identified. The taxa 335 

Micropsectra radialis-type and Psectrocladius sordidellus-type are abundant throughout the sedimentary 336 

intervals (Fig. 3). Based on cluster analysis, the most significant change is observed around 1950s and 337 

consists in the new arrival of Chironomus plumosus-type, Heterotrissocladius marcidus-type and 338 

Micropsectra insignilobus-type (Fig. 3). One major significant zone boundary in the chironomid record 339 

~1940-1950 was identified based on comparison with the broken-stick model, coincident with a major 340 

change of PCA axis 1 sample scores for chironomids (which explain 51% of the variance). The 341 

chironomid-based MJAT reconstruction suggests a trend of increasing MJAT from ~1940-1950s 342 

onwards, presumably driven by increasing summer water temperature in RS from this period onwards 343 

(Fig. 3 and 4, and Fig. S2 in Online Appendix 4).  344 

Cladoceran PCA axis 1 sample scores identified the greatest change at ~1990, while a 345 

significantly shift in diatom PCA axis 1 sample scores is observed from ~1960 onwards (Fig. 4). These 346 

changes consisted in changes in species relative abundance but also in appearance and disappearance of 347 



 

16 
 

certain species. The taxon-specific cladoceran and diatom changes (not shown) started at the turn of the 348 

20th century (~1920s), but became especially striking in the last five decades (Pérez-Martínez and others 349 

2012; Jiménez and others 2018). The first PCA axis explained 38% (cladocera) and 26% (diatoms) of the 350 

variance of the biological assemblage data. Cladoceran and diatom PCA axis 1 sample scores are 351 

consistent with major changes observed for MAAT Madrid (increasing trend) and AP San Fernando 352 

(decreasing trend).  353 

Overall, major changes for geochemical proxies started after the ~1920s consistent with the rise 354 

in temperature and preceded by a period of minor changes; however the main changes in biological 355 

proxies seem to be delayed, and their response intensified after the ~1940-1950s onwards, consistent with 356 

recent intensification of warming.  357 

DISCUSSION  358 

The combination of analysis of C/N ratio, δ13Corg values and n-alkanes indices from the sediments 359 

from the RS Lake core provides an opportunity to identify the main sources of organic matter in the study 360 

area. The values of C/N ratio (9.5 to 19.7), δ13Corg (-23.63 to -20.57 ‰) and CPI (~3.6 to 4.5) indicate the 361 

deposition of a mixed source of algal-derived and terrestrial organic matter for the entire record. This is 362 

expected for this system due to the small lake size (0.42 ha) and catchment area (9.9 ha), together with 363 

its partial coverage (~15%) by alpine meadows. It is worth noting that the mixed sources that led to the 364 

observed δ13Corg values in RS Lake are also in accordance with a water-column study of this system 365 

(Pulido-Villena and others 2005), and with long-term and modern surveys of plants and lacustrine algae 366 

in other alpine lakes of the Sierra Nevada (García-Alix and others 2012; Jiménez-Moreno and others 367 

2013). 368 

Three factors suggest a predominance of wet environments in the catchment basin, in agreement 369 

with the previously discussed C/N ratio values. These include the low CPI values (<4.5), which show a 370 
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dominance of n-alkanes with odd carbon chains indicating vascular plant input (Bush and McInerney 371 

2013) and algal contributions (Han and Calvin 1969) and the Paq values, which exceed 0.28 pointing to 372 

an emergent aquatic plant predominance (Ficken and others 2000) for the entire record. In RS Lake there 373 

are no emergent aquatic plants, but this Paq value likely indicates bryophyte and others semi-aquatic 374 

vegetation, that formed the alpine meadows and surrounded the catchment (García-Alix and others 2017). 375 

However, variations in the different proxies indicate differences in the degree of wet conditions in the RS 376 

catchment basin over the study period (discussed below).  377 

Related to biological proxies, the observed low taxonomic richness in chironomids is consistent 378 

with an oligotrophic alpine lake, and is similar to conditions found in other alpine lakes (Heiri and others 379 

2011). The chironomid assemblages were heavily dominated by the two taxa:  Psectrocladius sordidellus-380 

type (~77%), which often dominates in alpine lakes (Heiri and Lotter 2010) and Micropsectra radialis 381 

(~15%), which in small lakes is restricted to cold arctic and alpine habitats (Heiri and others 2011). 382 

However, the arrival of chironomid groups and the most marked changes in chironomid community 383 

composition are observed for the last 60 years, coincident with the main observed changes in cladoceran 384 

and diatom assemblages. The similar timing in changes indicates a parallel response of the lacustrine 385 

biota to the effects related to climate change. Most of the chironomid taxa are typical for cold, nutrient 386 

poor and oxygen rich environments (Lotter and others 1998; Heiri and others 2011). However, 387 

Chironomus plumosus-type is typically found in more nutrient rich, warmer and oxygen poor 388 

environments (Lotter and others 1998; Heiri and others 2011). The appearance of this taxon agrees with 389 

higher nutrient availability and higher oxygen depletion (e.g. in the sediments) in RS Lake from ~1960 390 

onwards.  391 

The general environmental trends deduced from RS Lake organic proxies follow the long-term 392 

late Holocene changes described in the same site and in neighbor alpine wetlands (Anderson and others 393 
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2011; Jiménez-Moreno and Anderson 2012; Jiménez-Moreno and others 2013; García-Alix and others 394 

2017). The Period One, from 1820 to the 1920s, with colder and wetter conditions, registers the 395 

environmental response to the warming after the LIA conditions, and Period Two, from 1920s to the 396 

present, with drier and warmer conditions, records the response of RS Lake to the recent and ongoing 397 

climate change. The identification of these two different environmental periods agrees with an abrupt 398 

environmental change registered in other alpine peatlands in the region (Borreguil de la Virgen and 399 

Borreguil de la Caldera) that occurred at ~1920s (García-Alix and others, 2017). Furthermore, high-400 

resolution cladoceran records from 6 lakes of the Sierra Nevada region, including RS Lake (Jiménez and 401 

others 2018), indicate that the onset cladoceran changes also occurred at the turn of the 20th century and 402 

intensified in the past 50 years. All these results indicate a regional-scale response to climate change. 403 

Period One: period between 1820 and ~1920s  404 

 The paleolimnological changes observed in Period One may have been promoted by the seasonal 405 

character of the Mediterranean precipitation, mainly concentrated during winter, as well as a longer cold 406 

season in southern Iberia coeval with lower temperature than experienced during Period Two. Hence, 407 

because precipitation occurs mainly during the cold winter season, the combined effects of relatively high 408 

precipitation and decreasing air temperatures (Fig. S1; Online Appendix 2) during the Period One 409 

probably led to later seasonal lake ice-off period, colder water temperatures and larger accumulation of 410 

snow in the catchment basin, and as a consequence, the reduction of aquatic and/or terrestrial primary 411 

production, as can be observed by the gradual decrease of LOI550 and sedimentary chlorophyll-a in 412 

parallel with MAAT Madrid. However, despite the overall decrease of aquatic primary production during 413 

Period One, the C/N ratio indicates a higher contribution of algae to the bulk organic matter than in the 414 

most recent climatic period, which agrees with the homogeneous Paq values (~0.3), which indicate there 415 

is a predominance of emergent aquatic plants (Ficken and others 2000). This is probably the consequence 416 
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of a reduced catchment surface and growing season for wetland plants (lower C/N values) and a reduced 417 

water availability (lower Paq values in Period One than in Period Two). This may have been caused by 418 

delayed ice and snow melting in the catchment basin and higher snow accumulation by the precipitation 419 

increase and the presumably low temperatures. Besides, any shortening of the ice-free period in the 420 

catchment may also hinder input of terrestrial organic matter into the lake.  421 

 The highest ACL and lowest C/P ratio values of the entire record also indicate less water 422 

availability (Fig. 2). The main difference in Period One between Paq and ACL values is characterized by 423 

a small increase (0.32) of Paq in the decade of 1860, concomitant with the ACL decrease (average of 424 

28.93) from 1850 to 1880, indicating a preponderance of n-alkanes with lower chain length. This response 425 

of Paq and ACL can be read as indicating relatively wetter environment compared to the rest of Period 426 

One, likely induced by the combination of persistent high precipitation coeval with milder temperature.  427 

This scenario (cold and wet conditions) presumably fostered the maintenance of glacial and other 428 

perennial ice banks in the highest north-facing cirque of Sierra Nevada during the final periods of the 429 

Little Ice Age (LIA) (Oliva and Gómez-Ortiz 2012), which began to disappear around the ~1920s 430 

(Grunewald and Scheithauer 2010). Colder water conditions would explain the chironomid community 431 

composition in Period One (Fig. 3), with a high abundance of cold-tolerant taxa such as M. radialis-type 432 

and P. sordidellus-type, a very low diversity and the absence of warm-water chironomids. This is also 433 

supported by the dominance of the cladoceran species Chydorus sphaericus, which has been mainly 434 

associated with long ice cover period in the Sierra Nevada (Jiménez and others 2018). PCA axis 1 sample 435 

scores of cladocerans, diatoms and chironomids show minor changes during this period (Fig. 4).  436 

Period Two: period from ~1920s to the present 437 

Warmer and drier climate conditions during Period Two produced substantial changes in 438 

biological and organic geochemical proxies. The increasing values of the sedimentary chlorophyll-a and 439 
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LOI550 may indicate a progressive increase of aquatic and terrestrial primary production probably 440 

associated with longer growing seasons and higher water temperatures with the onset of the 20th century 441 

rise in air temperature (Fig. 2). An increase in aquatic primary production in remote lakes by warming 442 

has been reported (Adrian and others 2009). Warming may cause a longer ice-free season which increases 443 

light availability and mean water temperature, while also increasing water lake residence time through 444 

reduced inflows and increasing evaporation but enhanced melting of snow and weathering (increasing 445 

lake solute inputs; Preston and others 2016). These processes may enhance biological production in lakes, 446 

and a longer growing season could also increase annual biomass accumulation (Fee and others 1992) in 447 

lakes and catchment. This effect may have been enhanced by atmospheric deposition of Saharan dust at 448 

these low-productive lakes. For example, the delivery of atmospheric P-rich Saharan dust during the last 449 

50 years may partially explain the trends in the sedimentary chlorophyll-a record in RS Lake, a 450 

phenomenon that has been demonstrated in Sierra Nevada lakes (Morales-Baquero and others 2006; 451 

Jiménez and others 2018). Hence, it is likely that the combination of warmer temperatures, longer growing 452 

seasons and increased delivery of P-laden dust has resulted in notable increases in chlorophyll-a in RS 453 

Lake. These observations are consistent with the appearance of the green alga Pediastrum from ~1950 454 

onwards and the chironomid Chironomus plumosus-type from ~1960 onwards, also agreeing with an 455 

increase of primary production (Lotter and others 1998; Weckström and others 2010).  456 

The previous findings are consistent with the higher C/N values from the entire period indicating 457 

a higher contribution of vascular land plants to bulk organic matter. A longer warm season with increased 458 

temperatures probably enhanced snow and ice melting in the catchment basin and, as a consequence, the 459 

catchment surface and growing season for wetland plants. This is supported by the increasing values of 460 

Paq after ~1921, reaching 0.38 at ~1928 simultaneous to the decreasing values of ACL. The maximum Paq 461 

value (~0.48) and minimum ACL values (~28.30) are recorded by ~1963, agreeing with recorded periods 462 
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of elevated precipitation (Fig. 2). Unlike conditions with higher precipitation and colder temperatures 463 

around ~1850 and the 1880s, climate during the 1960s shows high precipitation with higher temperatures, 464 

thereby enhancing the melting season and providing more net water availability. This combination of a 465 

longer growing season and greater water availability triggered the development of larger wetland areas, 466 

as shown by higher C/P ratio values. This is in concordance with Pérez-Palazón and others (2015) 467 

indicating a decreasing extent and persistence of the ice and snow covered area over the Sierra Nevada 468 

from the 1960s onwards.  469 

Warmer conditions are likely responsible for the transition in cladocera, diatoms and chironomid 470 

assemblages from the 1940-1950s onwards, following the shifts in Paq and ACL values after the 1920s. 471 

Assemblage shifts as a consequence of the rise of temperature in the first part of the 20th century have 472 

been observed in many others remote areas (Sorvari and others 2002; Rühland and others 2015). Over 473 

the last ~60 years the most notable changes in lacustrine biota are shown by the trend of PCA axis 1 474 

scores coincident with major shift in MAAT Madrid and AP San Fernando (Fig. 4). Lacustrine biota 475 

apparently exhibited a delayed response to changes in air temperatures and precipitation, and significant 476 

responses to climate change are observed when the climatic shift intensified for the last ~60 years. 477 

Temperature is particularly important in determining shifts in chironomid assemblage 478 

composition (Heiri and others 2003; Bigler and others 2006). Cluster and PCA analyses indicate that the 479 

most relevant changes were characterized by the reduction of cold-tolerant taxa P. sordidellus-type and 480 

M. radialis-type and the increase of taxa better adapted to warmer condition such as C. plumosus-type, 481 

H. marcidus-type, M. insignilobus-type in the uppermost section of the sediment core. The taxon C. 482 

plumosus-type includes a number of species, and is generally considered to be thermophilic and indicative 483 

of relatively warm lakes (Brooks and Heiri 2013), although it can also occur in lakes in the subalpine 484 

vegetation belt at low abundances (Heiri and Lotter 2010). Hence, the new arrival and increase of C. 485 
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plumosus-type in RS Lake is probably, at least partially, related to water temperature rise and possibly 486 

promoted by the increase in in-lake nutrient availability discussed above. This represents the first 487 

occurrence of the genus Chironomus in alpine lakes of Sierra Nevada (Laville and Vílchez-Quero 1986; 488 

Real and others 2000), yet it does occur in subalpine lakes of Central Europe (Heiri and Lotter 2010). 489 

Similarly, M. insignilobus-type has its maximum abundances at lower altitudes in the Alps (Bigler and 490 

others 2006). Overall, the timing of appearance and major contribution to change of these two taxa in RS 491 

Lake suggest warmer summer water temperature, which is also reflected in a warming of chironomid-492 

inferred mean July air temperatures by about 2 ºC from ~1950s onwards. This warming in climatic 493 

conditions is consistent with changes in cladoceran and diatom community composition at RS Lake 494 

(Pérez-Martínez and others 2012; Jiménez and others 2018). The similar timing and direction of changes 495 

in chironomid community composition as observed for cladoceran and diatom assemblages, coincident 496 

with changes in other Sierra Nevada lakes (Jiménez and others 2018), corroborate the hypothesis of 497 

climate-driven shifts in the ecological status of distinct trophic levels in these alpine lakes. These changes 498 

are also in good agreement with changes in aquatic community structure in others remote ecosystems 499 

(Rühland and others 2014), coinciding with recent warming.  500 

Maximum values of C/N ratio and decreasing δ13Corg values from mid-1970s to the end of the 80s 501 

are interpreted as a major vascular land plant contribution to bulk organic matter. There was a decrease 502 

in this time in the Paq values (simultaneous with ACL values increase), and therefore apparently a decrease 503 

in the water availability in the catchment, agreeing with unprecedented high temperatures and a 504 

precipitation decrease. This suggests lesser water availability induced by greater evaporation rates, 505 

enhanced by higher frequency of intense summer droughts as a consequence of intensified warming in 506 

the Mediterranean area (Giorgi 2006). Even though this warming promoted a longer growing season and 507 

increased lake primary production (more Pediastrum, higher sedimentary chlorophyll-a and LOI550), the 508 
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C/N ratio suggests a higher vascular land plant contribution to the bulk organic matter. 509 

After ~1988, CPI and ACL values sharply increase and Paq decreases, which agrees with the 510 

extreme droughts of the early 1990s in the Mediterranean region, and is in concordance with the 511 

temperature rise and precipitation decrease. It suggest less water availability in the catchment likely 512 

affecting those meadow plant species with highest water requirements. These observations, together with 513 

the decrease of the C/N ratio values, point towards a relative decrease in terrestrial vegetation production 514 

in the catchment, probably related to the regional drought. By contrast, these conditions of increasing 515 

temperatures and less water availability in the catchment likely enhanced biological production in the 516 

lake by different processes such as longer ice-free season, higher mean water temperature and higher 517 

solute concentrations. Cladocera results strongly support this findings considering that the main shift 518 

within the sedimentary cladoceran assemblages occurred at the 90s in RS Lake (Jiménez and others 2018) 519 

and is coincident with the severe periods of drought during the late-1980s and 1990s in Southern Spain 520 

(Udelhoven and others 2009).   521 

This short-core multiproxy study provides a valuable high-resolution record of 522 

paleoenvironmental and paleolimnological change for the last ~180 years. The climate-driven changes 523 

from Period One to Period Two – shorter duration of ice-cover period, higher summer water temperature 524 

and greater water availability for catchment plant growth – are responsible for the primary changes in 525 

lake and catchment history between both distinguished periods. From ~1970 forward the steep rising in 526 

temperature and decrease in precipitation likely lead to a drier ambient in the catchment, with less water 527 

availability for plant growth and increasing drought as the summer advances. Pauli and others (2012) 528 

evidence that flora species richness has declined on the southern European summits (including Sierra 529 

Nevada) within the 2000s but increased in European boreal-temperate mountain regions. Differences are 530 

attributed to the decrease of the availability of water in the European south. In this study, we show a 531 
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tendency to increased aridity in the Sierra Nevada, starting at the turn of the 20th century and intensified 532 

from the 70s onward. Consequences for the vegetation are serious in terms of species loss considering 533 

that the flora of Sierra Nevada summits comprises a sizable percentage of endemic species in Europe, 534 

implying therefore an important loss of endemic European species. 535 

Consequences of the changes observed in climate for lakes are also pronounced. We show an 536 

increase in chlorophyll-a and changes in biota assemblages from the mid-20th century onward, mainly 537 

governed by different processes as longer growing season, increasing water temperature and reduced 538 

water level because of higher evaporation rates and reduced water inflow. All these processes, and the 539 

additional P enrichment due to Saharan dust affecting this region, may lead to further trophic state changes 540 

of the Sierra Nevada lakes. An increase in algal biomass and the appearance and disappearance of lake 541 

species signify deep changes in the ecosystem functioning as both primary producer biomass and lake 542 

trophic web are major components of the ecosystem structure. The similar timing and direction of changes 543 

in chironomid community composition as observed for cladoceran and diatom assemblages, coincident 544 

with changes in other Sierra Nevada lakes (Jiménez and others 2018), corroborate the hypothesis of 545 

climate-driven shifts in the ecological status of distinct trophic levels in these alpine lakes. Hence, it is 546 

likely the ecological thresholds for biotic communities were crossed after the intensification of 547 

temperature and precipitation changes since the last decades. 548 

If, as predicted by climate models, the rising of temperature and decrease in rainfall continue in 549 

the Sierra Nevada region and drought processes observed in this study intensify, physical and biological 550 

transformations can be expected in the catchment ecosystem of RS Lake and in other glacial valleys of 551 

Sierra Nevada, even modifying the Sierra Nevada summits’ image of glacier valleys with clear water 552 

lakes and green alpine meadows. The impact of this climate change on the summits of Sierra Nevada and 553 

its influence transcends its geographical limits because these systems provide ecosystem services as 554 
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important as being the largest source of water for the population living in the lowlands, for agricultural 555 

uses, for the generation of hydroelectric power, habitat for the species (many of them endemic), 556 

ecotourism, and the aesthetic value and source of scientific knowledge (Palomo and others 2013). The 557 

beneficiaries of water resources are primarily the inhabitants of the large cities near Sierra Nevada 558 

(Granada and Almería) and many other smaller towns since this is a very populated area. Moreover, South 559 

East of Spain is a preeminently agricultural and tourist area and the numerous rivers whose sources are 560 

in Sierra Nevada supply water for these activities. For millennia, humans have inhabited the Sierra 561 

Nevada environment and have benefited from these services, however the magnitude of human pressures, 562 

including climate change, could exceed the resilience of these ecosystems. 563 

This is the first study at short-time scale (180 years) to use multiples proxies to provide an 564 

integrated view of how this and similar alpine ecosystems are responding to climate change. Because so 565 

little is known concerning the effects of recent warming on these alpine ecosystems, further investigations 566 

on similar lakes in the region are needed to provide a more comprehensive understanding of the effect of 567 

climate change on these vulnerable ecosystems and their surroundings. 568 
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FIGURES 766 

Figure 1. Geographical location of the study site. A) Inset map: Contour map of Iberian Peninsula 767 

showing the location of the study area; Contour of Sierra Nevada National Park indicating the study area; 768 

B) map of the Sierra Nevada mountain range showing locations of Río Seco (RS) Lake (circle) and highest 769 

mountain peaks (white triangles); C) RS Lake bathymetry (digitized map of bathymetry report from 770 

Egmasa S.A.); D) photo of RS Lake (August 2012). 771 

Figure 2. Comparison of the downcore sedimentary proxies. Profiles of organic matter content (LOI550), 772 

sedimentary chlorophyll a (Chl a) (mg g-1 DW); δ13Corg (V-PDB), atomic C/N ratio, biomarkers (CPI, Paq 773 
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and ACL) and pollen data (C/P ratio and Pediastrum %) from 1820 to 2008 A.D. Two distinct climatic 774 

period are defined based on the climate data: Period One (from 1820 to ~1920s) and Period Two (from 775 

~1920s to the present). Stratigraphically constrained cluster analyses using biological and geochemical 776 

proxies is also shown. The mean annual air temperature anomaly from Madrid climate station (MAAT 777 

Madrid) and annual precipitation anomaly from San Fernando climate station (AP San Fernando) is 778 

shown since 1860 and 1840, respectively. Temperature anomalies are related to the period 1961-1990 779 

and precipitation anomalies are related to the whole period. A LOESS smoother (span = 0.2) was applied 780 

to all the variables (bold line). Applying a two-segment, piecewise linear regression to the MAAT Madrid 781 

series identified a threshold change to higher mean temperatures in the early 1970s (breakpoint= 1972 ± 782 

4.7, p < 0.0001), while a potential additional breakpoint, not considered statistically significant, is also 783 

identified in the time interval of 1912-1915. For precipitation data, no significant breakpoint was 784 

identified.  785 

Figure 3. Chironomid remains in the sediment core from RS Lake, together with a cluster analysis of 786 

assemblage data using Constrained Incremental Sum of Squares (CONISS). Light grey silhouettes show 787 

×10 exaggeration. The horizontal grey-shaded area represent the period post-1820 A.D. 788 

Figure 4. Comparison of Cladocera, diatom and chironomid PCA axis 1 sample scores for RS Lake 789 

sediment core, together with chironomid-inferred mean July air temperatures based on the chironomid 790 

records (see text for details). The error bar lines indicate the sample-specific estimated standard error of 791 

prediction. Note the inverted scales in the axis scores for Cladocera and chironomids. 792 
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Supplementary information 

Appendix 1. Basic geographical and limnological characteristics of the study lake 

 RS Lake 
Latitude 37º03’07.63’’N 
Longitude 3º20’43.92’’W 
Altitude (m asl) 3020 
Lake area (ha)a 0.42 
Catchment area (ha)a 9.9 
Maximum depth (m) 2.9 
Maximum volume (m3)b 4772 
Catchment area/surface areaa 21.5 
pH 6.0-7.6 (6.9) 
Conductivity (µS cm-1) 10-77 (24) 
Alkalinity (meq L-1) 0.05-0.16 (0.11) 
TP (µg L-1) 7-27 (16) 
TN (µg L-1) 99-732 (403) 
Chl a (µg L-1) 0.3-1.1 (0.6) 
Phytoplankton biomass (µgC L-1) 20 
DOC (mg L-1) 0.7-2.7 (1.8) 
Calcium (mg L-1)  0.5-2.1 (1.2) 
a  Data from Morales-Baquero and others (1999). 
b Data from Egmasa S.A. 

 

Supplementary Table S1. Data are derived from a monitoring study over 10 years. Range and 

mean values (in brackets). Abbreviations: TP, Total phosphorus; TN, Total nitrogen; Chl a, 

Chlorophyll- a; DOC, Dissolved Organic Carbon. 

 

Appendix 2. Instrumental climate data for Sierra Nevada summits 

 

 Long-term temperature and precipitation records do not exist for Sierra Nevada summits. One of 

the longest temperature series in the Sierra Nevada is provided by Cerecillo Station (Láujar, Almería), 

which is located at 1800 masl and provides data since 1960, although there are numerous gaps. A strong 

correlation was found between the Cerecillo temperature series and short series of homogenized mean 

annual temperature records dating back to 1960 and available from meteorological stations (Armilla and 
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Lanjarón, http://www.aemet.es) located at lower altitudes and less than 20 km from the Sierra Nevada 

summits (Armilla r= 0.67, p < 0.001, n= 35; Lanjarón r= 0.78, p < 0.001, n= 35). A record of precipitation 

(dating back to 1940) from Armilla is also available. A comparison between these nearby short series of 

temperature data with several longer homogenized air temperature records from Central and South Spain 

(Staudt and others 2007), and precipitation records of five long series from southern Spain (Esteban-Parra 

and others, 1998), indicated that the strongest correlations were with the Madrid climate station (AEMET 

3195 since 1864, 664 masl) (Armilla r = 0.72, p < 0.001, n = 51; and Lanjarón r = 0.78, p < 0.001, n = 

54) for temperature, and with San Fernando series (Naval Base of the Spanish Army, Cádiz, since 1839,  

28 masl; r = 0.62, p < 0.001, n= 65) for precipitation.  

 

Supplementary Figure S1. The mean annual air temperature anomaly from Madrid climate station 

(MAAT Madrid) and annual precipitation anomaly from San Fernando climate station (AP San Fernando) 

since 1860 and 1840, respectively. Temperature anomalies are related to the period 1961-1990 and 

precipitation anomalies are related to the whole period. A LOESS smoother (span = 0.2) was applied to 

all the variables to improve the clarity of the figure and highlight trends. 
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Appendix 3. Interpretation of selected sedimentary proxies in RS Lake 

 

Among the proxies used in this study, subfossil assemblages of biota communities (chironomids, 

cladocera and diatoms) are frequently used as indicators of climate-related changes in lakes since aquatic 

organisms inhabiting lakes respond to climate changes by altering their community structures (Smol 

2008). Chironomid assemblage changes are reliable temperature indicators because many chironomid 

taxa are very sensitive to water temperature changes (Brooks 2006). Chironomids are also used as 

indicators of lake nutrient concentrations and oxygen availability in lakes (Lotter and others 1998; Heiri 

and others 2011). Cladocera inhabit a wide range of habitats in mountain lakes and its taxa are sensitive 

indicators of lake water temperatures (Korhola 1999; Fischer and others 2011) or growth period duration 

(Catalan and others 2009; Jiménez and others 2018), among others. Diatom is a usually dominant algal 

group in lakes, occurring across a broad range of limnological conditions. For example, diatom 

assemblages respond to changes in water column stability (Sorvari and others 2002), to changes 

associated with decreases in ice cover duration (Douglas and Smol 1999; Lotter and others 1999) or to 

the habitat availability as many diatom taxa show habitat specificity (Rühland and others 2015). The biota 

assemblages analyzed may reinforce each other if provide evidences of climate-related changes in the 

same direction and timing. 

Sedimentary chlorophyll-a concentration is used to track past trends in aquatic and terrestrial 

primary production (Leavitt and Hodgson 2001; Hundey and others 2014; Michelutti and Smol 2016). In 

mountain lakes, warming may cause a longer ice-free season which increases light availability and mean 

water temperature, while also increasing water lake residence time through reduced inflows and 

increasing evaporation but enhanced melting of snow and weathering (increasing lake solute inputs; 

Preston and others 2016; Sommaruga-Wögrath and others 1997). These processes may enhance biological 
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production in lakes, and a longer growing season could also increase annual biomass accumulation (Fee 

and others 1992) in lakes and catchment. LOI550 values were used as an estimate of organic matter content 

for each sediment interval (Heiri and others 2001). LOI550 has been widely used as indicative of primary 

production (Dean 1974; Battarbee and others 2001; Smol 2008), but can also be influenced by changes 

in catchment erosion (Battarbee and others 2002). Hence, sedimentary chlorophyll-a and LOI550 values 

have been used to infer changes in both aquatic and terrestrial primary production in the present study.  

The atomic C/N ratio is used as an indicator of organic matter source in lacustrine sediments 

(Meyers and Ishiwatari 1993; Kaushal and Binford 1999). Organic matter from terrestrial vascular land 

plants (cellulose-rich and protein-poor) is usually characterized by C/N values higher than 20, while algal-

derived OM (cellulose-poor and protein-rich) typically features values between 4-10. Intermediate values 

(C/N rates between 10 and 20) are typical for sediments influenced by both sources (Meyers and Teranes 

2001). 

The δ13Corg values of sediment cores indicate past changes in productivity levels in lacustrine 

environments (Schelske and Hodell 1991, 1995), with higher δ13C of organic matter resulting from 

increased aquatic productivity (Hodell and Schelske 1998). Lacustrine algae preferentially take up the 

light carbon isotope (12C) from the water's dissolved inorganic carbon (DIC) pool during photosynthesis. 

However, with enhanced primary production, this discrimination leads to an increase in the heavier 

isotope in the water DIC pools. Consequently, the algae that use 13C are enriched in the heavier isotope 

(O’Leary 1988; Wolfe and others 2001) and show, therefore, higher values of δ13C. Nevertheless, the 

carbon isotopic composition of algal-derived organic matter is similar from that of organic matter from 

C3 vascular plants (Meyers and Teranes 2001), where heavier isotopic compositions are usually related 

to a decrease in the water-use efficiency under dry conditions (Farquhar and others 1982). Hence, the 

additional use of the atomic C/N ratio to support the interpretation of δ13C values allows better 
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discrimination of organic matter sources in systems where both algal and vascular plants organic matter 

are present (Meyers 1994). Thus, C/N ratio adds new information to the previous proxies, chlorophyll-a 

and LOI550, and also helps to interpret the organic carbon isotopic data. 

The n-alkanes indices permit to investigate the water availability for the catchment vegetation 

and, combined with the above proxies, to comprehend the causes of the observed changes in primary 

production. The main source of the n-alkanes in the sediment are the epicuticular leaf waxes of plants that 

protect the water balance of leaves, reduce the mechanical damage to leaf cells, and prevent fungal and 

insect attack (Eglinton and Hamilton 1967; Post-Beittenmiller 1996). n-alkane carbon chains from leaf 

waxes usually range from 21 to 37 C atoms, with a predominance of odd carbon numbers. Long chain n-

alkanes (higher than C27) are usually found in vascular terrestrial plants (Eglinton and Hamilton 1967). 

Aquatic and semiaquatic plants, such as macrophytes, usually maximise the C21, C23, and C25n-alkanes 

(Cranwell 1984; Ficken and others 2000). Shorter n-alkanes, such as C15, C17, and C19 as well as low 

odd/even carbon ratios are usually related to autochthonous aquatic organic matter, originating from 

organisms such as algae and bacteria (Cranwell 1982; 1984). Several n-alkane indices have been 

calculated to summarize their distributions. The Average Chain Length (ACL) is a measurement of the 

weighted average of the carbon chain lengths. The portion aquatic (Paq) is the ratio between typical aquatic 

plant n-alkanes (C23 and C25) and terrestrial plant waxes (C29 and C31) (Ficken and others 2000). For 

modern plants, terrestrial plants < Paq 0.23 > emergent aquatic plants < Paq 0.48 > floating/submerged 

plants (Ficken and others 2000). Although other n-alkane indices can also provide information on the 

aquatic or terrestrial source of organic matter (e.g. the ratio of short odd n-alkanes vs. long odd n-alkanes; 

C17-25/C29-35), the present study focuses on Paq to simplify the discussion. However, Paq shows a very 

similar trend as the C17-25/C29-35 ratio in the Río Seco n-alkane record (Pearson r= -0.96; n=32). 

The Carbon Preference Index (CPI) represents the relative abundance of odd vs. even carbon 
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chain lengths (see Bush and McInerney 2013 for a review). Values lower than 2 suggest an even n-alkane 

preference (indicating diagenetic alteration or algal/bacterial influence), and values higher than 2 point 

towards an odd preference (indicating plant sources, and thermal immaturity). n-alkane distributions 

usually vary depending on the environmental conditions, such as water availability, precipitation or 

temperature (Ficken and others 2000; Schefuß and others 2003). However, since n-alkanes can be also 

affected by regional conditions, we will follow a regional interpretation for n-alkanes based on a n-alkane 

plant survey in high elevation wetlands in the Sierra Nevada (García-Alix and others 2017). This pointed 

out that there is a predominance of the short carbon chains distribution in and near water pools, and a 

predominance of longer n-alkane chains furthest away from such pools. Therefore, lower ACL values are 

usually recorded in areas closer to the water pools, where the Paq values are usually high, pointing towards 

higher water availability. The same data showed that plants in environments with high water availability 

usually recorded low CPI values (6.5±2.5), while plants from fully terrestrial environments in Sierra 

Nevada, with lower water availability, usually recorded higher CPI values (higher than 13.6±8.6). 

The Cyperaceae/Poaceae (C/P) pollen ratio is used in this study as a sedimentary proxy of changes 

in climatic conditions (Turney and others 2004) and so reinforce the information obtained from the above 

proxies. High C/P ratio usually indicates wetter conditions, whilst low C/P ratios represent drier 

environments (Jiménez-Moreno and others 2008; Ramos-Román and others 2016).   

 

Appendix 4. Comparison of RS chironomid assemblages to mountain lakes in the Swiss Alps 

relative to summer temperature  

 

 As a supporting analysis, the modern distribution of chironomid assemblages in lakes in the Swiss 

Alps (Heiri and Lotter 2010) was used to assess the trajectory RS chironomid assemblages relative to 
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summer temperature. For this purpose fossil samples were plotted passively in a Detrended Canonical 

Correspondence Analysis (DCCA) with mean July air temperature as the sole constraining variable. 

Variations of site scores of RS assemblages towards high or low DCCA axis values 1 represent changes 

in assemblage composition towards assemblages typical for cold or warm mountain lakes in the Swiss 

Alps, respectively. All fossil RS chironomid samples had a close analogue in the chironomid assemblage 

dataset from the Swiss Alps if assessed following Birks and others (2010), with both chi-square and 

squared chord distance metrics to the closest analogue lower than the 1st percentile of all distances 

calculated between chironomid samples in the Alpine dataset. Chironomid assemblage percentage data 

were square root transformed before calculation of DCCA. Results indicated that before ~1940-1950 

DCCA axis 1 values represent assemblages presently found in small Swiss lakes in the alpine zone with 

temperatures mostly below 10°C. Between ~1940-1970 DCCA axis 1 scores change to values more 

typical for Swiss lakes in the upper subalpine zone with July air temperatures in the 10-12°C range. 

 

 

Supplementary Figure S2. Axis 1 scores of the RS chironomid samples added passively to a Detrended 

Canonical Correspondence Analysis (DCCA) of chironomid surface sediment samples from 117 sites in 

the Alps with July air temperature as only constraining variable. For comparison the distribution of DCCA 
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axis 1 scores of the surface sediment samples for three groups of lakes with mean July air temperatures 

in the range of 8-10, 10-12 and 12-14°C are shown, which represents the transition of chironomid 

assemblages in lakes across the treeline elevation. 

 

Appendix 5. Chronology of RS Lake 

 

 The 210Pb activity profile shows a typical exponential decline towards the deepest part of the core. 

Based on the sedimentation rate, the 210Pb dated sediment core indicates 187 years of accumulation and 

each interval of the sediment core represents approximately 5 and 7 years of accumulation from 0 to 6 

cm and from 6 to 15.5 cm depth, respectively. A significant peak in 137Cs activity profile is observed 

between 4 and 4.5 cm of sediment samples, recording the 1963 fallout maximum from atmospheric 

nuclear weapons testing.  

 

Supplementary Figure S3. Radiometric chronology showing 210Pb (black circle) and 137Cs (grey circle) 

activity (Bq Kg-1 dried sediment). On the right, A. D. year for RS Lake sediment core; continuous lines 

represent the dating errors (1 SD in sediment age) associated with each dated interval (Jiménez and others, 

2018). 
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