
Vol. 28 no. 24 2012, pages 3332–3333
BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/bts633

Genetics and population analysis Advance Access publication October 24, 2012

FFPopSim: an efficient forward simulation package for the

evolution of large populations
Fabio Zanini and Richard A. Neher*
Evolutionary Dynamics and Biophysics Group, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany

Associate Editor: Jeffrey Barrett

ABSTRACT

Motivation: The analysis of the evolutionary dynamics of a population

with many polymorphic loci is challenging, as a large number of

possible genotypes needs to be tracked. In the absence of analytical

solutions, forward computer simulations are an important tool in

multi-locus population genetics. The run time of standard algorithms

to simulate sexual populations increases as 8L with the number of

loci L, or with the square of the population size N.

Results: We have developed algorithms to simulate large populations

with arbitrary genetic maps, including multiple crossovers, with a run

time that scales as 3L. If the number of crossovers is restricted to at

most one, the run time is reduced to L2L. The algorithm is based on an

analogue of the Fast Fourier Transform (FFT) and allows for arbitrary

fitness functions (i.e. any epistasis). In addition, we include a stream-

lined individual-based framework. The library is implemented as a col-

lection of Cþþ classes and a Python interface.

Availability: http://code.google.com/p/ffpopsim/.

Contact: richard.neher@tuebingen.mpg.de

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on July 20, 2012; revised on September 26, 2012; accepted

on October 17, 2012

1 INTRODUCTION

Forward simulations of population genetics track either the

number of individuals carrying each possible genotype or the

genotype of every individual in the population, as illustrated in

Figure 1. The latter strategy has been implemented in a number

of flexible simulation packages (Guillaume and Rougemont,

2006; Peng and Kimmel, 2005; Spencer and Coop, 2004).

In large populations with a moderate number of loci L, storing

the abundance of all possible 2L genotypes is often faster.

Simulating such large populations with a small number of loci

is for example essential when studying the evolution of drug

resistance in viral or bacterial pathogens.
Individual-based population genetics simulations are straight-

forward and usually use a discrete generation scheme in which

processes such as mutation, selection and migration are applied

at every generation to every individual. Individuals are then

paired up via a mating scheme and recombinant offspring are

produced. Existing toolboxes often emphasize biological realism

and allow the user to specify complex life cycles. Our emphasis

here is on efficient simulation of large populations. The class

haploid_lowd of FFPopSim tracks the distribution P(g)

of gametes across all possible 2L genotypes, denoted by
g ¼ ðs1, . . . , sLÞ where si¼ 0/1 (see Fig. 1). This genotype distri-
bution changes owing to mutation, selection and recombination.

In our implementation, selection acts on haploid gametes, pre-
cluding dominance effects. Recombination is a computationally
expensive operation, as it involves pairs of parents (up to 4L of

them) that can combine their genome in many different ways
(2L for arbitrary genetic maps, 2L when allowing single cross-
overs only). As a consequence, a naive implementation requires
Oð8LÞ or OðL4LÞ operations to calculate the distribution of re-

combinant genotypes for arbitrary or single crossover recombin-
ation, respectively. It is intuitive that the complexity of this
algorithm can be reduced: given a recombination pattern, only

a fraction of the genome is passed on and all genotypes that
agree on that fraction contribute identically.
We show in the Supplementary Material that the distribution

of recombinants can be calculated in Oð3LÞ steps for arbitrary
crossover patterns and in OðL2LÞ steps if only a single crossover
is allowed. This reduces the complexity of evolving sexual popu-

lations to that of asexual populations. The crucial ingredient for
the increased performance is a Fast Fourier Transform on geno-
type spaces explained in detail in the Supplementary Material.
The genotype space is an L dimensional hypercube on which

Fourier and Taylor expansions can be defined.
After selection, mutation and recombination, the population

distribution P(g) contains the expected number of individuals of

genotype g in the next generation. For stochastic population gen-
etics, we still need to resample the population in a way thatmimics
the randomness of reproduction. This is achieved by resampling

individuals according to a Poisson distribution with mean N P(g)
for each genotype. The resulting population has a size of approxi-
mately N�Oð

ffiffiffiffi

N
p

Þ. The fluctuations in the population size are
small if N is large and do not propagate since the population is

resampled de novo each generation. The user can set the expected
population size before resampling and generate any desired
time-dependent population size. For a general discussion of

multi-locus evolution see e.g. (Neher and Shraiman, 2011).
Figure 2 shows how the time required to simulate one gener-

ation increases with the number of loci, confirming the expected

scaling behaviour of the computational complexity.

2 USAGE

FFPopSim is implemented in Cþþ with a Python2 wrapper.
From Python, FFPopSim can be imported as a module.
We provide examples that reproduce basic population genetics*To whom correspondence should be addressed.

� The Author 2012. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which

permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/28/24/3332/248808 by W
W

Z Bibliothek (O
effentliche Bibliothek der U

niversitÃ¤t Basel) user on 18 Septem
ber 2019

http://code.google.com/p/ffpopsim/
http://bioinformatics.oxfordjournals.org/cgi/content/full/bts633/DC1
http://bioinformatics.oxfordjournals.org/cgi/content/full/bts633/DC1
http://bioinformatics.oxfordjournals.org/cgi/content/full/bts633/DC1

results, such as a mutation–selection–drift equilibrium or the
decay of linkage disequilibrium. The Cþþ library can be
linked against custom code and modified for specific purposes.

The class itself is called haploid_lowd, as it simulates a
haploid population with a relatively small number of loci.
As an example, we discuss here the problem of fitness valley

crossing, which has recently received attention in the population

genetics literature (Lynch, 2010; Weissman et al., 2010) and
requires forward simulation of large populations while tracking
the state of several loci. Consider a fitness landscape where the

wild-type genotype has (Malthusian) fitness s1, the quadruple
mutant has fitness s1þ s2, and all intermediate genotypes have
the same slightly deleterious fitness 0 (�s1 relative to wild type).

The time required for crossing the valley can be computed by the
following routine:

import FFPopSim
L ¼ 4 # number of loci
N ¼ 1e10 # population size

create population and set rates
p ¼ FFPopSim.haploid_lowd(L)
p.set_recombination_rates(0.001)
p.set_mutation_rates(1e-5)

start with wildtype: 0b0000 ¼ 0
p.set_genotypes ([0b0000], [N])
set positive relative fitness for wildtype
and quadruple mutant: 0b1111 ¼ 15
p.set_fitness_function ([0b0000, 0b1111],

[0.01, 0.02])
evolve until the quadruple mutant spreads
whilep.get_genotype_frequency(0b1111)50.5:
p.evolve(100)

print p.generation

The run time and memory requirements of 3L or L2L still
preclude the simulation of more than L¼ 20 loci. For this reason,

we also include the classhaploid_highd to perform individual-
based simulations with the same interface. haploid_highd

can simulate an arbitrarily large number of loci and has overall

run time andmemory requirementsOðNLÞ in the worst case scen-
ario (see Fig. 2B). Identical genotypes are grouped into clones to
speed up the simulation whenever diversification via mutation or
recombination is rare (Lð�þ �Þ � 1, where� and � aremutation

and recombination rates, respectively). The population size can be
adjusted at any time by changing the carrying capacity. Overall,
haploid_highd can simulate one megabase genomes in a

population of 105 individuals in about one second per generation
on a present day desktop computer. We have written a specific
subclass hivpopulation for large viral populations that is also

included in FFPopSim. As of now, the library does not support
dominance effects; that would require a fitness function that de-
pends on pairs of haploid genomes. Such an extension to diploid
populations is planned.

ACKNOWLEDGEMENT

We would like to thank Boris Shraiman for many stimulating
discussions and pointing us toward the FFT algorithm.

Funding: This work is supported by the ERC though Stg-260686.

Conflict of Interest: none declared

REFERENCES

Guillaume,F. and Rougemont,J. (2006) Nemo: an evolutionary and population

genetics programming framework. Bioinformatics, 22, 2556–2557.

Lynch,M. (2010) Scaling expectations for the time to establishment of complex

adaptations. Proc. Natl Acad. Sci. USA, 107, 16577–16582.

Neher,R. and Shraiman,B. (2011) Statistical genetics and evolution of quantitative

traits. Rev. Mod. Phys., 83, 1283–1300.

Peng,B. and Kimmel,M. (2005) simupop: a forward-time population genetics simu-

lation environment. Bioinformatics, 21, 3686–3687.

Spencer,C.C.A. and Coop,G. (2004) Selsim: a program to simulate population

genetic data with natural selection and recombination. Bioinformatics, 20,

3673–3675.

Weissman,D. et al. (2010) The rate of fitness-valley crossing in sexual populations.

Genetics, 186, 1389–1410.

BA

Fig. 2. Performance of FFPopSim. (A) The time required to simulate a

single generation as a function of the number of loci, using the class

haploid_lowd. The expected scalings [8L for naive implementation,

3L for general recombination and L2L for single crossovers (XO)] are

indicated by solid lines. (B) The run times of the individual-based simu-

lations as a function of the population size for different genome sizes

L using haploid_highd. Solid lines correspond to crossover and

mutations rates �¼�¼ 10�8 typical of the human genome, dashed

lines to outcrossing with rate r¼ 0.01, and �¼ 10�5, �¼ 10�3 typical

for viral evolution. Run times were determined on a 2.93GHz Intel CPU

Fig. 1. Strategies for forward simulations: The left panel illustrates a

scheme that tracks the abundance of each possible genotype, encoded

as a bit string. This is feasible up to L� 20 and is implemented in

FFPopSim as the class haploid_lowd. Recombination requires con-

sidering all possible pairs of parental genotypes and the different ways

their genomes can be combined, which is computationally expensive. The

right panel illustrates individual-based simulations that track existing

genotypes only. FFPopSim provides individual-based simulations

through the class haploid_highd

3333

FFPopSim

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/28/24/3332/248808 by W
W

Z Bibliothek (O
effentliche Bibliothek der U

niversitÃ¤t Basel) user on 18 Septem
ber 2019

