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Abstract

Pervasive natural selection can strongly influence observed patterns of genetic variation, but these effects remain poorly
understood when multiple selected variants segregate in nearby regions of the genome. Classical population genetics fails
to account for interference between linked mutations, which grows increasingly severe as the density of selected
polymorphisms increases. Here, we describe a simple limit that emerges when interference is common, in which the fitness
effects of individual mutations play a relatively minor role. Instead, similar to models of quantitative genetics, molecular
evolution is determined by the variance in fitness within the population, defined over an effectively asexual segment of the
genome (a ‘‘linkage block’’). We exploit this insensitivity in a new ‘‘coarse-grained’’ coalescent framework, which
approximates the effects of many weakly selected mutations with a smaller number of strongly selected mutations that
create the same variance in fitness. This approximation generates accurate and efficient predictions for silent site variability
when interference is common. However, these results suggest that there is reduced power to resolve individual selection
pressures when interference is sufficiently widespread, since a broad range of parameters possess nearly identical patterns
of silent site variability.

Citation: Good BH, Walczak AM, Neher RA, Desai MM (2014) Genetic Diversity in the Interference Selection Limit. PLoS Genet 10(3): e1004222. doi:10.1371/
journal.pgen.1004222

Editor: Simon Gravel, McGill University, Canada

Received August 22, 2013; Accepted January 22, 2014; Published March 27, 2014

Copyright: � 2014 Good et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported in part by a National Science Foundation Graduate Research Fellowship (BHG), the James S. McDonnell Foundation, the Alfred
P. Sloan Foundation, the Harvard Milton Fund, grant PHY 1313638 from the NSF, and grant GM104239 from the NIH (MMD), and the European Research Council
Grant no. 306312 (AMW) The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: mdesai@oeb.harvard.edu

Introduction

Natural selection maintains existing function and drives

adaptation, altering patterns of diversity at the genetic level.

Evidence from microbial evolution experiments [1,2] and natural

populations of nematodes [3], fruit flies [4,5], and humans [6,7]

suggests that selection is common and that it can impact diversity

on genome-wide scales. Understanding these patterns is crucial,

not only for studying selection itself, but also for inference of

confounded factors such as demography or population structure.

However, existing theory struggles to predict genetic diversity

when many sites experience selection at the same time, which

limits our ability to interpret variation in DNA sequence data.

Selection on individual nucleotides can be modeled very

precisely, provided that the sites evolve in isolation. But as soon

as they are linked together on a chromosome, selection creates

correlations between nucleotides that are difficult to disentangle

from each other. This gives rise to a complicated many-body

problem, where even putatively neutral sites feel the effects of

selection on nearby regions. Many authors neglect these correla-

tions, or assume that they are equivalent to a reduction in the

effective population size, so that individual sites evolve indepen-

dently. This assumption underlies several popular methods for

inferring selective pressures and demographic history directly from

genetic diversity data [8–12]. Yet there is also extensive literature

(recently reviewed in Ref. [13]) which shows how the independent

sites assumption breaks down when the chromosome is densely

populated with selected sites. When this occurs, the fitness effects

and demographic changes inferred by these earlier methods

become increasingly inaccurate [14,15].

Linkage plays a more prominent role in models of background
selection [16] and genetic hitchhiking [17], which explicitly model

how strong negative and strong positive selection distort patterns

of diversity at linked sites. Although initially formulated for a two-

site chromosome, both can be extended to larger genomes as long

as the selected sites are sufficiently rare that they can still be

treated independently. Simple analytical formulae can be derived

in this limit, motivating extensive efforts to distinguish signatures of

background selection and hitchhiking from sequence variability in

natural populations (see Ref. [18] for a recent review). However,

this data has uncovered many instances where selection is neither

as rare nor as strong as these simple models require [7,19–24].

Instead, substantial numbers of selected polymorphisms segregate

in the population at the same time, and these mutations interfere

with each other as they travel towards fixation or loss. The genetic

diversity in this weak Hill-Robertson interference [25] or

interference selection [26] regime is poorly understood, especially

in comparison to background selection or genetic hitchhiking. The

qualitative behavior has been extensively studied in simulation

[22,25–29], and this has led to a complex picture in which both

genetic drift and chance associations between linked mutations

(genetic draft) combine to generate large fluctuations in the

frequencies of selected alleles, and the occasional fixation of

deleterious mutations due to Muller’s ratchet. In principle, these

forward simulations can also be used for inference or model

comparison using approximate likelihood methods [7,30], but in
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practice, performance concerns severely limit both the size of the

parameter space and the properties of the data that can be

analyzed in this way.

Here, we will show that in spite of the complexity observed in

earlier studies, simple behaviors do emerge when interference is

sufficiently common. When fitness differences are composed of

many individual mutations, we obtain a type of central limit

theorem, in which diversity at putatively neutral sites is determined

primarily by the variance in fitness within the population over a

local, effectively asexual segment of the genome. This limit is

analogous to the situation in quantitative genetics, where the

evolution of any trait depends only on the genetic variance for the

trait, rather than the details of the dynamics of individual loci. We

exploit this simplification to establish a coalescent framework for

generating predictions under interference selection, which is based

on a coarse-grained, effective selection strength and effective

mutation rate. This leads to accurate and efficient predictions for a

regime that is often implicated in empirical data, but has so far

been difficult to model more rigorously. Our method also has

important qualitative implications for the interpretation of

sequence data in the interference selection regime, which we

address in the Discussion.

Results

The model
We investigate the effects of widespread selection in the context

of a simple and well-studied model of molecular evolution.

Specifically, we consider a population of N haploid individuals,

each of which contains a single linear chromosome that

accumulates mutations at a total rate U and undergoes crossover

recombination at a total rate R. We assume that the genome is

sufficiently large, and epistasis is sufficiently weak, that the fitness

contribution from each mutation is drawn from some distribution

of fitness effects r(s) which remains constant over the relevant time

interval. For the sake of concreteness and connection with

previous literature, we will focus on the special case where all

mutations confer the same deleterious fitness effect {s, which
approximates a potentially common scenario where a well-

adapted population is subject to purifying selection at a large

number of sites. However, our results will hold for more general

distributions of fitness effects, both beneficial and deleterious,

provided that individual mutations are sufficiently weak or the

overall mutation rate is sufficiently large. Since the effects of linked

selection are most pronounced in regions of low recombination,

we devote the bulk of our analysis to the asexual limit where R<0.

Later, we will show that recombining genomes can be treated as

an extension of this limit by means of an appropriately defined

linkage block, within which recombination can be neglected.

These assumptions define a simple ‘‘null-model’’ of sequence

evolution with a straightforward computational implementation

(see Methods). In the present work, we focus on the genetic

diversity at an unconstrained locus (e.g., a silent or synonymous

site) embedded near the center of the chromosome. We focus in

particular on the site frequency spectrum, Pn(i), which counts the

number of mutations at this locus that are shared by i individuals
in a sample of size n. The pairwise diversity p is equal

to P2(1) in this notation. We note that on average,

p~
n

2

� �{1P
i i(n{i)Pn(i), so we can summarize the average

site frequency spectrum using a combination of p and the relative

values, Qn(i)~Pn(i)=Pn(1). In this parameterization, p measures

of the overall levels of diversity, while Qn(i) measures the shape of

the site frequency spectrum. Expectations of other commonly used

diversity statistics (e.g., Tajima’s D [31] or the average minor allele

frequency) can be directly computed from Qn(i).

Background: Existing predictions break down in the
interference selection regime
Although our model is simple, the expected patterns of silent-

site variability remain poorly characterized for many biologically

relevant parameters. Previous theoretical work has focused on

combinations of N, U, s, and R that result in relatively few selected

polymorphisms per unit map length. In the limit that Ns??,

these populations converge to the background selection limit,
where interference between deleterious mutations can be neglect-

ed and each selected site evolves independently. Traditionally, the

term ‘‘background selection’’ is used to refer both to the general

effects of purifying selection on linked neutral diversity as well as to

the limiting behavior that emerges when Ns??. Here we use the

term only in the latter sense, and we have opted for the slightly

more precise label ‘‘background selection limit’’ in order to

minimize confusion. This limit arises for arbitrary levels of

recombination, but is easiest to visualize in the asexual case

(R<0). The expected fraction of individuals with k deleterious

mutations (‘‘fitness class k’’) follows a Poisson distribution,

f (k)~
lk

k!
e{l, ð1Þ

where l~U=s parameterizes the relative strength of mutation and

selection [32]. Patterns of silent site variability are equivalent to a

demographically structured neutral population, where the fitness

classes are treated as fixed subpopulations and mutation events are

recast as migration between them (see Figure 1). This is a special

case of the structured coalescent [33], which traces the ancestry of

a sample as it moves through the population fitness distribution.

The structured coalescent can be used to derive approximate

analytical expressions for several simple diversity statistics [16,34–

38]. Previous work has shown that to lowest order in (Ns){1, silent

Author Summary

A central goal of evolutionary genetics is to understand
how natural selection influences DNA sequence variability.
Yet while empirical studies have uncovered significant
evidence for selection in many natural populations, a
rigorous characterization of these selection pressures has
so far been difficult to achieve. The problem is that when
selection acts on linked loci, it introduces correlations
along the genome that are difficult to disentangle. These
‘‘interference’’ effects have been extensively studied in
simulation, but theory still struggles to account for
interference in predicted patterns of sequence variability,
which limits the quantitative conclusions that can be
drawn from modern sequence data. Here, we show that in
spite of this complexity, simple behavior emerges in the
limit that interference is common. Patterns of molecular
evolution depend on the variance in fitness within the
population, and are only weakly influenced by the fitness
effects of individual mutations. We leverage this ‘‘emer-
gent simplicity’’ to establish a new framework for
predicting genetic diversity in these populations. Our
results have important practical implications for the
interpretation of natural sequence variability, particularly
in regions of low recombination, and suggest an inherent
‘‘resolution limit’’ for the quantitative inference of selection
pressures from sequence polymorphism data.

Genetic Diversity and Interference Selection
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site diversity resembles an unstructured neutral population with an

effective population size Ne:Ne{U=s. The overall level of

diversity is therefore reduced from its neutral expectation (p0) by
the fraction

p=p0~e{U=szO Nsð Þ{1
, ð2Þ

while the shape of the site frequency spectrum is unchanged.

Higher-order corrections, which become increasingly relevant for

larger sample sizes [39], can be efficiently calculated from

backward-in-time simulations of the structured coalescent (Meth-

ods) [40–42]. For example, in Text S1 we show that the predicted

reduction in diversity is well-approximated by

p=p0&e{U=sz

2
U

s

� �
e{U=s

Ns

ð1
0

z log
1

1{z

� �
e
U
s z

2
dz: ð3Þ

provided that Ns is not too small.

In practice, structured coalescent methods provide reasonable

accuracy for a range of parameters that we collectively term the

background selection regime. Figure 1 shows that this constitutes

a ‘‘strong-selection’’ region of parameter space (Nes&1), although
the precise meaning of strong is somewhat different from

colloquial usage. In particular, this depends on more than just

the magnitude of Ns alone, since mutations can have selective

effects that are considered strong in a single-site setting (Ns,100)

but nevertheless have Nes%1 if the mutation rate is sufficiently

high. Nor is this simply a statement about the magnitude of U/s.
Somewhat confusingly, background selection is sometimes regard-

ed as a ‘‘weak selection’’ effect, since p=p0 is significantly reduced

only when s *; U . We will avoid such terminology here. Instead,

we find it more productive to think of the background selection

regime as a ‘‘rare interference’’ limit, since the distribution of

fitnesses within the population coincides with the independent-sites

prediction in Eq. (1).

In the present work, we focus on the opposite limit, the so-called

interference selection regime, where mutation rates are sufficient-

ly high or fitness effects sufficiently weak that many selected

polymorphisms segregate in the population at once. In this regime,

the frequencies of nearby deleterious mutations become correlat-

ed, and the distribution of fitnesses within the population fluctuates

and eventually diverges from the independent-sites prediction in

Eq. (1). As a result, structured coalescent methods based on this

distribution start to break down (Figure S1) [36,41,43]. In order to

predict silent site diversity in the interference selection regime, we

must therefore devise an alternate method.

Patterns of diversity ‘‘collapse’’ onto a single parameter
family
In the interference selection regime, the twin forces of genetic

drift and genetic draft generate massive deviations from the

predictions described above. Yet despite the complexity of these

forces, the patterns of silent-site variability display a number of

striking regularities in this regime, which we now demonstrate

through simulations of our evolutionary model (see Methods). This

approach is similar to earlier simulation studies [22,25–29], but we

focus on identifying patterns that can be exploited for prediction,

rather than simply describing the behavior observed in the

Figure 1. Genealogical structure in the background selection limit when Nse{U=s??. (A) In ‘‘fitness space,’’ the genealogy is perfectly star-
like, with the most recent common ancestor (MRCA) rooted in the mutation-free class [78]. Deleterious mutations (red circles) occur every time an
ancestor changes fitness classes. (B) In the standard (time-based) representation, deleterious mutations occur in a short delay phase of duration
TD*O 1

s

� �
, when ancestral lineages migrate through the fitness distribution. After this point, all ancestral lineages are mutation free, and coalescence

proceeds according to the neutral expectation with an effective population size Ne~Ne{U=s. Since TD%Ne , silent mutations (blue circles) will
primarily occur in the coalescence phase.
doi:10.1371/journal.pgen.1004222.g001

Figure 2. Existing predictions for silent-site diversity break
down in the interference selection regime. Blue tiles denote
populations where the pairwise diversity p falls within 50% of the
background selection prediction in Eq. (2), and red tiles denote
populations that deviate by more than 50%. For comparison, the solid
black line depicts the set of populations with Nes:Nse{U=s~1, which
is close to the point where Muller’s ratchet begins to click more
frequently [41].
doi:10.1371/journal.pgen.1004222.g002
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presence of interference. We later generalize these patterns and

use them to establish a new coalescent framework for predicting

genetic diversity when interference is common.

First, we measured the average site frequency spectrum, Pn(i),

and the average fitness variance, s2, in 280 asexual populations

evolving under our simple purifying selection model, where all

mutations share the same deleterious fitness effect. These

populations were arranged on a grid, with mutation rates

(NU) ranging from 10 to 104 and selection strengths (Ns)

ranging from 1023 to 103. We distinguish between populations

that fall in the background selection regime or the interference

selection regime, which loosely coincide with the red and blue

regions in Figure 2 (see Methods). Figure 3 shows the observed

reduction in diversity, as measured by the pairwise heterozy-

gosity p relative to its neutral expectation, p0!N. As expected,

the reduction in diversity is well-approximated by Eq. (2) in the

background selection regime (triangle symbols) [27], but it

breaks down for populations in the interference selection regime

(circles) [37]. In addition, the traditional measure of the

deleterious load l~U=s ceases to be a good predictor of

diversity in the interference selection regime, with more than an

order of magnitude variation in p=p0 for the same value of l.
However, when the same populations are reorganized according

to their variance in fitness (Figure 2 B), the pattern essentially

flips. The variance in fitness within the population is a strikingly

accurate predictor for p=p0 in the interference selection regime

(circles), but it is a poor predictor in the background selection

regime (triangles).

The distortions in the site frequency spectrum are illustrated in

Figure 4. The top left panel depicts a typical site frequency spectrum

in the interference selection regime, using parameters consistent

with the fourth (dot) chromosome of Drosophila melanogaster (see

Methods). Apart from an overall reduction in polymorphism, the

most prominent features of this frequency spectrum include an

excess of rare alleles [22,29], and a non-monotonic (or ‘‘U-shaped’’)

dependence at high frequencies [44]. Since we only include silent

mutations in Figure 4, the distortions in the site frequency spectrum

are entirely determined by distortions in the genealogy of the sample

(Figure 4 B). The excess of rare alleles is due to an increase in the

relative length of recent branches, compared to more ancient ones,

and the non-monotonic behavior arises from imbalance in the

branching structure of the tree [22].

In the right three panels of Figure 4, we show how these

distortions vary over the broad range of parameters depicted in

Figure 3. For clarity, we only include populations in the

interference selection regime, and we focus on the two particular

features of the site frequency spectrum discussed above (the full site

frequency spectra for all of the populations in Figure 3 are shown

in Figure S2). Figures 2C and 2D show the excess of rare alleles as

measured by the reduction in average minor allele frequency and

Tajima’s D respectively. These distortions cannot be explained by

any constant Ne, including the background selection limit.

Similarly, Figure 4 E shows a measure of the non-monotonic or

‘‘U-shaped’’ dependence at high frequencies, using the statistic

U~log mini Qn(i)=Qn(n{1)½ �. In this case, deviations from

neutrality (Uv0) reflect topological properties of the genealogy,

which cannot be explained even by a time-dependent Ne(t). Ref.
[45] showed that a ‘‘U-shaped’’ frequency spectrum cannot arise

in any exchangeable coalescent model [e.g., [37,46,47]] unless it

also allows for multiple mergers. Together, the simulations in

Figure 4 show that even simple models of purifying selection can

generate strong distortions in the silent site frequency spectrum,

and that these distortions can persist even when individual

mutations are only weakly deleterious (Ns,1).

Yet the most striking feature of these distortions is not simply

that they exist, but rather that they are extremely well-predicted by

the reduction in pairwise diversity in these populations — which is

itself well-predicted by the variance in fitness. This strong

correlation is a nontrivial feature of interference selection, and it

disappears for the populations that were classified into the

background selection regime (Figure S3). Figure 4 also shows that

correlations persist when we repeat our simulations with nonzero

rates of recombination. As long as there is a sufficient density of

selected mutations per unit map length, recombination seems to

modify only the degree of the distortions from neutrality, while the

qualitative nature of the distortions remains the same.

Together, Figures 3 and 4 suggest an approximate ‘‘collapse’’ or

reduction in dimensionality from our original four-parameter

model to a single-parameter curve. The evidence so far is merely

suggestive, so we will revisit the generality of this result in the

Figure 3. The average reduction in silent site diversity relative to the neutral expectation. Colored points are measured from forward-
time simulations of the simple purifying selection scenario in Figure 2 for Ns[(10{3,103) and NU~10,30,100,300,1000,3000,10000. Triangles and
circles distinguish populations that are classified into the ‘‘background selection’’ and ‘‘interference selection’’ regimes, respectively (see Methods). In
the left panel, these results are plotted as a function of the deleterious load l~U=s, and the background selection prediction from Eq. (2) is given by
the dashed line. The right panel shows the same set of results plotted as a function of the observed standard deviation in fitness, and the solid line
denotes the ‘‘coarse-grained’’ predictions (see Methods). Note that for populations in the background selection regime (triangles), p=p0 is determined
primarily by the deleterious load, independent of Ns and NU. For populations in the interference selection regime (circles), p=p0 is determined
primarily by the standard deviation in fitness.
doi:10.1371/journal.pgen.1004222.g003
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following sections. Yet if such a collapse exists, it carries a number

of practical benefits for predicting genetic diversity in the

interference selection regime: if we can predict p=p0, we can in

principle predict all of the relevant patterns of silent site variability

(e.g., the site frequency spectrum) even when these quantities

significantly deviate from the neutral expectation. We will exploit

this idea to our advantage below. However, this increased

predictive capacity places fundamental limits on our ability to

resolve individual selection pressures from patterns of silent site

variability, even in this highly idealized setting. Our simulations

suggest that in the interference selection regime, two asexual

populations with the same variance in fitness will display nearly

identical patterns of silent site variability, regardless of the fitness

effects of the nonsynonymous mutations.

The infinitesimal limit
The patterns that emerge from the simulations in Figures 3 and

4 reflect a fundamental limit of our evolutionary model, similar to

the familiar background selection limit. To demonstrate this, we

restrict our attention to nonrecombining genomes (R=0), which

leads to a key simplification: different genotypes with the same

fitness are completely equivalent, both in terms of their

reproductive capacity and their potential for future mutations.

The evolutionary dynamics are completely determined by the

proportion, f(X), of individuals in each fitness class X. The

frequency of a mutant allele at some particular site can be modeled

in a similar way, by partitioning f(X) into the contributions f0(X )
and f1(X ) from the ancestral and derived alleles. These fitness

classes evolve according to the Langevin dynamics

Lfi (X )

Lt ~ X{X (t)
� �

fi(X )|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
selection

zU fi(Xzs){fi(X )½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
mutation

z

ffiffiffiffiffiffiffiffiffiffiffi
fi(X )

N

r
gi(X ){

X
j,X ’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fi(X )2fj(X ’)

N

s
gj(X ’)

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
genetic drift

,
ð4Þ

Figure 4. Signatures of pervasive interference selection in the silent site frequency spectrum for a sample of n=100 individuals. (A)
A typical example of the average site frequency spectrum in the interference selection regime, simulated for Ns= 30, NU= 300, and R<0 (red line). For
comparison, the neutral expectation is given by the dashed blue line. (B) A schematic illustration of the genealogical structure observed in neutral
populations (left) and those subject to widespread interference (right). (C) An excess of rare alleles measured by the average minor allele frequency,
(D) Tajima’s D, and (E) non-monotonic or ‘‘U-shaped’’ behavior at high frequencies measured by U~log mini Qn(i)=Qn(n{1)½ �. The statistics in (C–E)
are plotted as a function of the reduction in pairwise diversity, p=p0 . Circles denote the subset of simulations in Figure 3 that were classified into the
interference selection regime, while the right- and left-pointing triangles depict an analogous set of simulations for recombining genomes with
NR=10 and NR=100, respectively. All points are colored according to the same scale as Figure 2. For comparison, the solid red lines show the
‘‘coarse-grained’’ predictions (see Methods), while the dashed lines show the corresponding predictions under neutrality (blue) and for the large Ns
limit in Ref. [44] (red).
doi:10.1371/journal.pgen.1004222.g004
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where X is the mean fitness of the population and gi(X ) is a

Brownian noise term [48–52]. Equation (4) decomposes the

change in the frequency of the derived allele into the deterministic

action of selection and mutation, and the random effects of genetic

drift. It represents a natural extension of the standard diffusion

limit for genomes with a large number of selected sites. Crucially,

Eq. (4) tracks only the fitnesses of the mutant offspring as they

accumulate additional mutations.

The advantage of this description is that it can be analyzed with

standard perturbative techniques. For example, while the back-

ground selection limit is not always motivated in this fashion, Eq.

(2) arises as a formal limit of the dynamics in Eq. (4) when Ns??
(Text S1). To avoid the trivial behavior p=p0?1, where selection

can be entirely neglected, we must also take NU?? so that the

deleterious load l (and therefore p=p0) remains constant. In this

limit, molecular evolution is completely determined by l, or

equivalently by Ne=N , which represents the fraction of mutation-

free individuals in the population. The collapse observed in the left

panel of Figure 3 indicates that populations quickly converge to

this limit when Nes is large but finite.

Inverting this line of reasoning, a similar collapse in the right

panel of Figure 3 suggests convergence to a second, infinitesimal
limit when Ns?0. Of course, if Ns vanishes on its own we simply

recover the neutral result, p=p0?1. To maintain nontrivial

behavior, Figure 2 B shows that we must take NU?? as well,

so that the variance in fitness (and therefore p=p0) remains

constant. In this way, the infinitesimal limit resembles a linked

version of the infinitesimal trait models from quantitative genetics,

where phenotypic variation (in this case, for the fitness ‘‘trait’’)

arises from a large number of small-effect alleles.

The evidence from Figure 3B is merely suggestive, but we can

establish the infinitesimal limit more rigorously using Eq. (4),

where it corresponds to the limit that Ns?0 and NU?? with

the product N3Us2 held constant. In Text S2 we demonstrate this

by rescaling the moment generating function for Eq. (4); it can also

be shown term-by-term using the perturbation expansion from

Ref. [52]. This latter approach provides some intuition for the

origin of the control parameter N3Us2. Specifically, in a nearly

neutral population (Ns%1), the variance in fitness is equal to

(Ns)2&NU(Ns)2zO(Ns)3, ð5Þ

which is the average mutational spread that accumulates during

the coalescent timescale TMRCA*N. The only way that this

quantity can remain finite as Ns?0 is if the product N3Us2 is held
fixed. This argument also shows that extension of the infinitesimal

limit to a distribution of fitness effects is straightforward, provided

that we replace s2 with Ss2T~
Ð
s2r(s)ds. In this infinitesimal

limit, the distribution of fitnesses within the population and the

patterns of molecular evolution depend only on the product

N3USs2T and not any other properties of r(s). The effects of

beneficial and deleterious mutations are symmetric [44], so our

analysis also applies to the long-term balance between beneficial

and deleterious substitutions in finite genomes [53].

In the infinitesimal limit, selected mutations are negligible on

their own, and are virtually indistinguishable from neutral

mutations, but the population as a whole is far from neutral.

Rather, infinitesimal mutations arise so frequently that the

population maintains substantial variation in fitness, and this

leads to correspondingly large distortions at the sequence level.

The distribution of fitnesses within these populations is well-

characterized by ‘‘traveling wave’’ models of fitness evolution

[49,54–57], which provide explicit formulae for the variance in

fitness (Ns) as a function of the control parameter N3USs2T (Text

S2). These formulae show that Ns increases monotonically with

N3USs2T, so either quantity can be used to index populations in

the infinitesimal limit. We will use Ns for the remainder of the

paper in order to maintain consistency with Figure 3. Note that

because of the pervasive interference between selected mutations,

s2 is typically much smaller than the deterministic prediction from

Eq. (1), s2det~Us, and for large Ns it grows less than linearly with

the number of loci under selection.

Unfortunately, patterns of molecular evolution are less well-

characterized in this limit, which makes it difficult to predict
the correlations observed in Figures 3 and 4. A complete

description has been obtained only in the special cases where

Ns?0 or Ns??. The former corresponds to a neutral

population, with small corrections calculated in Ref. [52]. The

latter case was recently analyzed in Ref. [44], which showed

that the genealogy of the population approaches that of the

Bolthausen-Sznitmann coalescent [58]. In this Ns?? limit,

silent site diversity decays as p=p0*1=Ns, while the shape of

the site-frequency spectrum, Qn(i), becomes independent of all
underlying parameters. However, Figure 4 shows that many

biologically relevant parameters fall somewhat far from these

extreme limits, so we require an alternate method to predict

genetic diversity for the moderate values of Ns that are likely

to arise in practice.

Predicting genetic diversity by coarse-graining fitness
In the absence of an exact solution of the infinitesimal limit, we

employ an alternate strategy inspired by the simulations in

Figures 3 and 4. Convergence to the infinitesimal limit is

extremely rapid in these figures — so rapid that we can effectively

neglect any corrections to this limit all the way up to the boundary

of the background selection regime. In other words, the structured

coalescent and the infinitesimal limit are both approximately valid

along this boundary. Thus, instead of using the infinitesimal limit

to approximate a population with a given Ns, this rapid

convergence suggests that we could also use a population on the

boundary of the background selection regime with the same Ns.
Intuitively, this resembles a ‘‘coarse-graining’’ of the fitness

distribution, since it approximates several weakly selected muta-

tions in the original population with a smaller number of strongly

selected mutations in the background selection regime. On a

formal level, this is nothing but a patching method [59] that

connects the asymptotic behavior in the infinitesimal (Ns?0) and
background selection (Ns??) limits.

This intuition suggests a simple algorithm for predicting genetic

diversity in the interference selection regime: (i) calculate Ns as a

function of Ns and NU as described in Text S2, (ii) find a

corresponding point on the boundary of the background selection

regime with the same Ns, and (iii) evaluate the structured

coalescent at this corresponding point. Step (ii) requires a precise

definition of the boundary between the interference and

background selection regimes, which we have not yet specified.

Like many patching methods, this boundary is somewhat

arbitrary, since the transition between the interference and

background selection regimes is not infinitely sharp. Previous

studies have identified several candidates (see Text S3), but in

general this definition must balance two competing goals. The

boundary should be close enough to the background selection limit

to minimize errors in the structured coalescent. But at the same

time, it must be close enough to the infinitesimal limit so that the

populations rapidly converge.

Our definition here is based on a specific feature of the

structured coalescent, which is already evident from the first-order
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correction in Eq. (3). For each Ns, the structured coalescent starts

to break down near the point of maximum reduction in p=p0,
which is also close to the crossover point where Muller’s ratchet

starts to click more frequently [41,50]. Together, these maxima

define a ‘‘critical line’’ in the (Ns,NU) plane (Figure 5 A), which

serves as the boundary between the interference and background

selection regimes. Populations above or to the left of this line are

classified into the interference selection regime, and the silent site

variability in these populations can be predicted from the coarse-

graining algorithm above. The remaining populations belong to

the background selection regime, where the structured coalescent

is already valid.

We have implemented this coarse-graining procedure in a freely

available Python library (see Methods), which rapidly generates

predictions for the site frequency spectrum for arbitrary combi-

nations of Ns and NU, and implements the linkage block

approximation for recombining genomes described below. Other

common diversity statistics (e.g., MAF or Tajima’s D) can be

computed from this site frequency spectrum as desired. Concrete

examples of these predictions for the reduction in pairwise

diversity are shown in Figure 5. We see that the coarse-grained

predictions accurately recover the transition to the neutral limit

when Ns?0 (Figure 5 B), and they also reproduce the power-law

decay in heterozygosity when NU?? (Figure 5 C). We note that

Figure 5. Coarse-grained predictions for the reduction in pairwise diversity. (A) The solid black line denotes the boundary separating the
interference and background selection regimes, while the dashed lines to the left and right denote lines of constant Ns and lines of constant l,
respectively. (B) A ‘‘slice’’ of this phase plot for constant NU= 50. The black squares denote the results of forward-time simulations and our coarse-
grained predictions are shown in solid red. For comparison, the original structured coalescent is shown in solid blue, while the dashed line gives the
prediction from the background selection limit in Eq. (2). (C) A similar ‘‘slice’’ of this phase plot for constant Ns= 10, with inset extended on a log-log
scale. As NU??, we approach the asymptotic limit p=p0*(NU){1=3 from Ref. [44].
doi:10.1371/journal.pgen.1004222.g005

Figure 6. The silent site frequency spectrum from Figure 4 (red dots) and forward-time simulations of three equivalent populations
predicted from our coarse-grained theory. a recombining population (yellow), a finite chromosome with L=105 sites that allows for beneficial
as well as deleterious mutations (green), a population with a uniform distribution of deleterious fitness effects (blue), and a population with an
exponential distribution of deleterious effects, truncated at smax~3s. Our coarse-grained predictions are shown in solid red. For comparison, the
dashed blue lines show the neutral expectation, while the dashed red lines show the large Ns limit from Ref. [44] (Ns<90 in the examples above). To
enable better visual comparison, each frequency spectrum is normalized by the number of singletons it contains.
doi:10.1371/journal.pgen.1004222.g006
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similar predictions in Figure 4 C–E (red lines) reproduce the

observed distortions in the frequency spectrum statistics, while

Figure 6 illustrates the predictions for the full shape of the

frequency spectrum for the specific parameter combination in

Figure 4 A. As is apparent from the figures, there is a broad range

of parameters where the coarse-grained predictions are signifi-

cantly more accurate than either the neutral expectation or the

Ns?? limit studied in Ref. [44].

Distributions of fitness effects
In order to illustrate the transition between the interference and

background selection regimes, we have focused on the simplest

case where all selected mutations confer the same deleterious

fitness effect. However, many of our results extend to more

realistic scenarios where mutations are drawn from a distribution

of fitness effects (DFE). In this case, it is useful to partition the

fitness effects into a weakly selected category (Nes%1) and a

strongly selected category (Nes&1), with an intermediate zone

separating these two regimes (Figure 7). If the DFE is entirely

contained in the weakly selected region, then our previous analysis

can be easily extended. Recall that the infinitesimal limit exists for

arbitrary DFEs, provided that we replace s with the root mean

squared effect srms~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ
s2r(s)ds

p
in each of the expressions

above. In other words, the patterns of diversity in the infinitesimal

limit are equivalent to a single-s DFE with an effective selection

coefficient se~srms. We can therefore obtain predictions for

arbitrary r(s) by computing srms and applying our coarse-graining

procedure to this corresponding single-s population, and we

expect similar accuracy as long as the original population is

sufficiently close to the infinitesimal limit. As an example, we use

this procedure in Figure 6 to calculate the shape of the site

frequency spectrum for a few representative DFEs consistent with

the Drosophila dot chromosome parameters in Figure 4 A. We

plot overall levels of diversity for a broader range of parameters in

Figure S4. These figures illustrate the accuracy of our coarse-

graining method for several different DFE shapes.

While this single-s mapping applies when all the mutations are

sufficiently weak, there are other possible scenarios where a single

effective selection strength is clearly inappropriate. For example,

deleterious mutations in natural populations often span several

orders of magnitude [60], which could lead to scenarios where the

DFE contains a mixture of weakly and strongly selected

mutations. A full treatment of this case is beyond the scope of

the present paper, but we can illustrate the basic features with the

help of a simple example. Suppose that the DFE contains two

deleterious fitness effects: (i) a weakly deleterious mutation Ns1~1
which occurs at rate NU1~50 and (ii) a strongly deleterious

mutation Ns2~200 which occurs at rate NU1~100. Taken

individually, these mutations belong to the interference and

background selection regimes, respectively. Yet the combined

DFE does not belong to either regime, since it is fundamentally a

mixture of the two. On the one hand, this population must fall

outside of the background selection regime because the two-effect

generalization of the structured coalescent [41,61] breaks down

(Figure S5). At the same time, this population cannot belong to the

interference selection regime because the patterns of diversity

differ from a more weakly selected population (e.g., Ns1~1,
NU1~50, Ns2~100, NU2~200) with similar variance in fitness

(Figure S5).

Nevertheless, our coarse-graining procedure provides a way out

of this impasse by transforming the weakly selected mutations into

a form that can be handled by the structured coalescent. In this

case, we note that the strongly selected mutations primarily

influence the weakly selected mutations through a reduction in the

effective population size, Ne~Ne{U2=s2&0:6N. At this smaller

population size, the weakly selected mutations generate a smaller

variance in fitness than they would in the absence of the strongly

selected mutations. Given this smaller fitness variance, we can use

our single-s coarse graining procedure above to map the weakly

selected mutations to a population on the critical line (as defined in

the single-s case) with effective parameters Nes1,eff and NeU1,eff .

Then we can predict the patterns of diversity using the two-effect

generalization of the structured coalescent, where the two effects

are the strongly deleterious mutation, Ns2, and the coarse-grained

weakly deleterious mutation, Ns1,eff (Figure S5).

Of course, this simple two-effect example is almost as artificial as

the single-s limit above. Ideally, we would like to generate

predictions for arbitrary distributions of fitness effects. In general,

we expect the qualitative behavior of these distributions to

resemble the two-effect model above. Imagine for example that

the DFE contains several weakly selected deleterious fitness effects

and a single strongly selected effect. In this case, the weakly

selected mutations can be combined into a single root-mean-

square effect, srms, and the two-effect example above then applies.

If on the other hand there are several strongly selected effects, we

can account for them using a higher-dimensional structured

coalescent. However, in the most general case where there is a

continuous distribution of fitness effects, some additional compli-

cations arise. In this case, weakly selected mutations can still be

coarse-grained to the infinitesimal limit, while those mutations that

are sufficiently far into the strong selection regime (Nes
�&1)

influence the evolutionary dynamics primarily through a reduction

in the effective population size, Ne&N exp {U
Ð?
s� s{1r(s)ds

� �
.

For the weakly selected mutations, this will tend to produce a

smaller fitness variance and therefore a smaller deviation from

neutrality than one would expect in the absence of the strongly

selected mutations. However, a smaller Ne also pushes more of the

strongly selected mutations into the weak selection regime, which

will tend to increase the fitness variance and the corresponding

deviations from neutrality. Due to these competing factors, the

Figure 7. A schematic partition of a broad distribution of
fitness effects. Sufficiently weakly selected mutations are described
by the infinitesimal limit analyzed here, with an effective selection
coefficient given by the mean squared fitness effect. Those with
sufficiently strong selection coefficients generate a reduction in the
effective population size according to the harmonic mean. The
boundaries between these two regimes (and the width of the
intermediate zone separating them) are determined self consistently
by the emergent genealogical process, and vary as a function of the
underlying parameters.
doi:10.1371/journal.pgen.1004222.g007
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division between ‘‘weak’’ and ‘‘strong’’ mutations will strongly

depend on the population size, the mutation rate, and the precise

shape of the DFE. In addition, there may also be mutations in the

intermediate region that are too strong for the infinitesimal limit to

apply, but still weak enough to bias allele frequencies. For a

discrete DFE, the effects of these mutations can be predicted using

the structured coalescent in the appropriate number of dimen-

sions. However, no analogous structured coalescent framework

presently exists for a continuous DFE. This remains an important

avenue for future work.

We note that our discussion has also ignored the effects of

strongly beneficial mutations, which have been analyzed in several

related studies [51,62–66]. Unlike in the strongly deleterious case,

where larger fitness effects have a smaller influence on diversity,

strongly beneficial mutations tend to dominate the evolutionary

dynamics if they are sufficiently common [51,62,64]. In this case,

larger population sizes generate increased fitness variation with

larger number of selected polymorphisms, and the patterns of

silent site variability rapidly approach those attained in Ns??
version of the infinitesimal limit [65,66].

Emergence of linkage blocks in recombining genomes
So far, our analysis has focused on nonrecombining genomes,

but our simulations in Figure 4 show that similar behavior arises

when R.0 as well. A formal analysis is more difficult in this case,

since recombination requires explicit haplotype information and

cannot be recast in terms of the evolution of fitness alone. Thus,

while the structured coalescent has been extended to recombining

genomes [42,61], and an analogous version of Eq. (2) has been

derived [34,35],

p=p0~e{2U=(2szR)zO Nsð Þ{1
, ð6Þ

there is no simple analogue of Eq. (4) that we can use to formally
extend the infinitesimal limit.

Nevertheless, we can gain considerable insight with a simple

heuristic argument, which leverages our previous analysis in

nonrecombining genomes. Neighboring regions of a linear

chromosome recombine much less than the genome as a whole.

Sites separated by a map length DR%1=TMRCA will typically not

recombine at all in the history of the sample, so the ancestral

process should predominantly resemble an asexual population on

these length scales. On the opposite extreme, sites with

DR&1=TMRCA will recombine many times in the history of the

sample, and will effectively act as if they were unlinked [67]. To

the extent that this transition is sharp, the evolution of a

recombining genome can be viewed as a collection of indepen-

dent, freely recombining linkage blocks, each of which evolves

asexually. This simple heuristic has a long history in the

population genetics literature [68,69], and it underlies many of

the ‘‘sliding window’’ techniques used to analyze polymorphism in

long genomes [70].

If each block comprises a fraction Lb=L of the genome, then the

distribution of fitness and the patterns of molecular evolution

within each block are by definition the same as an asexual

population with an effective mutation rate

Ueff~
Lb

L

� �
U : ð7Þ

Strictly speaking, the unlinked blocks also contribute to a

reduction in the effective population size [46,67,71,72], but we

follow Ref. [73] and neglect these effects here. Given the weak

population size dependence in the interference selection regime,

this is often a good approximation in practice. But in principle, the

logarithmic corrections from unlinked blocks can become impor-

tant in extremely large genomes with a large proportion of selected

sites (see Text S4 or Ref. [73] for additional discussion).

The block size itself must satisfy the condition that there are few

recombination events within a block in a typical coalescence time,

or

R
Lb

L

� �
:T2*1: ð8Þ

Here, T2~Np=p0 is the pairwise coalescence time for the linkage

block, which is itself a function of Lb=L and can be calculated

from Eq. (7) and the asexual methods above. Together, Eqs. (7)

and (8) uniquely determine the block size in a given population. In

practice, we use a generalized version of Eq. (8),

Lb=L~½1zT2R=4�{1
, which accounts for constant factors and

the saturation of the block size when T2R *; 1. Using our coarse-

grained predictions for p=p0, we can solve for Lb=L and obtain

explicit predictions for the molecular evolution in recombining

genomes (see Methods).

Ref. [73] has recently employed a similar argument to

analyze an infinitesimal model analogous to the one studied

here. They initially treat the maintenance of phenotypic (i.e.,

fitness) diversity as a ‘‘black box,’’ utilizing a top-down approach

to calculate the decay of linked fitness variation caused by

successive recombination events. Based on this analysis, they

obtain predictions for the genetic diversity in the limit that the

number of selected loci per block and the fitness variance per

block become large, which, for an infinitely long genome,

requires that U=R&1 (Text S4). For recombining genomes, this

plays the role of the asexual Ns?? limit analyzed in Ref. [44].

Similar to the asexual case, our present analysis extends the

asymptotic results of Ref. [73] to more moderate parameter

values where U=R *> 1. Evidence from fine-scale recombination

maps [74] suggests that these parameters may be relevant for

regions of reduced recombination in the autosomes of obligate

sexual organisms (e.g., in humans, see Figure S6), in addition to

nonrecombining sex chromosomes [29,30] and highly selfing

species such as C. elegans [75] where linked selection is already

thought to play a large role.

As an example, we utilize this linkage block approximation to

calculate the relationship between diversity and local recombina-

tion rate in Figure 8 (predictions for other quantities, e.g. the rate

of Muller’s ratchet, are discussed in Text S4). The reduction in

minor allele frequency in particular provides a clear signature of

natural selection that can be observed in human autosomal DNA

(Figure S6) [7]. Interference clearly plays a large role for the

populations in Figure 8, since the observed genetic diversity

significantly deviates from the recombining structured coalescent

[42] and the background selection limit in Eq. (2). In contrast, the

crude approximation above is surprisingly accurate for these

populations, even when U/R is of order one. This accuracy is

especially surprising given that the predictions are obtained from

an asexual population with a coarse-grained selection strength

and mutation rate. Evidently, interference on a linear chromo-

some more closely resembles an asexual genome (with an

appropriately defined length) rather than the freely recombining,

single-site models that are more commonly employed. A more

thorough investigation of the linkage block concept and its

implications for other aspects of sequence diversity (e.g., linkage
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disequilibria, variation in recombination rate, etc.) remain an

important avenue for future work.

Discussion

Interfering mutations display complex dynamics that have been

difficult to model with traditional methods. Here, we have shown

that simple behavior emerges in the limit of widespread

interference. When fitness variation is composed of many

individual mutations, the magnitudes and signs of their fitness

effects are relatively unimportant. Instead, molecular evolution is

controlled by the variance in fitness within the population over

some effectively asexual segment of the genome. This implies a

corresponding symmetry, in which many weakly selected muta-

tions combine to mimic the effects of a few strongly deleterious

mutations with the same variance in fitness. We have exploited this

symmetry in our ‘‘coarse-grained’’ coalescent framework, which

generates efficient predictions across a much broader range of

selection pressures than was previously possible.

Our results are consistent with previous studies that have

investigated interference selection in silico [22,25–29,44], but our

coarse-grained model offers a different perspective on the relevant

processes that contribute to molecular evolution in this regime. By

using the term interference selection, we have tried to emphasize

that interference (i.e., correlations in the frequencies of selected

alleles) is the distinguishing feature that separates these populations

from the traditional background selection regime. Previous work,

on the other hand, has argued that virtually all of the deviations

from the background selection limit can be attributed to

fluctuations in the fitness distribution and the effects of Muller’s

ratchet [22,41,43]. Yet our coarse-grained framework includes

neither of these complications directly, and the quantitative

behavior is unchanged even when beneficial compensatory

mutations balance the loss of fitness due to Muller’s ratchet.

Moreover, fitness class fluctuations and the ratchet are arguably

maximized in neutral populations [52], which are well-character-

ized by the neutral coalescent. Instead, our results show that we

can capture many aspects of silent site diversity simply by

correcting for the average bias in the fitness distribution away

from the prediction in Eq. (1), similar to the findings of Ref. [47].

In order to predict this bias from first principles, it is crucial to

account for correlations in the frequencies of selected mutations,

similar to rapidly adapting populations [44,65].

Of course, the degree of interference in any particular organism

is ultimately an empirical question — one that hinges on the

relative strengths of mutation, selection, and recombination.

Although interference is often observed in microbes and viruses

[76–79], its prevelance in higher sexual organisms is still

controversial because it is difficult to estimate these parameters

in the wild. Mutation and recombination rates can be measured

directly (at least in principle), but population sizes and selection

strengths can only be inferred from a population genetic model,

and these have historically struggled to include the effects of

selection on linked sites. Many estimates of ‘‘Nes’’ ignore linkage

by fiat (e.g. [80]) under the assumption that sites evolve

independently. But these estimates become unreliable precisely

when small- and intermediate-effect mutations are most common,

and the reasons for this are apparent from Figure 4. All of the

distortions in Figure 4 C and Figure 4 D would be mistakenly

ascribed to demography (or in the case of Figure 4 E, population

substructure), thereby biasing the estimates of selection at

nonsynonymous sites. At best, these estimates of ‘‘Nes’’ represent
measurements of T2s, which carry little information about the true

strength of selection (Ns) or even the potential severity of

interference. For example, all of the populations in Figure 8 have

Ns=10 and T2sw1, even though they fall in the interference

selection regime, and show a strong distortion in minor allele

frequency that cannot be explained by Eq. (2). In other words, we

cannot conclude that interference is negligible just because ‘‘Nes’’,
as inferred from data, is larger than one.

More sophisticated analyses avoid these issues with simulations of

the underlying genomic model [7,22,29,30]. In principle, this

approach can provide robust estimates of the underlying parameter

combinations that best describe the data. But in practice,

simulation-based methods suffer from two major shortcomings

which are highlighted by the symmetry above. We have seen that

strongly-interfering populations with the same variance in fitness

possess nearly identical patterns of genetic diversity. This suggests a

degree of ‘‘sloppiness’’ [81] in the underlying model, which can lead

to large intrinsic uncertainties in the parameter estimates and a

strong sensitivity to measurement noise. A more fundamental

problem is identifying the nearly equivalent populations in the first

place. Even in our simplified model, large genomes are computa-

tionally expensive to simulate, and this obviously limits both the

number of dependent variables and the various parameter

combinations that can be explored in a single study. We have

shown that sets of equivalent populations lie along a single line

(namely, the line of constant Ns) in the larger parameter space,

which can easily be missed in a small survey unless the parameters

are chosen with this degeneracy in mind. In this way, our theoretical

predictions can aid existing simulation methods by identifying

equivalent sets of parameters that also describe the data.

Figure 8. Relation between diversity and recombination rate in
the presence of interference. Black squares denote the results of
forward time simulations for fixed Ns = 10 and NU = 300, with
recombination rates varied from NR= 10 to NR=103. Our coarse-
grained predictions are shown in solid red. For comparison, we have
also included predictions from the background selection limit in Eq. (6)
(blue dashes) as well as the recombinant structured coalescent
predictions from Ref. [42] (solid blue) and the asymptotic limit from
Ref. [73] (red dashes).
doi:10.1371/journal.pgen.1004222.g008
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As an example, we consider the D. melanogaster dot

chromosome that inspired the parameter combination in

Figure 4 A. Earlier, we showed that the reduction in silent site

diversity on this chromosome (p=p0*7%) is consistent with the

parameters Ns<30, NU<300, and NR<0, which fall in the

middle of the interference selection regime (Ref. [29], see

Methods). Our calculations allow us to predict other parameter

combinations with the same patterns of diversity, and we plot the

simulated frequency spectrum for three of these alternatives in

Figure 6. We see that even with highly resolved frequency spectra

(unavailable in the original dataset), there is little power to

distinguish between these predicted alternatives despite rather

large differences in the underlying parameters.

However, this ‘‘resolution limit’’ suggests that individual

fitness effects are not the most interesting quantity to measure

when interference is common. Individual fitness effects may

play a central role in single-site models, but we have shown

that global properties like the variance in fitness and the

corresponding linkage scale are more relevant for predicting

evolution in interfering populations. Estimating these quanti-

ties directly may therefore be preferable in practice. Our

coarse-grained predictions provide a promising new framework

for inferring these quantities based on allele frequency data or

genealogical reconstruction. A concrete implementation pre-

sents a number of additional challenges, mostly to ensure a

proper exploration of the high-dimensional parameter space,

but this remains an important avenue for future work.

Finally, our findings suggest a qualitative shift in the interpre-

tations gleaned from previous empirical studies. We have provided

further evidence that even weak purifying selection, when

aggregated over a sufficiently large number of sites, can generate

strong deviations from neutrality. Moreover, these signals can

resemble more ‘‘biologically interesting’’ scenarios like recurrent

sweeps, large-scale demographic change, or selection on the silent

sites themselves. Here we refer not only to the well-known reduction

in diversity and skew towards rare alleles, but also to the topological

imbalance in the genealogy (or the ‘‘U-shaped’’ frequency

spectrum), and the strong correlations in these quantities with the

rate of recombination. Since weakly deleterious mutations are

already expected to be common [60], they may constitute a more

parsimonious explanation for observed patterns of diversity unless

they can be rejected by a careful, quantitative comparison of the

type advocated above. At the very least, these signals should not be

interpreted as prima facie evidence for anything more complicated

than weak but widespread purifying selection.

Methods

Forward-time simulations
Forward-time simulations were implemented in a custom C++

program using a discrete-generation Wright-Fisher algorithm.

Each simulation started with a clonal population of N=104

individuals with initial fitness W=1, and subsequent generations

were obtained by performing a reproduction step, a recombination

step, and a mutation step. In the reproduction step, the new

generation was formed by sampling individuals with replacement

from the previous generation, weighted by the relative fitnesses

Wi=
P

i Wi. In the recombination step, we drew Poisson(NR)

recombination events, and for each of these, we drew two

individuals from the population and replaced the first individual

with the recombinant offspring formed from a single randomly

chosen crossover of the two chromosomes. Finally, in the mutation

step, we drew Poisson(NU) nonsynonymous mutations, and for

each of these, we drew an individual from the population and

placed the mutation at a random location on the chromosome.

The fitness effect of each mutation was drawn from the

distribution of fitness effects, r(s), so that the fitness of the mutated

individual was given by W?Wes. Mutations at the neutral locus

were handled similarly, except that these occurred with rate NUn

and were always placed at the exact center of the chromosome so

that they could not recombine with each other. Starting at

generation t=0, each population was allowed to ‘‘burn-in’’ for Dt
generations until the neutral locus developed a most recent

common ancestor. After equilibration, we drew 100 independent

samples of n individuals every Dt generations, and the site

frequency spectrum was computed at the neutral locus. We also

measured the average fitness of the population and computed the

variance in fitness using Fisher’s fundamental theorem,

s2~v{USsT, where v is the rate of fitness change (e.g., due to

Muller’s ratchet) which is estimated by v~D(logW )=Dt. This

process was continued for a total of 20N generations per

population, and for 300 independent populations per parameter

combination.

Coalescent simulations
Backward-in-time simulations of the asexual structured coales-

cent, the recombining structured coalescent, and the Bolthauzen-

Sznitman coalescent were implemented as a set of custom C++
programs similar to Hudson’s ms [82]. To improve performance,

neutral mutations were omitted, and the time to the next event was

replaced with its expected value when calculating the average site

frequency spectrum. Asexual coalescent simulations were evaluat-

ed 105 times for each parameter value, while the more

computationally-demanding recombinant version was evaluated

104 times per parameter value.

The boundary between the interference and background
selection regimes
The boundary of the background selection regime was obtained by

minimizing Eq. (3) as a function of Ns with s2det~Us held fixed.

Numerical solutions were obtained by analytically differentiating Eq.

(3) and inverting the stationarity condition using the Newton-Raphson

algorithm in the SciPy library. See Text S3 for additional discussion.

Coarse-grained predictions
The coarse-grained parameters were obtained by calculating

Ns (as described in Text S2) and identifying the corresponding

point on the boundary of the interference selection regime with the

same value of Ns (as described above). Coarse-grained predictions

were obtained from structured coalescent simulations of the

coarse-grained parameters, except for p=p0, which was approx-

imated by numerical evaluation of Eq. (3).

Determination of the effective linkage scale
The effective linkage scale, Lb=L, was obtained by inverting the

condition

Lb=L~ 1zNR:f Ns,NU :Lb=Lð Þ=4½ �{1
, ð9Þ

where f (Ns,NU) denotes the coarse-grained prediction for p=p0 in
Eq. (3). Numerical solutions were obtained using the Brent

algorithm in the SciPy library. See Text S4 for additional discussion.

Code availability
We have implemented the methods described above as a

Python library, coarse_coal, which can be used to calculate
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coarse-grained parameters and frequency spectrum predictions for

arbitrary combinations of Ns, NU, and NR in the interference

selection regime. Our source code is available for download at

https://github.com/benjaminhgood/coarse_coal.

The Drosophila dot chromosome
Possible parameter combinations for the fourth (dot) chromosome

ofDrosophilamelanogasterwere obtained by reapplying the method

of Ref. [29] for our simple purifying selection model. These authors

estimated the reduction in diversity on the dot chromosome to be

p=p0&7%, based on sequence data containing approximately

L,5 kb of silent sites sequenced in each of n<24 lines [83,84].

The per-site heterozygosity is of order p*10{3, which implies a

silent mutation rate of NUn~L:p0=2*50. Based on these estimates

for the sample size and NUn, forward-time simulations of the

parameters Ns=30, NU=300, and NR=0 yield p=p0~8%+3%
(mean 6 s.d.), which is consistent with the observed reduction.

Human autosomal diversity
Local recombination rates in Figure S6 were estimated from

deCODE’s fine-scale genetic map [74], assuming an equal sex

ratio and averaging over 1 Mb windows. The local mutation rate

was approximated using a uniform point-mutation rate of

m~1:2|10{8 per base pair per generation [85]. Average minor

allele frequencies were estimated using the African SNPs identified

in the low-coverage portion of the 1,000 Genomes Project [86].

We only included autosomal SNPs that fell within one of the 1 Mb

windows identified above, and we excluded repetitive elements

(RepeatMasker), RefSeq exons, and all SNPs that were absent or

fixed within the African subpopulation or did not have a high-

confidence ancestral allele.

Supporting Information

Code S1 Associated source code.

(ZIP)

Figure S1 The breakdown of the structured coalescent. The

emergence of the interference selection regime for a recombining

genome with U/R,1, as measured by the reduction in silent site

heterozygosity (top) and the average minor allele frequency from a

sample of size n=100 (middle). Symbols denote forward-time

simulations of our simple purifying selection model, while the

predictions from the structured coalescent and the background

selection limit are represented by the solid and dashed lines,

respectively. For comparison, the bottom panel shows a measure of

the linkage disequilibrium between selected mutations, as measured

by the quantity L~ log2
s

s
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Figure S2 Full site frequency spectra from Figure 3. The silent

site frequency spectrum for each of the simulated populations in

Figure 3, noramlized by the the number of singletons (top) or p
(bottom). Colored lines are measured from a sample of n=100

chromosomes, averaged over independent populations (see

Methods). For comparison, the solid black line shows the neutral

expectation, while the dotted line shows the Ns?? limit from

Ref. [44]. In the interference selection regime (right), the shape of

the frequency spectrum is strongly correlated with the reduction in

pairwise diversity, p=p0. This is a manifestation of the infinitesimal

limit, where both quantities are controlled by Ns. In contrast, the

correlation disappears in the background selection regime (left) as

predicted by the structured coalescent.

(PNG)

Figure S3 Figure 4 replotted for the background selection

regime. Distortions in the synonymous site frequency spectrum for

a sample of n=100 individuals in the background selection

regime. Top: An excess of rare alleles measured by the average

minor allele frequency. Middle: Tajima’s D. Bottom: Non-

monotonic or ‘‘U-shaped’’ behavior at high frequencies, as

measured by U~log mini Qn(i)=Qn(n{1)½ �. Both statistics are

plotted as a function of the reduction in pairwise diversity, p=p0.
Upper triangles depict the subset of simulations in Figure 3 that

were classified into the background selection regime, and each

point is colored according to its Ns value. For comparison, the

dashed blue lines show the predictions in the background selection

limit, which coincide with the neutral expectation.

(PNG)

Figure S4 The reduction in pairwise diversity at silent sites for

three different distributions of deleterious fitness effects. Colored

symbols denote the results of forward time simulations for asexual

populations with Ns[(10{3,103) and NU~10,102,103,104. We

performed simulations for three DFEs: a single-s distribution with

r(x)~d(s{x), a uniform distribution with r(x)!h(x{s), and a

truncated exponential distribution with r(x)!e{x=sh(3s{x).
h(x) is the step function. Each point is colored according to its

Nsrms value. For comparison, our coarse-grained predictions are

shown in solid red while the dashed lines show the neutral

expectation.

(PNG)

Figure S5 Genetic diversity in a ‘‘hybrid’’ two-effect model. The

reduction in silent site heterozygosity (top) and the average minor

allele frequency from a sample of size n=100 (middle) in a two-

effect model with one weakly deleterious mutation (Ns1~1,
NU1~50) and one strongly deleterious mutation

(100ƒNs2ƒ400). Black symbols denote the results of forward-

time simulations where Ns2 is increased from Ns2~100 to

Ns2~400, while the product NU2
:Ns2~2|104 is held constant.

For comparison, the bottom panel shows the measured variance in

fitness. Our coarse-grained predictions are shown in solid red

throughout, while the two-effect generalization of the structured

coalescent is shown in solid blue.

(PNG)

Figure S6 Recombination rates in human autosomes. Top: the

distribution of ‘‘mutation density’’ (i.e., the ratio U/R) along the

human autosomes. Local recombination rates were estimated from

the deCODE genetic map [74] and averaged over 1 Mb windows

(Methods), and we assume a uniform point-mutation rate of

m~1:2|10{8 per base pair [85]. Bottom: the average African

minor allele frequency estimated by the 1,000 Genomes Project

[86] (Methods).

(PNG)

Text S1 Background selection and the structured coalescent.

(PDF)

Text S2 The infinitesimal limit.

(PDF)

Text S3 The coarse-grained coalescent.

(PDF)

Text S4 Recombining genomes.

(PDF)
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