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Abstract Given a sample of genome sequences from an asexual population, can one predict its 
evolutionary future? Here we demonstrate that the branching patterns of reconstructed genealogical 
trees contains information about the relative fitness of the sampled sequences and that this 
information can be used to predict successful strains. Our approach is based on the assumption 
that evolution proceeds by accumulation of small effect mutations, does not require species 
specific input and can be applied to any asexual population under persistent selection pressure. 
We demonstrate its performance using historical data on seasonal influenza A/H3N2 virus. We 
predict the progenitor lineage of the upcoming influenza season with near optimal performance in 
30% of cases and make informative predictions in 16 out of 19 years. Beyond providing a tool for 
prediction, our ability to make informative predictions implies persistent fitness variation among 
circulating influenza A/H3N2 viruses.
DOI: 10.7554/eLife.03568.001

Introduction
A general method to predict the evolutionary trajectories of asexual populations would be extremely 
valuable for understanding the population dynamics of pathogens or of malignant cells. For example, 
the vaccine against seasonal influenza needs to be updated frequently since virus populations evolve 
to evade increasing immunity among humans (Hampson, 2002; Nelson and Holmes, 2007). Reliable 
prediction of the strains most likely to circulate in the upcoming season, and particularly the ability to 
predict antigenic change, would be transformative to the vaccine strain selection process.

Predictability from genetic sequence data requires heritable fitness variation among the sampled 
sequences. Neutral evolution - population dynamics in the absence of selective pressure - is by defini-
tion unpredictable: all sequences are equally fit. Yet even when selection determines the success of 
individual lineages, predictability depends on the effect size of fitness-altering mutations. Two compet-
ing scenarios of adaptive evolution are illustrated in Figure 1. If evolution proceeds via rare mutations 
with large phenotypic effects, the population is homogeneous in fitness most of the time (Figure 1A). 
In this case large effect mutations can convert any genome into the fittest in a single generation. 
Prediction from sequence alone is only possible if the time of sampling happens to be during a 
brief sweep of a large effect mutation. In contrast, continuous accumulation of small effect mutations 
(Figure 1B) results in a gradual change in fitness of lineages and persistent variation in fitness (Tsimring 
et al., 1996). A genealogical tree then potentially contains predictable patterns: the fitness of most 
lineages decreases over time (movement to the left in Figure 1), due to a changing environment or 
the accumulation of weakly deleterious mutations. Only a few adapt rapidly enough to stay among 
the most fit in the population (Rouzine et al., 2003; Brunet et al., 2007; Desai and Fisher, 2007; 
Hallatschek, 2011; Goyal et al., 2012; Desai et al., 2013; Neher and Hallatschek, 2013) and thus 
have a chance to continue into the future.
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In the specific context of human seasonal influenza A/H3N2 viruses, the study of their antigenic 
evolution has identified specific amino-acid substitutions with large phenotypic effects (Koel et al., 
2013), that have been responsible for the observed stepwise replacement of antigenic variants over 
time (Smith et al., 2004). Yet, the evolution of seasonal influenza viruses is also marked by the contin-
uous accumulation of mutations that have small or no antigenic effects but nevertheless potentially 
affect fitness (Bhatt et al., 2011; Strelkowa and Lässig, 2012), for example compensatory or permis-
sive mutations (Gong et al., 2013). Previous attempts at predicting the evolution of seasonal influenza 
viruses have tried to identify molecular signatures that are predictive of future success (Bush et al., 
1999) or used clustering approaches based on amino acid sequences (Plotkin et al., 2002). Recently, 
Łuksza and Lässig (2014) constructed an explicit fitness model based on sequence data from the 
hemagglutinin (HA1) surface protein. The utility of these explicit models depend on the availability of 
extensive historical data or a detailed understanding of the influenza virus sequence-to-fitness map.

Rather than constructing an explicit fitness model, which is currently impossible for most organisms, 
we developed a general algorithm to infer fitness from the shape of reconstructed genealogical 
trees without using any molecular information. Our approach is based on a simple idea: since high 
(Malthusian) fitness implies many offspring, which in turn implies branching, the shape of the tree can 
be exploited to infer fitness (Dayarian and Shraiman, 2014). Here, we developed a quantitative model 
of fitness dynamics on genealogical trees, which is based on recent progress in understanding the 
statistical structure of genealogies in adapting populations (Neher and Hallatschek, 2013). Following 
Neher and Hallatschek (2013), our model assumes: 1) that the population is under persistent direc-
tional selection and 2) fitness changes along lineages in small steps through the continuous accumula-
tion of small effect mutations (Figure 1B). This fitness model resembles the well-known infinitesimal 
model of quantitative genetics (Falconer and Mackay, 1996) in the sense that many small effect muta-
tions give rise to a bell-shaped fitness distribution on which selection acts (Neher, 2013). However, the 
infinitesimal model itself provides no insight into the relationship between the structure of genealog-
ical trees and fitness: this insight stems from the more recent work on the dynamics of adaptation in 

eLife digest When viruses multiply, they copy their genetic material to make clones of 
themselves. However, the genetic material in the clone is often slightly different from the genetic 
material in the original virus. These mutations can be caused by mistakes made during copying or 
by radiation or chemicals. Further mutations arise when the clones multiply, which means that, after 
many generations, there will be quite large differences in the genetic material carried by many members 
of the population. Most mutations have little or no effect on the ‘fitness’ of an individual - that is, on 
its ability to survive and multiply - but some mutations do have an influence.

Some viruses, like seasonal influenza (flu) viruses, can mutate so rapidly that the most common 
strains change from year to year. This is why new flu vaccines are needed every year. To date most 
attempts to predict the evolution of seasonal flu viruses have focused on identifying specific 
features within the genetic sequences that might indicate fitness. However, such approaches require 
lots of information about the viruses, and this information is often not available.

To address this problem, Neher, Russell and Shraiman have developed a more general method to 
predict fitness from virus genetic sequences. First, a ‘family tree’ for a virus population - which 
shows how each strain of the virus is related to other strains - was constructed by comparing the 
genetic sequences.

The next step was based on the observation that as long as differences in fitness arise from the 
accumulation of multiple mutations, the branching structure of this family tree will bear a visible 
imprint of the natural selection process as it unfolds. Using this insight and methods borrowed from 
statistical physics, Neher et al. then analyzed the shape and branching pattern of the tree to work 
out the fitness of the different strains relative to each other.

Neher et al. tested the method using historical influenza A virus data. In 16 of the 19 years 
studied, the family tree approach made meaningful predictions about which viruses were most likely 
to give rise to future epidemics. The ability to predict influenza virus evolution from tree shape 
alone suggests that influenza virus evolution may be more predictable than previously expected.
DOI: 10.7554/eLife.03568.002
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Figure 1. Genealogies in adapting populations.  
(A and B) illustrate the genealogy of two successive 
samples embedded into the (Malthusian) fitness 
distribution of the population indicated in grey. In 
absence of adaptive mutations, fitness declines due to 
a changing environment or accumulation of deleterious 
mutations. Only one lineage (thick line) persists from 
first sample to second sample. (A) Evolution proceeds 
via rare large effect mutations (dashed arrows) that 
occur in a population with little fitness variance. All 
individuals are roughly equally likely to pick up the large 
effect mutation, rendering evolution unpredictable from 
sequence data alone. (B) Conversely, if adaptation is 
due to many small effect mutations, the successful 
lineage (thick) is always among the most fit individuals. 
Being able to predict relative fitness therefore enables 
to pick a progenitor of the future population.
DOI: 10.7554/eLife.03568.003

large asexual populations (Tsimring et al., 1996; 
Rouzine et al., 2003; Desai and Fisher, 2007; 
Desai et al., 2013 ; Neher and Hallatschek, 2013) 
and in populations with occasional reassortment 
(Neher and Shraiman, 2011). After testing the 
algorithm on simulated data we apply our algo-
rithm to historical data on human seasonal influ-
enza A/H3N2 virus hemagglutinin sequences. 
Despite multiple confounding factors – discussed 
below – we find that our algorithm makes informa-
tive predictions about influenza virus evolution.

Results
The fitness distribution on a tree
Intuitively, we expect that an exceptionally fit 
internal node in a genealogical tree will be at the 
root of a rapidly branching, and hence expand-
ing, clade (e.g. node 2 in Figure 2A). Similarly, 
extant individuals with high fitness are likely to 
be recent descendants of internal nodes with 
high fitness (e.g. node 3 in Figure 2A). By tracing 
fitness along lineages and integrating across the 
tree, the algorithm described below makes this 
intuition precise and quantitative.

As input, our algorithm requires a genealogical 
tree, e.g. a tree reconstructed from a sample of  
genomic sequences. For a given tree T, we derived 
the joint probability distribution PðxjTÞ  for the  
fitnesses x= x0; x1; . . . of all internal nodes (corre-
sponding to reconstructed ancestral sequences) 

and external nodes (corresponding to the sampled genomes). Fitness xi of each node i is measured 

relative to the population mean fitness at the time when the corresponding individual was sampled. 

PðxjTÞ is given by a product of propagators gð · j · Þ for each branch

PðxjTÞ= p0ðx0Þ
ZðTÞ

Ynint
i=0

gðxi1 ; ti1 jxi; tiÞgðxi2 ; ti2 jxi; tiÞ; (1)

where p0ðxÞ is the fitness distribution in the population (see ‘Materials and methods’ for details) and 
the index i runs from 0 (the root) through all nint  internal nodes. The indices i1 and i2 denote the two 
children of node i, while ZðTÞ ensures normalization of the distribution. Eq. (1) has a structure similar 
to the expression for the likelihood of sampled sequences, given a tree T, defined in phylogenetic 
analysis (Felsenstein, 2003). The main difference is that instead of defining the probability of mutation 
from one character state to another, the branch propagator gðxj; tj

��xi; tiÞ describes the likelihood of the 
lineage to connect an ancestor with fitness xi at time ti  to a child with fitness xj at a later time tj  (child 
in sense of a subclade in the tree, rather than direct offspring). Note that a branch connecting nodes 
i and j implies that all sampled descendants of i are also descendants of j, i.e., the ‘branch does not 
branch’. This non-branching condition is part of the branch propagator which therefore depends on 
the fraction ω of the total population that is represented in the sample (see ‘Materials and methods’ 
for details).

Figure 2A illustrates the propagator as function of child fitness xj, which describes the fitness dis-
tribution of children, conditioned on ancestral fitness xi. At small Δt= tj − ti, the distribution is peaked 
around the ancestor. At long times, memory of ancestral fitness is lost and the propagator approaches 
the population distribution. Backwards in time, gðxj; tj

��xi; tiÞ describes (using the Bayesian inversion 
formula [Felsenstein, 2003]) the fitness distribution of the ancestor i given a sampled child with fitness 
xj at time tj . Far in the past, the ancestor fitness distribution converges to a narrow peak in the high 
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fitness tail (Rouzine and Coffin, 2007; Neher and Hallatschek, 2013). See ‘Materials and methods’ 
for a more detailed discussion.

The fitness dynamics along a lineage resemble a random walk on which each step corresponds to a 
mutation with a certain effect on fitness. This walk is biased towards high fitness by selection, which 
makes fitter lineages more likely to survive and eventually be sampled. If many mutations contribute, 
the dynamics of fitness along branches can be approximated by selection-biased diffusion (SBD) as 
described in ‘Materials and methods’, Equation (9) – Equation (11). The fitness diffusion constant 
of a branch is given by D= uhs2i=2, where u is the genome wide mutation rate, and h·i denotes the 
average over the effect sizes of mutations (Tsimring et al., 1996). Fitness diffusion and stochasticity 
due to finite populations determine the fitness variance σ2 in the population (Cohen et al., 2005).

Based on the SBD approximation derived in ‘Materials and methods’, we implemented a program 
that numerically solves for the branch propagator and, by going up and down the tree using a ‘Message 

Figure 2. Inferring fitness from genealogical trees. (A) The inference algorithm is based on branch propagators 
associated with each branch of the reconstructed tree (middle). Branch propagators characterize the fitness 
distribution of child nodes given the fitness of the ancestral node (left). The internal node 2 would have higher 
marginal fitness estimate (right) than node 1, as node 2 has more children. The inferred distribution of the fitness of 
the external node 3 has broadened along the branch from node 2. (B–D) Analysis of simulated data. Panel B shows 
for a typical example that inferred fitness is well correlated with the true fitness with a rank correlation coefficient 
ρ=0:56. This correlation increases with increasing mutation rate as shown in panel C for 100 simulated data sets 
each (boxes cover the interquartile range, red lines indicate the median). Panel D shows that the sequence with the 
highest inferred fitness tends to be similar to the population 200 generations in the future. Both axis show the 
average Hamming distance to the future population between the predicted and the post-hoc optimal sequence on 
the y and x-axis, respectively, for 100 simulated data sets. Both distances are relative to the average distance 
between the present and future population. Parameters: N =20000, nA =0:08, Γ=0:2, u=0:064 (B,D).
DOI: 10.7554/eLife.03568.004
The following figure supplements are available for figure 2:

Figure supplement 1. Predictability increases with genetic diversity. 
DOI: 10.7554/eLife.03568.005

Figure supplement 2. Prediction from continuously sampled sequences. 
DOI: 10.7554/eLife.03568.006
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Passing’ (similar to dynamic programming) technique (Mézard and Montanari, 2009), calculates the 
marginal fitness distribution for each node as illustrated in Figure 2A, for details see ‘Materials and 
methods’.

Fitness inference is insensitive to model assumptions
To explore the extent to which the idealized SBD model assuming infinitesimal mutations is able to 
infer fitness when evolution happens via discrete mutations, we simulated a simple model of evolution 
with fixed fitness variance (σ =0:03) (Zanini and Neher, 2012). In order to mimic adaptive evolution in 
a changing environment we introduced sites in the simulated genome that allow for beneficial mutations 
at rate nA =0:02; . . . ; 0:16 per generation in a genome otherwise dominated by deleterious mutations. 
Every 200 generations, we took a random sample of sequences from the simulated population. We 
recorded the fitness of each sampled sequence, which we will compare with our inferences below.

In order to apply the fitness inference method to a reconstructed tree, we needed to parameterize 
the model and convert branch length measured as similarity between sequences into time. When 
measuring time in units of σ−1, the SBD model has only one free dimensionless parameter Γ=Dσ−3 that 
describes the relative importance of selection and stochastic processes. Γ  is inversely proportional to 
the square root of the logarithm of the population size and hence does not vary greatly (Tsimring 
et al., 1996; Cohen et al., 2005). We used Γ=0:2 and 0.5 corresponding to moderate and more rapid 
diffusion relative to selection, respectively. Coalescent theory of adapting population connects pair-
wise sequence similarity to Γ . The choice of Γ  fixes the conversion from branch length to time via 
Equation (20) (Neher and Hallatschek, 2013). In addition to Γ  we need to fix ω. Since we used a 
sample of 200 sequences out of a total of N =20000 sequences, ω=0:01 (ultimately, ω=σ  enters the 
algorithm, see ‘Materials and methods’). Using these parameters, we applied our method to a 
reconstructed tree and report the mean posterior fitness as ‘inferred fitness’ for each internal and 
external node.

Figure 2B shows the inferred vs true fitness for a typical simulation. The rank order of fitness is well 
predicted (Spearman's correlation coefficients around 0.5). Figure 2C shows that fitness rankings 
improve with increasing mutation rates. This is expected, since increased mutation rates correspond 
to a larger number of mutations that contribute to fitness and make the SBD model a better approxi-
mation. This behavior is consistent across different rates of adaptive mutations and depends weakly on 
our choice of Γ  (Figure 2—figure supplement 1). Large Γ  performs better at low mutation rates when 
fitness diversity is dominated by only a few mutations, corresponding to more rapid fitness diffusion 
relative to selection and coalescence.

High inferred fitness predicts progenitor sequences
Next, we asked whether sequences that we predict to have high fitness are close in sequence to 
the progenitor lineage of future populations. Figure 2D shows the Hamming distance ΔðpredictionÞ of the 
sequence of the individual with the highest fitness estimate to the population 200 generations in the 
future vs the ΔðminimalÞ for the post-hoc optimal pick. The measure ΔðsequenceÞ is normalized to 
the average Hamming distance between the present and future population. In 40 out of 100 simulations, 
the top-ranked sequence is an almost optimal pick (points close to the diagonal in Figure 2D). In 8 out 
of 100 cases, the prediction is better than a random pick (points below the dashed line Figure 2D).

The fitness inferences shown in Figure 2B–C used 200 sequences sampled from the same genera-
tion. However, the influenza data to which we apply our algorithm below is continuously sampled 
throughout the year. In Figure 2—figure supplement 2 we reproduce panels B–C using 200 sequences 
sampled from the simulation over a time interval of 100 generation. This gives highly similar results.

Local branching density as a heuristic ranking
In general, faithful inference of the posterior fitness distribution requires numerical solution for the 
branch propagators and knowledge of the parameters Γ  and ω=σ . We observed, however, that the 
ranking of nodes by fitness and the prediction of progenitor lineages depends little on these param-
eters. This insensitivity suggests that the fitness ranking depends primarily on a more universal quan-
tity on which the inference algorithm builds.

In ‘Materials and methods’, we show that the fitness estimates of internal nodes increase with the 
total branch length downstream of these nodes–at least for short time periods. The downstream tree 
length acts as a “polarizer” that pushes the fitness distribution of the node away from the population 
mean towards high fitness. For given number of descendants, the length of a subtree is maximal if it is 

http://dx.doi.org/10.7554/eLife.03568
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star-like. This is intutive, as star-like subtrees indicate rapid branching (or multiple mergers backwards 
in time) which is expected for high fitness nodes. Conversely, prolonged absence of branching of a 
lineage indicates relatively low fitness.

If fitness changes gradually along lineages, high fitness of a node will coincide with both upstream 
and downstream branching–at least within a certain neighborhood of the tree. The relevant size of the 
neigborhood will depend on how rapidly fitness decorrelates along lineages. Based on this intuition, 
we developed a model-independent heuristic ranking algorithm: for each internal and terminal node 
i, we calculate a local branching index (LBI) λiðτÞ defined as total surrounding tree length exponentially 
discounted with increasing distance from the focal node. The scale τ of the exponential discounting 
corresponds to the size of the relevant tree neighborhood or the time over which fitness is ‘remem-
bered’ across the tree. Within the SBD model, τ corresponds to the equilibration time scale of lineage 
fitness in the high fitness tail, which is of the order Tc=

ffiffiffiffiffiffiffiffiffiffi
logN

p
, where Tc is the coalescence time scale 

(Neher and Hallatschek, 2013).
The LBI can be efficiently calculated with the same message passing techniques we used to calculate 

the posterior fitness distribution. Remarkably, rankings obtained by this simple heuristic are almost as 
accurate as fitness inference using the more complex SBD model. Figure 3 shows Spearman’s correla-
tion coefficient of λiðτÞ with true fitness as a function of pairwise difference for different memory time 
scales τ and compares it to the ranking via mean inferred fitness. The heuristic λiðτÞ not only correlates 
well with true fitness in simulations but sequences with the highest λiðτÞ also tend to be close to the 
progenitor of future populations (Figure 3—figure supplement 1). Comparing the performance of 
the LBI to the full fitness inference in Figure 3, we concluded that a neighborhood size should be 
τ≈ 0:0625 of the average pairwise distance in the sample.

Prediction of seasonal influenza A/H3N2 progenitor lineages
Having validated our algorithm on simulated data and presented a model independent method to 
rank sequences, we attempted to predict progenitor sequences of seasonal influenza A/H3N2 viruses. 
We used samples of influenza A/H3N2 virus hemagglutinin (HA1) sequences from one year (May–
February, Asia and North America, at most 100 sequence from each region) to predict the closest 
relative of the population circulating in the following (northern hemisphere) winter (October–March, 
Asia and North America) for the years 1995–2013. All HA1 domain sequences used for our analysis came 
from the public domain and are available from Influenza Research Database (www.fludb.org (Squires 
et al., 2012)). Next, we built maximum likelihood trees using fasttree (Price et al., 2009), collapsed 
zero-length branches into polytomies, and ranked external and internal nodes using the LBI. We set the 
memory time scale to τ=0:0625 in units of average pairwise distance as suggested by the simulation 
data. Details of the data sets used for making predictions and discussion of potential biases are given 
in ‘Materials and methods’. Figure 4A&B show example trees of the prediction and test sets for 2007.

Figure 4C shows the nucleotide distance of our prediction to the A/H3N2 virus population of the 
next season, both for the top-ranked internal and external node of each year. Using the highest ranked 
external node (Figure 3C, black squares) is similar to using the highest ranked internal node (Figure 3C, 
red diamonds) in all years but 1997. The highest ranked internal node predict years 1997–1999, 2003, 
2006–2009, and 2013, reasonably well. Notably, they fail in 1995, 1996, and 2002, while being of 
intermediate accuracy in the remaining years. The dependence of the prediction accuracy on the 
neighborhood size τ is shown in Figure 4—figure supplement 1. We also predicted successful pro-
genitor strains using the fitness inference based on the SBD model which yields results very similar to 
the ranking by LBI–sometimes slightly better, sometimes worse depending on parameter choice.

We compared our predictions to vaccine strain predictions obtained by Łuksza and Lässig 
(2014) who predict progenitors of future epidemics as we do here, albeit using an influenza spe-
cific model with four parameters, two of which are trained for each individual prediction on data 
from several preceding years. On average, using the same time cutoffs for prediction (February  
to predict October) as we used above, Łuksa and Lässig achieve an accuracy comparable to our 
parameter-free ranking based (see Figure 4—figure supplement 2). Interestingly, these two 
rather different approaches yield very similar predictions on a year to year basis. One potential 
explanation for this concordance is an ad hoc aspect of Łuksa and Lässig's model meant to capture 
epistatic interactions: the total number of synonymous mutations downstream of each clade is 
used as an additional predictor. The number of synonymous mutations is strongly correlated with 
tree length and hence with λiðτÞ.

http://dx.doi.org/10.7554/eLife.03568
http://www.fludb.org
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To quantify prediction quality across years, we define the distance measure 
d= ðΔðpredictionÞ−ΔðminimalÞÞ=ð1−ΔðminimalÞÞ such that an optimal prediction has d=0 and a random 
pick has d=1. The average of d over all years is denoted by d. Figure 5 shows bootstrap distributions 
of d for our methods and compares it to Łuksza and Lässig (2014) as well as two naive prediction 
methods: (i) a growth rate estimate of individual clades obtained by fitting an exponential curve to the 
fraction of the total sequences that are part of this clade in three time intervals between May and 
February, and (ii) the sequence of the most advanced node in a ladderized tree. Predictions with the 
method described here and by Łuksza and Lässig (2014) are comparable within errorbars, while the 
two naive estimators do substantially worse on average. The dependence of the average predictive 
power of the LBI on the neighborhood size τ is shown in Figure 5—figure supplement 1.

Inferred fitness increases are associated with epitope mutations
Changes in fitness along branches can be associated with the types of mutations on those branches. 
We found that branches corresponding to the top quartile of differentials of λiðτÞ are enriched for non-
synonymous substitutions over synonymous mutations. Restricting non-synonymous mutations to the 
epitopes A–D (used in (Łuksza and Lässig, 2014) and defined in (Shih et al., 2007)) increases this 
enrichment to approximately 2-fold, see Table 1. Further restriction to the 7 loci identified Koel et al. 
increases the enrichment slightly, but their number is small and the power to detect additional enrich-
ment is low. These findings are consistent with the notion that influenza evolution is driven by antigenic 
novelty (Wiley et al., 1981; Hampson, 2002; Smith et al., 2004) and provide independent confirma-
tion of the power of the sequences ranking and fitness inference algorithm.

Discussion
Starting with a model of adaptive evolution, we developed a probabilistic description of the fitness 
dynamics on genealogical trees and presented an algorithm to infer fitness of individual nodes in the 

Figure 3. Local tree length as a fitness ranking. Rank correlation between the true fitness and the LBI λiðτÞ is shown 
as a function of pairwise diversity in the sample. Different curves correspond to different neighborhood sizes τ, 
which is measured in units of the average pairwise distance.
DOI: 10.7554/eLife.03568.007
The following figure supplement is available for figure 3:

Figure supplement 1. The LBI predicts progenitor sequences. 
DOI: 10.7554/eLife.03568.008

http://dx.doi.org/10.7554/eLife.03568
http://dx.doi.org/10.7554/eLife.03568.007
http://dx.doi.org/10.7554/eLife.03568.008
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tree. We validated this algorithm using trees reconstructed from simulated sequences and showed 
that the sequence with the highest inferred fitness tends to be a close match to the progenitor of 
future populations. Analysis of the model revealed that a simple quantity–the local branching index 
(LBI)–determines the fitness estimates and can be used to rank sequences by fitness with similar 

Figure 4. Predicting the evolution of seasonal influenza A/H3N2 viruses. (A) A genealogical tree of a sample of HA1 sequences from May 2006 to end  
of February 2007. Nodes are colored according to our fitness ranking λiðτÞ. The highest ranked node is marked by a black arrow. (B) A tree of the 
same sequences from (A) (colored) and sequences from October 2007 to end of March 2008 (in grey). Our algorithm successfully predicts a sequence 
genetically close and directly ancestral to viruses circulating the following winter. (C) For each year from 1995 to 2013 we predicted a progenitor 
sequence and calculated its nucleotide distance to the A/H3N2 population of the following winter. Predictions based on terminal or internal sequences 
are very similar. The figure shows the average ΔðpredictionÞ of 50 runs using subsamples of the data. A random pick from the prediction set corresponds 
to the solid line at 1. The dashed lines indicate the optimal extant sequence at time of prediction. The distance of the dashed line from the line at  
1 indicates the closeness of the optimal extant sequence to future populations.
DOI: 10.7554/eLife.03568.009
The following figure supplements are available for figure 4:

Figure supplement 1. Variation of predictions upon variation of the memory time scale of the LBI λiðτÞ. 
DOI: 10.7554/eLife.03568.010

Figure supplement 2. Comparison to predictions by Łuksza and Lässig (2014). 
DOI: 10.7554/eLife.03568.011

Figure supplement 3. High LBI predicts clade expansion. 
DOI: 10.7554/eLife.03568.012

http://dx.doi.org/10.7554/eLife.03568
http://dx.doi.org/10.7554/eLife.03568.009
http://dx.doi.org/10.7554/eLife.03568.010
http://dx.doi.org/10.7554/eLife.03568.011
http://dx.doi.org/10.7554/eLife.03568.012
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accuracy as the full fitness inference algorithm. The only parameter of the LBI is the size of the neigh-
borhood on the tree and a suitable value can be chosen from simulated data.

Our fitness inference framework is based on the selection-biased diffusion model that assumes 
evolution proceeds via accumulation of many small effect mutations. As expected, its predictive power 
increases with increasing level of non-neutral genetic diversity (Figure 2C). However, predictive power 
is retained down to rather low pairwise distances, see Figure 2—figure supplement 1, where the 
model is a poor approximation. This suggests that the relationship between fitness and the structure 
of genealogical trees is more universal than the specific details of the mutation effect distribution that 
drive evolutionary dynamics (Neher and Hallatschek, 2013). The essence of this relationship between 
fitness and tree shape is picked up by the LBI. When applied to influenza A/H3N2 viruses sequences, 
a ranking by LBI predicts progenitor lineages with high accuracy.

One of the dominant paradigms for influenza A/H3N2 virus evolution has been the exploration of 
‘neutral’ networks, punctuated by bursts of rapid adaptation through large effect mutations (Koelle 
et al., 2006; Nimwegen et al., 1999). In contrast, our ability to make meaningful predictions from the 
shape of genealogical trees of influenza virus sequences suggests that fitness variation persists in 
A/H3N2 populations. Fitness in the context of seasonal influenza viruses includes antigenic evolution 
as well as compensatory and deleterious mutations–within HA and other segments–that may contrib-
ute to fitness variation, shape the genealogies, and be determinants of future success. This conclusion 
is consistent with other existing evidence for ubiquitous selection in A/H3N2 populations (Bhatt et al., 
2011; Strelkowa and Lässig, 2012). The applicability of our fitness inference scheme and the LBI 
ranking is further supported by the substantial enrichment in the number of non-synonymous 
substitutions at epitope loci in the lineages with predicted high relative fitness. These epitopes histor-
ically have high dn=ds suggesting positive selection. Our model is agnostic to sequence and protein 
structure but nevertheless associates branches containing these mutations with increasing fitness.

It is also clear that large effect mutations, such as the ones associated with antigenic cluster transitions 
(Koel et al., 2013) can play an important role in the evolution of human seasonal influenza viruses. Many 
of the years in which our predictions are suboptimal (e.g., 1995, 2002, and 2004) correspond to 

Figure 5. Comparison of predictors. Transformed genetic distance d  averaged over 1000 bootstrap samples 
(bootstrapping years) to the next influenza season. We compared our method using the sequence of the top 
ranked internal node, external node, the predictions by Łuksza and Lässig (2014), the ancestral sequence of 
clades with the largest estimated growth rate, and the sequence of the most ‘advanced’ node in a ladderized tree.
DOI: 10.7554/eLife.03568.013
The following figure supplement is available for figure 5:

Figure supplement 1. Dependence of prediction accuracy on τ. 
DOI: 10.7554/eLife.03568.014
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antigenic cluster transitions in which antigenic 
properties changed drastically via specific large 
effect mutations. We tried to improve predictions 
by assigning additional positive fitness increments 
to substitutions at those loci identified by Koel 
et al. While this did improve results in some years, 
it also resulted in false positives which erased the 
overall improvement in predictive power. In some 
years in which these mutations are important, they 
tend to occur on many genetic backgrounds. This 
could explain why these mutations be themselves 
are not very predictive in our framework.

The fact that the branching patterns of 
reconstructed influenza A/H3N2 trees are predic-
tive is surprising. In addition to occasional large 
effect effect mutations, e.g. those that cause 
substantial antigenic change, confounders such 
as the heterogeneity of sampling, complicated 
migration patterns, and demographic substructure 
should hamper prediction. The insensitivity to local 
oversampling is expected from the structure of our 
algorithm which senses the total length of sub-
trees (rather then the number of leaves). Local 
oversampling will add many very short branches 
that perturb the total tree length only slightly. 
Subpopulations of different size, seasonality, and 
migration patterns, however, will perturb the coa-
lescence patterns in parts of the reconstructed 
tree and should decrease predictability. Successful 
prediction therefore reinforces the conclusion that 
circulating influenza A/H3N2 populations harbor 
fitness variation. On the other hand, predictions 
might be improved by combining the shape of 
genealogical trees with antigenic information 
(Bedford et al., 2014), biophysical and structural 

knowledge (Koel et al., 2013), patterns of past evolution (Łuksza and Lässig, 2014), and plausible 
geographic sources (Russell et al., 2008; Lemey et al., 2014). However, each of these refinements 
introduces additional parameters into the model that need to be trained if not known a priori.

A defining feature of our method to predict evolution is that it can operate on a static set of sequences 
from a single time point and does not require historical data. We use historical data for influenza A/H3N2 
only to validate the predictions. In Figure 5, we compare our results to a method that explicitly uses 
historical data (available for the influenza A/H3N2) to identify low frequency but expanding clades. By 
extrapolating their expansion into the future, one can anticipate the dominant strains of next year. 
Interestingly we found that prediction based on the reconstructed genealogy not only captures similar 
information, but also performs comparably if not better, even without access to historical data.

In summary, we have shown that the shape of reconstructed genealogies holds information about 
the relative fitness of the sampled individuals that can be exploited to predict the genetic composi-
tion of future populations, at least when fitness differences depend on multiple mutations. Since our 
algorithm requires nothing but a reconstructed genealogy as input, it should be applicable in many 
scenarios ranging from RNA viruses to cancer cell populations.

Materials and methods
Derivation of the fitness inference algorithm
Our algorithm is based on a branching process approximation to replicating clones within a finite pop-
ulation. Here, we first show how we use this approximation to calculate the probability that offspring 

Table 1. Non-synonymous mutations at epitopes 
correlate with increasing fitness

Quartile # non-syn # syn # epi # Koel

25 130 155 43 7

50 159 178 57 10

75 184 205 74 21

100 209 222 115 22

total 682 760 289 60

Comparison enrichment p-value

non-syn vs syn 1.12 n.s.

epi vs syn 1.9 0.002

Koel vs syn 2.2 0.08

epi vs non-syn 1.7 0.015

Koel vs non-syn 2.0 n.s.

For each tree constructed for the years 1995–2013, we 
calculated the increment in λi (τ) with τ = 0.0625 along 
each branch and determined the likely mutations on 
each branch. Branches were then sorted into quartiles 
according to changes in λi (τ). The left table shows the 
counts of non-synonymous (non-syn), synonymous (syn), 
non-synonymous mutations at epitope site (epi) and 
non-synonymous mutations at Koel positions (Koel)  
for branches in different quartiles. The right table 
quantifies the enrichment of certain types of mutations 
on branches in the top quartile relative the bottom 
quartile. Non-synonymous mutations at epitopes and 
Koel positions are approximately twofold enriched 
relative to synonymous mutations. Enrichment (odds 
ratio) and p-values were obtained using the Fisher exact 
test as implemented in scipy.stats (Oliphant, 2007).
DOI: 10.7554/eLife.03568.015
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of an individual with a certain fitness are sampled. From there, we derive an equation for the branch 
propagators, that we solve numerically, and combine the propagators into the expression for the posterior 
fitness distribution given in Equation (1).

Offspring number distributions
The quantitative probabilistic description of clonal propagation is provided by the distribution Pðnjx; tÞ 
of the number of offspring n after time t given the ancestor had fitness x. Using a ‘1st-step’ equation, 
that is, writing an equation for infinitesimal changes at the initial point ðy; tÞ, we find for the backwards 
master equation for Pðnjx; tÞ

Pðnjx+Δtv; t+ΔtÞ= ½1−Δtð2+ x+ uÞ�  Pðnjx; tÞ+ΔtÆuPðnjx+ s; tÞæ
+Δtð1+ xÞ P

n

n′=0
Pðn− n′jx; tÞPðn′jx; tÞ

 

(2)

where the death rate is set to one and the birth rate is given by 1+ x (see also (Neher and Hallatschek, 
2013)). The first term corresponds to the probability of nothing happening in the time interval Δt  and 
the second term in h·i  corresponds to mutations averaged over the distribution μðsÞ of possible fitness 

effects s with the total mutation rate given by u=
R
ds  μðsÞ. The last term corresponds to replication of 

the individual. At the earlier time point t+Δt, fitness x was larger by Δtv due to the deterioration of the 
environment with velocity v. So far, this equation holds for arbitrary distribution of fitness effects. To 
make analytical progress, we assume that the distribution of mutational effects is short-tailed 
(exponential or steeper) and that the total mutation rate u is large compared to the typical effect. In 
this case, Equation (2) can be rearranged into a differential equation where mutations are captured by 
the mean mutational effect and the mutational variance (Tsimring et al., 1996; Cohen et al., 2005; 
Neher and Hallatschek, 2013).

v
∂Pðnjx; tÞ

∂x
+
∂Pðnjx; tÞ

∂t
= −ð2+ xÞPðnjx; tÞ+ uÆsæ

∂Pðnjx; tÞ
∂x

+
uÆs2æ
2

∂2Pðnjx; tÞ
∂x2

+ ð1+ xÞ P
n

n′=0
Pðn− n′jx; tÞPðn′jx; tÞ

 

(3)

The second term on the right hand side corresponds to the directional effect of mutations on 
fitness, while the third term to the diffusive dynamics of fitness due to mutations. To further analyze the 
behavior of Pðnjx; tÞ, it is useful to consider the generating function ψωðx; tÞ=

P
nð1−ωÞnPðnjx; tÞ, 

which obeys

∂ψωðx; tÞ
∂t

=−ð2+ xÞψωðx; tÞ+ ðuÆsæ− vÞ ∂ψωðx; tÞ
∂x

+
uÆs2æ
2

∂2ψωðx; tÞ
∂x2

+ ð1+ xÞψ2
ωðx; tÞ

 
(4)

Defining ϕωðx; tÞ=1−ψωðx; tÞ, the fitness diffusion constant D = u〈s2〉/2, and the variance in fitness 
σ2 = v− uÆsæ, we have

∂ϕωðx; tÞ
∂t

= xϕωðx; tÞ− σ2
∂ϕωðx; tÞ

∂x
+D

∂2ϕωðx; tÞ
∂x2

− ð1+ xÞϕ2
ωðx; tÞ (5)

with initial condition ϕωðx; 0Þ=ω. This equation for the generating function can be solved numerically 
or analytically in limiting cases. To approximate the fitness distribution on a given tree, we will solve 
this equation numerically.

It is also useful to explicitly define the ‘reproductive value’ Rðx; tÞ defined as the expected number 
of offspring of a genotype with fitness x after t generations, Rðx; tÞ=P

nnPðnjx; tÞ. From the definition 
of the generating function it follows that Rðx; tÞ= ∂ωϕωðx; tÞ

��
ω=0 . Differentiating Equation (5) w.r.t. ω 

and noting that ϕωðx; tÞ
��
ω=0 = 0 yields a linear equation for Rðx; tÞ (essentially Equation (5) without the 

term ϕ2) which can be readily integrated. The expected number of offspring of one individual after 
time t given it initially had fitness x is

http://dx.doi.org/10.7554/eLife.03568
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Rðx; tÞ= ext−
σ2 t2
2 + Dt3

3
 (6)

This approximation is only valid for times short compared to the coalescence time Tc, but it offers 
important insight into the dynamics of lineages: Initially, the lineage grows into a clone with rate x. The 
second term in the exponent describes how this growth slows since the remainder of the population 
is adapting with rate σ2. The last term accounts for the fact that the offspring we consider can them-
selves change in fitness through mutations, the action of which is captured by the fitness diffusion 
constant D.

Lineage sampling probability
The generating function ϕωðx; tÞ derived above has the interpretation of the probability that a lineage is 
represented in a sample of size M from a population of size N with ω=M=N . From its definition, 
we have

ϕωðx; tÞ=1−
X∞
n=0

 Pðnjx; tÞð1−ωÞn: (7)

Each term ð1−ωÞn is the probability that none of the n offspring are in the sample. By summing over 
the distribution of n and subtracting the sum from 1, one obtains the probability of at least one 
offspring being sampled. The generating function can be accurately approximated in regimes where 
ϕω is small and the non-linear term in Equation (5) can be neglected, as well as the regime of large 
enough x where ϕ ‘saturates’: ϕωðx; tÞ≈ x, see (Neher and Hallatschek, 2013). These two asymptotic 
solutions can be combined to yield the approximation

ϕωðx; tÞ≈
ωxRðx; tÞ

x+ω½Rðx; tÞ− 1�  (8)

Note that this approximation satisfies the initial condition ϕωðx; 0Þ=ω, correctly tends to x for x>0 
at long times, and recovers the neutral behavior ϕωð0; tÞ=ω=ð1+ωtÞ in the x= σ2 =D=0 limit.

Branch propagator
Having calculated the lineage sampling probability, we are now in a position to derive equations gov-
erning the behavior of the branch propagator, that is, the probability of there being an individual with 
fitness x at time t′ (the child), given it descends from an ancestor with fitness y at time t and all sampled 
descendants of the ancestor are also descendants of the child. The latter condition amounts to the 
requirement that in a tree the link between the ancestor and the child does not branch. Using a ‘1st-
step’ equation similar to Equation (2), we have

gðx; t′��y+ σ2Δt; t+ΔtÞ= gðx; t′jy; tÞ−Δtð2+ yÞgðx; t′jy; tÞ

+ΔtD
∂2gðx; t′jy; tÞ

∂y2

+Δt2ð1+ yÞ½1−ϕωðy; tÞ�gðx; t′jy; tÞ: (9)

The last term describes a ‘birth’ event in the ancestral lineage with one of the branches surviving up 
to t′ (at which time its fitness is in the ½x; x+ dx� interval) while the other one is not sampled, which 
occurs with probability 1−ϕωðy; tÞ at a sampling density ω. The y→ y+ σ2Δt shift in the argument of the 
term on the left-hand-side parametrizes the translation of the mean fitness in time Δt . Equation (9) 
reduces to the differential equation

∂tgðx; t′jy; tÞ=
�
y− 2ϕωðy; tÞ

�
gðx; t′jy; tÞ− σ2∂ygðx; t′jy; tÞ+D∂2ygðx; t′jy; tÞ (10)

which is complemented with the initial condition gðx; tjy; tÞ= δðx− yÞ. In deriving this condition, we 
have assumed that y � 1, which is a good assumption when σ (the standard deviation in fitness) is 
small. The fitness differences in a single generation are small in most populations, such that this as-
sumption is not restrictive. Furthermore, violation of this assumption does not change the qualitative 

http://dx.doi.org/10.7554/eLife.03568
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behavior of the gð·j·Þ. When inferring fitness on trees, we will generally solve this equation numerically. 
Some limits, however, can be addressed analytically as we will see below.

Numerical solutions of gðx; t′jy; tÞ are shown in Figure 6. For a fixed ancestor at ðy; tÞ, gðx; t′jy; tÞ is the 
density of offspring with fitness x at time t′ subject to the following condition: Only one individual from 
this group of offspring contributes to the sample at present (this is the condition that the lineage con-
necting ðx; t′Þ and ðy; tÞ is unbranched). The propagator gðx; t′jy; tÞ broadens in x as t− t′ increases as 
shown in Figure 6A for a case of high (red, y>2) and low (blue, y=0) initial fitness. Figure 6B shows 
how the integral gðx; t′jy; tÞR

dx  increases with t for y>0 but decreases for y<0. The integral of 
gðx; t′jy; tÞR

dx  differs from the reproductive value Rðy; t − t′Þ, shown as dashed lines in Figure 6B, only in 
the additional sampling condition.

At fixed ðx; t′Þ, gðx; t′jy; tÞ is peaked around x for small t− t′ and this peak move to higher fitness as 
as t− t′ increases and converges against a steady distribution far in the past. This is seen in Figure 6C, 
where the gðx; t′jy; tÞ is plotted as a function of y. Far in the past gðx; t′jy; tÞ has a well defined maximum 
at y≈ 3σ . This steady distribution is shaped by two opposing trends: Fit ancestors (large y) leave more 
offspring and are hence more likely sampled. Too fit ancestors, on the other hand, should leave many 
individuals at time t′ that ultimately contribute to the sample. The width of the steady state distribution 
is determined the diffusion constant D.

As a special case, we will sometimes be interested in a terminal branch propagator, which takes the 
lineage all the way to the present generation, t′=0. Marginalizing and multiplying by the sampling 
probability ω=M=N � 1 defines the probability of the ðy; tÞ ancestor to be a direct progenitor of a 
sampled genome: Gðy; tÞ=ω

R dx gðx; 0jy; tÞ . Interestingly, for positive y, one expects this probability to 
initially increase with increasing t because the reproductive value - i.e. expected number of surviving 
offspring - for relatively fit individuals increases with time, so that their offspring constitute a larger 
fraction of the population and are therefore more likely to appear in the sample. At longer times 
however Gðy; tÞ is expected to start decreasing, because it is increasingly unlikely that the lineage 
emanating from a highly fit ancestor far in the past, remains unbranched (i.e., has only a single 
descendant in the sample).

For small times and moderate parental fitness y, the term enforcing non-branching in Equation (10) 
can be neglected. In this case, the terminal branch propagator simplifies to

Figure 6. Numerical solution for the lineage propagator. Panel A shows gðx; t′jy; tÞ as a function of x for different t′ at t=0 given the ancestor had Malthusian 
fitness y=0 (blue) or approximately y=2σ (red). In both cases, the offspring tend to get less fit and the distribution broadens due to additional mutations. 
Saturated colors correspond to small t− t′, light colors large t− t′. Panel B shows gðx; t′jy; tÞ

R
dx  as a function of t− t′ for the high (red) and low (blue) 

fitness ancestor. The dashed lines show the approximation given in Equation (6). In the high fitness case, Equation (6) overestimates gðx; t′jy; tÞ
R
dx  

since it does not account for the non-sampling contribution. Panel C shows gðx; t′jy; tÞ as a function of y, given the offspring is unfit (blue) or fit (red). Ancestors 
tend to be fit regardless of offspring fitness and both ancestral distributions converge to a common curve far back in time.
DOI: 10.7554/eLife.03568.016
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Gðy; tÞ≈ eyt−
σ2 t2
2 + Dt3

3
 (11)

and is hence identical to the reproductive value Equation (6).

Tree-based inference
Armed with branch propagators we can now write down a joint probability of ancestral fitness on any 
given tree. Let xi denote the fitness of node i starting with i=0 at the root of the tree, i=1; . . . ; nint for 
internal nodes, and i= nint + 1; . . . ; nint + next for external nodes. Furthermore, denote the children of 
node i by ij , where j runs over the number of children. The joint probability distribution of all nodes in 
the tree is then given by

PðxjTÞ= p0ðx0Þ
ZðTÞ ∏

nint

i=0
∏
j
g
�
xij ; tij

��xi; ti
� (12)

where ZðTÞ is a normalization factor, p0ðxÞ is the fitness distribution in the population, and the second 
product runs over all j children of node i. In contrast to Equation (1), Equation (12) allows for polyto-
mies in the tree. In writing down Equation (12), we have made the approximation that the total pop-
ulation size is unconstrained and that different branches of the tree do not interact. In populations 
dominated by selection, this is a good approximation since coalescent properties depend only weakly 
on the population size.

This joint probability lives in a too high dimensional space to be practically useful, however, the 
tree structure makes it easy to marginalize the distribution. We commence ‘integrating out’ the 
independent fitness variables of the leaves, followed by integrating over the fitness values of the par-
ents of these leaves until we arrive at the root of the tree. This defines an iterative ‘message passing’ 
process (Mézard and Montanari, 2009) in which the ‘message’ node i sends to its parent pi  is calcu-
lated via

m↑i
�
xpi

�
=

Z
dxi   g

�
xi; ti

��xpi ; tpi
�
∏
j
m↑ijðxiÞ (13)

where the product is over all children j of node i (note that the times ti  and tpi are fixed properties of 
the tree). For terminal nodes i without children, m↑iðxpiÞ is simply the terminal branch propagator. 
Similarly, we calculate “messages” passed downstream to child j of node i:

m↓ij

�
xij
�
=

Z
dxi g

�
xij ; tij

��xi; ti
�
m↓iðxiÞ∏

k≠j
m↑ikðxiÞ

 
(14)

The integrand is the product of the downstream message from the parental node and the upstream 
messages from all children of node i other than child j. This product is further multiplied by the branch 
propagator to child j and integrated over the fitness of node i.

Having calculated the up and down messages for each branch, we can simply calculate the marginal 
distributions of fitness xi by multiplying all messages going into a node i.

pðxiÞ= 1
Zi
m↓iðxiÞ∏

j
m↑ijðxiÞ

 
(15)

where Zi assures normalization. Our inference uses the mean marginal fitness to rank internal and 
external nodes.

For a pre-terminal node, the ‘up-message’ (Equation (13)) involves multiplying the terminal branch 
propagators of all its children. If the node is recent, we can use approximation Equation (11) and obtain

m↑i
�
xpi

�
∼

Z
dxi g

�
xi; ti

��xpi ; tpi
�
eTtotxi ; (16)

where Ttot is total tree length downstream of node i, which polarizes the fitness of node i towards the 
high fitness edge. For a given number of descendants, this total tree length is maximized by a star 
topology. This corresponds to recent findings that multiple mergers in genealogies are associated with 
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rapid expansion of clones founded by exceptionally fit individuals (Brunet et al., 2007; Desai et al., 
2013; Neher and Hallatschek, 2013).

Calculating the local branching index (LBI)
The LBI defined as the integrated exponentially discounted tree length surrounding a node can be 
calculated in a very similar way to the message passing framework used above to evaluate the fitness 
distributions. The corresponding ‘up’-messages to the parent of node i is simply

m↑i = τ
�
1− e−bi=τ

�
+ e−bi=τ

X
j

m↑ij
 (17)

where bi  is the branch length of node i and the sum runs over the children ij  of node i. Similarly, the 
down message from a parent i to child ij

m↓ij = τ
�
1− e−bij=τ

�
+ e−bij=τ

"
m↓i +

X
k≠j

m↑ik

#
 

(18)

After having calculated all up and down messages, the exponentially discounted tree length is 
given by

λiðτÞ=m↓i +
X
j

 m↑ij

 
(19)

Implementation of the inference algorithm
The fitness inference algorithm is implemented in Python using the libraries SciPy and NumPy 
(Oliphant, 2007). Roughly, we have implemented one class, survival_gen_func, that integrates the 
fitness propagator on a discrete fitness grid. This class is used by the class fitness_inference to 
calculate the marginal distribution of fitness at each external and internal node of a given tree. The 
calculation of the marginals is done using a message passing approach (Mézard and Montanari, 
2009). This fitness inference class is then subclassed to accommodate influenza specific features. All 
code associated with this manuscript is available at https://github.org/rneher/FitnessInference.

To predict the sequence closest to the future population in a multiple sequence alignment, we build 
a maximum likelihood tree using fasttree (Price et al., 2009) (the fasttree code was modified slightly 
to resolve short branches better). The reconstructed tree was passed to the fitness inference class. 
Following fitness inference, internal or external nodes were ranked by their expected fitness and we 
report the top ranked node as our prediction.

The branch propagator depends on fitness diffusion constant D, the standard deviation in fitness σ, 
and the sampling fraction ω. For the numerical implementation, we measure time in unites of σ−1 and 
selection strength in units of σ and the dimensional fitness diffusion constant is Γ=Dσ−3. The initial 
condition for the generating function is ϕωðx; 0Þ=ω=σ in these units.

In order to apply our algorithm to a tree reconstructed from sequences, we need to convert branch 
length into time in units of σ−1. Given an alignment, we can calculate the average pairwise nucleotide 
distance π ≈ 2μÆT2æ, where ÆT2æ is the average pair coalescent time and μ is the per site mutation rate. 

For an adapting population in the SBD model, we have ÆT2æσ ≈Γ−1 (Neher and Hallatschek, 2013). 
Given a choice for Γ , the conversion factor β from nucleotide distance to σ−1 units is determined by

π

2β
=
1
Γ

⇒ β=
Γπ
2
: (20)

In addition to estimating fitness from the tree, we also measure the frequency changes of clades 
over time. For influenza A/H3N2 virus data, we partition sequences into three intervals of equal length 
between May and February and calculate the fraction of sequences that are below every internal 
nodes in each of these intervals (using a pseudocount of 5). From these three frequency values, we 
estimate the expansion rate by fitting a line to the logarithm of the frequencies.

Simulations
We use the population genetics library FFPopSim (Zanini and Neher, 2012) to implement an indi-
vidual based simulation with fixed fitness variance σ =0:03. Mutations are introduced at random sites 
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in random individuals with rate μ. We varied the total genomic mutation rate u=Lμ between 0.016 and 
0.256, where the total number of simulated sites is L=2000. Mutations at all sites are by default dele-
terious, with effects drawn from an exponential distribution. To emulate a changing environment, we 
redraw the fitness effect of random positions within the first 500 sites at random with a total rate of 
nA =0:02; . . . ; 0:16 per generation. Beneficial effects are drawn from a gamma distribution with shape 
parameter 2 and the same scale as the deleterious mutations. Every 200 generations, a random sam-
ple of 200 sequences is written to file and later used to predict the sequence closest to the next sam-
ple. The simulation code is provided as flusim.cpp in the above mentioned repository.

Influenza data
All sequences of influenza A/H3N2 viruses from human hosts from 1968 to 2014 that cover the entire 
HA1 domain were downloaded from IRD and aligned using the alignment feature provided by IRD 
with default settings (Squires et al., 2012). The alignment was inspected by eye and trimmed to the 
HA1 domain. A few obvious outliers, lab strains, and sequences with indels or more than 4 ambiguous 
nucleotides were removed manually. For each strain the location information was converted to longi-
tude and latitude at the country level and the strain was classified into rough geographic regions 
based on longitude and latitude. Only sequences with geographic information at the country level and 
date information with at least month accuracy were used. To avoid sampling bias, we subsampled the 
data to at most 100 sequences from either North America and Asia and used repeated subsamples to 
assess the robustness of the predictions. In years where less than 100 sequences are available from 
one of the geographic regions, we repeatedly used 70% of the available data. Increasing the sample 
size has negligible effect on prediction accuracy beyond a sample size of 100.
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