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Abstract

Summary: Seasonal influenza viruses evolve rapidly, allowing them to evade immunity in their

human hosts and reinfect previously infected individuals. Similarly, vaccines against seasonal in-

fluenza need to be updated frequently to protect against an evolving virus population. We have

thus developed a processing pipeline and browser-based visualization that allows convenient

exploration and analysis of the most recent influenza virus sequence data. This web-application

displays a phylogenetic tree that can be decorated with additional information such as the viral

genotype at specific sites, sampling location and derived statistics that have been shown to be

predictive of future virus dynamics. In addition, mutation, genotype and clade frequency

trajectories are calculated and displayed.

Availability and implementation: Python and Javascript source code is freely available from

https://github.com/blab/nextflu, while the web-application is live at http://nextflu.org.

Contact: tbedford@fredhutch.org

1. Introduction

Every year, seasonal influenza infects between 10 and 20% of the glo-

bal population, resulting in substantial human morbidity and mortal-

ity (World Health Organization, 2009). Vaccination remains the most

effective public health measure to combat seasonal epidemics.

However, influenza viruses constantly evolve and thereby undergo

antigenic drift, allowing drifted viruses to reinfect individuals with

acquired immunity to previously circulating strains. Owing to anti-

genic drift, the seasonal influenza vaccine needs frequent updating to

remain effective. In any given year, the particular choice of vaccine

strain plays a major role in determining vaccine efficacy and so it is of

critical importance to develop tools to analyze the ongoing evolution

of the influenza virus population in order to aid vaccine strain selec-

tion. The program nextflu presents a near real-time display of genetic

relationships among influenza viruses and allows investigation of cur-

rently available sequence data. By visualizing many different genetic

and epidemiological features, we hope that nextflu will help vaccine

strain selection. Currently, nextflu tracks all four circulating lineages

of seasonal influenza: A/H3N2, A/H1N1pdm, B/Victoria and B/

Yamagata.

In implementation, nextflu consists of a processing pipeline writ-

ten in Python called augur that analyzes virus sequence data and a

JavaScript-based browser visualization called auspice that displays

this processed information. As input, augur requires a FASTA file of

sequences with header labels containing relevant information such

as strain name, sampling date and passage history. For this purpose,

influenza sequence data for the hemagglutinin (HA) gene is down-

loaded from the GISAID EpiFlu database (Bogner et al., 2006),

which contains the most up-to-date collection of seasonal influenza

viruses. The first step in the processing pipeline is to automatically

select a subset of representative viruses. Here, viruses without com-

plete date or geographic information, viruses passaged in eggs and

sequences <987 bases are removed. In addition, local outbreaks are

filtered by keeping only one instance of identical sequences sampled

at the same location on the same day. Following filtering, viruses are

subsampled to achieve a more equitable temporal and geographic

distribution. For our standard display period of 3 years and 32

viruses per month, this typically results in �1200 viruses, for which

we align full-length HA sequences where available and partial se-

quences otherwise, using MAFFT (Katoh and Standley, 2013). Once

aligned, the set of virus sequences is further cleaned by removing
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insertions relative to the outgroup to enforce canonical HA site

numbering, by removing sequences that show either too much or

too little divergence relative to the expectation given sampling date,

and by removing known reassortant clusters, such as the triple-reas-

sortant swine influenza viruses that have sporadically circulating

since 2009 (Bastien et al., 2010). As outgroup for each viral lineage,

we chose a well characterized virus without insertions relative to the

canonical amino-acid numbering and a sampling date a few years

before the time interval of interest.

From the filtered and cleaned alignment, augur builds a phylo-

genetic tree using FastTree (Price et al., 2009), which is then further

refined using RAxML (Stamatakis, 2014). Next, the state of every

internal node of the tree is inferred using a marginal maximum like-

lihood method and missing sequence data at phylogeny tips is filled

with the nearest ancestral sequence at these sites. Internal branches

without mutations are collapsed into polytomies. The final tree is

decorated with the attributes to be displayed in the browser.

In addition to the phylogenetic tree, augur estimates the fre-

quency trajectories of mutations, genotypes and clades in the tree.

Frequencies are determined by maximizing the likelihood of sam-

pling the observed set of virus sequences. In addition, we impose a

smoothing that penalized rapid changes in frequency of the fre-

quency derivative. augur estimates frequency with up to 1-month

resolution. The result is similar to ‘allele dynamics’ plots in

Steinbrück and McHardy (2011), but provides frequencies of clades

in the tree in addition to point mutations. The augur pipeline is run

every 3–7 days in response to sequence updates in the GISAID

database.

At the end of the augur pipeline, JSON files are exported con-

taining the annotated phylogenetic tree, sequence data and fre-

quency trajectories. These JSON files are then visualized by auspice

using D3 (Bostock et al., 2011) and a phylogenetic tree is displayed

with branches scaled according to evolutionary distance across all

sites (Fig. 1). The user can explore the data interactively by selecting

viruses from different dates or by coloring the tree by attributes such

as:

• epitope mutations at sites generally associated with antibody

binding that have been suggested to be predictive of future clade

success (Łuksza and Lässig, 2014),

• receptor binding mutations at seven positions close to the recep-

tor binding site that have been shown to be responsible for major

antigenic transitions in the past decades (Koel et al., 2013),
• local branching index indicating the exponentially weighted tree

length surrounding a node, which is associated with rapid

branching and expansion of clades (Neher et al., 2014),
• HA genotype, which directly colors the tree by genotype at spe-

cific amino acid positions.

The display can also be restricted to different geographic

regions.

The frequency plot below the tree (Fig. 2) displays the frequency

trajectory of clades in the tree whenever the mouse hovers above the

branch defining the clade. Furthermore, trajectories of individual

mutations, combinations of two mutations and predefined clades

such as 3c3.a can be plotted. A second plot shows the variability of

the alignment. On mouse-click on a variable position in this plot,

auspice will color the tree by amino-acid at this position and plot its

mutation frequencies.

We built nextflu to facilitate the analysis and exploration of sea-

sonal influenza sequence data collected by laboratories around the

world. By using the most recent data and integrating phylogenies

with frequency trajectories and predictors of successful clades, we

hope that nextflu can inform the choice of strains used in seasonal

influenza vaccines. nextflu was designed to be readily adapted to

other rapidly evolving viruses and we see significant room for future

developments in this area.
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