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Abstract Many microbial populations rapidly adapt to changing environments with multiple

variants competing for survival. To quantify such complex evolutionary dynamics in vivo, time

resolved and genome wide data including rare variants are essential. We performed whole-genome

deep sequencing of HIV-1 populations in 9 untreated patients, with 6-12 longitudinal samples per

patient spanning 5-8 years of infection. The data can be accessed and explored via an interactive

web application. We show that patterns of minor diversity are reproducible between patients and

mirror global HIV-1 diversity, suggesting a universal landscape of fitness costs that control

diversity. Reversions towards the ancestral HIV-1 sequence are observed throughout infection and

account for almost one third of all sequence changes. Reversion rates depend strongly on

conservation. Frequent recombination limits linkage disequilibrium to about 100bp in most of the

genome, but strong hitch-hiking due to short range linkage limits diversity.

DOI: 10.7554/eLife.11282.001

Introduction
The human immunodeficiency virus 1 (HIV-1) is a paradigmatic example of a rapidly adapting popu-

lation characterized by high diversity, strong selection, and recombination. HIV-1 has originated

from multiple zoonotic transmissions from apes in the early part of the 20th century (Sharp and

Hahn, 2011), one of which gave rise to the worldwide pandemic. This lineage is called group M and

has diversified into different subtypes at a rate of about 1 in 1000 substitutions per year

(Lemey et al., 2005; Li et al., 2015). Tens of thousand of HIV-1 group M variants are available in the

Los Alamos National Laboratories HIV database (LANL) (Foley et al., 2013).

The evolution of HIV-1 ultimately takes place within infected individuals and can be observed

directly in longitudinal samples of virus populations from the same individual. The detailed knowl-

edge of HIV-1 biology paired with historical samples makes HIV-1 an ideal system to study general

features of evolution at high mutation rates and strong selection that are otherwise only accessible

in evolution experiments (Elena and Lenski, 2003; Miralles et al., 1999).

During the first few months of an HIV-1 infection, the viral population typically acquires several

mutations that mediate escape from cytotoxic T-cells (CTL). The properties and dynamics of these

mutations and their effect on epitope presentation and virus control have been extensively studied

(Bernardin et al., 2005; Goonetilleke et al., 2009; Jones et al., 2004; Kearney et al., 2009;

Liu et al., 2011). Such escape variants often compromise virus replication and have been shown to

revert upon transmission of the virus to a human leukocyte antigen (HLA) mismatched host

(Brockman et al., 2010; Leslie et al., 2004; Li et al., 2007). However, the quantitative contribution
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of escape and reversion to HIV-1 evolution and the degree to which costly mutations are compen-

sated by additional mutations is less well understood (Lythgoe and Fraser, 2012;

Schneidewind et al., 2009). Similar to CTL escape mutations, drug resistance mutations can spread

through the viral population within weeks and longitudinal sequence data has been used to study

emergence and fitness cost of resistance mutations (Hedskog et al., 2010; Little et al., 2008;

Paredes et al., 2009).

Longitudinal sequence data has also been used to track evolution driven by the humoral immune

response against HIV-1 which occurs throughout infection and results in high rates of evolution in

the variable loops of HIV-1 surface proteins (Bar et al., 2012; Richman et al., 2003;

Shankarappa et al., 1999). In a pioneering study, Shankarappa et al. (1999) characterized HIV-1

evolution of parts of the gp120 envelope protein over approximately 6–12 years in 11 patients, dem-

onstrating consistent patterns of diversity and divergence. While this early study was limited to

about 10 sequences per sample, next-generation sequencing technology today allows deep charac-

terization of intrapatient HIV-1 variability including rare mutations (Fischer et al., 2010;

Hedskog et al., 2010; Henn et al., 2012; Tsibris et al., 2009).

The earlier studies discussed above have either focused on early infection or particular regions of

the HIV-1 genome. However, most virus evolution happens during chronic infection simultaneously

at many locations in the genome. To develop a comprehensive and quantitative understanding of

the evolution and diversification of HIV-1 populations, we generated a whole-genome, deep-

sequencing data set covering nine patients over 5–8 years with 6–12 time points per patient. Impor-

tantly, the data set covers the entire genome such that no substitution is missed and includes early

samples defining the initial population. To our knowledge, this is the only whole-genome deep

sequencing data set with long follow-up of multiple patients. We provide interactive and intuitive

eLife digest HIV was transmitted from apes to humans multiple times before the virus began to

spread among humans some time in the early 20th century. The virus is now found around the globe

and has evolved into several different subtypes. Also, HIV continues to evolve inside each infected

individual so that different variations of the virus are often present in the same person at any given

time.

When a person initially becomes infected, immune cells called killer T-cells seek out and destroy

infected cells. However, HIV quickly acquires genetic mutations that allow it to escape the immune

system and multiply in the body. There is a cost to this evasion strategy: the mutant forms of the

virus often don’t multiply as rapidly as the variant that first infected the individual. This may explain

why the virus often mutates back to its previous form in newly infected people. But many questions

remain about how these pressures influence the evolution of the virus in individuals and in

populations over time.

Now, Zanini et al. have sequenced the genomes of HIV samples collected from nine people with

HIV in Sweden over the course of five to eight years. These individuals were diagnosed between

1990 and 2003 – when HIV medications were not as widely used as they are now – and did not

receive any treatment during the course of the study. Therefore, the study provides a rare

opportunity to look at how HIV evolves in the absence of drugs that target the virus.

Zanini et al. sequenced the entire genetic code of each form of the virus identified in the

samples. The data show that HIV follows predictable patterns of evolution within individuals as well

as across human populations. Mutations happen frequently all over the HIV genome. However, the

mutant viruses often revert to a common or “optimal” form of the virus throughout the course of

infection. This suggests that there is a tradeoff between the benefits of acquiring new mutations and

maintaining a set of traits that have enabled the virus to spread so successfully in humans.

To make it easier for other researchers to explore the data, Zanini et al. created a web

application that allows others to access and create visual representations of viral evolution.

Together these findings suggest that it will be possible to achieve a fuller understanding of RNA

virus evolution that integrates the molecular biology of the virus and the immune response of the

host with the evolutionary changes.

DOI: 10.7554/eLife.11282.002
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web-based access to the data set and hope it will become a resource for many future studies, like

the data set by Shankarappa et al. (1999) has been in the last years.

Below, we first describe the methodology we developed to sequence the entire HIV-1 genome at

great depth. We then analyze the intrapatient evolution of HIV-1 and show that the minor variants in

the virus population explore sequence space in predictable fashion at the single site level. At the

same time, we observe a strong tendency for reversion towards the global HIV-1 consensus that is

not limited to early infection but occurs at an approximately constant rate throughout chronic infec-

tion. Reversion is more frequent at sites that are more conserved at the global level, suggesting a

direct relationship between intrapatient fitness cost and global conservation. Together with repro-

ducible patterns of intrapatient variation, this link explains why HIV-1 fitness landscapes can be

inferred from cross-sectional data (Dahirel et al., 2011; Ferguson et al., 2013; Mann et al., 2014).

We further find frequent recombination, which allows the viral population to evolve independently in

different regions of the genome. Nevertheless, recombination is not frequent enough to decouple

mutations closer than 100 base pairs and we observe signatures of hitch-hiking at short distances

(Maynard Smith and Haigh, 1974).

Results
The study included nine HIV-1-infected patients who were diagnosed in Sweden between 1990 and

2003. Data from two additional patients (p4 and p7) were excluded from analysis because of sus-

pected superinfection and failure to amplify early samples with low virus levels, respectively. The

patients were selected to have a relatively well-defined time of infection and to have been treat-

ment-naive for a minimum of 5 years. Patients diagnosed in recent years rarely fulfill these inclusion

criteria because therapy is almost universally recommended, but this was not the case when the

study patients were diagnosed. Basic characteristics of the patients are presented in Table 1. Addi-

tional data on the patients are presented in Supplementary file 1 and Figure 1—figure supple-

ment 1. All patients progressed to moderate-to-severe immunosuppression during the study

period. The final CD4 count within the study period for patients 1–3, 5–6 and 8–11 were 340, 369,

140, 228, 287, 378, 158, 200 and 251, respectively. Of the nine patients, eight were males, seven

were men who have sex with men (MSM), two were heterosexually infected (HET), and eight were

infected in Sweden. The method to estimate the date of infection (EDI) is described in Materials and

Table 1. Summary of patient characteristics. Sample times from estimated date of infection.

Patient Gender Transmission
route

Subtype Age*
[years]

Fiebig
stage*

BED*
[ODn]

No. of
samples

First sample
[days]

Last sample
[years]

HLA type

A B C

p1 F HET 01_AE 37 VI 0.42 12 122 8.2 02/
02

08/
15

03/
06

p2 M MSM B 32 V 0.17 6 74 5.5 01/
24

08/
39

07/
12

p3 M MSM B 52 VI 0.90 10 146 8.4 02/
11

15/
44

03/
16

p5 M MSM B 38 VI 0.15 7 134 5.9 03/
33

14/
58

03/
08

p6 M HET C 31 IV 0.29 7 62 7.0 02/
02

44/
51

05/
16

p8 M MSM B 35 V 0.16 7 87 6.0 03/
32

07/
40

02/
07

p9 M MSM B 32 VI 0.28 8 106 8.1 25/
32

07/
44

04/
07

p10 M MSM B 34 II 0.10 9 33 6.2 32/
32

44/
50

06/
16

p11 M MSM B 53 VI 1.22 7 209 5.6 02/
32

39/
44

05/
12

*, at base line; MSM, men who have sex with men; HET, heterosexual; MSM, men who have sex with men.

DOI: 10.7554/eLife.11282.003
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Figure 1. Sequencing, coverage, and error rates. (A) Schematics of the sample preparation protocol, see text and

Materials and methods for details. (B) Read coverage for a representative sample. Coverage of separate PCR

amplicons is shown in different hues, the black line is the total coverage. The coverage of PCR fragment F5 is

lower than the other amplicons, but it is still larger than number of input HIV-1 RNA molecules; this situation is

typical in our samples. (C) Each blue circle corresponds to a SNP frequency in amplicon F1 of a late sample of

patient 11, while red squares are SNP frequencies in the sequence data generated from 10,000 copies of plasmid

NL4-3. The histogram on the right shows the distribution of SNP frequencies in the patient sample and the

control. Minor SNPs observed in reads generated from the plasmid, which represent PCR and sequencing errors,

did not exceed 0.3%. SNP, single nucleotide polymorphism; RT-PCR, reverse transcriptase polychromase chain

reaction.

DOI: 10.7554/eLife.11282.004

The following figure supplements are available for figure 1:

Figure 1. continued on next page
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methods. We retrieved longitudinal biobank plasma samples covering the time period from early

infection (time since EDI 33–209 days) until end of study follow-up, which usually coincided with start

of antiretroviral therapy (time since EDI 5.5–8.3 years). The number of samples per patient ranged

between 6 and 12 and, in total, we investigated 73 samples. The median plasma HIV-1 RNA level

was 12,000 copies/ml for the samples with available data on RNA levels. Some samples had low

RNA levels, which partly is explained by the study design that required that the patients were treat-

ment-naive for at least 5 years. For detailed information about each individual sample see

Supplementary file 1. For a phylogenetic tree of minor variants from all patients see Figure 1—fig-

ure supplement 2.

HIV-1 whole-genome deep sequencing
The basic steps of our amplification and sequencing pipeline are illustrated in Figure 1 and

explained in detail in Materials and methods. Briefly, viral RNA was extracted from 400 �l patient

plasma and used for one-step RT-PCR amplification with six overlapping primer sets that span

almost the complete HIV-1 genome, similar to the strategy developed by Gall et al. (2012).

Sequencing libraries were made starting from 0.1–1.5 ng of DNA with a stringent size selection for

long inserts (>400 bp). Sequencing was performed on the Illumina MiSeq platform and sequence

reads were quality filtered and assembled using an in-house data processing pipeline. In total,

approximately 100 million reads passed the quality filtering. The coverage varied considerably

between samples and amplicons, but was mostly of the order of several thousands or more, see

Figure 1B.

Importantly, sequencing depth is determined not only by coverage but also by template availabil-

ity and sequencing errors (Iyer et al., 2015). We performed a number of control experiments to

quantify templates and assess the accuracy of estimates of frequencies of single nucleotide polymor-

phism (SNP). The results are summarized in the following section and described in detail in Materials

and methods.

We quantified the number of HIV-1 genomes that contributed to each sequencing library by PCR-

limiting dilution (median: 120 quartiles: 50–500). Hence template availability, rather than coverage,

determined the sequencing depth, see Figure 1B. Comparison with routine plasma HIV-1 RNA level

measurements performed at time of sampling showed that the median template complementary

DNA (cDNA) recovery efficiency was 30%.

We estimated the error rate of the PCR and sequencing pipeline by amplifying and sequencing a

plasmid clone. Figure 1C compares the SNP frequencies observed in a clone to those observed in a

patient sample. After quality filtering, PCR and sequencing errors never exceeded 0.3% of reads

covering a particular position. To detect and control for variation in PCR efficiency among fragments

and skewed amplification of different variants, we compared frequencies of variants in overlaps

between the six amplicons. A SNP in the overlap is amplified and sequenced twice independently

and the concordance of the two measurements of variant frequencies was used to estimate the frag-

ment specific depth, which is limited both by template input and PCR efficiency, see Materials and

methods. Frequency estimates were often reproducible to within a few percent. Sometimes, how-

ever, variant recovery was poor (mostly in fragment 5) and frequency estimates less accurate. Those

fragments are flagged on the website and can be excluded from analyses requiring large depth.

We minimized PCR recombination by reducing the number of PCR cycles and optimizing the

reaction protocol (see Materials and methods, Di Giallonardo et al. (2013); Mild et al. (2011)). Con-

trol experiments using mixtures of two cultured virus populations showed that less than 10% of

reads had experienced RT-PCR recombination.

Taken together, our control experiments show that depending on the sample and fragment, we

could estimate frequencies of SNPs down to 1% accuracy (corresponding to several hundred effec-

tive templates). In some cases, however, the template number was low or template recovery poor

Figure 1. Continued

Figure supplement 1. Viral load and CD4+ cell counts for all nine patients.

DOI: 10.7554/eLife.11282.005

Figure supplement 2. Tree of minor reads covering p17 from all samples colored by patient ID.

DOI: 10.7554/eLife.11282.006
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such that only presence or absence of a variant could be called. Furthermore, SNPs remained linked

through cDNA synthesis, PCR and sequencing.

Website
Deep sequencing data sets like the one presented here require substantial filtering, mapping, and

processing before they can be used to address specific biological questions. Hence depositing the

raw data (while important) is of limited use for follow-up analyses. To facilitate reuse of our data, we

developed a web application to explore the data set interactively and visualize the patterns of HIV-1

evolution in the study patients. In addition, the website provides easy access to processed data.

These include phylogenetic trees, viral loads and CD4+ T cell counts, consensus sequences, major

and minor haplotypes in different regions of the genome, frequencies of single nucleotide polymor-

phisms, and clean sequencing reads. The application allows browsing the data either by patient or

by genomic region and provides composite interactive plots to explore how the virus population has

changed over time. We hope that this web application, available at hiv.tuebingen.mpg.de, will

encourage others to further analyze these data.

Consistent evolution across the entire genome
In most patients, the virus populations were initially homogeneous and diversified over the years, as

expected for an infection with a single or small number of similar founder viruses (Keele et al.,

2008; Salazar-Gonzalez et al., 2009). In two patients, p3 and p10, the first sample displayed diver-

sity consistent with the transmission of several variants from the same donor, see Figure 3—figure

supplement 1. For each of the nine patients, we reconstructed the HIV-1 genome sequence of the

first sample by an iterative mapping procedure described in Materials and methods. We use this ini-

tial consensus sequence to approximate the sequence of the transmitted founder virus(es). Our first

sample is estimated to be between 1 and 7 months into infection and a few mutations (likely CTL

escape mutations) had probably spread through the viral population by that time. Thus, the initial

consensus sequence probably will differ slightly from the true founder virus. The number of differen-

ces, however, will be small compared to the sequence divergence in the 5 or more years of follow-

up such that this initial consensus sequence is a useful approximation of the founder virus(es).

Figure 2. The dynamics of SNP frequencies. The upper panels show single nucleotide polymorphism frequencies

along p17 at three time points in patient p1. The lower panel shows the trajectories of SNPs through time. Color

corresponds to position in the sequence. Trajectory that reach high frequencies are shown with thicker and more

opaque lines. Analogous data is available for all patients for most of the HIV-1 genome. EDI, estimated date of

infection; SNP, single nucleotide polymorphism.

DOI: 10.7554/eLife.11282.007
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Figure 2 shows an example of the dynamics of frequencies of SNP relative to the founder

sequence over time, where each dot (top) or line (bottom) represents the frequency of a nucleotide

different from the founder sequence. Interactive versions of this graph are available for the entire

genome of all patients at hiv.tuebingen.mpg.de.

To measure the rate at which the virus population accumulates mutations, we calculated the aver-

age distance of each sample from the approximate founder sequence in 300 bp windows. Regress-

ing this distance against time yields the rate of divergence in different regions of the genome, see

Figure 3A. As expected, some regions such as the variable loops in gp120 and nef evolve faster,

while enzymes – protease (PR), reverse transcriptase (RT) – and the rev response element (RRE)

evolve more slowly. The rate of divergence varies by about a factor of 10 along the genome, but is

consistent with typically about 1.5-fold differences across patients (standard deviation of log2(fold

change) 0.6 ± 0.2). The overall pattern of the rate of mutation accumulation agrees with a recent

map of HIV genome-wide variation from a population perspective (Li et al., 2015) and correlates

well with entropy in a large HIV-1 group M alignment (Spearman’s p = 0.7 after the same

smoothing).

Minor variants reproducibly explore global HIV-1 diversity
Having found that coarse patterns of divergence are comparable among patients, we asked whether

intrapatient diversity at individual sites in the viral genome follows general and predictable patterns.

To this end, we compared diversity at each position to the diversity observed in HIV-1 group M (see

Materials and methods).

Figure 3. Consistent evolution across the viral genome. The figure shows the rate of sequence divergence

averaged in a sliding window of length 300 bp for individual study participants (in color) and averaged over all

(black). Rapidly evolving (V loops in gp120) and conserved (RRE) regions are readily apparent. The divergence

rates are determined by linear regression of the distance from the putative founder sequence against time since

EDI. This distance includes contributions of minor variants. All positions are given in HxB2 numbering. The

corresponding figure for amino acid evolution is provided as Figure 3—figure supplement 2.

DOI: 10.7554/eLife.11282.008

The following figure supplements are available for figure 3:

Figure supplement 1. Diversity over time for all six PCR fragments and all patients.

DOI: 10.7554/eLife.11282.009

Figure supplement 2. Divergence rate like Figure 3 but for amino acids rather than nucleotides.

DOI: 10.7554/eLife.11282.010
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Figure 4A shows the rank correlation between the site-by-site diversity in each patient and a

global collection of HIV-1 sequences, both measured by Shannon entropy (see Materials and meth-

ods). In all cases, correlation with cross-sectional diversity was initially low, as expected for largely

homogeneous populations. As diversity increases within patients, it tends to accumulate at positions

that are not conserved, resulting in a rank correlation of about 0.4–0.5 after about 8 years. These

correlations are individually significant and reproducible among different genomic regions (error

bars in Figure 4).

Figure 4B offers an alternative perspective on the exploration of sequence space by the HIV-1

populations. We classified nucleotide positions in the genome into four categories ranging from

highly conserved positions to less conserved positions within group M (Q1–Q4) using the same align-

ment as above. Next we asked what fraction of sites within these categories show intrapatient varia-

tion at a level of at least 1%. For the least conserved positions, this fraction increased steadily to

about 20% after 8 years, while less than 1% of the most conserved sites shows variation above the

1% level. This latter fraction rapidly saturates and does not increase over time. Since variant amplifi-

cation, sequencing and variant calling does not use any information on cross-sectional conservations,

the absence of variation above 1% at conserved sites is further evidence that our amplification and

sequencing pipeline does not generate spurious variation. Other thresholds yield similar results.

Taken together, the observations in Figure 4 show that variation is not limited by the mutational

input, but that HIV-1 populations accumulate diversity wherever mutations do not severely compro-

mise virus replication. At the single nucleotide level, the spectrum of mutational possibilities is

explored reproducibly and the level of within-host diversity is predicted by time since infection and

cross-sectional diversity. Conserved positions are typically monomorphic even in deeply sequenced

samples with high RNA template input.

Figure 4. Within patient variation mirrors global variation. (A) Intrapatient variation at individual sites is correlated

with diversity at homologous positions in an alignment of sequences representative of HIV-1 group M. This

correlation increases reproducibly throughout the infection. Error bars show standard deviations over genomic

regions. (B) Similarly, the fraction of sites with minor variants above 1% increases over time at the least constrained

positions (quartiles Q3 and Q4), while few sites in the most conserved quartiles (Q1 and Q2) are polymorphic.

Figure 4—figure supplements 1 and 2 show the corresponding results for amino acid rather than nucleotide

comparisons and patient–patient correlations of diversity, respectively. EDI, estimated date of infection.

DOI: 10.7554/eLife.11282.011

The following source data and figure supplements are available for figure 4:

Source data 1. Tab-delimited files with plotted data.

DOI: 10.7554/eLife.11282.012

Figure supplement 1—Source data 1. Tab-delimited files with plotted data.

DOI: 10.7554/eLife.11282.013

Figure supplement 1. Within–patient variation mirrors global variation at the amino acid level, similar to what we

observed at the nucleotide level.

DOI: 10.7554/eLife.11282.014

Figure supplement 2. Correlation in nucleotide variation between study participants.

DOI: 10.7554/eLife.11282.015
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The majority of nonsynonymous substitutions are positively selected
In addition to the reproducible patterns of minor diversity, virus evolution is characterized by adap-

tations that are specific to the host. Immune selection results in escape mutations that rapidly spread

through the population (Richman et al., 2003; Walker and McMichael, 2012). Such mutations tend

to be nonsynonymous, i.e., change the viral proteins, while evolution at synonymous sites is

expected to be conservative. Nevertheless, synonymous mutations can be affected by ‘selective

sweeps’ of linked nonsynonymous mutations (Maynard Smith and Haigh, 1974).

To quantify the degree at which the evolutionary dynamics of HIV-1 is dominated by selective

sweeps, we calculated divergence and diversity separately at nonsynonymous and synonymous sites

in different parts of the HIV-1 genome. Figure 5A compares nonsynonymous (solid lines) and synon-

ymous divergence (dashed lines) in different regions of the genome. In agreement with the results

presented in Figure 3, the observed rate of evolution at nonsynonymous sites differed substantially

between genomic regions, with env being the fastest and pol the slowest. Divergence at synony-

mous sites, however, varied very little between different genomic regions indicating random accu-

mulation of synonymous mutations (rather than positive selection).

Figure 5B shows the corresponding plot for diversity, i.e., the distances between sequences from

the same sample. Diversity at nonsynonymous sites (solid lines) saturates after about 2–4 years, sug-

gesting that nonsynonymous SNPs either stay at low frequency because they are deleterious or rap-

idly increase in frequency and fix without contributing much to diversity. Synonymous diversity

increases steadily in the 5’ part of the genome (structural and enzymes), while it saturates in the 3’

half of the genome after a few years – the exact opposite of nonsynonymous divergence.

Indeed, we observe a strong anti-correlation between synonymous diversity and nonsynonymous

divergence, which is further quantified in Figure 5C. This suggests that frequent non-synonymous

substitutions limit synonymous diversity because they drive linked synonymous mutations to fixation

or to extinction (Maynard Smith and Haigh, 1974). We will quantify linkage and recombination

below, but the differences in diversity accumulation already suggest that linkage is restricted to short

distances.

The contrasting behavior of synonymous and nonsynonymous SNPs is also seen in the SNP fre-

quency spectrum – the histogram of SNP abundance – shown in Figure 5D. While the spectra agree

for frequencies below 20%, synonymous mutations are strongly underrepresented at higher frequen-

cies (Fisher’s exact test at frequency 0.5, p-value <10-10). This corroborates the interpretation that,

due to substantial recombination, sweeping nonsynonymous mutations only occasionally ‘drag’ adja-

cent synonymous mutations to fixation. Synonymous mutations rarely rise in frequency because of

their own effect on fitness, since they usually have small or deleterious phenotypic effects and do

not contribute directly in immune evasion (Zanini and Neher, 2013). The about five-fold excess of

nonsynonymous over synonymous SNPs at high frequencies (see Figure 5D) shows that the majority

of common nonsynonymous mutations spread due to positive selection.

Next, we sought to quantify what fraction of nonsynonymous divergence is driven by escape from

cytotoxic T-lymphocytes (CTLs). Four-digit HLA types were determined for all patients and a set of

putatively targeted HIV-1 epitopes were determined using the epitope binding prediction tool

MHCi (tools.immuneepitope.org/mhci). We then asked whether we observed more nonsynonymous

substitutions in epitopes predicted to be targeted than expected by chance (excluding the variable

loops of gp120 and the external part of gp41, see Materials and methods). We found a significant

enrichment by a factor 1.9 in the putatively targeted region (p-value <3 � 10�6), corresponding to

5.5 excess nonsynonymous substitutions, whereby the total number of nonsynonymous substitutions

per patient is on average 43 (median, quartiles 36–64). The set of predicted epitopes will contain

false positives and lack true epitopes, hence the actual number of CTL driven substitutions could be

higher as for example suggested by Allen et al. (2005) who report that roughly half of non-enve-

lope mutations are associated with CTL responses.

Extensive reversion towards consensus
Many CTL escape mutations reduce the replicative capacity of the virus and it is known that such

escape mutations often revert upon transmission to a host in which the corresponding epitope is not

targeted (Friedrich et al., 2004; Herbeck et al., 2006; Leslie et al., 2004). The balance between

escape and reversion results in association between specific escape mutations and the HLA types of
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the hosts (Kawashima et al., 2009; Palmer et al., 2013). In a diverse population of hosts, the most

common state at a specific site is likely the preferred state, while rare alleles tend to be escape

mutations that reduce viral replicative capacity (Carlson et al., 2014).

To quantify patterns of reversion and fitness cost, we classified sites in the approximate founder

sequence of the viral populations in each subject as being identical or different from the HIV-1 group

M consensus. Figure 6A shows the fraction of sites where the founder nucleotide is replaced by a

mutant during the infection. This fraction is about ten-fold higher if the founder nucleotide differs

Figure 5. Distinct patterns of evolution across mutation types and regions. (A) shows divergence at

nonsynonymous (solid) and synonymous (dashed) positions over time for different genomic regions averaged over

all patients, measured as average Hamming distance from founder. While synonymous divergence is very similar in

different regions, nonsynonyous divergence varies. (B) shows diversity through time, measured as average pairwise

Hamming distance. Regions with high nonsynonymous diversity (and divergence) tend to have low synonymous

diversity. Error bars represent standard deviations of patient bootstrap replicates. (C) shows the anti-correlation

between the rate of nonsynonymous divergence and synonymous diversity in 1kb windows across the genome

(color indicates position on the genome bluefigreenfiyellowfired). (D) shows the site frequency spectrum of

synonymous (blue) and nonsynonymous (green) SNPs. EDI, estimated date of infection; SNP, single nucleotide

polymorphism.

DOI: 10.7554/eLife.11282.016

The following source data is available for figure 5:

Source data 1. Tab-delimited files with plotted data.

DOI: 10.7554/eLife.11282.017
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from the group M consensus than if it is identical to the group M consensus. Reversion towards

group M consensus occurs at a roughly constant rate throughout the observation time (5–8 years).

Of all changes accumulated by the viral populations, 30 ± 2.5% are reversions towards group M

consensus (mean and standard deviation of patient bootstraps after 4–7 years). Similar results are

found when comparing with the subtype consensus of each patient virus (24 ± 2.5%). Reversions are

between 4 and 5 times more frequent than expected in the absence of a reversion bias (7.8 and

4.5%, respectively). These findings agree with results by Allen et al. (2005), who report that about

20% of amino acid substitutions are reversions.

By focusing on sites where the founder virus differed from the group M consensus, we are pre-

dominantly looking at weakly conserved sites. To control for conservation, we carried out the same

analysis after stratifying sites by overall level of conservation. Figure 6B shows the result of this anal-

ysis, focusing on samples after 5–6 years for the sake of clarity. We find that the rate of reversion is

highest at the most conserved sites. Almost 50% of all non-consensus positions at highly conserved

sites had reverted to consensus after about 5 years – an almost 1000-fold excess. Even at the least

conserved sites, divergence towards group M consensus exceeded divergence away from group M

consensus by a factor of 3. These results suggest that the global HIV-1 group M consensus sequence

represents an ‘optimal’ HIV-1 sequence, which acts as an attractor for the evolutionary dynamics

within hosts. This attraction is strongest at conserved sites, but extends to the least conserved sites

in the genome.

Lack of long-range linkage due to frequent recombination
To quantify the decoupling of SNPs by recombination, we calculated linkage disequilibrium (LD)

between SNPs as a function of distance for each of the six fragments, see Figure 7. For most frag-

ments, we observed a consistent decrease of LD over the first 100–200 bps, with fragment 5 being

Figure 6. Rapid reversion at conserved sites. (A) Sites where the founder sequence differed from the subtype or

group M consensus (upper curves) diverged about tenfold more rapidly than sites that initially agreed with the

consensus (lower curves). (B) The rate of reversion increased with conservation (lower variability), while divergence

away from consensus showed the opposite behavior (divergence is measured at 5�6 years). Error bars report the

standard deviation of patient bootstraps. Figure 6—figure supplement 1 shows the corresponding figure for

amino acids rather than nucleotides.

DOI: 10.7554/eLife.11282.018

The following source data and figure supplements are available for figure 6:

Source data 1. Tab delimited files with plotted data.

DOI: 10.7554/eLife.11282.019

Figure supplement 1—Source data 1. Tab-delimited files with plotted data.

DOI: 10.7554/eLife.11282.020

Figure supplement 1. Patterns of reversion at the amino acid level are similar to those at the nucleotide level.

DOI: 10.7554/eLife.11282.021
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an exception with linkage of mutations at longer distances. Importantly, our linkage control (a 50/50

mix of two distinct virus isolates and a total of 1250 RNA molecules per PCR fragment) shows no

decay of LD with distance, suggesting negligible RT-PCR recombination.

The observed decay of LD in patient samples is consistent with a recombination rate of 10�5/bp/

day as estimated in (Batorsky et al., 2011; Neher and Leitner, 2010). Our reasoning proceeds as

follows. Figure 5B indicates that diversity accumulates over a time frame of 2–4 years, i.e., about

1000 days. Recombination at a rate of 10�5/bp/day hits a genome on average every 100 bps in 1000

days. Mutations further apart than 100 bps are hence often separated by recombination and retain

little linkage consistent with the observed decay length in Figure 7. The longer linkage in fragment

5 (env) might have several reasons that extend beyond our simple argument: (i) homologous recom-

bination might be suppressed in the most variable regions, (ii) the accuracy of SNP frequency esti-

mates is lower in F5 due to poorer amplification, and (iii) the rapid evolution of env due frequent

substitutions and sweeps gives less time to break up linkage. In particular, as shown in Figure 5C,

frequent and strong selective sweeps affect synonymous diversity in physical proximity along the

genome, confirming the presence of linkage at short distances.

For phylogenetic analysis, we can extract haplotypes from the sequencing reads up to 500 bp in

length. Only in the more diverse regions are 500 bp sufficient for well-resolved phylogenies (see Fig-

ure 8). However, we find that linkage does not extend beyond 100–200 bp. Hence the read length

is not a limiting factor. Only during rapid population shifts such as drug resistance evolution, long

read technologies such as PacBio would be necessary to capture the evolutionary dynamics

(Nijhuis et al., 1998).

Figure 7. Linkage and recombination. Linkage disequilibrium decays rapidly with distance between SNPs. Colored

lines correspond to the different fragments, each averaged over patients. The dashed line shows data from a

control experiment for PCR recombination, where two cultured virus populations were mixed. No PCR

recombination is observed.

DOI: 10.7554/eLife.11282.022

The following source data is available for figure 7:

Source data 1. Tab-deliminated files with plotted data.

DOI: 10.7554/eLife.11282.023
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Discussion
We have presented a comprehensive portrait of intrapatient evolution of HIV-1 that covers almost

the entire genome of the virus, characterizes minor genetic variants, and tracks the fate and dynam-

ics of these variants over a follow-up period of up to 8 years in nine patients. We find that, during

the infection, HIV-1 explores the sequence space surrounding the founder virus systematically; simi-

lar mutational patterns are observed within different, unrelated patients. Linkage between mutations

is limited to approximately 100 bp, so the virus population can accumulate substitutions indepen-

dently in different regions of the genome as suggested by theoretical models (Mostowy et al.,

2011; Rouzine and Coffin, 2005). Nonetheless, local dynamics of SNPs is often dominated by hitch-

hiking between neighboring mutations, resulting in an anticorrelation between nonsynonymous

divergence and synonymous diversity. A large fraction of all substitutions are reversions towards the

global HIV-1 consensus sequence, and these reversions steadily accumulate throughout infection.

The evolutionary dynamics of HIV-1 populations is the result of stochastic forces like mutation and

frequent bottlenecks, deterministic fixation of favorable mutations, and recombination. The relative

importance of these forces remains unclear (Brown, 1997; Frost et al., 2000; Kouyos et al., 2006;

Maldarelli et al., 2013; Pennings et al., 2014; Rouzine and Coffin, 1999). Our observation that

intrapatient diversity recapitulates diversity seen across HIV-1 group M and the strong tendency to

revert towards consensus suggest that, in chronic infection, selection determines diversity. The

reproducible exploration of sequence space can coexist with frequent adaptation only in frequently

recombining large populations (Neher et al., 2013). We observe that mutations further apart than

100 bp are effectively shuffled by recombination in most parts of genome, consistent with previous

estimates of the HIV-1 recombination rate (Batorsky et al., 2011; Neher and Leitner, 2010). Link-

age and stochastic effects become stronger with increasing frequency of strength of selection, con-

sistent with lower synonymous diversity and more LD in env.

While rapid CTL escape at 5–10 sites over the first 2 years of infection has been documented in

detail (Allen et al., 2005; Goonetilleke et al., 2009; Herbeck et al., 2006; Jones et al., 2004;

Liu et al., 2011) and population level associations between specific HLA types and escape variants

suggest widespread CTL escape (Kawashima et al., 2009), the effect of escape and reversion on

long-term evolutionary trends is less clear (Lythgoe and Fraser, 2012; Roberts et al., 2015). We

find a strong tendency for viral populations to revert towards the global HIV-1 consensus. At sites

where the founder sequence differs from the subtype consensus, substitutions are almost five-fold

overrepresented: Instead of »5% reversions expected based on the fraction of sequence at which

the founder virus differs from consensus of the HIV-1 subtype, almost 25% of substitutions are rever-

sions, in agreement with earlier reports on reversion of CTL escapes (Allen et al., 2005; Li et al.,

2007). This tendency to revert increases with the level of conservation of the site, suggesting a quan-

titative relationship between fitness cost and conservation. While reversion is particularly prevalent

in acute infection (Li et al., 2007), we show that reversion is not limited to early infection but hap-

pens throughout chronic infection.

The bias towards reversion results in a two- to three-fold reduction of the long-term evolutionary

rate of HIV, a trend that is reinforced by selection during transmission (Carlson et al., 2014;

Sagar et al., 2009). Inter-individual evolutionary rates of HIV-1 are two to six times lower than intra-

individual rates, and a number of possible mechanisms have been suggested to explain this discrep-

ancy (Lythgoe and Fraser, 2012). Our results strongly indicate that most of this mismatch can be

explained by steady reversion during infection; other factors such as retrieval of ‘stored’ latent var-

iants or stage-specific selection might also contribute to the rate mismatch (Immonen and Leitner,

2014; Lythgoe and Fraser, 2012).

The high rate of reversion has implications for phylogenetic dating. Given the five-fold excess of

reverting minor variation, reversion would balance divergence once the typical distance from the

consensus sequence equals 17%, corresponding to a nucleotide diversity of about 30%; this is

remarkably close to the actual divergence between HIV-1 groups M, N and O (Li et al., 2015). On

longer distances, this simple argument will have to be modified due to compensatory mutations

resulting in gradual shift of the preferred state at some positions; nonetheless, it indicates a dramatic

slowing down of divergence at a scale of the HIV-1-SIVcpz divergence. This apparent deceleration of

evolution could explain the contradictory findings of attempts to date the age of HIV-1 and SIV

(Worobey et al., 2010). The strong and lasting preference for specific nucleotides needs to be
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accounted for in phylogenetic analysis, as has recently been shown using experimentally determined

fitness landscapes of influenza virus proteins (Bloom, 2014).

Our observations are consistent with results by Ashenberg et al. (2013); Doud et al. (2015), who

showed that amino acid preferences are mostly conserved between related influenza strains. Simi-

larly, divergence between HIV-1 subtypes is small enough that epistatic interactions have not yet

changed the majority of the preferred states. With increasing evolutionary distance between strains,

the molecular context and preferred amino acid at a particular position is more and more likely to

differ (Pollock et al., 2012). Nevertheless, a subset of amino acids preferences are conserved almost

universally (Risso et al., 2015) and enable sequence based homology search.

The concordance between intrahost variation and patterns of conservation across HIV-1 group M

hints at universal fitness costs of mutations. Recently, cross-sectional conservation has been used as

a proxy for fitness costs in models of HIV-1 fitness landscapes (Dahirel et al., 2011; Ferguson et al.,

2013; Mann et al., 2014). Since reproducible intrapatient diversity likely reflects fitness costs of

mutations in vivo, our results provide a direct justification for this approach. However, nine patients

are insufficient to extend this analysis to fitness interactions between mutations.

One limitation of this study was the availability of samples from patients with sufficiently long fol-

low-up without therapy after a well-defined time of infection. The majority of patients were MSM

infected with subtype B virus. Thus, we cannot exclude that the aspects of HIV-1 evolution that we

have investigated may differ between transmission routes or HIV-1 subtypes. While substitution and

recombination errors of our optimized protocol for HIV-1 RNA extraction and an RT-PCR are low,

the other main limitation was that the number of available template molecules was small in some

samples (see also Iyer et al., 2015). In principle, the Primer ID method, which labels and resequen-

ces each individual template, allows quantification of templates and almost complete elimination of

experimental substitution and recombination errors (Jabara et al., 2011). However, we are not

aware of a Primer ID protocol for genome-wide sequencing, which was essential to our study.

The analysis and means of data sharing of next-generation sequencing data from viral populations

is still in its infancy. Raw reads require substantial post-processing before the data can be used to

answer biological questions and technology is changing rapidly such that no standardized pipelines

exist. To facilitate the exploration and further analysis of our data, we have developed a web server

Figure 8. Phylogenetic trees of minor genetic variants. In rapidly evolving genomic regions, trees that include

minor genetic variants (haplotypes) approximate the true phylogeny. Here p17 in gag and the variable loop 3 in

env from patient p1 are compared; many more trees are available on the website. Trees are reconstructed using

FastTree (Price et al., 2009).

DOI: 10.7554/eLife.11282.024

Zanini et al. eLife 2015;4:e11282. DOI: 10.7554/eLife.11282 14 of 26

Research article Genomics and evolutionary biology Microbiology and infectious disease

http://dx.doi.org/10.7554/eLife.11282.024
http://dx.doi.org/10.7554/eLife.11282


that allows to browse characteristics of individual patients, e.g., graph the frequencies of single

nucleotide polymorphism through time, and download different aspects of the data in convenient

format. It is, for example, possible to select an arbitrary region of the genome with length <500 bp,

such as the frequently investigated V3 region, and extract an alignment of haplotypes covering this

region along with their frequency from all time points belonging to one patient. We hope that the

convenient access to processed data will facilitate follow-up studies on other aspects of viral

evolution.

HIV-1 and other microbial populations evolve in a constant struggle between adaptation to a

changing environment and maintenance of functionality. Large mutation rates and population sizes

generate standing genetic diversity that is limited by the fitness costs rather than mutation rates.

Hence the limiting factor for adaptation is not generating the useful mutations, but combining multi-

ple mutations necessary to survive – e.g. escape mutations and reversions – and pruning deleterious

mutations. In HIV-1, this process is facilitated by frequent recombination. We expect that the system-

atic exploration of sequence space, the reproducible patterns of minor variation, and frequent rever-

sion will be characteristic of other RNA viruses. Properties of linkage between mutation will differ

since mechanisms of recombination are diverse. But even though selective forces, recombination,

and time scales will vary among different microbial populations, theoretical models of rapid adapta-

tion population have shown that many features of the evolutionary dynamics are independent of the

specific system (Fisher, 2013; Neher, 2013). Intrapatient evolution of HIV-1 is a unique opportunity

to study this evolutionary dynamics directly in vivo.

Materials and methods

Patient selection and samples
The inclusion criteria for the study patients were: a) a relatively well-defined time of infection based

on a negative HIV antibody test less than 2 years before a first positive test or a laboratory docu-

mented primary HIV infection; b) no antiretroviral therapy (ART) for a minimum of approximately 5

years following diagnosis; and c) availability of biobank plasma samples covering this time period.

The patients were selected from the Venhälsan HIV clinic in Stockholm, Sweden and were diagnosed

between 1990 and 2003. Seven to twelve plasma samples per patient (200–1000 �l) were retrieved

from the biobanks of the Karolinska University Hospital and the Public Health Agency of Sweden.

These samples had been stored at -70˚C following routine HIV RNA quantification. Information

about the patients and the samples are summarized in Supplementary file 1. Results from routine

HIV antibody tests, HIV antigen tests, plasma HIV RNA levels and CD4 counts were collected from

the patient records. Four-digit HLA typing of HLA class I loci A, B, C and class II loci DR and DQ was

performed at the laboratory of immunpathology in Tübingen University Hospital.

In the control experiments, we used HIV DNA from the following plasmids; NL4-3 (subtype B,

DNA concentration 110 ng/�l corresponding to 1.35 � 1010 copies/�l), SF162 (subtype B, DNA con-

centration 117 ng/�l corresponding to 1.43 � 1010 copies/�l), pZM246F_10 (subtype C, DNA con-

centration 101 ng/�l corresponding to 1.35 � 109 copies/�l).

We also used HIV RNA from the following virus isolates LAI III (subtype B, 7500 copies/�l), 38540

(subtype C, 225,000 copies/�l) and 38304 (subtype B, 45,000 copies/�l).

Time since EDI
The patients were classified according to the Fiebig staging system for primary and early HIV infec-

tion (Fiebig et al., 2003). In addition, we performed BED tests (Aware BED EIA HIV-1 Incidence

Test, Calypte Biomedical Corporation, Portland, OR). For each patient, the date of infection was

estimated using results from laboratory tests according to the following hierarchical scheme.

1. Laboratory confirmed symptomatic primary HIV infection (PHI). Infection was considered to
have occurred 17 days prior to date of first hospital visit based on an average incubation time
from infection to development of PHI of 14 days (Gaines et al., 1988) and an estimated
patient delay of 3 days. This was applicable to patients no. 6 and 10.

2. Fiebig staging (Fiebig et al., 2003) was used if the necessary laboratory results were available
(primarily HIV screening test and Western blot) and the patient found to be in Fiebig stage I–
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V. Fiebig stages I–VI were considered to correspond to 13, 18, 22, 27, 65 and >100 days since
infection based on Cohen et al. (2011). This was applicable to patients no. 2 and 8.

3. For patients in Fiebig stage VI, we calculated time since EDI using a published time-continuous
model of development of antibodies reactive in the BED assay (Skar et al., 2013). However,
time since EDI was not considered to be <100 days for patients in Fiebig stage VI. This was
applicable to patients no. 1, 3, 5, 9 and 11.

Comprehensive information about the data used for EDI determinations is provided in

Supplementary file 3.

Primer design
Primers were designed to cover almost the full HIV genome in six overlapping fragments, called

fragments F1–F6 as illustrated in Figure 1. This allowed sequencing of nucleotide positions 571–

9567 in the HxB2 reference sequence according to the Sequence Locator Tool available at www.hiv.

lanl.gov. Because of the redundancy of the long terminal repeats (LTRs), this means that all genomic

regions except positions 482-571 in the R region of the LTRs were sequenced. Primer design was

performed using the subtype reference alignment and the PrimerDesign software available at www.

hiv.lanl.gov (Brodin et al., 2013). PrimerDesign was used to find candidate forward and reverse pri-

mers targeting highly conserved regions of the HIV genome, with similar melting temperatures, and

with minimal tendency for hairpin and primer-dimer formation. Candidate primers were manually

adjusted if needed, tested and sometimes redesigned. For each genome fragment, both outer PCR

primers and nested, inner primers were designed; inner primers were only used for template quanti-

fication and internal testing purposes. Alternative primer sets were created for genome fragments

F3 and F5 because the PCRs with the original primers sometimes were inefficient. For fragment F5,

the amplification problem was not completely alleviated despite trials with several different primer

pairs. We believe that this might be be due to the extensive secondary structure in the RRE region.

The primers are presented in Supplementary file 2. All primer positions except the 5’ primer of F1

and the 3’ primer of F6 are contained in neighboring amplicons and hence sequenced. The primer

part of the reads itself was trimmed after sequencing (see below).

RNA extraction and amplification
For each sample, 400 �l of plasma (if available) was divided into two 200 �l aliquots. Total RNA was

extracted using RNeasy Lipid Tissue Mini Kit (Qiagen Cat. No. 74804). Each aliquot was eluted twice

with 50 �l RNase free water to maximize HIV RNA recovery. The four eluates were pooled, giving a

total volume of 200 �l of RNA per sample. The RNA was divided into twelve 14 �l aliquots for dupli-

cate one-step RT-PCR with the outer primers for fragments F1 to F6 and Superscript III One-Step

RT-PCR with Platinum Taq High Fidelity Enzyme Mix (Invitrogen, Carlsbad, California, US).

Remaining RNA was used for template quantification (see below). The one-step RT-PCR was

started with cDNA synthesis at 50˚C for 30 min and denaturation step at 94˚C for 2 min followed by

30 PCR cycles of denaturation at 94˚C for 15 s, annealing at 50˚C for 30 s and extension at 68˚C for

90 s and a final extension step at 68˚C for 5 min. A second nested PCR was used for template quan-

tification and in some of the control experiments. For the second PCR, 2.5 �l of the product from

the first PCR was amplified with Platinum Taq High Fidelity. The second PCR consisted of a denatur-

ation step at 94˚C for 2 min, followed by 30 PCR cycles with denaturation at 94˚C for 15 s, annealing

at 50˚C for 20 s and extension at 72˚C for 90 s and a final extension at 72˚C for 6 min. Other PCR

conditions were also tried during assay development.

After PCR, the duplicate amplicons from each of the six overlapping PCRs were pooled and puri-

fied with Illustra GFX PCR DNA and Gel Band Purification Kit (28-9034-70, VWR) or AGENCOURT

AMPure XP PCR purification kit (A63881, Beckman Coulter AB). Purified amplicons from each sam-

ple were quantified with Qubit assays (Q32851, Life Technologies) and thereafter diluted and pooled

in equimolar concentrations.

DNA library preparation
The Illumina Nextera XT library preparation protocol and kit were used to produce DNA libraries.

The original protocol was optimized for longer reads and amplicon input in the following fashion: (i)

input DNA concentration to tagmentation was increased to 0.3 ng/�l to reduce overtagmentation;
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(ii) the number of post-tagmentation PCR cycles was raised up to 14 for samples with very low input

DNA; (iii) post-PCR purification was done using Qiagen Qiaquick columns to maximize large-inserts

throughput as compared to magnetic-bead based protocols; (iv) sze selection was performed using

the SageScience BluePippin system with 1.5% agarose gel cassettes and internal marker R2, select-

ing sizes of 550–900 bp (including dual index Nextera adapters, final insert sizes 400–700 bp); (v)

size-selected eluates were pooled, buffer-exchanged into EB (10 mM Tris-HCl), and reconcentrated

to at least 2 nM.

Sequencing
The Illumina MiSeq instrument with 2 � 2 bp or 2 � 2 bp sequencing kits (MS-102-2003/MS-102-

3003) was used to sequence the DNA libraries. We performed 26 paired-end sequencing runs. Over-

all, we obtained around 200 Gbases of output, i.e., 300 Mbases for each PCR amplicon. The median

number of reads per amplicon was 80,000 (quartiles 20,000–220,000, max 2 millions). All read files

have been uploaded to ENA with study accession number PRJEB9618.

Read mapping and filtering
Bases were called from the raw images using Casava 1.8. The reads were analyzed from that point

on using a custom pipeline written in Python 2.7 and C++. We favored this pipeline over existing

programs because HIV-1 is a diverse species and both coverage and genetic diversity typically fluctu-

ate by many orders of magnitude across the genome. The pipeline works as follows: (i) reads were

mapped onto the HIV-1 reference HxB2, using the probabilistic mapper Stampy (Lunter and Good-

son, 2011); (ii) mapped reads were classified into one of the six overlapping fragments used for RT-

PCR (ambiguous and chimeric reads were discarded), and trimmed for PHRED quality above or

equal 30 except for one isolated position per read; RT-PCR primers were also trimmed at this step;

(iii) a consensus sequence was computed for each fragment in each sample from a subset of the

reads, using a chain of overlapping local multiple sequence alignments (each covering around 150

bp); (iv) the reads were re-mapped, this time against their own consensus; (vii) genetic distance from

the consensus were computed, and reads with a distance higher than a sample- and fragment-spe-

cific threshold were discarded. Each threshold, calculated to exclude even traces of cross-contamina-

tion that might have happened during RNA extraction, PCR amplification, or library preparation,

was established by plotting the distribution of Hamming distances of reads from the sample consen-

sus, and excluding reads that are further away than the tail of the main peak. Contaminations

appeared as a second peak at higher distances, recombinants as a fat tail: both were excluded.

Reads were also trimmed for mapping errors at the edges (small indels); (viii) filtered reads were

mapped a third time against a patient-specific reference that was as similar as possible to the con-

sensus sequence from the earliest time point; (ix) reads were re-filtered and checked again for cross-

contamination. The tree of minor variants of all patients in Figure 1—figure supplement 1 shows

the absence of cross-contamination. The pipeline was equipped with extensive consistency checks

for base quality, mapping errors, and contamination, and is based on the open source projects

numpy (van der Walt et al., 2011), matplotlib (Hunter, 2007), Biopython (Cock et al., 2009), sam-

tools (Li et al., 2009), pandas (McKinney, 2011), and SeqAn (Döring et al., 2008).

Quality controls
PCR and sequencing errors
We added 1–5% of PhiX control DNA to all our sequencing runs. Comparison of reads that mapped

to PhiX with the PhiX reference sequence revealed that the Phred quality score were a rather reliable

indicator of error rates, with saturation around 0.1%. SNP calls were calculated from the reads using

a custom pile-up restricted to reads with a PHRED quality >=30 corresponding to a minimal theoret-

ical error rate of 0.1% per base. However, in a dedicated set of control experiments, we established

that the main source of error is PCR, see Figure 1 in the main text.

We estimated the error rate of the PCR and sequencing pipeline by amplifying and sequencing

plasmid clones (NL4-3, SF162, LAI-III). In most of these experiments, we used 104 template mole-

cules. The distribution of SNP frequencies found in the sequencing reads generated from the plas-

mid were compared with sequencing results from a typical patient sample, see Figure 1. After

quality filtering, PCR and sequencing errors never exceed 0.3% of reads covering a particular
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position. Hence SNPs found in more than 0.3% of all reads likely represent biological variation. It is

noteworthy that this neither implies that we detect all biological variants at frequencies above 0.3%

nor does the frequency of a SNP among the reads necessarily reflect the frequency of that SNP in

the sample. For many samples, the detection limit and accuracy of quantification of minor variants

was not limited by the sequencing error, but by the RNA template input and potential PCR bias.

Template input
To roughly quantify the actual number of HIV RNA templates that were subjected to sequencing, we

analyzed a dilution series of the RNA (1:10, 1:100, 1:1,000, and 1:10,000) with the nested primers for

fragment F4 using the PCR conditions described above. Tests were done in duplicate on the same

plate as amplifications for sequencing and the amplicons were visualized by agarose gel electropho-

resis. Templates numbers were estimated based on the assumption of Poisson sampling. Thus, for

each sample, this dilution series provides an estimate of the number of templates that make it into

the sequencing library. The results from the limiting dilution experiments correlated well (rank corre-

lation p = 0.7) with routine plasma HIV-1 RNA level measurements that had been performed at time

of sampling, see Figure 9A. These comparisons showed that the median template cDN recovery

efficiency was 30% (quartiles 17–60%), which should be regarded as satisfactory since the amplicons

were relatively long and the samples had been stored for up to 24 years and sometimes also freeze-

thawed prior to this study.

PCR bias
In addition to quantification of template input for each sample, we separately estimated the recovery

of sequence variation in each of the six sequenced amplicons. Adjacent fragments overlap each

other by a few hundred bases. Variation in the overlapping regions is amplified and sequenced on

both the leading and trailing fragment completely independently and the concordance of the

Figure 9. Template quantification and accuracy of SNP frequency estimates. The left panel shows actual template numbers as experimentally

determined by end point dilution (y-axis) vs. the maximum theoretical template input as estimated based on plasma virus levels. The estimates from the

dilutions are typically a factor of three below the expectation from viral load, suggesting generally good template recovery. The center panel show the

correlation of fragment-specific effective template numbers estimated from the concordance of SNPs in fragment overlaps. Again, the correlation is

generally good, but fragment F5 often has estimates lower than those from the dilution series consistent with problems faced in amplification of this

fragment. Information from fragment F6 is largely absent, since there is very little variation in the F5–F6 overlap. The right panel plots SNP frequencies

in overlaps measured in the leading fragment against the trailing fragment. Deviations from the diagonal are due PCR bias and random sampling from

limited template molecules. Given enough diversity in overlap regions, the concordance of variant frequencies can be used to estimate fragment

specific template input and accuracy of SNP frequencies. SNP frequencies in overlaps of the individual fragment pairs are shown in Figure 9—figure

supplement 2.

DOI: 10.7554/eLife.11282.025

The following figure supplements are available for figure 9:

Figure supplement 1. Concordance between two samples 30 days apart (samples 4 and 5 of p1).

DOI: 10.7554/eLife.11282.026

Figure supplement 2. This figure shows the same data as figure 9C, but different overlaps are shown in separate panels.

DOI: 10.7554/eLife.11282.027
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observed variant frequencies, see Figure 9, can be used to detect PCR amplification bias or poor

recovery in a subset of the fragments.

If deviations of SNP frequencies are due to random sampling from the pool of RNA molecules

and stochastic PCR efficiency, the variance between the frequencies observed on two neighboring

fragments should be xð1� xÞðn�1

L þ n�1

T Þ, where x is the true frequency of the SNP. The numbers nL
and nT correspond to effective template numbers specific to leading (L) and trailing (T) fragment.

For each SNP in the overlap, we calculate the difference d and the mean x of the frequencies

reported on the L/T fragment. An estimate of n�1

L þ n�1

T is then given by

1

kþ p

X

k

i¼1

d
2

i

xið1�xiÞ
þ

p

ndil

" #

; (1)

where k is the number of SNPs in the overlap. To increase robustness of this estimate, we include p

pseudo counts each of which contributes n�1

dil , where ndil is the template number estimated from the

dilution series. Since we have six fragments but (in the best case) only five overlaps, the effective

fragment template numbers are not uniquely determined. However, their inverse has to be smaller

than the minimum of the estimate of n�1

L þ n�1

T at any overlap the fragment participates in. Hence,

we assign a lower bound for the fragment-specific template estimate by using the inverse of this

minimum, provided we find at least k = 5 SNPs in the overlap at an average frequency above 0.03.

We used p = 3. Changing the parameters does not change the numbers qualitatively.

The fragment specific estimates of template numbers are consistent with the estimates based on

limiting dilution (see Figure 9, rank correlation around p = 0.5 for most of the fragments), but indi-

cated that variant recovery in fragment F5 was sometimes poor, consistent with the difficulties we

encountered when amplifying fragment F5. Furthermore, the agreement of SNP frequencies in the

overlaps indicate that the primers were well-designed and did not induce significant primer-related

PCR amplification biases. These fragment-specific estimates are only available for samples and frag-

ments with sufficient diversity in the overlap regions and are often lacking for early samples and frag-

ment F6. The latter is due to the very conserved overlap with fragment F5.

Taken together, these controls show that, depending on the sample and fragment, we can esti-

mate frequencies of SNPs down to 1% accuracy (corresponding to several thousand effective tem-

plates). In some cases, however, the template number was low or recovery poor such that no more

than presence absence of a variant could be called. All available fragment specific estimates are

shown in Figure 9B. In addition to lack of concordance of SNP frequencies in overlaps, problematic

fragments lack diversity or have a granular distribution of SNP frequencies such that they can be

flagged and removed from specific analysis. The fact that PCR efficiency can vary within one sample

is illustrated in Figure 9—figure supplement 1 that compares SNP frequencies estimated in samples

4 and 5 of patient 1 that are only 30 days apart: While SNP frequencies agree to within expectation

for five out of six fragments; fragment F5 shows strong deviations linked to suboptimal PCR effi-

ciency. However, even in problematic samples, our amplification and sequencing approach does not

generate spurious variation, as shown by the absence of diversity in early samples or conserved sites

(see below).

In vitro recombination and linkage
The paired-end reads obtained correspond to inserts of up to 700bp in length and therefore provide

information on linkage of mutations up to that distance. However, cDNA synthesis and PCR have

both the potential to generate in vitro recombination, and true biological linkage is preserved only if

the frequency of in vitro recombination is low. To estimate the in vitro recombination in our experi-

mental setup, virions from two subtype B HIV isolates, LAI III and 38304 (the latter obtained from a

Swedish HIV-1 patient infected in Brazil), were mixed in equal concentrations. Aliquots of this mix

(approximately 1250 RNA molecules per PCR fragment) were amplified with the six overlapping

one-step RT-PCRs as described above in both single and nested PCR mode and then sequenced.

PCR recombination is known to occur predominantly at high amplicon concentrations due to het-

eroduplex formation of incompletely extended molecules (Di Giallonardo et al., 2013; Mild et al.,

2011). Consistently, we observe no PCR recombination within the first PCR (which starting at low

template input does not saturate), while we observe substantial PCR recombination during a second

nested PCR. Since our library preparation protocol requires very low input DNA, we do not need
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nested PCR, avoiding this source of PCR recombination. The fact that PCR recombination occurs

during a second PCR shows that the two viruses used for this control (both subtype B) are similar

enough that divergence does not interfere with heteroduplex formation. Figure 7 includes the link-

age disequilibrium observed in the control experiment as a function of distance, showing that link-

age is high and not lost with distance during the first PCR.

Analysis
Python scripts that generate each figure shown in the manuscript are available at github.com/neher-

lab/HIVEVO_figures. In these scripts, all parameters, settings, and calculations are explicitly

documented.

Divergence rates across the HIV-1 genome
Average divergence defined as the fraction of non-founder alleles in a sliding window of 300bp was

regressed against the estimated times since infection using a linear model without intercept. Differ-

ent data points were weighted by the total divergence, reflecting the expected scaling of the vari-

ance if divergence is due to changes at many independent sites. The evolutionary rate was than

mapped to the corresponding coordinate in the HxB2 reference.

Phylogenetic analysis
To construct trees in different regions of the HIV-1 genome, we extracted reads covering the desired

region, restricted them to haplotypes above the desired frequency threshold and constructed a max-

imum likelihood phylogeny using FastTree (Price et al., 2009). Trees were rooted at the consensus

sequence of the earliest available sample.

Linkage disequilibrium
To calculate linkage disequilibrium, we first constructed four-dimensional matrices for each fragment

and each sample that report the number of times reads mapped such that a nucleotide n1 at posi-

tion x1 was jointly observed with nucleotide n2 at position x2. These matrices, reduced to variable

positions, are available on the website. From these matrices, we calculate the joint frequency p12 (x1,

x2) of the majority nucleotide at positions (x1, x2). The normalized linkage disequilibrium measure is

then given by

D
¢

¼
p12� p1p2

Dmax

(2)

where p1,p2 are the frequencies of the majority nucleotide at the respective positions, and

Dmax ¼
min

�

p1p2; ð1� p1Þð1� p2Þ
�

p12 < p1p2

min

�

p1ð1� p2Þ; ð1� p1Þp2

�

p12 > p1p2

8

<

:

Values of D
¢

are then binned by distance and plotted. To reduce noise, only SNPs at frequencies

between 20 and 80% at positions with a coverage >200 were included. Furthermore, we required

that the fragment-specific depth estimate exceeded 40 or the estimated template input exceeded

200. The latter is necessary to include fragment F6, since the overlap with fragment 5 often had

insufficient diversity to allow for a fragment-specific depth estimate.

Mutation classification and CTL epitope prediction
Synonymous and non-synonymous divergence was analyzed on a per site basis to avoid confounding

by different numbers of transitions and transversions. Positions were classified as synonymous based

on the following criterion: The consensus amino acid at this position did not change throughout

infection and at least the transition at this site is synonymous. In this case, the observed mutations at

this site are almost always synonymous.

The functional categories for genomic regions were the following: structural: p17, p24, p6, p7;

enzymes: protease, RT, p15, integrase; accessory: vif, vpu, vpr, nef; envelope: gp120 and gp41. For

the CTL epitope prediction, ranked epitope lists were obtained using the web service MHCi ( tools.

immuneepitope.org/mhci). This tool uses several prediction methods ranked based on previously
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observed performance: Consensus (Moutaftsi et al., 2006) > Artificial Neural Network

(Nielsen et al., 2003) > Stabilized Matrix Method (Peters and Sette, 2005) > NetMHCpan

(Hoof et al., 2008). For each patient, we submitted the consensus amino acid sequences of the viral

proteins at the first time point together with 4-digit HLA types at MHC-I. To analyze putative CTL

escape in our patients, we used the first 80 epitopes from the ranked list as a compromise between

false negatives and false positives. This number maximized the statistical signature for HIV-1 substi-

tutions being within epitopes, but similar results were obtained by taking the first 50-100 epitopes in

the lists.

We preferred computational predictions over experimentally verified CTL epitopes, since the lat-

ter are incomplete and biased towards common virus sequences and HLA types. For each patient,

we submitted the approximate founder sequence (consensus sequence of the first sample) to MHCi

and obtained a list of peptides putatively presented by the HLA alleles (A/B/C) of the respective

host ranked by prediction score.

We considered the parts of the HIV-1 genome that putatively is targeted in any of the nine

patients, and asked whether the density of nonsynonymous substitutions is higher in the part that is

predicted to be presented in a focal patient compared to the part that is not presented. We

excluded the variable loops of gp120 and the external part of gp41 from this analysis to avoid con-

founding by antibody selection. Repeating the same analysis for synonymous mutations did not yield

any enrichment as expected.

Comparison with subtype diversity
Full genome HIV-1/SIVcpz sequences were downloaded from LANL HIV database. Sequences

belonging to subtypes B, C, and 01_AE were individually aligned to HxB2 (using pairwise alignment

functions from SeqAn (Döring et al., 2008)) to construct a summary of diversity within subtypes in

HxB2 coordinates. Similarly, a group M diversity summary in HxB2 coordinates with made from

sequences of subtypes A, B, C, D, F, G, H, restricted to at most 50 sequences from any given sub-

type. From these HxB2 indexed alignments, entropy was calculated columnwise and the consensus

sequence determined as the majority nucleotide.

When comparing HIV variation within patients to cross-sectional diversity, only positions of the

founder sequence were used that mapped to HxB2. Similarly, only positions in the cross-sectional

alignment were used that had less than 5% gaps relative to HxB2. This effectively masked regions of

the genome that frequently experience insertions of deletions.

To investigate divergence and reversion, intrapatient evolution was studied separately at sites

where the approximate founder sequence agreed/disagreed with the respective subtype or group

M consensus. Divergence was assessed on a per site basis.

Website
The website was realized using the Flask web framework, Bootstrap from Twitter as a frontend

engine and jQuery and D3.js as a JavaScript library for interactive plots (Bostock, 2015;

Ronacher, 2015). The webpage is available at hiv.tuebingen.mpg.de.
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Döring A, Weese D, Rausch T, Reinert K. 2008. SeqAn an efficient, generic C++ library for sequence analysis.
BMC Bioinformatics 9:11. doi: 10.1186/1471-2105-9-11

Elena SF, Lenski RE. 2003. Microbial genetics: evolution experiments with microorganisms: the dynamics and
genetic bases of adaptation. Nature Reviews Genetics 4:457–469. ISSN 1471-0056. doi: 10.1038/nrg1088

Ferguson AL, Mann JK, Omarjee S, Ndung’u T, Walker BD, Chakraborty AK. 2013. Translating HIV sequences
into quantitative fitness landscapes predicts viral vulnerabilities for rational immunogen design. Immunity 38:
606–617. doi: 10.1016/j.immuni.2012.11.022

Fiebig EW, Wright DJ, Rawal BD, Garrett PE, Schumacher RT, Peddada L, Heldebrant C, Smith R, Conrad A,
Kleinman SH, Busch MP. 2003. Dynamics of HIV viremia and antibody seroconversion in plasma donors. AIDS
17:1871–1879. doi: 10.1097/00002030-200309050-00005

Fischer W, Ganusov VV, Giorgi EE, Hraber PT, Keele BF, Leitner T, Han CS, Gleasner CD, Green L, Lo CC, Nag
A, Wallstrom TC, Wang S, McMichael AJ, Haynes BF, Hahn BH, Perelson AS, Borrow P, Shaw GM, Bhattacharya
T, Korber BT. 2010. Transmission of single HIV-1 genomes and dynamics of early immune escape revealed by
ultra-deep sequencing. PloS One 5:e12303. doi: 10.1371/journal.pone.0012303

Fisher DS. 2013 Asexual evolution waves: fluctuations and universality. JSTAT 2013:P01011. ISSN 1742-5468.
Foley B, Leitner T, Apetrei C, Hahn B, Mizrachi I, Mullins J, Rambaut A, Wolinsky S, Korber B. 2013. Theoretical
Biology and Biophysics Group. Los Alamos: Los Alamos National Laboratory; 13.

Friedrich TC, Dodds EJ, Yant LJ, Vojnov L, Rudersdorf R, Cullen C, Evans DT, Desrosiers RC, Mothé BR, Sidney J,
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