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ABSTRACT: Molecular scaffolds with multiple rotationally
restricted bonds allow a precise spatial positioning of functional
groups. However, their synthesis requires methods addressing
the configuration of each stereogenic axis. We report here a
catalyst-stereocontrolled synthesis of atropisomeric multiaxis
systems enabling divergence from the prevailing stereochemical
reaction path. By using ion-pairing catalysts in arene-forming
aldol condensations, a strong substrate-induced stereoprefer-
ence can be overcome to provide structurally well-defined
helical oligo-1,2-naphthylenes. The configuration of up to four
stereogenic axes was individually catalyst-controlled, affording
quinquenaphthalenes with a unique topology.

A defined relative orientation of groups in space is essential
for the rational design of functional molecular systems. As

structurally well-defined scaffolds, multiaxis systems offer a
particularly broad range of topologies as compared to small,
bridged, or linearly arranged compounds. Atropisomers with
multiple configurationally stable axes would hence permit
geometrical control over an extended and more characteristic
molecular arrangement. However, for the configuration of each
stereogenic axis to be individually addressed, a stereochemically
versatile synthetic strategy is required,1−3 where the choice of
specific catalysts allow divergence of the diastereoselective
reaction paths.
Seminal studies on diastereodivergent catalyst control over

the stereocenter configuration underline the intricacies of the
substrate−catalyst mismatch scenario, where selectivity for the
unfavored product requires a particularly pronounced lowering
of the activation energy (Scheme 1 top, cat. 2B, TSBsubs vs
TSBcat).

4−12 By implementing this consideration for the
preparation of atropodiastereoisomers, stereodivergent syn-
thesis of multiaxis systems under catalyst control would impose
selectivity for an array of stereogenic axes, which induce a
topologically unique structure (Scheme 1 bottom). We
therefore envisaged that a catalyst-accelerated diastereoselective
arene-forming aldol condensation13,14 would provide discretely
configured oligo-1,2-naphthylenes with multiple configuration-
ally stable stereogenic axes. By catalyst variation, either the
selectivity of a substrate-stereocontrolled reaction15−26 could be
increased, or more notably, the stereochemical course of the
reaction could be inverted to provide otherwise inaccessible
atropisomeric multiaxis systems with a characteristic molecular
shape (substrate−catalyst mismatch case).
To evaluate the feasibility of the catalyst-controlled stereo-

divergent synthesis of multiaxis atropisomers, we prepared a

substrate with a previously defined stereogenic axis using our
established procedure.27 Addition of diaryl magnesium alkoxide
reagent 1 to 1-bromonaphthalene-2-carbaldehyde (2) was
followed by in situ double oxidation of diol (±)-3 and an
enantioselective arene-forming aldol condensation with (S)-
pyrrolidinyl tetrazole catalyst 4 (99:1 er, Scheme 2). Building
block 1 was subsequently added to the configurationally stable
binaphthalene (Sa)-5

28,29 to give prerequisite precursor diol 6.
Upon double-oxidation of 6 using IBX, the keto-aldehyde

substrate was first converted to the ternaphthalene with two
stereogenic axes under substrate stereocontrol (Table 1).
Treatment with aqueous KOH thus revealed a 4:1 preference
for (Ra,Sa)-7 over (Sa,Sa)-8 (entry 1).30 We next investigated
the stereodivergent synthesis of the atropisomeric two-axis
system by evaluating the level of catalyst control of selected
amine and ion-pairing catalysts under multiple reaction
conditions.31

Intriguingly, (S)-pyrrolidinyl tetrazole catalyst 4 led to an
inverted selectivity of 1:12 in favor of (Sa,Sa)-8, however, in low
yield (entry 2, substrate-catalyst mismatched case). Upon
optimization of the reaction conditions, chloroform, DMF, and
aqueous citrate buffer as medium were found to provide (Sa,Sa)-
8 with increased selectivity and a significantly improved yield
(75% over two steps, 32:1 dr, entries 3−5). We next
corroborated that catalysts govern the stereochemical course
of the reaction by using (R)-pyrrolidinyl tetrazole (ent-4) under
identical conditions, affording the opposite diastereomer
(Ra,Sa)-7 with an atropodiastereoselectivity of 24:1 (entry 6,
substrate−catalyst matched case). Moreover, the catalyst
loading could be dramatically reduced by the use of ion-pairing
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catalysts (aq KOH, entries 7−10). Whereas N-benzylcinchoni-
nium chloride (9),32−34 Maruoka catalyst 10,35−37 and Corey
catalyst 1138 showed variable activity and selectivity, the
cinchonidine-derived Lygo catalyst 1239,40 induced a high dr
combined with a particularly high catalytic activity even if
reduced to 1.0 mol % (entries 10−12).31
Having confirmed that the atropodivergent synthesis of a

two-axis system enables the preparation of both atropodiaster-
eoisomers under catalyst control, we became intrigued by the
prospect of governing the configuration of an atropisomeric
stereotriad. Building block addition to (Sa,Sa)-8 (75%) and
subsequent in situ oxidation of the corresponding diol
expeditiously provided the corresponding keto-aldehyde, the
substrate for the stereodivergent arene-forming aldol con-
densation in question. Interestingly, the level of substrate
stereocontrol increased to 7:1 in favor of the homologous
diastereomer (Ra,Sa,Sa)-13 (Scheme 3). For this more
pronounced substrate bias for the terminally (Ra)-configured

atropisomer to be overcome, several catalysts and conditions
were thoroughly examined.31 Whereas primary and secondary
amines proved inefficient, catalyst 12 was capable of forming
helical (Sa,Sa,Sa)-14 with a selectivity of 6:1, which was further
improved to 8:1 at 0 °C (1.0 mol % 12, aq KOH). The
inversion of this considerable substrate preference with
1.0 mol % of 12 under otherwise identical conditions highlights
the high efficiency of ion-pairing catalysts and indicates their
particular utility for the substrate−catalyst mismatch scenario in
the stereodivergent synthesis of multiaxis systems.
Encouraged by these results, we set out to investigate

systems with four stereogenic axes individually addressed by
catalyst stereocontrol. The required keto-aldehyde substrate
poised for the arene-forming aldol condensation was accessible
after a third building block addition to (Sa,Sa,Sa)-14 (Scheme 4,
81%) and a subsequent in situ double oxidation. Under
substrate stereocontrol, the additional repeating unit had a
dramatic effect on the preference for quinquenaphthalene
(Ra,Sa,Sa,Sa)-15, which was formed with a selectivity of 32:1.
This increasingly prevalent bias however hampers the synthesis

Scheme 1. Catalyst-Controlled Diastereodivergent
Synthesisa

aSelectivity for the unfavored product (PB) of a substrate-stereo-
controlled reaction (TSAsubs vs TSBsubs) requires a more pronounced
lowering of the activation energy (ΔΔG⧧) under catalyst stereocontrol
(TSAcat vs TSBcat). EG: end group, SM: starting material.

Scheme 2. Substrate Synthesis

Table 1. In Situ Double Oxidationa and Optimization of the
Catalyst-Controlled Stereodivergent Synthesis of an
Atropisomeric Two-Axis Systemb

entry catalyst (mol %) solvent/additive drc (7:8) yieldd

1 CHCl3/aq KOH 4:1 65%
2 4 (40) CHCl3 1:12 13%
3 4 (40) DMF/H2O 1:32 55%
4e 4 (40) CHCl3/DMF/H2O 1:24 54%
5e,f 4 (40) CHCl3/DMF/aq bufferg 1:32 75%
6e ent-4 (40) CHCl3/DMF/aq bufferg 24:1 64%
7 9 (10) CHCl3/aq KOH 8:1 54%
8 10 (10) CHCl3/aq KOH 3.5:1 44%
9 11 (10) CHCl3/aq KOH 3.5:1 18%
10 12 (10) CHCl3/aq KOH 16:1 72%
11 12 (5) CHCl3/aq KOH 16:1 70%
12 12 (1) CHCl3/aq KOH 16:1 69%

aIn situ double oxidation with 100 μmol substrate precursor 6 in
MeCN and 300 μmol IBX at 60 °C for 4 h. bStereodivergent aldol
condensation with the specified catalyst and additive at RT for 24 h.
cRatio of (Ra,Sa)-7:(Sa,Sa)-8 as determined by 1H NMR of the crude
reaction mixture. dYield of isolated product over two steps. eReaction
time of 48 h. fUsing 4.00 mmol substrate. gSodium citrate buffer, pH 5.
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of (Sa,Sa,Sa,Sa)-16, as it requires diverging from a remarkably
dominant reaction path. With N-benzylcinchonidinium chloride
catalyst 12, this preference was diminished but could not be
overcome, and (Ra,Sa,Sa,Sa)-15 remained the major product
(1:3 dr, substrate−catalyst mismatch case). After meticulous
experimentation using various prototypical catalysts and
conditions,31 anthracene-bearing catalyst 17 with an increased
steric demand was identified to provide a 1:1 diastereoisomeric
mixture. This suggests that activation energy parity was reached
by compensation of the substrate bias for stereoisomer
(Ra,Sa,Sa,Sa)-15. Gratifyingly, subsequent optimization revealed
that a combination with sodium hydride allows the inversion of
selectivity to give the desired (Sa,Sa,Sa,Sa)-16 as a major product
with a dr of 3.3:1.31 An efficient catalytic system hence prevails
even over a marked substrate bias (32:1 dr), enabling
divergence of the atropodiastereoselectivity for the synthesis
of a previously elusive stereotetrad.
Having both quinquenaphthalene diastereoisomers in hand,

we next studied their characteristic structures by NMR
spectroscopy. Large upfield shifts of the aldehyde protons
(>1.0 ppm, 8.86 ppm) of the terminally (Ra)-configured

atropisomer 15 indicate a strong influence of the ring current
from the second naphthalene unit to the aldehyde in proximity.
Furthermore, substantial shifts of the aromatic protons (5.6
ppm) and clear NOE correlations between every third
naphthalene unit of (Sa,Sa,Sa,Sa)-configured 16 were consistent
with a compact helical secondary structure of the oligomers.
These findings were further supported by the crystal structure
of (Ra,Sa,Sa,Sa)-15 (Figure 1)41 with distances between the

naphthalene moieties as small as 3.4 Å. The P-helical structure,
particularly along the uniformly configured (Sa,Sa,Sa)-motif, is
evident by the one and a half helix turns (a third turn per unit)
and an average dihedral angle of 37° from alternating minimally
distorted arene (5 × 4° in average) and their interstitial
binaphthyl bonds (4 × 79° in average). These coil the
configurationally stable ortho-arylene into a compact and
distinctive geometry. We assume that only two conformers,
resulting from the rotation about the arene-carbaldehyde bond,
are accessible, whereas the oligo-1,2-naphthylene scaffold
provides a configurationally entirely stable structure.
To evaluate the higher substrate bias with increasing

oligomer length, we examined differences in their structures
in solution. Interestingly, a comparison of the ring current
effects of (Sa,Sa,Sa,Sa)-16 with the shorter quaternaphthalene
diastereoisomer (Sa,Sa,Sa)-14 indicates that, with length, the
helical arrangement is increasingly compact (ΔδH(34−144′′′) =
1.56 ppm vs ΔδH(34−164′′′′) = 1.91 ppm), supporting the
notion of Hartley that, in solution, the termini of ortho-arylenes
are partially disordered.42,43 Moreover, the lower substrate
control observed in aromatic solvents is in agreement with
partial disintegration of otherwise densely packed helices (2.7:1
dr (toluene) vs 7:1 dr (CHCl3) for 13:14).31 To further
evaluate the interplay of repulsive and attractive effects that
influences the level of substrate stereocontrol, we investigated
an arene substituent that diminishes aromatic interactions
((Sa)-18, triaryl amine end group, Scheme 5). Remarkably, with
an electron-rich end group, the substrate bias is dramatically
increased (19:1 dr for 19 vs 7:1 dr for 13), whereas solvent
effects remain minimal.31 Although the addition of catalyst 12
has a comparable impact on the diastereoselectivity towards
(Sa,Sa)-20 (1:1.9 dr), attractive aromatic interactions likely
facilitate the formation of the helical oligomers 14 and 16. In
combination, these results are in accordance with prevailing
steric effects of the nucleophilic side chain with compact helices
(for Ra) and opposing attractive interactions of the aromatic
moieties (for Sa, helical).

Scheme 3. Stereodivergent Synthesis of an Atropisomeric
Three-Axis System

Scheme 4. Stereodivergent Synthesis of an Atropisomeric
Four-Axis System

Figure 1. X-ray crystal structure of (Ra,Sa,Sa,Sa)-15. Thermal ellipsoids
are drawn at the 50% probability level (left). View along the helix axis
(right) with 1.53 turns (0.30 per unit) and an average torsional angle
of 37° (average of 79° for four biaryls; average of 4° for five arenes).15
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In conclusion, the configuration of multiaxis systems was
individually addressed by catalyst-controlled atropodiadivergent
synthesis. Up to four stereogenic axes were governed by amine
and ion-pairing catalysts in arene-forming aldol condensations.
Even in cases of a marked substrate−catalyst mismatch,
otherwise inaccessible multiaxis atropisomers were efficiently
prepared. To the best of our knowledge, this is the first example
of a catalyst-controlled, stereodivergent synthesis of com-
pounds with multiple stereogenic axes. The configuration of the
rotationally restricted oligomers imposes a characteristic helical
shape with a defined spatial arrangement. The stereodynamic
behavior of the extended quinquenaphthalenes is reduced to a
rotation about the terminal arene-carbaldehyde bond. The
remarkable differences in substrate bias were attributed to
opposing steric and aromatic interactions. Our current studies
focus on the spatial positioning of pertinent groups by using
structurally well-defined diastereoisomeric scaffolds.
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