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Abstract

The ability to integrate past and current feedback associated with di↵erent environmental

stimuli is crucial for adaptive and goal-directed behavior. The field of reinforcement learning

(RL) focuses on understanding such ability: Computational models propose algorithms for

the updating of beliefs based on the received feedback, while neural models describe how

these algorithms are implemented in the brain. In this dissertation, I investigate learning-

by-feedback both at the algorithmic level (in the first part) and at the implementation level

(in the second part).

In the first part, in particular, I focus on human behavior during learning-by-

feedback in the presence of both monetary gains and losses (first manuscript) or of di↵erent

magnitudes of monetary gains (second manuscript). To date, most computational RL mod-

els focused on trial-by-trial dynamics and have not explained how response times (RTs)

change during learning or are a↵ected by di↵erent learning contexts (e.g., in the presence

of gains vs. losses). In both manuscripts, I argue that RTs are crucial for the understand-

ing of reward-based decisions: In both studies, participants’ RTs were a↵ected by di↵erent

learning contexts, while their choice preferences not always were. To jointly explain the

e↵ects on both preferences and RTs, I used a sequential sampling model, the di↵usion

decision model (DDM). In the first manuscript, I propose a meta-analytical approach to

simultaneously analyze the e↵ects of di↵erent learning contexts on choice preferences and

RTs from four independent experiments. In the second manuscript, I propose a new model

that incorporates an RL algorithm into the DDM.

In the second part of my thesis, I investigated the coding of losses and gains by

the dopaminergic nuclei in the human brain. Since these nuclei are situated deep in the

brain, their signal is hard to study using non-invasive imaging techniques such as mag-

netic resonance imaging (MRI): To date, human studies have provided incomplete and

partially contradicting findings about the reward signals in dopaminergic nuclei. In the

third manuscript, I provide evidence that clarifies the role of the dopaminergic nuclei when

receiving more or less surprising gains and losses, as well as when expecting higher or lower

outcome risk. To do so, I capitalize on ultra-high field MRI and on the use of multimodal

images to delineate the dopaminergic nuclei on a participant level.



Contents

Chapter

1 Introduction 1

1.1 Computational models of decision under uncertainty . . . . . . . . . . . . . 3

1.1.1 Sequential Sampling: the di↵usion decision model . . . . . . . . . . 4

1.1.2 Reinforcement learning models . . . . . . . . . . . . . . . . . . . . . 7

1.1.3 Combining models to explain within and trial-by-trial dynamics . . 12

1.1.4 First manuscript: Decomposing the e↵ects of context valence and
feedback information on speed and accuracy during reinforcement
learning: A meta-analytical approach using di↵usion decision modeling 14

1.1.5 Second manuscript: A reinforcement learning di↵usion decision model
for value-based decisions . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2 The neural bases of decision under uncertainty . . . . . . . . . . . . . . . . 21

1.2.1 Sequential sampling and the brain . . . . . . . . . . . . . . . . . . . 22

1.2.2 Reinforcement learning and the brain . . . . . . . . . . . . . . . . . 23

1.2.3 The dopamine reward signal in the human brain: Challenges and
previous findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.2.4 Third manuscript: The role of dopaminergic nuclei in predicting and
experiencing gains and losses: A 7T human fMRI study . . . . . . . 26

1.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.3.1 Modeling behavior in di↵erent learning contexts . . . . . . . . . . . 29

1.3.2 Valence and magnitude e↵ects . . . . . . . . . . . . . . . . . . . . . 31

1.3.3 Di�culty and feedback information e↵ects . . . . . . . . . . . . . . . 33

1.3.4 The dopamine signal . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



viii

2 Decomposing the E↵ects of Context Valence and Feedback Information on Speed
and Accuracy During Reinforcement Learning: A Meta-Analytical Approach Using
Di↵usion Decision Modeling 37

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.2 Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.3 Dependent variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.4 Bayesian analysis of the variance . . . . . . . . . . . . . . . . . . . . 42

2.2.5 Reinforcement learning architecture . . . . . . . . . . . . . . . . . . 44

2.2.6 Reinforcement learning model fitting . . . . . . . . . . . . . . . . . . 45

2.2.7 Relationship between latent learning variables and raw data . . . . . 46

2.2.8 Di↵usion decision model architecture . . . . . . . . . . . . . . . . . . 46

2.2.9 Di↵usion decision model fitting . . . . . . . . . . . . . . . . . . . . . 47

2.2.10 Statistical reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3.1 Bayesian analysis of the variance . . . . . . . . . . . . . . . . . . . . 49

2.3.2 Reinforcement learning model analyses . . . . . . . . . . . . . . . . . 51

2.3.3 Di↵usion decision model analyses . . . . . . . . . . . . . . . . . . . . 53

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3 A Reinforcement Learning Di↵usion Decision Model for Value-Based Decisions 59

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2.1 Participants and procedure . . . . . . . . . . . . . . . . . . . . . . . 63

3.2.2 Learning paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.4 Stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.5 Cognitive models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2.6 Analysis of the behavioral e↵ects . . . . . . . . . . . . . . . . . . . . 71

3.2.7 Model fitting and model comparison . . . . . . . . . . . . . . . . . . 72

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3.1 Behavioral results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



ix

3.3.2 Cognitive modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4 The Role of Dopaminergic Nuclei in Predicting and Experiencing Gains and Losses:
A 7T Human fMRI Study 89

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2.1 Participants and procedure . . . . . . . . . . . . . . . . . . . . . . . 93

4.2.2 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2.3 Gambling task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2.4 Behavioral analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2.5 Structural and functional MRI data preprocessing . . . . . . . . . . 97

4.2.6 Anatomical segmentation . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2.7 fMRI data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3.1 Quality of data assessment . . . . . . . . . . . . . . . . . . . . . . . 102

4.3.2 Anatomical masks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3.3 ROI-wise GLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.3.4 Voxel-wise GLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

References 113

Bibliography 113

Appendix

A Appendix Manuscript I 131

A.1 Bayesian mixed model ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . 131

A.2 Reinforcement learning model analyses . . . . . . . . . . . . . . . . . . . . . 135

A.3 Di↵usion decision model analyses . . . . . . . . . . . . . . . . . . . . . . . . 139

A.4 Di↵usion decision model parameter recovery . . . . . . . . . . . . . . . . . . 142



x

B Appendix Manuscript II 145

B.1 Bayesian hierarchical regression models . . . . . . . . . . . . . . . . . . . . 145

B.2 Bayesian hierarchical cognitive models . . . . . . . . . . . . . . . . . . . . . 148

B.3 Results of parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . 153

B.4 Parameter recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

C Appendix Manuscript III 161

D Curriculum Vitae 166



Tables

Table

2.1 Participants demographics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1 Reinforcement models WAIC . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.2 Di↵usion decision models WAIC . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3 Reinforcement learning di↵usion decision models WAIC . . . . . . . . . . . 81

3.4 Pedersen’s models WAIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1 Dice scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.2 ROI-wise general linear model . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3 Voxel-wise general linear model . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.1 Bayes Factors ANOVA accuracy . . . . . . . . . . . . . . . . . . . . . . . . 133

A.2 Bayes Factors ANOVA response times . . . . . . . . . . . . . . . . . . . . . 134

A.3 Bayes Factors learning regressors accuracy . . . . . . . . . . . . . . . . . . . 138

A.4 Bayes Factors learning regressors response times . . . . . . . . . . . . . . . 138

A.5 Generating parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

B.1 Reinforcement learning parameter estimates . . . . . . . . . . . . . . . . . . 153

B.2 Di↵usion decision model parameter estimates . . . . . . . . . . . . . . . . . 154

B.3 Reinforcement learning di↵usion decision model parameter estimates . . . . 155

B.4 Pedersen’s model parameter estimates . . . . . . . . . . . . . . . . . . . . . 156



Figures

Figure

1.1 Di↵usion decision model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Reinforcement learning model . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Reinforcement learning di↵usion decision model . . . . . . . . . . . . . . . . 15

1.4 Di↵usion decision model parameter e↵ects . . . . . . . . . . . . . . . . . . . 34

2.1 Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2 Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.3 Reinforcement learning, accuracy and RTs . . . . . . . . . . . . . . . . . . . 52

2.4 Di↵usion decision model results . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1 Reward distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2 Example of a trial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3 Behavioral results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4 Posterior predictives linear models . . . . . . . . . . . . . . . . . . . . . . . 76

3.5 Posterior predictives reinforcement learning models . . . . . . . . . . . . . . 78

3.6 Posterior predictives di↵usion decision models . . . . . . . . . . . . . . . . . 80

3.7 Posterior predictives reinforcement learning di↵usion decision models . . . . 82

3.8 Posterior predictives Pedersen’s models . . . . . . . . . . . . . . . . . . . . 84

3.9 Dependency of the threshold on overall value . . . . . . . . . . . . . . . . . 87

4.1 Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2 Structural images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3 Masks overlap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.4 ROI-wise general linear model . . . . . . . . . . . . . . . . . . . . . . . . . . 106



xiii

4.5 Voxel-wise general linear model . . . . . . . . . . . . . . . . . . . . . . . . . 108

A.1 Bayesian reinforcement learning model parameters . . . . . . . . . . . . . . 135

A.2 Bayesian reinforcement learning model predictions . . . . . . . . . . . . . . 136

A.3 Control analyses reinforcement learning model . . . . . . . . . . . . . . . . 137

A.4 Bayesian di↵usion decision model parameters . . . . . . . . . . . . . . . . . 140

A.5 Bayesian di↵usion decision model predictions . . . . . . . . . . . . . . . . . 141

A.6 Simulated data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.7 Parameter recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

B.1 Bayesian regression graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

B.2 Bayesian reinforcement learning graph . . . . . . . . . . . . . . . . . . . . . 149

B.3 Bayesian di↵usion decision model graph . . . . . . . . . . . . . . . . . . . . 151

B.4 Bayesian reinforcement learning di↵usion decision model graph . . . . . . . 152

B.5 Parameter recovery correlations . . . . . . . . . . . . . . . . . . . . . . . . . 158

B.6 Parameter recovery group parameters . . . . . . . . . . . . . . . . . . . . . 159

B.7 Parameter recovery individual parameters . . . . . . . . . . . . . . . . . . . 160

C.1 ROI-wise tSNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

C.2 Pauli’s VTA and SN subdivisions . . . . . . . . . . . . . . . . . . . . . . . . 163

C.3 Zhang’s VTA and SN subdivisions . . . . . . . . . . . . . . . . . . . . . . . 164

C.4 Pauli’s and Zhang’s VTA and SN subdivisions in individual space . . . . . . 165



Chapter 1

Introduction

The man who has fed the chicken every

day throughout its life at last wrings its

neck instead, showing that more refined

views as to the uniformity of nature

would have been useful to the chicken.

Bertrand Russell

The Problems of Philosophy

As human beings, we constantly process streams of inputs coming from our sen-

sory organs: molecules in the air and food become smells and tastes, waves of particles

become images and sounds. All these inputs are decoded as sensory information that is

transmitted to our brain and helps us to avoid obstacles and dangers, as well as to get to

resources that keep us satisfied or make us thrive. However, information comes with some

level of uncertainty, in this case, sensory uncertainty. When picking wild mushrooms, it is

very important to correctly discriminate between poisonous and non-poisonous ones based

on their appearances, though it might not be always easy because of natural variability.

On top of this, the environment itself is highly dynamic. Even after being certain of the

identity of a tree, its value (e.g., the number of apples it delivers) may change in time,

because of seasonal changes or calamities of a di↵erent nature. Through the past decades,

cognitive psychologists and neuroscientists have been interested in understanding how hu-

mans are not only able to process uncertainty at these di↵erent levels (i.e., perception and

evaluation), but also to integrate past and current information and use this knowledge to
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guide their behavior. While the first type of uncertainty – the perceptual one – has been

the focus of psychophysics and perceptual decision making, the second type – the one about

value – has been the focus of behavioral economics and value-based (or economic) decision

making. Recently, more and more researchers have tried to understand the common mech-

anisms underlying both perceptual and value-based decision making, at a behavioral and

at a neural level (Dutilh & Rieskamp, 2016; Polania, Krajbich, Grueschow, & Ru↵, 2014;

Turner, Schley, Muller, & Tsetsos, 2018). Computational models of decision making have

been an important methodological tool that has helped bridging this gap, as they decom-

pose behavioral measures into latent psychological constructs that can be compared across

domains and mapped to neural activity (Summerfield & Tsetsos, 2012).

In this cumulative dissertation, I focus on reward-based decisions, a particular kind

of value-based decision. Rewards – as well as punishments – are not defined by their physical

properties but by what they induce (Schultz, 2015): either approaching (for rewards) or

avoiding (for punishments) behavior. Depending on whether someone enjoys the taste of

apples coming from a certain tree, they will be more or less likely to go back and pick

another apple from that tree in the future. Moreover, by sampling a few apples from each

tree in a garden, they can learn which tree consistently gives better apples and which tree

is to be avoided. Throughout experience, one can thus learn to maximize rewards and

minimize punishments. Research in neuroscience tells us that the human brain – as well

as the brain of other animals – is wired for this: While certain areas in the brain encode

value and deviations between previous expectations and current experiences, other areas

integrate these signals to guide and regulate actions (Haber & Knutson, 2010).

The first part of this dissertation focuses on the cognitive mechanisms underlying

reward-based decisions. In order to better understand such mechanisms, I used compu-

tational models from the perceptual decision making tradition, i.e., sequential sampling

models (SSMs). SSMs describe within-trial dynamics, i.e., how the decision evolves from

stimuli presentation to the commitment to an answer. As a consequence, they make pre-

dictions on both choice preferences and response times (RTs). In this framework, the same

decision problem (e.g., which one of two visual stimuli is brighter?) is presented several

times to participants, and each choice is treated as an independent observation of the same

noisy decision process. These models are fundamentally di↵erent from traditional models

of reward-based decision making, such as reinforcement learning (RL) models. RL models

describe trial-by-trial dynamics, i.e., how choice preferences change as a function of the ex-

perienced feedback. Because they make no assumptions on within-trial-dynamics, they only
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predict choices and not RTs. In the first manuscript (Chapter 2), I used a sequential sam-

pling model (SSM) – the di↵usion decision model (DDM Ratcli↵, 1978; Ratcli↵ & Rouder,

1998) – to understand the mechanisms underlying learning to choose the most advantageous

of two winning options (yielding monetary gains) or two losing options (yielding monetary

losses), in the presence of more (full feedback) or less (partial feedback) information. In the

second manuscript (Chapter 3), I proposed a new computational model that integrates the

RL algorithms – describing the updating of beliefs after receiving feedback – to the DDM.

While a similar approach has been proposed before (Pedersen, Frank, & Biele, 2017), I show

how our model can better explain behavior in di↵erent learning contexts: across di↵erent

levels of di�culty and across contexts yielding higher or lower monetary gains. I will fur-

ther explain these two manuscripts and their unique contribution to the literature – both

theoretical and methodological – in Section 1.1.

The second part of the dissertation focuses on the neural mechanisms underlying

reward-based decisions. In particular, I investigated the areas in the brain that encode

the reward signal and transmit it to important areas of decision making. These areas

are situated in a evolutionary older part of the brain – the midbrain – and transmit the

reward signal by means of the dopamine neurotransmitter. Most of the knowledge we have

concerning these areas comes from animal studies. This is because these areas are situated

far from the skull and their signal is di�cult to measure without highly invasive techniques,

such as microelectrode recordings. In the third manuscript of this dissertation (Chapter 4),

we measured signal from dopaminergic nuclei in the human brain. In order to more reliably

estimate the signal from these areas, we used ultra high field magnetic resonance imaging

(UHF-MRI) combined with multimodal imaging to delineate the dopamine nuclei at an

individual level. In this study, participants engaged in a gambling task in which they

could experience monetary gains and losses and di↵erent degrees of uncertainty about the

outcomes. In Section 1.2, I will explain how these results help clarifying some ambiguous

findings in previous human studies, as well as extending previous findings in non-human

animals samples to a human sample.

1.1 Computational models of decision under uncertainty

Cognitive psychology is the study of the cognitive processes that underlie human

and animal behavior. In controlled settings (e.g., in a laboratory study), participants are
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conditioned to di↵erent treatments and their behavior is measured as a function of them.

Significant changes in behavior due to experimental manipulations are therefore interpreted

as a consequence of latent psychological, cognitive constructs. If we are interested in, for

example, the e↵ect of reward probability on behavior, we can present participants with

choices between options associated with low gain but high probability and options associ-

ated with high gain but low probability. By observing participants’ choice preferences, we

interpret their preference towards the high probability, lower gain option as a preference for

certain outcomes, or risk-aversion. However, this method does not allow us to quantify a

participant’s risk preference and compare it to others’. This method is also limited as it does

not allow us to make predictions for new stimuli. For instance: What happens if we double

both options’ reward? What happens if we lower both probabilities? To be able to do

so, what is missing is a mathematical function that links magnitude of outcomes and their

probability of occurring to the probability of choice of one option over another. Ideally, this

function’s parameters can also (1) be tuned, or estimated, based on observed performance

and (2) be related to the latent psychological, cognitive constructs that we want to study.

In this way, it is possible to observe a participant’s performance, estimate and quantify their

latent cognitive processes, and make predictions for behavior when new, unseen, stimuli are

presented. Computational models serve exactly these purposes, by describing cognitive or

neural processes by means of mathematical functions and defining probability distributions

over the parameters based on observed data (Lewandowsky & Simon, 2010).

Providing an overview of computational models of decision under uncertainty is

beyond the scope of this dissertation (for this purpose see, e.g., Glimcher & Fehr, 2014;

Busemeyer, Wang, Townsend, & Eidels, 2015). In what follows, I will focus on two particular

classes of models: SSMs, that are prominent models in perceptual decision making, and RL

models, that are prominent models for reward based decisions. Finally, I will discuss work

aimed at bridging the gap between these two classes of models.

1.1.1 Sequential Sampling: the di↵usion decision model

Within the sequential sampling framework, making decisions between two options

is similar to Bayesian hypothesis testing (Gold & Shadlen, 2007): the deliberation process

starts with some prior (i.e., one option is better or they are the same), some evidence

is then accumulated, and the balance in favor of one or the other alternative (i.e., the

decision variable) changes accordingly. The process ends when the evidence in favor of one
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alternative reaches a certain criterion value (i.e., the decision rule). Since evidence is noisy,

the more evidence is accumulated, the more the decision variable is stable, reflecting the

true state of the world. Di↵erent SSMs can be more or less similar to Bayesian hypothesis

testing, depending on specific assumptions they make about how evidence is accumulated

(Smith & Ratcli↵, 2004; Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006). First of all,

in Bayesian hypothesis testing, evidence is accumulated as a single total, and specifically

as the ratio of posterior probabilities (i.e., the probability of an hypothesis being true

given prior odds and the evidence). While random-walks models are SSMs that maintain

this assumption, accumulator or counter models assume that evidence for two or more

alternatives is accumulated in separate sums. Examples of random-walks models are the

DDM (Ratcli↵, 1978; Ratcli↵ & Rouder, 1998) and the Ornstein-Uhlenbeck di↵usion model

(O-U, Busemeyer & Townsend, 1993), while examples of accumulator models are the Poisson

counter model (LaBerge, 1994) and the leaky competing accumulator model1 (LCA, Usher

& McClelland, 2001). Moreover, in Bayesian hypothesis testing, evidence is accumulated

in discrete time steps, as in the Poisson counter model, whereas other SSMs allow evidence

to be accumulated continuously in time, such as the DDM, O-U, and the LCA. Finally, in

Bayesian hypothesis testing, no evidence is ever discarded. Certain SSMs, such as the LCA,

relax this assumption to account for more biologically plausible processes in which older

information is discounted, i.e., “leaks”.

Despite the many di↵erences across the SSMs that have been proposed in the last

decades, what they all have in common is that they describe the deliberation process that

leads to a single decision, usually in the order of a few seconds) as bounded accumulation

of noisy evidence. This notion has high explanatory power at a behavioral and at a neural

(see section 1.2) level.

At a behavioral level, SSMs make probabilistic predictions for both choices and

RTs. This feature separates SSMs from other prominent models of noise integration that are

limited to choices, such as signal detection theory (Green & Swets, 1966), and allows them to

explain correlations between RT and accuracy. One of the most robust findings in decision

making research is the speed-accuracy trade-o↵ (Heitz, 2008; Luce, 1986), i.e., the finding

that speedy decisions are also less correct, while slow decisions tend to be more correct. This

e↵ect can be induced in the lab by asking participants to be either very fast or very accurate

in di↵erent experimental conditions. With standard statistical analyses (i.e., t-tests or

1 The LCA can reduce to the O-U model in the presence of not more than two alternatives
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ANOVAs), one can measure statistical di↵erences between conditions, separately on choices

and RT. SSMs not only predict such behavioral patterns, but (unlike standard statistical

tests) they also o↵er a mechanistic explanation and allow us to quantify latent cognitive

variables that are assumed to cause this e↵ect. In the case of the speed-accuracy trade-o↵,

this latent variable is cautiousness, and is formalized in SSMs in terms of the criterion value

at which evidence accumulation e↵ectively stops (i.e., the decision threshold). At equal

incoming rates of evidence, lower threshold values produce faster responses but, since less

evidence has been accumulated, the decision is also more a↵ected by noise. Another well

established result is the di�culty e↵ect (Ratcli↵ & Rouder, 1998), i.e., the finding that,

when stimuli are more discriminable, responses are faster and more accurate. In this case,

speed and accuracy are positively correlated. SSMs o↵er a mechanistic explanation of this

e↵ect: For higher accumulation rates of evidence, assuming that the noise in the signal

is constant, the signal-to-noise ratio increases, and evidence in favor of the correct option

reaches the correct decision threshold faster.

The DDM is widely used in decision making, and has a relatively high mathemat-

ical tractability2 . According to the DDM (Figure 1.1), evidence is accumulated continu-

ously and constantly over time, without leakage, in a single sum, and the decision threshold

remains fixed within trials. Similarly to Browninan motion, the noise in the evidence is nor-

mally distributed and temporally uncorrelated. The within-trial accumulation of evidence

follows the following equation:

xi+1 = xi +N (v · dt,
p

dt), x0 = a/2 (1.1)

where xi is the accumulated evidence at iteration i (i.e., the decision variable), dt is the

integration time unit (which approaches 0 in the limit, corresponding to continuous time), v

is the mean of the incoming evidence (i.e., the accumulation or drift rate), a is the decision

threshold, and x0 is the prior evidence before evidence accumulation begins (i.e., the starting

point). A response is initiated when x reaches either the upper threshold (x � a), in which

case the response is correct, or when x reaches the lower threshold (x  0), in which case

the response is incorrect. The RT is given by the number of iterations before the threshold

is reached 3 plus a quantity referred to as the non-decision time. The non-decision time

2 Most SSMs (but see S. D. Brown & Heathcote, 2008) do not have a likelihood function, and can only
be fitted using simulation-based methods. These methods can significantly increase the time needed for
parameter estimation.

3 To make realistic predictions of RTs, the dt should be a quantity close but not equal to 0, e.g., dt = 0.0001
seconds.
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corresponds to the time during which evidence is not accumulated, and usually accounts for

motor or stimulus encoding processes. In this notation, responses are coded as correct and

incorrect. However, depending on the particular paradigm, it is possible to code responses

di↵erently, e.g., right and left. In such case, the starting-point can indicate a prior in favour

of either right or left options.

Like other SSMs, the DDM accounts for the speed-accuracy trade-o↵ by means of

the threshold parameter (with a lower threshold corresponding to speedy and inaccurate

choices) and for the di�culty e↵ect by means of the drift-rate parameter (with a lower

drift-rate corresponding to di�cult decisions) (Ratcli↵ & Rouder, 1998). The DDM also

accounts for other behavioral e↵ects such as post-error slowing (e.g., Dutilh et al., 2012) and

bias e↵ects (Ratcli↵, 1985; Leite & Ratcli↵, 2011; Mulder, Wagenmakers, Ratcli↵, Boekel,

& Forstmann, 2012). In its more complete form, the DDM includes across-trial variability

in the parameters, to account for observed e↵ects on the tails of the RT distributions

(Ratcli↵ & Rouder, 1998), although the parameters that describe across-trial variability

cannot always be reliably estimated (Boehm et al., 2018). The DDM – in its simpler

and more complex forms (i.e. without and with trial-by-trial variability) – has been used

to account for behavioral e↵ects on choices and RTs across psychological domains and in

di↵erent tasks (for an overview, see Ratcli↵, Smith, Brown, & McKoon, 2016).

1.1.2 Reinforcement learning models

The modern field of RL started in the 1980s, when researchers in animal behavior,

artificial intelligence, and operations research came together to formalize the problem of

learning-by-feedback (Sutton & Barto, 1998; Wiering & vanOtterlo, 2012). Feedback can be

of di↵erent nature, depending on whether it identifies a correct answer or whether it merely

evaluates an action. The first kind of feedback is used in supervised learning. This kind

of learning is mainly studied in the field of artificial intelligence, where artificial agents are

trained to, e.g., classify objects based on their physical features. In RL framework, however,

the feedback is always evaluative, therefore learning is unsupervised. In RL problems, the

goal of an agent is to learn by trial-and-error to choose the options that maximize the

feedback. In human studies, to motivate this process, feedback is often translated into

monetary rewards. Moreover, in its general form, the RL problem refers to settings in

which an agent has to predict the outcome of an action, conditional on a particular state of

the environment (i.e., associative ormodel-based learning). In this thesis, I will only consider



8

Figure 1.1: The di↵usion decision model is a sequential sampling model that describes
within-trial dynamics. The trajectories in the middle of the figure represent the accumu-
lated evidence in three di↵erent hypothetical trials. In all trials the drift-rate is the same
but, because of within-trial noise, the decision variable evolves di↵erently, and the decision
outcome depends on which decision threshold is reached first. On the top and bottom of
the plot, the distribution of response times (RT) for correct and incorrect trials is shown.
Because the drift-rate is positive, the majority of responses are correct. The model also
predicts skewed RT distribution, as is often found in human data.
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the case in which agents learn to act in one situation and the outcome of the action is not

conditional to the state of the environment (i.e., non-associative or model-free learning). A

typical example of such setting is the n-armed bandit problem. In this problem, an agent

repeatedly chooses from n di↵erent options, and a numerical reward is provided after every

choice. These rewards are drawn from distributions that are unique to that option and are

not known by the agent. Di↵erent RL paradigms can di↵er in terms of, e.g., the shape of

the distribution from which the outcomes are sampled (e.g., normal distribution, binomial

distribution), whether the mean of the distribution changes throughout the experiment

(i.e., dynamic environment) or not (i.e., stationary environment), or whether the feedback

corresponding to the unchosen options is provided after each choice (i.e., full feedback)

as opposed to receiving only the feedback associated with the chosen option (i.e., partial

feedback).

The way this learning process occurs is described by algorithms that take as input

the old expectations and a newly experienced outcome, and give as output a new, updated,

expectation. These algorithms are often referred to as learning rules. A key variable in

all learning rules is the reward prediction error (RPE) �, which measures the di↵erence

between the expected and realized rewards (Niv & Schoenbaum, 2008):

�t = fA,t �QA,t�1 (1.2)

where fA,t is the feedback received from option A at trial t, and QA,t�1 is the expectation

of option A in the previous trial. Only when the error is higher or lower than zero (i.e., if

the expectations were either too optimistic or too pessimistic) the expectations need to be

updated. A simple way to update such expectations is by computing a weighted average

of the old expectation and the RPE, according to the Rescorla-Wagner rule (Rescorla &

Wagner, 1972):

QA,t = QA,t�1 + ↵ · �t (1.3)

where ↵ (0  ↵  1) is the learning rate parameter. When ↵ is low, the highest weight

is given to prior expectations: learning is slower but more stable (Figure 1.2, left column).

On the other hand, when ↵ is high, the highest weight is given to the updated information:

learning is faster but more subject to noise in the feedback (Figure 1.2, right column).

Learning rates can be fixed throughout learning or change as a function of the trial number

(e.g., Yechiam & Busemeyer, 2005), or of the unsigned RPE (e.g., Pearce & Hall, 1980;

Diederen & Schultz, 2015). On top of this, previous studies have shown that separate learn-

ing rates might be necessary for positive and negative RPEs, to account for asymmetries



10

in the way negative and positive errors are processed (e.g., Gershman, 2015; Niv, Edlund,

Dayan, & O’Doherty, 2012; Frank, Moustafa, Haughey, Curran, & Hutchison, 2007). Other

studies (e.g., Palminteri, Khamassi, Jo�ly, & Coricelli, 2015) proposed separate leaning

rates for chosen and unchosen options, since more attention might be given to the feedback

corresponding to the chosen option, or for a particular context (Palminteri et al., 2015).

In order to predict the behavior of an agent, a second function has to map the

expected rewards to the probability of choosing one over the other options. These functions

are often referred to as decision rules. A widely used decision rule is the softmax rule (Luce,

1959; Bridle, 1990):

pA,t =
e✓QA,t

Pn
j=1 e

✓Qj,t
(1.4)

where pA,t is the probability of choosing option A at trial t, QA,t is the expected reward of

option A at trial t, j are the remaining n options, and ✓ (✓ � 0) is the sensitivity parameter.

When ✓ is low (i.e., approaching 0), choices become more random (i.e., less sensitive to

di↵erences in Q values between the options). Conversely, when ✓ is high, choices become

more deterministic (i.e., more sensitive to Q value di↵erences). More deterministic behavior

can be e�cient in situations that do not require exploration among the di↵erent options

(Sutton & Barto, 1998).

RL models have been successful in explaining how choice preferences evolve during

learning-by-feedback, and their increased popularity in the last decades is likely linked to

the discovery of a RPE signal in the brain (see Section 1.2). In behavioral research, they

have been extensively used to di↵erentiate between healthy and clinical populations (e.g.,

Frank, Seeberger, & O’Reilly, 2004; Waltz, Frank, Robinson, & Gold, 2007; Maia & Frank,

2011) or across age groups (Palminteri et al., 2015; Christakou et al., 2013). An extensive

body of literature has seen the application of RL models to the IOWA gambling task, i.e.,

a learning task that is used as diagnostic tool in the clinical field (Busemeyer, Stout, &

Finn, 2003; Yechiam & Busemeyer, 2005; Worthy, Hawthorne, & Otto, 2013). However, the

reliability of RL models parameters to discriminate between healthy and clinical population

has also been questioned (Steingroever, Wetzels, & Wagenmakers, 2013, 2014). Recently,

RL models have been extended to explain context e↵ects (Spektor, Gluth, Fontanesi, &

Rieskamp, in press).
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Figure 1.2: Reinforcement learning models describe trial-by-trial dynamics. The same
feedback (first row) is given to two di↵erent agents, after choosing between two options.
While the feedback comes with some noise, on average one option (i.e., the correct option)
yields higher feedback than the other (i.e., the incorrect option). Throughout experience,
the agents update their expectations (i.e., the Q values associated with the two options).
The agent with a low learning rate is more conservative: its estimates change more slowly
and are more stable in time. Finally, higher feedback expectations towards one option
predict higher chance to choose that option: The conservative agent’s choices are more
consistent across trials.
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1.1.3 Combining models to explain within and trial-by-trial dynamics

Traditionally, computational models of decision making have not been shared

across the perceptual and the economic domains. In the last decades, however, SSMs

such as the DDM have been applied more and more on value-based decisions (e.g., Polania

et al., 2014; Polania, Moisa, Opitz, Grueschow, & Ru↵, 2015; Clithero, 2018; Milosavljevic,

Malmaud, Huth, Koch, & Rangel, 2010; Cavanagh et al., 2011; Cavanagh, Wiecki, Kochar,

& Frank, 2014; Frank et al., 2015; Ratcli↵ & Frank, 2012). Specific SSMs for value-based

decision making have also been proposed (e.g., Busemeyer & Townsend, 1993), as well as an

extension of the DDM that capitalizes on eye-tracking data to explore the role of attention

in value-based decisions (Krajbich, Armel, & Rangel, 2010). The trend of applying SSMs

to value-based decisions started from the observation that, despite the di↵erent nature of

the information that is processed in perceptual and in value-based decision making, the

way noisy information is integrated in order to deliver an often binary output (e.g., accept

or reject A, choose A over B) is strikingly similar. For example, when choosing under

time pressure between options based on either their appearances or value, people tend to

be less accurate in their choices (e.g., Ratcli↵ & Smith, 2004; Heitz, 2008; Milosavljevic

et al., 2010). This phenomenon is explained in both domains by changes in the decision

threshold. Another example is when choosing between two very similar options (i.e., with

similar appearances or value): in this case, people tend to be slower and also less accurate

(e.g., Bogacz et al., 2006; Ratcli↵ et al., 2016; Busemeyer & Townsend, 1993; Cavanagh

et al., 2014; Krajbich et al., 2010; Clithero, 2018). This phenomenon is explained in both

domains by changes in the drift-rate.

To date, however, most applications of SSMs in the economic domain have been

limited to non-learning contexts. This is because SSMs describe the evolution of the de-

cision trial within a trial, and do not make any assumption on trial-by-trial dynamics.

Moreover, in order to infer SSM parameters from the participants’ choices and RTs, the

same decision problem (e.g., choose the brightest of two visual stimuli) is presented multi-

ple times, and each decision is treated as an independent observation. On the other hand,

RL models describe the process of updating beliefs as a function of feedback received in

subsequent trials. Because RL models make no assumptions about within-trial dynamics,

they only predict choice preferences and not RTs. To infer RL parameters, participants

are presented with noisy feedback after each decision, and performance during a learning

session – starting with the presentation of stimuli with unknown reward distributions – is
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considered as a whole: each response depends on the feedback provided in the previous trials

(i.e., the reinforcement history). Therefore, both SSMs and RL models have strengths and

limitations: While SSMs make predictions on RTs but cannot explain sequential feedback

e↵ects, RL make predictions only on choices but can explain trial-by-trial dynamics during

learning-by-feedback.

Recently, however, Frank et al. (2015) and Pedersen et al. (2017) proposed ways

to extend the DDM to a learning-by-feedback paradigm. In both studies, a learning rule

is used to update options’ expectations after receiving feedback: While Frank et al. (2015)

assumed that the updating was that of an ideal Bayesian observer, Pedersen et al. (2017)

assumed that the updating was described by the Rescorla-Wagner rule (see Equation 1.3).

The di↵erence between the options’ values was then used to define the drift-rate of the

DDM in each trial, as was previously done across-trials in non-learning contexts (see, e.g.,

Milosavljevic et al., 2010). In Frank et al. (2015)’s study, the threshold of the DDM was

proportional to the absolute value of the di↵erences between values, to account for e↵ects of

conflict on the threshold parameter found in a previous study (Cavanagh et al., 2014). Their

model was further improved by neural correlates – from simultaneous electroencephalogram

(EEG) and functional MRI (fMRI) – of value representations and of conflict. On the other

hand, Pedersen et al. (2017), proposed a model with separate learning rates for positive

and negative RPE, and in which the threshold decreases in time. Therefore, these studies

represent first instances of RLDDM, i.e., combinations of RL and DDM. A representation

of an RLDDM is shown in Figure 1.3: The choice probabilities predicted by the RLDDM

in which the drift-rate is proportional to the di↵erences in learned values are very similar

to the choice probabilities predicted by the simple RL (Figure 1.2) – given the same feed-

back information. At the same time, by describing the within-trial dynamics as bounded

accumulation processes (Figure 1.1), the RLDDM can, in addition, predict RTs throughout

learning.

These studies provided insights on the way SSMs and RL models can be unified to

provide a more detailed account of reward-based decisions. However, both approaches have

not been tested in learning contexts: (1) with partial feedback, (2) with higher or lower gain

expectations, (3) in the loss domain, (4) with normally distributed (as opposed to binomial

distributed) reward distributions. Moreover, by assuming a linear relationship between the

di↵erences in values and the drift-rate, they make the prediction that, by providing easier

decision problems, the drift-rate can increase indefinitely (e.g., if a value di↵erence of 1

corresponds to a drift-rate of 1, then a value di↵erence of 100 corresponds to a drift-rate of
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100).

In the first and second manuscripts of this thesis, I analyzed data from RL tasks

with di↵erent learning contexts compared to Frank et al. (2015)’s and Pedersen et al.

(2017)’s studies. By using three classes of models – RL, DDM, and RLDDM – I present

results that challenge some of the assumptions made by the RLDDMs proposed so far, and

propose a new RLDDM.

1.1.4 First manuscript: Decomposing the e↵ects of context valence and feed-

back information on speed and accuracy during reinforcement learning:

A meta-analytical approach using di↵usion decision modeling

In the first manuscript (Chapter 2), I analyzed data from four independent RL

experiments in which participants were presented with di↵erent learning contexts. The task

was a n-armed bandit task. In each block, a total of 8 new options (identified by symbols,

see Figure 2.1) were presented in groups of 2 at a time4 , and participants had to choose

between one of them. While in experiments 1, 2, and 3 the maximum time for responding

was 3 seconds, in experiment 4 it was 1.5 seconds. The pairs of options could be made of

two losing options (yielding a loss of 1 point with either high or low probability) or two

winning options (yielding a gain of 1 point with either high or low probability). Moreover,

the feedback of pairs of options could be partial (only the feedback of the chosen option

is shown) or complete (both feedbacks are shown). The four experiments di↵ered in the

number of learning sessions, trials per learning session, and participants (see Table 2.1).

To test the e↵ect of valence (i.e., losses vs. gains) and feedback information (i.e.,

complete vs. partial feedback) and of their interaction on accuracy and RTs, we fitted two

separate ANOVAs, adopting a Bayesian mixed model meta-analysis approach (Singmann,

Klauer, & Kellen, 2014). By doing so, we could test (1) main and interaction e↵ects across

experiments, (2) whether these e↵ects were similarly strong in each experiment, and (3)

whether participants were more accurate or faster in each experiment. Replicating previous

reports (Palminteri et al., 2015; Salvador et al., 2017), we found that participants were

slower and less accurate in the partial feedback condition – similarly to a di�culty e↵ect –

and that they were slower in the loss domain. There was also an interaction e↵ect of feedback

4 The options pairs were fixed.
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Figure 1.3: Reinforcement learning di↵usion decision models describe both trial-by-trial
and within-trial dynamics. As in Figure 1.2, the same feedback (first row) is given to two
di↵erent agents (two columns), that update the expectations (Q values) with higher or lower
learning rates. In each trial, decisions are similar to the process illustrated in Figure 1.1,
where the drift-rate of evidence accumulation in proportional to the di↵erence in Q values
between the correct and incorrect options. While the probability of choosing the correct or
incorrect option is similar to Figure 1.2, this model also makes predictions on the response
times.
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and valence on RTs, with participants being the slowest in the loss-partial condition. These

e↵ects did not depend on the particular experiment, although participants were generally

faster in experiment 4 (given the higher time pressure) (see Figure 2.2).

Moreover, we wanted to test whether the e↵ects of valence on RTs and the e↵ects

of feedback on both RTs and accuracy could be explained by latent learning variables of

a previously proposed RL model for choice accuracy in this task, i.e., the RELATIVE

model (Palminteri et al., 2015). The learning rule in this model is the Rescorla-Wagner

rule (Equation 1.3), with separate learning rates for the chosen and unchosen options,

and a separate learning rate for the learning context. The decision rule in this model

was the softmax rule (Equation 1.4). To avoid fitting the same data twice, we fitted a

Bayesian version of the RELATIVE model to the choice accuracy on a subset of the data

and inferred the latent learning variables for new unseen data. In particular, we were

interested in the absolute di↵erence in learned values between the two options in a trial

|�Qt|, and the learned context value Vt (i.e., that corresponds to the expected average

outcome of a particular pair of options). We then ran two separate Bayesian mixed linear

models on choices and RTs5 and confirmed that, while |�Qt| predicted choices and RTs,

Vt only predicted RTs (Figure 2.3).

Both these analyses, however, were limited, since they could not explain corre-

lations between choices and RTs. Therefore, we moved to the SSM framework and fitted

the DDM to choice accuracy and RTs simultaneously. To test learning contexts e↵ects on

the DDM parameters across the four experiments, we fitted a three-layered hierarchical

Bayesian DDM, where the bottom layer corresponds to the participants, the middle layer

corresponds to the experiments, and the top layer corresponds to the whole dataset. To

account for possible e↵ects of context on the threshold, drift-rate, and non-decision time

parameters of the DDM6 , we fitted separate intercepts and three coe�cients per parame-

ter (corresponding to valence, feedback information, and their interaction). Note that, in

these analyses, we did not account for trial-by-trial e↵ects due to learning, but only of the

across-trial e↵ects of di↵erent learning contexts. At a dataset level, we found that feedback

information a↵ected all three parameters: In partial contexts, the drift-rate and threshold

were lower and the non-decision time was higher. On the other hand, valence a↵ected the

5 We controlled for general increase of accuracy and decrease of RTs by adding the number of trial as
predictor.

6 The bias in the starting point was not considered, as options were randomized to the left or right side
of the screen
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non-decision time, with higher non-decision time values in the loss domain. Valence also

a↵ected the threshold, with higher threshold values in the loss domain, but only in exper-

iments 1, 2, and 3. There was also an interaction between valence and feedback on the

threshold, with the lowest threshold in the reward-partial context (Figure 2.4).

While the feedback e↵ect on the drift-rate is similar to a di�culty e↵ect, the higher

cautiousness in complete feedback contexts might be explained by a regret for not choosing

the opposite option. The non-decision time was higher in the decision contexts that were the

most disadvantageous: when feedback was partial and in the presence of losses. This e↵ect

is similar to an avoidant Pavlovian response causing a delay in the response. Importantly,

slower RTs did not trade o↵ with an increase in accuracy (i.e., the extra decision time did

not contribute to evidence accumulation). However, the slowing down of participants in the

loss domain was partially explained also by a higher threshold parameter (suggesting an

additional e↵ect of losses on cautiousness which trades-o↵ with higher accuracy), although

this e↵ect was overall smaller than the non-decision time e↵ect and disappeared in the

experiment where there was a higher time pressure.

Overall, these results show how RTs are crucial for understanding human behav-

ior during learning-by-feedback, as some of the learning context e↵ects were not visible

on choices alone. These e↵ects were also robust across the four experiments. Interestingly,

losses mostly had an e↵ect on RTs (i.e., the e↵ect on accuracy was not significant), contrary

to previous accounts of choice behavior in the presence of losses in non-learning environ-

ments (Kahneman & Tversky, 1979). This e↵ect, together with the slowing down e↵ect

of presenting partial feedback, was explained by a DDM parameter that is rarely consid-

ered in the SSM literature: the non-decision time. While a previous study in behavioral

economics (Kocher & Sutter, 2006) has shown how time-dependent payo↵s could a↵ect be-

havior in a similar way (by decreasing RTs without loss of accuracy), previous accounts

of punishment-avoidant behavior always predicted a slowing down e↵ect together with an

increase of accuracy.

Since the analyses in this manuscript were mainly done to capture context e↵ects

across learning, the context-independent learning e↵ects, as the increase of accuracy and

decrease in RTs throughout the trials, were not modeled nor explained by the DDM.



18

1.1.5 Second manuscript: A reinforcement learning di↵usion decision model

for value-based decisions

In the second manuscript (Chapter 3), I analyzed data from an RL experiment

in which participants were presented with di↵erent learning contexts. The task was a n-

armed bandit task. In each block, a total of four new options (identified by figures, see

Figure 3.2) were presented, in groups of two at a time7 , and participants had to choose

between one of them within 3 seconds. The rewards underlying the four options were

normally distributed, with same variance but di↵erent means, and were all in the gain

domain (Figure 3.1). The pairs of options were chosen so that options could di↵er in their

overall value (i.e., magnitude) and in the di�culty of choice. The pairs AB, AC, BD, and

CD, had, respectively, overall mean value 38, 43, 47, 52. Plus, the value di↵erence in pairs

AB and CD was 4 on average (i.e., di�cult trials), and the di↵erence in pairs AC and BD

was 14 on average (i.e., easy trials).

To test the e↵ect of magnitude in the gain domain (from low to high), di�culty

(easy vs. di�cult), and of their interaction on accuracy and RTs, we fitted two separate

Bayesian mixed linear models (see Figure B.1). While di�culty had the often reported

e↵ect on both accuracy and RTs (participants were slower and less accurate when choosing

between AB and CD), magnitude only a↵ected RTs, with participants being faster when

choosing between higher-valued options pairs. There was also an interaction of di�culty

and magnitude on the RTs, with participants being the slowest in the di�cult, low value

condition (i.e., pair AB) (Figure 3.3 and Figure 3.4).

We then estimated three classes of models: RL, DDM, and RLDDM, using hier-

archical Bayesian parameter estimation. The models were compared both quantitatively,

by means of the WAIC, and qualitatively, by means of posterior distributions of the mean

accuracy and RTs across learning contexts (in order to check whether the models could cap-

ture the context e↵ects) and binned trials in the learning session (in order to check whether

the models could capture the e↵ects of learning).

RL models varied in the learning rule, which was the Rescorla-Wagner rule (Equa-

tion 1.3) with either one learning rate, or separate learning rates for positive and negative

RPE, as in Pedersen et al. (2017). The decision rule was the softmax rule (Equation 1.4)

7 Di↵erently from the previous study, the same option could appear in di↵erent pairs
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with either fixed or increasing sensitivity parameter, as a function of the number of times

an option is seen, as in, e.g., Yechiam and Busemeyer (2005). The RL model with sepa-

rate learning rates for positive and negative RPE and fixed sensitivity described the data

best, both qualitatively (Figure 3.5) and quantitatively (Table 3.1). Importantly, the RL

model correctly described the learning curves of accuracy throughout learning and a higher

accuracy when deciding between pairs AC and BD. However, the RL model did not make

predictions for the RTs.

We then fitted three DDMs. In the first and simpler DDM, there were two drift-

rates, for easy and di�cult choices, one threshold, and one non-decision time. In the second

DDM, there were two drift-rates (as in the first DDM) but four thresholds, corresponding to

the four choice pairs, AB, AC, BD, and CD. The third and last DDM had four separate drift-

rates and four separate thresholds, corresponding to the four choice pairs (as in the second

DDM). The second and third DDMs explained the data equally well, both qualitatively

(Figure 3.6) and quantitatively (Table 3.2). In particular, the DDM correctly described the

di�culty e↵ect on both accuracy and RTs, as well as the magnitude e↵ect on RTs. The

di�culty e↵ect was driven by higher drift-rates in the easy compared to di�cult choice

pairs, while the magnitude e↵ect was driven by lower threshold parameters in the higher

– compared to lower – valued pairs. However, the DDMs could not predict the learning

curves of either accuracy or RTs.

Finally, we fitted di↵erent combinations of RLDDMs: We considered di↵erent

learning rules, as well as di↵erent mechanisms to explain the mapping of learned values

to the DDM parameters in each trial. As in the RL models – and as in Pedersen et al.

(2017) – the learning rule was the Rescorla-Wagner rule, with either a single learning rate

or separate learning rates for positive and negative RPE. The threshold was either fixed

or could be modulated by the context value (i.e., the mean of the presented options in a

trial), as described in Equation 3.6. We proposed this mechanism in order to account for

the magnitude e↵ect on RTs, unlike in Pedersen et al. (2017). Finally, the mapping between

the di↵erence of values of the presented options and the drift-rate could be either linear –

as in Pedersen et al. (2017) and Frank et al. (2015) – or a sigmoid function, as described

in Equation 3.7. This mechanisms was also not considered in previous RLDDMs, and we

included it to test whether the assumption that the drift-rate grows linearly with the value

di↵erences is valid across higher and lower di�culty levels. The model that explained the

data best, both qualitatively (Figure 3.7) and quantitatively (Table 3.3), was a model with

(1) separate learning rates for positive and negative RPE – as in the RL model comparison
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and as found by Pedersen et al. (2017), (2) a context modulation of the threshold on a trial-

by-trial base, with lower thresholds corresponding to contexts with higher values – as in the

across-trial DDM analyses, and (3) a non-linear mapping function between value di↵erences

and drift-rate. Importantly, the preferred RLDDM could capture the context e↵ects on both

accuracy and RTs, as well as the learning curves of accuracy and RTs throughout the trials

in a learning session.

In Pedersen et al. (2017)’s study, however, the RLDDMs also included di↵erent

mechanisms, such as an increasing drift-rate across the trials following a power function,

and a decreasing threshold across the trials, also following a power function. We therefore

estimated four additional models, with separate learning rates for positive and negative

RPE and di↵erent combinations of these mechanisms. The preferred model was – as in

Pedersen et al. (2017) – a RLDDM with a power-decreasing threshold and without a power-

increasing drift-rate. However, none of these models outperformed our preferred RLDDM,

either quantitatively (Table 3.4) or qualitatively (Figure 3.8): Not only could these models

not explain the magnitude e↵ects on RTs, but they all underestimated accuracy in the

di�cult condition, and could not capture the decrease in RTs in the di�cult condition

throughout learning.

In sum, we proposed a novel RLDDM to account for the magnitude e↵ect, as well

as for di↵erent di�culty levels in a RL task. We also extended previous applications of

RLDDMs to learning-by-feedback when rewards are normally distributed. We show how

important it is to consider diverse learning context in order to challenge previous models’

assumptions. First, previously proposed RLDDMs assumed that performance only depends

on value di↵erences and not on the overall value of the presented options. By providing

participants with options with di↵erent overall values in the gain domain, we observe that

they get faster when higher valued options are presented. This e↵ect can be explained

as a context, trial-by-trial modulation of the threshold, where the threshold decreases in

the presence of higher valued pairs of options. This e↵ect was found in a non-learning

context by Cavanagh et al. (2014), and was interpreted as a striatal facilitation e↵ect due

to increased dopamine levels in the presence of higher rewards (Wiecki & Frank, 2013).

Second, previously proposed models assumed that the value di↵erences scaled linearly with

the drift-rate in each trial. By providing participants with di↵erent levels of di�culty,

we showed how models that assume linear mapping functions between the value di↵erence

and the drift-rate fail to account for both accuracy and RTs in the di�cult trials (as they

consistently underestimate performance in these trials). By assuming a sigmoid function
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to map value di↵erences to the drift-rate parameter, we were successful in predicting both

accuracy and RTs across di�culty conditions.

1.2 The neural bases of decision under uncertainty

Computational modeling has proven to be a useful tool also in cognitive neuro-

science. Just as cognitive psychologist, cognitive neuroscientists aim to study the processes

underlying behavior. However, cognitive neuroscientists are also interested in how these

processes are implemented in the brain, using proxies for neural activity, such as EEG,

MEG, and fMRI data. By comparing neural data across experimental manipulations, one

can infer the involvement of a particular brain area in a task. Cognitive models can help this

inference process by making quantitative predictions on the latent processes that explain

di↵erences in behavior across conditions. Therefore, instead of correlating neural data and

raw behavior, or of contrasting neural data across experimental condition, one can correlate

neural data to a model’s parameters. This is useful as it improves the psychological inter-

pretation of a brain region’s role in a task. On the other hand, by correlating neural data to

computational models, these models can be potentially falsified if, e.g., one can prove that

they make biologically implausible predictions. The mutual benefit of cognitive modeling

and cognitive neuroscience is at the core of the field of model-based cognitive neuroscience

(Forstmann & Wagenmakers, 2015).

In Section 1.1, I presented two classes of models, SSMs and RL models, and

combinations between the two, RLDDMs. In Sections 1.2.1 and 1.2.2, I will give an overview

on the literature in cognitive neuroscience that links these models to neural data. One of

the most robust findings in the field of model-based cognitive neuroscience is the finding of

a neural correlate of the RPE – as described in Equation 1.2 – in dopaminergic neurons in

the brain. In Section 1.2.3, I will explain why most of the evidence in this field comes from

invasive, animal studies and not from non-invasive, human studies. Finally, in Section 1.2.4,

I will present work that clarifies the contradicting findings of previous humans studies with

the help of ultra-high field MRI.
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1.2.1 Sequential sampling and the brain

In the last decades, studies in cognitive neuroscience have supported the idea of

evidence accumulation in the brain, as described by SSMs (for an overview, see Gold &

Shadlen, 2007; Huk & Meister, 2012; Hanks & Summerfield, 2017; Mulder, VanMaanen,

& Forstmann, 2014; Heitz, 2008). Using extracellular recordings from single neurons in

cortical areas of macaque monkeys performing perceptual discrimination tasks, two main

regions have found to mirror evidence accumulation: the lateral intraparietal cortex (LIP)

and the frontal eye fields (FEFs). In these tasks, monkeys are typically trained to respond

by making saccades to one or the other side of the visual field. After aggregating stimulus-

locked firing rates across trials and across these areas, the signals are shown to increase when

evidence in favor of a saccade in the neurons’ receptive fields is presented. Moreover, the

signal increases more or less when the evidence is less or more noisy. Finally, when looking

at response-locked aggregate firing rates, signals reach the same level, independently of the

noise in the evidence. More careful inspection of these patterns has revealed heterogeneity

in the selectivity of the neurons in these areas, as well as across trials, and it is still unclear

to some extend whether LIP and FEFs are necessary for evidence accumulation (Hanks,

Ditterich, & Shadlen, 2006; Katz, Yates, Pillow, & Huk, 2016). Nonetheless, unilateral

activation of these areas biases contralateral saccadic choices (e.g., Katz et al., 2016; Wilke,

Kagan, & Andersen, 2012) thus supporting the involvement of these areas in perceptual

decision making as formalized by the SSM framework.

While single neurons recordings are not feasible in human studies because of

their invasiveness, other neuroimaging techniques such as magnetoencephalography (MEG),

EEG, and fMRI have been used to investigate evidence accumulation in humans perform-

ing typically more complex tasks. Despite its relatively poor spatial resolution, EEG’s

high temporal resolution allows to inspect the within-trial dynamics of decision making.

MEG and EEG studies have shown a potential very similar to the signal in LIP and FEFs,

referred to as the centroparietal positive potential (CPP), in perceptual decision making

(Kelly & O’Connell, 2013; O’Connell, Dockree, & Kelly, 2012) and value based decision

making (Gluth, Rieskamp, & Büchel, 2013). While this signal is centralized, the lateralized

preparatory motor signals also reflects evidence accumulation contralateral for a specific

response (i.e., right and left) across domains (Kelly & O’Connell, 2013; O’Connell et al.,

2012; Gluth et al., 2013; Donner, Siegel, Fries, & Engel, 2009). On the other hand, fMRI

studies have focused more on trial-by-trial changes and on individual di↵erences of SSM
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parameters. Multiple studies in perceptual decision making using fMRI provided evidence

for a relationship between the caudate nucleus and pre-SMA with the decision threshold

(Bogacz, Wagenmakers, Forstmann, & Nieuwenhuis, 2010), both across (e.g. Forstmann et

al., 2008; van Maanen, Fontanesi, Hawkins, & Forstmann, 2016; Forstmann et al., 2010) and

within (e.g. van Maanen et al., 2011) participants. Other studies looked at trial-by-trial

flactuations in the rate of evidence accumulation and areas related with commitment to a

task (e.g., Turner, van Maanen, & Forstmann, 2015; Turner, Wang, & C.Merkle, 2017).

However, by presenting evidence in a value based decision making task at a slower pace, a

correlate of evidence accumulation was shown in pre-supplementary motor area (pre-SMA),

caudate nucleus, and anterior insula while trial-by-trial fluctuations in the decision threshold

were associated with pre-SMA and caudate nucleus activity (Gluth, Rieskamp, & Büchel,

2012).

1.2.2 Reinforcement learning and the brain

RL models have become increasingly popular in cognitive psychology in the 80s

because they make quantitative predictions about the cognitive and neural mechanisms

underlying learning-by-feedback. In the late 80s and 90s, thanks to pioneering work in

electrophysiological recordings in behaving monkeys, a neural correlate of the RPE was

found in dopamine neurons (for an overview, see, e.g. Dayan & Daw, 2008; Niv, 2009;

Dayan & Abbott, 2001; Schultz, 2015; Watabe-Uchida, Eshel, & Uchida, 2017). Recent

work in optogenetics has established a causal link between RPE-coding by dopaminergic

neurons and learning (Steinberg et al., 2013). Dopamine neurons are mostly situated in the

midbrain, and are concentrated in two regions, the ventral tegmental area (VTA) and the

substantia nigra (SN), especially in one of its subdivisions, the pars compacta (SNc). The

firing of neurons in these areas increases when rewards exceed expectations and decreases

when rewards are less than expected. Crucially, the signal disappears when rewards are

correctly predicted. Moreover, the neurons’ firing is proportional to the RPE magnitude

and it extends to cue stimuli associated with positive or negative RPE in previous trials.

The current view on dopamine is that it represents subjective value (Schultz, 2010, 2015),

by incorporating in the RPE variables such as the variance of the expected outcomes (i.e.,

risk) (Fiorillo, Tobler, & Schultz, 2003), and the time of the reward (Fiorillo, Newsome, &

Schultz, 2008).

SN and VTA play a crucial role in the cortico-basal ganglia system, thus regu-
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lating adaptive, goal-directed behavior (Holroyd & Coles, 2002; Haber & Knutson, 2010):

By modulating synaptic activity in the ventral striatum (VS), dopamine facilitates actions

towards rewards (i.e., approaching behavior). Berke (2018) has recently proposed a frame-

work in which, by signalling to di↵erent striatal areas, dopamine neurons modulate the

allocation of limited internal resources (i.e., energy for movements, attention, and time)

based on the learned reward expectations. Moreover, Bromberg-Martin, Matsumoto, and

Hikosaka (2010) suggested a possible distinction between two dopamine populations: one

encoding motivational value (i.e., whether an outcome is better or worse than expected)

and one encoding motivational salience (i.e., how surprising an outcome is, independently

on whether is better or worse than expected) as well as a general alerting signal. While the

first is mainly situated in VTA and projects to VS, which in turns sends projections to the

ventro-medial prefrontal cortex (vmPFC), the second is mainly situated in SNc and projects

to dorsal striatum (DS), which in turns projects to dorso-lateral prefrontal cortex (dlPFC)

(Matsumoto & Hikosaka, 2009). Both functions are crucial for adaptive behavior: Motiva-

tional value promotes actions that maximize rewards, while motivational salience promotes

learning in the presence of changes in stimulus associability (Pearce & Hall, 1980).

1.2.3 The dopamine reward signal in the human brain: Challenges and

previous findings

Activity from the SN and VTA has been mostly studied in electrophysiological

studies with animals. This is due to a series of methodological challenges that arise when

measuring the SN and the VTA signal with non-invasive imaging techniques such as fMRI.

First of all, the midbrain is situated deep in the brain and far from the skull. The

further away an area is from the receive elements of the scanner, the lower the signal-to-

noise ratio is. At the same time, the SN and the VTA are quite small (around 511 mm3

and 138 mm3, respectively, see Table 4.1) and they neighbor each other, as well as other

nuclei such as the red nucleus and the subthalamic nucleus. The VTA is also close to the

cerebrospinal fluid, which constitutes a source of physiological noise. Therefore, not only the

midbrain signal is low, but the chances of mixing up the signal coming from di↵erent small

midbrain nuclei are very high. This has been previously reported as the “subcortical cocktail

problem” (de Hollander, Keuken, & Forstmann, 2015). This problem can be exacerbated

by common MRI procedures. For example, by increasing the spatial resolution of fMRI

images to get a more detail view on the midbrain area, the signal-to-noise ratio further
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decreases. On top of this, spatial smoothing – commonly used in fMRI analyses to increase

signal-to-noise ratio and to correct for disalignment between the individual space and the

standard space 8 – increases the chance of including the signal from neighboring areas.

Another challenge has to do with the chemical composition of SN: The SN has a

high concentration of iron, and, thus, di↵erent magnetic properties from, e.g., cortical tissue.

In particular, the T⇤
2 signal in iron-rich areas, which is what is measured in functional images,

has a faster decay. Because fMRI protocols are usually tailored to cortical and subcortical

areas with much lower iron concentration, the protocols used in standard practices are

suboptimal when measuring signal in the SN.

In order to study the signal of the subthalamic nucleus, a midbrain nucleus with

similar iron concentration to the SN, de Hollander, Keuken, van der Zwaag, Forstmann, and

Trampel (2017) proposed a protocol for 7 Tesla MRI. First, thanks to a stronger magnetic

field, 7 Tesla MRI provides increased signal-to-noise and contrast-to-noise ratio at higher

spatial resolutions (Eapen, Zald, Gatenby, Ding, & Gore, 2011). Second, shorter echo

times allowed the measurement the T⇤
2 signal before it is completely decayed9 . Finally, de

Hollander et al. (2017) drew masks, individually for each subject and nucleus, in order to

more reliably extract the signal from the areas of interest. By doing so, they could avoid

using spatial smoothing and ensure that the signal from neighboring areas was not mixed.

In this protocol, a fairly high resolution of 1.5 mm isotropic was obtained, and the temporal

signal-to-noise ratio (tSNR) – which is a measure of quality of the fMRI time series – of this

protocol was higher compared to di↵erent protocols using either 3 Tesla or 7 Tesla MRI.

With the exception of the study by Zaghloul et al. (2009), in which they measured

activation of the SN using microelectrode recording during deep brain stimulation, previous

studies with human subjects did not achieve such high resolution when measuring activity

in the VTA and SN. D’Ardenne, McClure, Nystrom, and Cohen (2008), Pauli et al. (2015),

and Zhang, Larcher, Misic, and Dagher (2017), measured activity of dopaminergic nuclei

using 3 Tesla MRI. In the three studies, individual masks were not drawn in order to

8 This is particularly important when trying to correctly localize a particular area in a subject’s brain
using standard space coordinates.

9 Note that, in 7 Tesla MRI, the di↵erence of T⇤
2 decay between di↵erent areas is higher than in 3 Tesla

MRI. Therefore, shorter echo times are particularly important with 7 Tesla when acquiring functional images.
Shorter echo times ask for faster acquisition, which leaves less time for artifact correction techniques, such as
fat suppression. On the other hand, the higher T⇤

2 contrast in 7 Tesla compared to 3 Tesla is an advantage
in structural images, because it allows to better delineate iron-rich nuclei from the neighboring areas.



26

carefully distinguish activation of neighboring nuclei, and they all used spatial smoothing:

in D’Ardenne et al. (2008) using a 3 mm FWHM Gaussian kernel, in Pauli et al. (2015)

using a 2 mm FWHM Gaussian kernel, and in Zhang et al. (2017) using a 4 mm FWHM

Gaussian kernel. Although we do not have tSNR measurements for these studies, it is likely

that they could not achieve high tSNR values, based on the results of de Hollander et al.

(2017).10

These studies also provided partially contradicting results. D’Ardenne et al. (2008)

only found a positive (and not negative) RPE in the VTA and no signal in the SN. Pauli et al.

(2015) focused on the SN and found a positive (and not negative) RPE in the ventromedial

SN and a negative (and not positive) RPE in the dorsolateral SN, together with a negative

expected value (EV) signal. Finally, Zhang et al. (2017) also focused on the SN and found

a RPE in the medial SN and a surprise signal in the lateral SN.

Therefore, to the best of our knowledge, previous studies measuring signal in the

dopaminergic nuclei in human subjects using fMRI have not found common agreement with

the results from animal studies. Moreover, while correlates of risk and surprise were found

in cortical areas such as the anterior insula (AI) and the amygdala in the human brain, no

study has yet measured such signals in the midbrain. These signals were so far only shown

in animal studies (e.g., Fiorillo et al., 2003; Matsumoto & Hikosaka, 2009).

1.2.4 Third manuscript: The role of dopaminergic nuclei in predicting and

experiencing gains and losses: A 7T human fMRI study

In the third manuscript (Chapter 4), we collected data from 27 human subjects in

two separate sessions: one to collect structural and one to collect functional MRI data. Dur-

ing the structural session, a multi-echo magnetization-prepared rapid gradient echo (ME-

MP2RAGE) sequence (Caan et al., 2018) was used to acquire perfectly aligned multimodal

high-resolution (0.7 mm isotropic) images: T1-weighted, T⇤
2-weighted, and Quantitative

Susceptibility Mapping (QSM; Langkammer et al., 2012) images. These images highlight

di↵erent tissue contrast (Figure 4.2) that are necessary in order to delineate masks on a

subject level: While SN is seen at best in QSM images – as they highlight di↵erences in

10 In this study, however, they replicated the protocol used by Pauli et al. (2015) finding lower tSNR in
the midbrain nuclei.
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magnetic properties of the tissues, VTA is seen at best when combining T1-weighted and

T⇤
2-weighted images – as they highlight, respectively, the VTA border with the CSF and

the VTA border with the SN and red nucleus. Right and left VTA and SN masks were

drawn for each subject by two independent, trained raters. In order to measure the raters’

agreement we computed the Dice score, which is the ratio of the intersection and the union

of the masks: Scores equal to one correspond to perfect agreement, while scores equal to

0 correspond to no agreement. The agreement was higher in SN compared to VTA, likely

because of its clearer borders and because it is a larger region (Table 4.1). In general, the

agreement was higher than previously reported scores (Keuken & Forstmann, 2015) and, as

a conservative measure, only the intersections of the masks across raters were kept for the

subsequent functional analyses.

Moreover, when using masks defined in the standard space to extract the signal of

VTA and SN in the individual space (such as the ones proposed by Keuken & Forstmann,

2015; Pauli, Nili, & Tyszka, 2018) there is the risk of including too little voxels from the area

of interest as well as voxels from neighboring regions – a problem known as misalignment.

To quantify the overlap between the neighboring structures using this method, we calculated

Dice scores between the individual VTA and SN masks that we defined in the individual

space, and previously proposed standard masks of SN and VTA subdivisions. Note that

this measure does not include additional noise coming from the use of eventual spatial

smoothing. We found the highest overlap between the medial part of the SN and the VTA

(Figure 4.3), which is explained by the fact that the medial SN is the part neighboring

VTA. Our results thus support the importance of drawing individual masks. However,

drawing individual masks also requires significantly more work and high-quality multi-

modal structural images, which are not always available in MRI studies because of time

limitations (our structural sequences were acquired in about 20 minutes). In our case this

was only possible because participants were invited in two separate sessions.

During the functional session, participants engaged in a gambling task. The task

we used was an adaptation of the task by Preuscho↵, Bossaerts, and Quartz (2006), and was

chosen because it allowed us to (1) temporally separate the expectation from the delivery

of gains and losses, (2) measure both the EV and risk before gains and losses are delivered,

(3) measure both RPE and surprise (i.e., salience of the outcome) when gains and losses

are delivered, and, finally, (4) it does not allow for excessive individual variability in the

learning process, since participants are instructed about the reward structure of the task.

Note that, despite being measured at the same point during the trial, risk and EV, as well
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as RPE and surprise, are not correlated, thus allowing reliable parameter estimates in the

general linear model analyses (and therefore to separate the associated signals).

In this task (Figure 4.1), two numbers between 1 and 5 are drawn without re-

placement in each trial. At the beginning of the trial, participants have to bet whether the

second number will be higher or lower than the first. After a period of 4 to 10 seconds,

the first number is shown and the EV and risk can be measured: if, e.g., a participant

bets that the second number is lower and the first number is 2, then the EV is negative,

with some variability (risk) in the possible outcomes (i.e., there is one chance on four to

still win the bet). After another period of 4 to 10 seconds, the second number is shown,

together with the corresponding gain of 5 euros (if they were correct) or loss of 5 euros (if

they were incorrect). Since the bets are blind, the expected reward of a particular choice

(i.e., “second number is lower”, and “second number is higher”) was the same across the

experiment: EV = 5 · .5� 5 · .5 = 0, and it was not possible to learn which action was most

advantageous. At the same time, the task allowed us to measure signal correlated with the

reward variables that we were interested in.

The main analysis of the fMRI data was done by averaging the signal across each

region of interest (ROI) thus obtaining a time series for each ROI, block of trials (there were

two in total), and participant (Figure 4.4). By running a GLM on the time series (with

a correction for temporal autocorrelation in the signal), we found a significant correlation

with the RPE (positive and negative, as described in Equation 1.2) in both the VTA and

the SN, and no EV signal (positive and negative, defined as the mean expected reward in a

trial). These results confirmed previous results from the animal literature (Schultz, 2015)

and clarified previous fMRI results in humans, which did not consistently find a full RPE

signal in VTA/SN and found a negative EV signal in SN (Pauli et al., 2015). Moreover,

we showed – for the first time in human subjects – a risk signal (defined as the expected

variance in the outcomes in a trial) in both the VTA and the SN and a surprise signal

(defined as the unsigned RPE) in the SN alone. The presence of a risk signal is in line

with previous findings in the animal literature (Fiorillo et al., 2003), and with the notion

that dopamine represents deviations from the expected subjective value, by incorporating

both the mean and variance in the reward expectations (Schultz, 2015). The presence of

a surprise signal in SN alone, on the other hand, is in line with the framework proposed

by Bromberg-Martin et al. (2010) in which there are two main dopamine populations, with

separate functions for learning-by-feedback.
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Finally, we performed the same GLM analyses at a voxel level in the rest of the

acquired brain (Figure 4.5). This was not the entire brain: In order to acquire the desired

spatial resolution and echo time, a few brain slices had to be sacrificed. These analyses were

performed as a control, to check whether we could replicate previous findings in the human

literature regarding neural correlates of reward variables outside the midbrain. Overall,

we confirmed previous findings, by observing EV signal in orbital frontal cortex and ante-

rior insula, risk signal in anterior cingulate cortex, amygdala, anterior insula, and dorsal

striatum, RPE signal in ventral striatum, and anterior insula, and a surprise signal in the

posterior insula. These results confirm that the experimental manipulations were successful

in eliciting the expected neural responses to gains and losses.

Overall, these results showed that, thanks to recent advances in MRI methods, it

was possible to measure a reward signal in the dopaminergic nuclei of behaving humans,

without recurring to invasive techniques. Such signal is in line with current theories coming

from studies with animals. This study opens the way to new research employing potentially

more complex learning tasks, leading to a better understanding of the circuit connecting

dopamine, striatum, and prefrontal areas.

1.3 Discussion

1.3.1 Modeling behavior in di↵erent learning contexts

In the first two manuscripts of this thesis, I showed how, by combining computa-

tional models from the perceptual (i.e., SSMs) and the economic (i.e., RL models) decision

making traditions, we can better understand the learning and decision processes at play

during learning-by-feedback (Summerfield & Tsetsos, 2012). Until recently, RL models

only described choice data and, specifically, how choice preferences evolve with experience

as a function of the received feedback. However, in RL models, no assumptions are made

about how the decision variable evolves, from the presentation of the stimuli to the the

selection of an option. As a consequence, RL models made no predictions on RT data.

On the other hand, SSMs describe single decisions as accumulation-to-bound processes and

make joint predictions about choices and RTs. Moreover, both models have been supported

by neural data. In particular, accumulation-to-bound processes have been found in human

and animal studies across the perceptual and the economic domains, and signal similar to



30

the updating of reward expectations, as described by RL models, has been found in the

animal and human brain. In both cases, a causal relationship between neural processes and

their relative functions has also been established.

In the first manuscript, we used the DDM (a widely used SSM) to explain par-

ticipants’ behavior across di↵erent learning contexts: when learning to choose the most

advantageous of two losing or two winning options, and when partial or complete feedback

is presented. In the loss domain, participants were consistently slower but not more or less

accurate. On the other hand, when partial as opposed to complete feedback was provided,

participants were consistently slower and less accurate. The DDM provided a mechanistic

explanation of these e↵ects: (1) Behavioral changes in the loss domain were mainly due to a

higher non-decision time. The threshold was also higher in the loss domain, but not consis-

tently across the experiments. (2) Behavioral changes in partial feedback contexts were due

to a lower evidence accumulation rate, a higher threshold, as well as a longer non-decision

time. However, these analyses were limited, as we only explained choice preferences and

RTs across trials in the di↵erent learning contexts, without explaining how performance

evolves throughout experience as a function of feedback. In order to do so, a tighter link

between the RL variables and the DDM parameters has to be established.

The second manuscript goes in the direction of establishing such a link, by propos-

ing a new combination of RL and SSMs (RLDDM) which builds on seminal work in this

field (Pedersen et al., 2017; Frank et al., 2015). The proposed RLDDM was tested on a

task in which di↵erent pairs of options could have higher or lower overall value and high

or low value di↵erence. This was done to challenge some of the assumptions of previous

RLDDMs: (1) the assumption that only value di↵erence influences behavior and not overall

value, and (2) the assumption that the evidence accumulation rate is linearly proportional to

value di↵erences. Our data falsified both assumptions, and we proposed a model that could

accommodate the observed behavioral patterns by means of: (1) a trial-by-trial threshold

modulation mechanism, in which overall value of a context decreases the threshold in a trial,

and (2) a sigmoid-shaped mapping between value di↵erences and the evidence accumulation

rate. Models that did not incorporate these mechanisms failed to predict the slowing-down

e↵ect in the presence of lower valued pairs of options, and underestimated accuracy and the

decrease of RTs throughout learning when very similar options were presented.

In sum, both manuscripts highlight the importance of considering RTs during

learning-by-feedback as an additional proxy for the underlying learning and decision pro-



31

cesses. At the same time, providing participants with di↵erent learning contexts – by

manipulating di�culty, valence, and reward magnitude – allowed to observe interesting

behavioral patterns.

1.3.2 Valence and magnitude e↵ects

In the first two manuscripts, we observed a similar behavioral pattern in the pres-

ence of losses and when lower-value options were presented: participants got slower without

getting more or less accurate. However, di↵erent accounts of these e↵ects were given in the

two manuscripts. In the first study, the loss-e↵ect was explained by a higher non-decision

time and – in experiments with less time pressure – a higher threshold. In the second

manuscript, a trial-by-trial modulation in the threshold explained the magnitude e↵ect,

with higher thresholds when low-value pairs were presented. These two parameters – the

threshold and the non-decision time – have di↵erent psychological interpretations: While a

higher threshold corresponds to a higher cautiousness, a higher non-decision time reflects

a general halt in the accumulation process, due to slower stimulus encoding or to motor

inhibition.

While the valence e↵ect has been mainly studied in learning paradigms in value-

based decisions, the magnitude e↵ect has been mainly studied in non-learning paradigms

in both value-based and perceptual decisions.

Notably, Ratcli↵ and Frank (2012) combined a biologically plausible neural net-

work model (Frank, 2006b) to the DDM to analyze behavioral data in a learning paradigm

with both gains and losses. As in the first manuscript of this dissertation, participants were

slower but not more accurate in the loss domain. Such e↵ect was explained through the

DDM11 by either a higher threshold, a higher non-decision time, or by a threshold that

collapses within a trial. In the neural model, activity in the loss-di�cult context was caused

by (1) the subthalamic nucleus, which inhibits the thalamus in the presence of conflict (i.e.,

in di�cult trials) causing a general halt in the responses (i.e., the hyperdirect pathway of

the basal ganglia circuit), as well as by (2) dopamine activity, which inhibits the thalamus

through the striatum in the presence of losses, causing a slowing down in the response (i.e.,

the indirect pathway of the basal ganglia circuit). Finally, these two mechanisms interact

11 The DDM did not capture learning e↵ects, as our analyses in the first manuscript.
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with each other, causing particularly slow responses in di�cult-loss contexts. Although

this study proposed a biologically plausible explanation for the valence and di�culty ef-

fects, it is still unclear which of the DDM parameters is mainly a↵ected by losses: Is it

the non-decision time or the threshold? And, since the indirect pathway has been more

associated with threshold modulations, this model consistently predicts higher accuracy in

the presence of losses (contrary to our and previous findings). A later study using the same

paradigm has explained the valence e↵ect by means of changes in the decision threshold

(Cavanagh et al., 2014), although non-decision time e↵ects were not tested.

Recently, Ratcli↵, Voskuilen, and Teodorescu (2018) gave a DDM account of the

magnitude e↵ect in a series of perceptual decision making tasks. They observed that partic-

ipants were faster when discriminating between two overall more intense stimuli. The e↵ect

of stimulus intensity on accuracy, however, varied across tasks, with some tasks showing no

e↵ect on accuracy, and others showing lower accuracy in the presence of more intense stim-

uli. This e↵ect was captured by two di↵erent models, that explained the data equally well.

The first model explained the magnitude e↵ect as a change in the across-trial variability in

the drift-rate, and the second model explained it as a change in the within-trial noise of the

di↵usion process12 . Finally, based on theoretical reasons, they proposed the first model as

an explanation of the magnitude e↵ect across domains. On the other hand, Polania et al.

(2014) directly compared the magnitude e↵ect in perceptual and in value-based decisions:

While magnitude did not a↵ect either accuracy or RTs in the perceptual domain, in the

value domain higher-valued options made participants faster and more accurate. In sum, it

is to some extent unclear whether the magnitude e↵ect is stable across domains and tasks,

and which DDM parameter would capture the e↵ects on on both accuracy and RTs best.

As shown in Figure 1.4, a higher drift-rate variability, as well as higher within-trial

noise, lead to a strong decrease in accuracy and only a mild decrease in the RTs. On the

other hand, lower threshold vales lead to a strong decrease in RTs and a non-linear decrease

in accuracy. Only a lower non-decision time predicts faster responses without a↵ecting

accuracy. Therefore, future work should establish whether the valence and magnitude

e↵ects have little or no impact on accuracy altogether. In the case of the magnitude e↵ect,

this could very well depend on the domain (i.e., perceptual or economic) and on the specific

task, thus reflecting di↵erent mechanisms at play. In case accuracy is not a↵ected, then the

non-decision time seems to be the better mechanism and might be linked to a general “hold

12 Higher within-trial noise corresponds to decreased threshold and drift-rate.
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your horses” response (i.e., hyperdirect pathway). In case accuracy is mildly a↵ected, then

the threshold would be a better mechanisms, and might be linked to dopamine activity

(i.e., the direct and indirect pathways of the basal ganglia circuit). This could be further

clarified by combing computational modeling with neural data. This work should build

on recent findings showing separate EEG signatures for valence and magnitude (Yeung &

Sanfey, 2004), as well as interactions between magnitude, valence and ambiguity on EEG

signals (Gu et al., 2017).

1.3.3 Di�culty and feedback information e↵ects

The first two manuscripts also proposed di↵erent accounts of the di�culty and

partial feedback e↵ects: While the di�culty e↵ect was only explained by changes in the

drift-rate (second manuscript), the partial feedback e↵ect was explained by changes in

drift-rate, threshold, and non-decision time. However, based on raw data alone, the two

e↵ects were very similar, consisting of a decrease in accuracy and increase in RTs.

On the one hand, these results suggest that receiving partial feedback might induce

an avoidant response, similar to the one induced by losses. As discussed in the previous

paragraph, it is an open question for future studies whether such a response is linked to a

“hold your horses” mechanism in the basal ganglia circuit. On the other hand, the results

of the second manuscript are in line with traditional accounts of the di�culty e↵ect, which

only predict changes in the drift-rate across domains (Ratcli↵ & Rouder, 1998; Milosavljevic

et al., 2010). However, contrary to previous studies (Cavanagh et al., 2014), di�culty did

not have an e↵ect on the threshold. In line with the predictions of the neural network

model proposed by Frank (2006b), however, both feedback information and di�culty had

an interaction on the RTs with, respectively, valence and magnitude.

Finally, our RLDDM did not directly account for uncertainty in the outcomes.

Based on elecrophysiological studies and on the results presented in the third manuscript,

showing that risk and surprise are represented in the dopamine signal, additional mecha-

nisms might need to be incorporated in the RLDDM to account for performance in learning

environments with, e.g., more or less outcome variance, or in dynamic environments.
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Figure 1.4: Changes in the di↵usion decision model parameters di↵erently a↵ect choice
preferences and response times (RTs). A higher across-trial noise in the drift-rate (first
column) decreases accuracy and increases RTs in incorrect responses. A higher within trial
noise (second column) decreases both accuracy and RTs. A higher threshold (third column)
causes a non-linear increase in the accuracy, as well as a linear increase in the RTs. A higher
non-decision time (fourth column) causes a linear increase in the RTs, and does not a↵ect
accuracy. 200 trials were simulated for each parameter combination. Bars represent 95%
confidence intervals.
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1.3.4 The dopamine signal

In the third manuscript, we showed how, by capitalizing on high quality structural

and functional images acquired with 7 Tesla MRI, it was possible to measure a reward

signal in the dopaminergic nuclei – the VTA and the SN – in behaving humans. To date,

studies using fMRI in humans provided mixed findings regarding this signal, and did not

investigate whether risk was also represented in these areas.

First of all, we showed the importance of carefully delineating the VTA and the

SN at a participant level. This is because they are relatively small and close to each other,

as well as to other nuclei with di↵erent functions, such as the subthalamic nucleus (e.g.,

Frank, 2006a). Previous studies (e.g., D’Ardenne et al., 2008; Zhang et al., 2017; Pauli

et al., 2015) not only used lower quality images (3 Tesla MRI), but they used population-

based coordinates to identify the VTA or the SN (or subdivisions of the SN), and spatial

smoothing, thus likely mixing the signals of neighboring nuclei and obtaining low temporal

signal to noise ratio values.

By carefully delineating these regions at a participant level, we found a clear RPE

signal and an absence of a EV signal in both the SN and the VTA. This is in line with

findings from animal studies (Schultz, 2015): The firing of dopaminergic neurons increases

when rewards exceed previous expectations, decreases when rewards are less than expected,

and does not change when rewards meet previous expectations. We also found a risk signal

in both the VTA and the SN. This is in line with previous electrophysiological studies in

monkeys: The firing of dopaminergic neurons was found to vary with reward probability,

in the presence of stimuli anticipating rewards (Fiorillo et al., 2003). Finally, we found a

surprise signal in the SN and not in the VTA. This result supports the recent framework

proposed by Bromberg-Martin et al. (2010). In this framework, two sub-populations of

dopamine neurons, one in the SN and one in the VTA, fire for motivational value and moti-

vational salience, respectively. Therefore, the two populations facilitate two complementary

aspects of learning: Learning to approach a rewarding option and avoid a punishing option,

and learning about the environment’s volatility. In order to further validate this hypothe-

sis, future work should extend the current findings to more complex learning tasks, e.g., to

dynamic learning environments or by setting a higher cost to failed predictions.

Building on these results, and to further validate this framework, the connectivity

between the VTA and the SN and di↵erent areas of the striatum should be investigated.
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Finally, based on neural models of the basal ganglia circuit (Frank, 2006b), neural data

can be linked to RLDDM models, to further clarify the di↵erential function of dopamine

neurons and of the subthalamic nucleus in regulating decisions during learning.

1.3.5 Conclusion

According to Marr (1982)’s terminology, computational models can be described

on three di↵erent levels: computational, algorithmic, and implementational. The compu-

tational level defines the objective of a decision problem: in the case of RL, the objective

is reward maximization and punishment minimization; in the case of SSM, the objective

is the optimization of both RTs and accuracy. The algorithmic level defines how this ob-

jective is met. Specific instances of RL and SSM describe optimal ways in which these

objectives are met (Niv, 2009; Sutton & Barto, 1998; Bogacz et al., 2006). Finally, at

the implementational level, there is evidence pointing to populations of neurons computing

similar algorithms to the ones described by both RL models and SSMs: While neurons in

the dopaminergic nuclei code for RPE, neurons in associative cortical areas show activity

correlated with bounded evidence accumulation (see Section 1.2.1 and 1.2.2). However, ev-

idence from electrophysiological studies suggests that the firing of neurons in these areas is

highly heterogeneous, both functionally and temporally (e.g., Hanks & Summerfield, 2017;

Watabe-Uchida et al., 2017). To what extent the implementation level should be tightly

linked to the algorithmic level (i.e., at the neuron level, or at a region level) remains an

open question in the field.

Computational models constitute an important tool for the understanding of adap-

tive and goal-directed behavior in healthy as well as in clinical populations. They can be

improved by advancements at the algorithmic level, by extending them to explain behav-

ior in di↵erent domains and tasks. They can also be improved at the implementational

level, as neural data can help to clarify disputes between models that are equally good at a

behavioral level but make di↵erent predictions on the neural mechanisms involved.

In this thesis, I propose a new model that combines aspects of evidence accumu-

lation models and RL (computational and algorithmic level), and show how process data

– such as RTs – can o↵er new insight on learning and decision processes. Furthermore,

I provided evidence for a reward signal in the human midbrain (implementation level),

capitalizing on novel MRI methods.
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Abstract : Reinforcement learning (RL) models describe how humans and animals

learn by trial-and-error to select actions that maximize rewards and minimize punishments.

Traditional RL models focus exclusively on choices, thereby ignoring the interactions be-

tween choice preference and response time (RT), or how these interactions are influenced by

contextual factors. However, in the field of perceptual decision making, such interactions

have proven to be important to dissociate between di↵erent underlying cognitive processes.

Here, we analyzed such interactions in behavioral data from four RL experiments, which

feature manipulations of two factors: outcome valence (gains vs. losses) and feedback in-

formation (partial vs. complete feedback). A Bayesian meta-analysis revealed that these

contextual factors di↵erently a↵ect RTs and accuracy: While valence only a↵ects RTs, feed-

back information a↵ects both RTs and accuracy. To dissociate between the latent cognitive

processes, we jointly fitted choices and RTs across all experiments with a Bayesian, hier-

archical di↵usion decision model (DDM). The drift-rate parameter was uniquely a↵ected

by the feedback manipulation, with a higher drift-rate in complete feedback conditions,

similarly to di�culty e↵ects. Moreover, there was an interaction e↵ect on the threshold,

with lowest thresholds in the reward-partial condition, indicating a possible e↵ect of regret.

Finally, the non-decision time was a↵ected by both manipulations, with lower non-decision

times in the most advantageous learning contexts (in gain domains and with full feedback),

suggesting a possible motor facilitation in these contexts. These results showed how, by ex-

plaining RTs and choice data during RL using the DDM, we can gain a better understanding

of the mechanisms underlying decisions in di↵erent learning contexts.
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2.1 Introduction

In cognitive psychology, the sequential sampling modeling (SSM) framework has enabled the

development of models which jointly account for choice accuracy and response time (RT)

data in two-alternative forced choice tasks (Gold & Shadlen, 2007; Bogacz et al., 2006;

Smith & Ratcli↵, 2004; Ratcli↵ & Smith, 2004). In this framework, it is assumed that,

when evaluating two choice options, evidence in favor of one over the other alternative(s)

is accumulated over time and a response is initiated when this evidence reaches a decision

threshold. The crucial advantage of applying these models to empirical data is that they can

help decompose the interactions between RTs and accuracy into meaningful psychological

concepts. On the one hand, speed and accuracy can be positively correlated: e.g., when

faced with easy decisions, people tend to give more correct and faster responses compared

to when facing di�cult decisions (Ratcli↵ & Rouder, 1998). This e↵ect is captured in SSMs

by higher rates of evidence accumulation. On the other hand, speed and accuracy can

also be negatively correlated: e.g., when asked to make speedy decisions, people tend to

be less accurate (Ratcli↵ & Rouder, 1998). This phenomenon is referred to as the speed-

accuracy tradeo↵ (Heitz, 2008; Luce, 1986) and is explained within the SSM framework

by a decrease in the decision threshold and interpreted as reduced cautiousness. Finally,

speed and accuracy can also be uncorrelated: e.g., people can di↵er in how fast or slow they

respond, without being more or less accurate (Ratcli↵, Thapar, & Mckoon, 2003). These

di↵erences are captured in SSMs by the non-decision time parameter, which represents

motor processes necessary for the execution of actions as well as time needed for stimulus

encoding. Therefore, SSMs have provided a mechanistic explanation of these three di↵erent

correlation patterns of RTs and accuracy and have been successfully applied in various

psychological domains: from perceptual, to social, to economic decision making, as well as

in memory and language research (Ratcli↵ et al., 2016).

Research in reinforcement learning (RL) aims at characterizing the processes through

which agents learn, by trial-and-error, to select actions that maximize the occurrence of re-

wards and minimize the occurrence of punishments (Sutton & Barto, 1998). A century-long

experimental investigation of RL processes in human and non-human animals has shown

that learning is accompanied by a simultaneous increase of the frequency of the selection of

the most advantageous action and by a decrease of the time necessary to select this action

(Pavlov, 1927; Skinner, 1938; Thorndike, 1911).

However, traditional computational RL models only account for choices and do
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not consider RTs (but see the recent work of Frank et al., 2015; Pedersen et al., 2017).

Therefore, how contextual factors in RL paradigms impact the relation between RTs and

accuracy is still relatively poorly understood (Summerfield & Tsetsos, 2012).

In a series of recent studies, Palminteri and colleagues (Palminteri et al., 2015;

Palminteri, Kilford, Coricelli, & Blakemore, 2016; Palminteri, Lefebvre, Kilford, & Blake-

more, 2017) developed an RL paradigm where they orthogonally manipulated two important

contextual factors: feedback information and outcome valence. Feedback information was

modulated by showing (i.e., complete feedback) or not showing (i.e., partial feedback) the

outcome associated with the unchosen option. Outcome valence was modulated by revers-

ing the sign of the outcome (i.e., gains vs. losses), which directly impacted the goal of

learning: reward-seeking vs. punishment-avoidance. Independent analyses reported in the

aforementioned studies consistently show that: First, participants learned equally well to

seek rewards as to avoid punishments; second, participants displayed a higher accuracy in

complete feedback contexts. Importantly, RTs in the same task follow a di↵erent pattern:

Participants were slower in the punishments contexts and in partial-feedback contexts.

By looking through the lenses of SSMs, di↵erent decision processes may drive the

behavioral patterns reported in these studies. In the present paper, we first re-assess the

e↵ects of the contextual factors on RTs and accuracy using a meta-analytical approach

involving data from four behavioral experiments employing the same RL paradigm. Then,

we fit a previously proposed RL model (Palminteri et al., 2015) to look at relationships

between latent learning variables, estimated in a subset of the data, and the remaining raw

behavioral data. We found that while the learned contextual value (i.e., the overall value

of a pair of choice options) only predicted RTs, the di↵erence in learned values predicted

both accuracy and RTs. Finally, we moved to the SSM framework: We used a hierarchical

Bayesian version of the standard di↵usion decision model (DDM, Ratcli↵, 1978) to test

the e↵ects of the contextual factors (i.e., feedback information and valence) on the model’s

parameters (i.e., drift-rate, threshold, and non-decision time) across the four experiments.

We found that the rate of evidence accumulation was higher in full feedback compared to

partial feedback contexts, cautiousness was the lowest in the gain domain when the feedback

information was partial, and the non-decision time increased in the loss domain as well as

when the feedback was partial. Altogether, our results illustrate that accounting for RTs in

instrumental learning paradigms provides valuable information about the decision processes

underlying learning by feedback.
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2.2 Methods

2.2.1 Participants

We analyzed data from four behavioral experiments, realized in three di↵erent

research centers in France and UK (final N=89; Table 2.1). The local ethical committees

approved the studies and participants provided written informed consent; see the original

publications for additional details (Palminteri et al., 2015; Salvador et al., 2017).

2.2.2 Task

Participants performed a probabilistic instrumental learning task designed to ma-

nipulate both feedback valence (reward vs. punishment) and feedback information (partial

vs. complete) using a 2x2 factorial design (Figure 2.1 A). Participants had to choose one of

two abstract cues (letters from the agathodaimon font). Each trial (Figure 2.1 B) started

with a fixation cross, followed by presentation of the cues during which participants in-

dicated their choice. After the choice window (either 3 or 1.5 seconds, depending on the

experiment), a red arrow highlighted the chosen option. Then, the outcome was revealed,

and participants moved to the following trial. In each session, there were eight di↵erent

cues, divided into four fixed pairs, corresponding to four choice contexts: reward-partial,

reward-complete, punishment-partial, and punishment-complete. In reward contexts, the

best cue had 75% probability of yielding a reward (points or money) and 25% probability

of yielding nothing; while the worst cue, on the other hand, had 25% probability of yielding

a reward and 75% probability of yielding nothing. In punishment contexts, the best cue

had 25% probability of yielding a loss and 75% probability of yielding nothing, while the

worst cue had 75% probability of yielding a loss and 25% probability of yielding nothing. In

partial feedback contexts, participants were presented with only the outcome of the chosen

cue, while in complete feedback contexts they were presented with the outcomes of both

the chosen and forgone cues. The number of trials per context, the number of sessions, and

the timing slightly di↵ered across experiments (see Table 2.1).
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Table 2.1: Participants.

Experiment 1 Experiment 2 Experiment 3 Experiment 4

Sample size 20 25 20 24
Mean age 25.4 23.9 32.4 22.2
Percentage Males 55 36 55 38
Response window (sec) 3 3 3 1.5
N sessions 2 3 3 2
N trials per session 80 96 96 80
Center Paris - ENS Paris - ENS Paris - ICM London- UCL
Source Pilot for Pilot for Controls Controls
Reference (Palminteri et al., 2015) (Palminteri et al., 2015) (Salvador et al., 2017) (Palminteri et al., 2016)

Note. Demographics, task characteristics, and investigation centers of the four experiments (N:
sample size, ENS: cole Normale Suprieure; ICM: Institut du Cerveau et de la Molle; UCL: University
College London).

2.2.3 Dependent variables

Our main dependent variables were the correct choice rate (accuracy) and RTs.

A correct response is defined as a choice directed toward the best (reward maximizing

or punishment minimizing) cue of a pair. The RT is defined as the time between the

presentation of the options and the button press. In order to include only trials whose

cumulative accuracy was overall higher than 50%, the first 12 trials of each session were

discarded in the ANOVA and DDM analyses (Figure 2.1 C-D), but not in the RL modeling,

in which the first trials are crucial, and linear mixed-e↵ect analyses, where trial number

was explicitly entered as a predictor.

2.2.4 Bayesian analysis of the variance

Accuracy and RTs were analyzed in two independent ANOVAs, which modeled

the main e↵ects of – and the interaction between – the experimental manipulations (i.e.,

valence and feedback information). We adopted a Bayesian mixed model meta-analysis

approach, where the di↵erent experiments could be modelled as fixed e↵ects (Singmann et

al., 2014). By doing so, we could test whether, across the four experiments, mean accuracy

and RTs di↵ered and whether the learning contexts were similar across the experiments.

This approach entails a comparison of di↵erent Bayesian models using Bayes Fac-

tors (BFs) (Kass & Raftery, 1995; Wagenmakers, 2007) in a two-step procedure. First, we
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Figure 2.1: Task factors and learning curves. (A) The learning task 2x2 factorial design.
Di↵erent symbols were used as cues in each context, and symbol to context attribution was
randomized across participants. The coloured frames are purely illustrative and represent
each of the four context conditions throughout all figures. “Reward”: gain domain; “Punish-
ment”: loss domain; “Partial”: only feedback of the chosen option is provided; “Complete”:
both feedback of chosen and unchosen options are provided; PGain= probability of gaining
1 point; PLoss= probability of losing 1 point. (B) Time course of example trials in the
reward-partial (top) and reward-complete (bottom) conditions. Stimuli durations are given
in seconds. (C) Average response times during learning. (D) Cumulative accuracy during
learning. Trials before the vertical dotted lines were discarded for the across-trial analyses.
The horizontal dotted line in (D) indicates chance level.
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assessed if the experiments should be treated as fixed e↵ects by comparing such a model to

a model with only the random e↵ect of participants. The winning model was then used as a

baseline model in the second step, where we assessed which combinations of fixed-e↵ects and

interactions gave the most parsimonious, but complete account of the data. Once we identi-

fied the best model, we inspected the estimated posterior distribution of its main e↵ects and

interactions (see Appendix A.1). The models were all fit using the R package BayesFactor

(Morey, Rouder, & Jamil, 2015) and adapted code previously provided by Singmann et al.

(2014).

2.2.5 Reinforcement learning architecture

To capture the trial-by-trial dynamics due to learning-by-feedback, we fitted the

“RELATIVE” model, proposed by Palminteri et al. (2015). This model is based on a simple

Q-learning model (Sutton & Barto, 1998), but allows separate learning rate parameters for

outcomes of chosen and forgone options, and includes a contextual module, so that option

values are updated relative to the learned value of the choice context.

In the RELATIVE model, at each trial t, the option values Q in the current context

s are updated with the Rescorla-Wagner rule (Rescorla and Wagner, 1972):

Qc,s,t = Qc,s,t�1 + ↵c · �c

Qu,s,t = Qu,s,t�1 + ↵u · �u

where ↵c is the learning-rate for the chosen optionQc – updated in both partial and complete

feedback contexts – and ↵u the learning-rate for the unchosen option Qu – updated only in

complete feedback contexts. �c and �u are prediction error terms, calculated as follows:

�c = Rc,s,t � Vs,t�1 �Qc,s,t�1

�u = Ru,s,t � Vs,t�1 �Qu,s,t�1

Vs represents the context value that is used as the reference point for the updating of option

values in a particular context, and R is the feedback received in a trial. Context value is

also learned via a delta rule:

Vs,t = Vs,t�1 + ↵V · �V

where ↵V is the learning-rate of context value and �V is a prediction error term. In complete

feedback contexts:

�V =
(Rc,s,t +Ru,s,t)

2
� Vs,t�1
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In partial feedback contexts, since Rc,s,t is not provided, its value is replaced by its expected

value Qu,s,t, hence:

�V =
(Rc,s,t +Qu,s,t)

2
� Vs,t�1

The decision rule was implemented as a softmax function:

pA,s,t =
e✓QA

(e✓QA + e✓QB )

where pA is the probability of choosing an option A over an option B and ✓ is the sensitivity

parameter.

2.2.6 Reinforcement learning model fitting

To avoid testing the same data twice, we fitted a hierarchical Bayesian version of

the RELATIVE model on the choice data of experiment 1 (training set), and generated

predictions for the data of experiments 2, 3, and 4 (testing set). To ensure generalizability

of the results, the same procedure was then repeated using data of experiments 2, 3, 4

as training sets instead (see Appendix A.2). To generate predictions for the testing set,

we sampled individual parameters from the group-level parameter distributions estimated

on the training set. This set of individual parameters (i.e., predictions for new, unseen,

participants)2 were then used to predict the latent variables of the RELATIVE model on

a trial-by-trial base, given the feedback received by the participants in the testing set.

The RL model was coded and fitted using stan, a probabilistic programming lan-

guage for Bayesian parameter estimation (Carpenter et al., 2017). The learning-rate pa-

rameters were given the following prior distributions:

µ↵ ⇠ N (.8, .5)

�↵ ⇠ HN (0, .5)

↵ ⇠ �(N (µ↵,�↵))

where µ↵ is the group-level mean, �↵ is the group-level standard deviation, and ↵ is the

individual learning-rate. N is the normal distribution (with parameters mean and standard

deviation), HN is the half-normal distribution, and � is the cumulative density function

2 See Figure A.1 for the individual parameters distributions used to generate predictions.
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of the standard normal distribution, transforming ↵ so that 0  ↵  1. The sensitivity

parameter was given the following prior distribution:

µ✓ ⇠ N (�1, 1)

�✓ ⇠ HN (0, .5)

✓ ⇠ exp(N (µ✓,�✓))

where µ✓ is the group-level mean, �✓ is the group-level standard deviation, and ✓ is the

individual sensitivity, which was exponentially transformed, so that ✓ � 0. To estimate the

joint posterior distribution of the model, we ran 4 independent chains with 5000 samples

each, and discarded the first half of each chain. To test for convergence, we checked that

the R̂ statistic (Gelman & Rubin, 1992) – a measure of convergence across chains – was

lower than 1.01 for all parameters.

2.2.7 Relationship between latent learning variables and raw data

At each trial, the choice di�culty (captured by the unsigned di↵erence in options

expected values |�Qt|), the trial contextual value Vt, and the trial number, were used

as independent predictor variables in two linear regression models, respectively modeling

accuracy and RTs. In these analyses, both participants and experiments were treated

as random e↵ects. For completeness, we reported Bayes Factors of the full model, and

competing reduced models in Appendix A.2. The regression models were ran using the

BayesFactor (Morey et al., 2015) package in R.

2.2.8 Di↵usion decision model architecture

The DDM (Ratcli↵, 1978; Ratcli↵ & Rouder, 1998) assumes that, when deciding

between two alternatives, evidence in favor of one relative to the other is accumulated in

time, according to the following di↵erential equation:

dx = N (v · dt, c ·
p

dt), x0 = a/2 (2.1)

where dx is the change in the accumulated evidence in the time interval dt, v is the mean

accumulated evidence across the time intervals, and c is the noise constant, usually fixed
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to 1 3 . A decision is executed when enough relative evidence in favor of an alternative

has been collected, which is when x is either lower than 0 or higher than the decision

threshold a. When the decision is unbiased (i.e., there is equal initial evidence in favor

of both options), then the evidence accumulation starts from half the threshold a. In the

experiments that were considered in the present study, the upper boundary corresponded

to the correct option (i.e., the option with the highest mean payo↵) and the lower boundary

corresponded to the incorrect option (i.e., the option with the lowest mean payo↵) within

a context. Because these options were randomly assigned to the right and left sides of the

screen, we assumed that decisions were always unbiased, and coded responses as correct

and incorrect.

Therefore, the execution time and probability of choosing the option with the

highest payo↵ depended on three main parameters. The first is the decision threshold a:

Lower thresholds lead to faster but less accurate decisions, while higher thresholds lead to

slower but more accurate decisions. The threshold is usually interpreted as response caution,

with higher thresholds corresponding to higher cautiousness. The second parameter is the

drift-rate v, which is the amount of evidence accumulated per unit of time. This can reflect

the di�culty of the decision problem, as well as participants’ e�ciency in the task: Higher

drift-rates lead to faster as well as more accurate responses. The third parameter that we

take into account is referred to as non-decision time (NDT), and reflects the processes that

influence the decision time, but do not pertain to evidence accumulation per se, such as

motor and stimuli encoding processes. The non-decision time therefore a↵ects RTs without

a↵ecting accuracy.

2.2.9 Di↵usion decision model fitting

For each of the DDM parameter (i.e., v, a, and NDT), we fitted an intercept and

three slopes, corresponding to the two main e↵ects – valence and feedback information – and

their interaction. This allowed us to test the e↵ects of the experimental manipulations on

the model parameters. To account for all levels of variability, we used a three-level version

of the hierarchical Bayesian DDM, where the first level corresponds to the participants, the

second corresponds to the experiments, and the third corresponds to the whole dataset,

3 This is done to be able to identify the other parameters. One could decide to fix a di↵erent parameter,
e.g., the decision threshold, to estimate this variable instead.
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thus mimicking the meta-analysis approach described in Section 2.2.4.

The following prior distributions were assumed for the parameter intercepts:

vint ⇠ t10(3, 1) + zi + zj

aint ⇠ Gamma(1, 1) + zi + zj

NDTint ⇠ U(0, 1)) + zi + zj

where t10 is the Student t distribution with 10 degrees of freedom and parameters mean

and standard deviation, Gamma is the gamma distribution with parameters shape and

scale, and U is the uniform distribution with lower and upper-boundaries as parameters.

The following prior distributions were assumed for the parameter coe�cients (coe�cients

corresponding to the main and interactions e↵ect were given the same priors):

vcoe↵ ⇠ t1(0, 5) + zi + zj

acoe↵ ⇠ t1(0, 5) + zi + zj

NDTcoe↵ ⇠ t1(0, 5) + zi + zj

zi and zj respectively account for individual (1  i  89) and experiment (1 

j  4) deviations from the group mean: zi represents the deviation of a participant’s

parameter from that parameter mean in the experiment, while zj represents the deviation

of an experiment’s parameter mean from the parameter means across the overall dataset.

The following prior distributions were given to zi and zj :

zi ⇠ N (0,�j)

zj ⇠ N (0,�)

�j (1  j  4) and � respectively account for the within- and across-experiment variances,

and have priors:

�j ⇠ t10(3, 0)

� ⇠ t10(3, 0)

To fit the Bayesian DDM and estimate its joint posterior distribution, we used

brms (Bürkner, 2017), an R package for Hierarchical Bayesian model fitting based on stan

(Carpenter et al., 2017). We first ran the model separately by experiment in order to get

plausible starting values, using 5000 samples per chain and 2 chains, and discarding the

first 2000 samples in each chain. We then ran the full model (across experiments) using the
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same number of samples and chains. To test for convergence, we checked that the R̂ statistic

was less than 1.01, for all parameters, as in the RL analyses. To test the reliability of the

parameter estimates, we performed parameter recovery on a simulated dataset (Palminteri,

Wyart, & Koechlin, 2017); see Appendix A.4.

Finally, to assess the model fit of the DDM, we computed the posterior predictive

distributions (Gelman, Meng, & Stern, 1996) for mean accuracy and RTs, as well as for RT

quantiles (separately for correct and incorrect responses; Figure A.5).

2.2.10 Statistical reporting

In all analyses (i.e., ANOVA, linear mixed-e↵ect regression and DDM), we re-

port the estimated Bayesian credible interval (BCI) of the posterior distributions of the

parameters of interest, computed as the 95% central interval of the distributions.

In all analyses, valence was coded as 0 for reward and 1 for punishment, and

feedback was coded as 0 for partial and 1 for complete. Intercepts therefore correspond

to the reward-partial context. The interaction was obtained by multiplying valence and

feedback.

2.3 Results

2.3.1 Bayesian analysis of the variance

We assessed the e↵ects of outcome valence and feedback information on learning

performance (i.e., mean accuracy and RTs, Figure 2.2 A), using a Bayesian mixed model

meta-analysis approach (see Section 2.2).

For the accuracy, our approach favored a model with (1) a single main e↵ect

accounting for feedback information, (2) no main e↵ect of the experiment, (3) no interactions

between experiment and experimental manipulations (M3 in Table A.1). These results

indicates that only feedback and not valence had an e↵ect on accuracy, and that this e↵ect

had a similar size across the experiments. The model parameters confirmed that accuracy

was higher in the complete feedback information contexts (BCIFeedback = [.03 – .06]) (see
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Figure 2.2: Performance and behavioral e↵ects across learning. (A) Summary of the be-
havioral performance. Mean accuracy (top) and response times in seconds (bottom) are
plotted, separately for experiments and conditions, as well as across experiments (right
column). The bars represent 95% confidence intervals. (B) Posterior distributions of the
feedback, valence, and feedback-valence interaction e↵ects on accuracy and RTs of the pre-
ferred models in the ANOVA model comparison analyses. Shaded areas represent the 95%
Bayesian Credible Intervals.
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Figure 2.2 B).

For the RTs, our approach favored a model which includes (1) both main e↵ects

of valence and feedback information as well as their interaction, (2) a main e↵ect of the

experiment, (3) and no interaction between experiment and experimental manipulations

(M5 in Table A.2). These results indicate that both valence and feedback information, as

well as their interaction, had an e↵ect on RTs, in a similar way across the experiments. The

main e↵ect of the experiment indicates that participants had di↵erent mean RTs across

the experiments. The model parameters revealed that participants were slower in the loss

domain (BCIValence = [.05 – .07]) and faster in the complete feedback contexts (BCIFeedback
= [-.019 – -.003]). In addition, the e↵ect of valence was weaker in the complete feedback

contexts (BCIInteraction = [-.03 – -.01]).

2.3.2 Reinforcement learning model analyses

As a first step toward understanding the processes underlying the e↵ects of di↵erent

learning contexts – outlined by the ANOVA – on both accuracy and RTs, we fit a RL model

and inspected the relationship between latent learning variables and raw data. In particular,

we fitted the RELATIVE model proposed by Palminteri et al. (2015) to a training set (i.e.,

data from experiment 1) (see Figure A.1), and generated predictions for a testing set (i.e.,

experiments 2, 3, and 4)4 .

In particular, we were interested in predicting two latent variables of the REL-

ATIVE model, as they develop in the testing datasets during learning. The first variable

is the unsigned di↵erence between the available option values |�Qt|, and the second one

is the context value Vt. On the one side, |�Qt| reflects choice di�culty, with lower val-

ues corresponding to more di�cult choices. Throughout the trials, choices become easier,

particularly in the complete compared to the partial feedback contexts (Figure 2.3 A). On

the other side, Vt reflects valence: it increases in the reward contexts, and decreases in the

punishment contexts, the more so in complete compared to partial contexts (Figure 2.3 A).

In addition, we considered a third control variable, corresponding to the number of trial

within learning session, to account for learning- and feedback-independent changes in the

4 Note that the same procedure was repeated using data of experiments 2, 3, 4 as training sets instead,
yielding similar results (see Figure A.3).
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Figure 2.3: Relationship between learning variables and performance. (A) Predicted latent
variables of the RELATIVE model, which are the unsigned di↵erence in Q values |�Qt| and
the context value Vt. |�Qt| is higher in complete information contexts compared to partial
contexts. Vt is positive in the gain domain and negative in the loss domain, and is learned
more quickly in complete contexts, where more information is available. Shaded areas
represent 95% CI around the posterior mean. Predictions were made for experiments 2, 3,
and 4, based on the data of experiment 1. (B1 and B2) Estimated posterior distributions of
the linear models coe�cients corresponding to the |�Qt|, V , and trial predictors. Shaded
areas here represent the 95% BCI.
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RTs and accuracy within the learning sessions.

The predicted |�Qt| and Vt, together with trial number, were used as indepen-

dent variables in Bayesian linear models of accuracy and RTs (Figure 2.3 B; but see also

Figure A.2). We found that |�Qt| was a good predictor of accuracy and RTs (BCIaccuracy

= [.12 – .13]; BCIRTs = [-.04 – -.03]). On the other hand, Vt exhibited a di↵erent pattern,

a↵ecting only RTs, but not accuracy (BCIaccuracy = [-.009 – .004]; BCIRTs = [-.06 – -.05]; see

also Table A.2 for the model comparison results). These results confirm the general trend

that was described in the ANOVA results on a trial-by-trial base (based on a computational

model of learning) and with out-of-sample predictions: The learned context value a↵ects

participants’ speed of responses while providing complete feedback makes learning easier

for the participants.

2.3.3 Di↵usion decision model analyses

Although both the ANOVA and reinforcement learning analyses depict a consis-

tent picture of the e↵ect of di↵erent learning contexts on both RTs and accuracy, they do

not model the interactions between the two. To decompose the simultaneous e↵ects of con-

textual e↵ects on RTs and accuracy, we therefore fitted a three-level hierarchical Bayesian

version of the DDM to the data of all four experiments (see Section 2.2).

The increase in accuracy and speed in the complete feedback contexts was captured

by an e↵ect on all three DDM parameters (Figure 2.4): Providing participants with complete

feedback increased the drift-rate (BCI = [.04 – .82]), increased the threshold (BCI = [.03

– .31]), and decreased the non-decision time (BCI = [-.073 – .003]). Compared to the gain

domain, decisions in the loss domain showed higher non-decision time (BCI = [-.001 – .067]).

Valence did not significantly a↵ect the drift-rate (BCI = [-.50 – .23]) nor the threshold (BCI

= [-.15 – .4]). However, the valence e↵ect on the threshold was di↵erent across the four

experiments, with stronger e↵ects in experiments 1, 2, and 3, and the weaker e↵ect in

experiment 4 (Figure A.4). This might be due to the higher time pressure in experiment

4. Yet, we found a negative interaction between feedback information and valence on the

threshold (BCI = [-.27 – -.05]). A closer examination of the threshold parameter by context

(Figure 2.4, right column) revealed that the threshold was particularly low in the reward-

partial condition. There was also a mild positive interaction e↵ect on the non-decision time

(BCI = [-.03 – .7]), indicating that the feedback e↵ect on non-decision time was higher in
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Figure 2.4: Estimated di↵usion decision model (DDM) parameters. Left column: 95%
Bayesian Credible Intervals of the estimated posterior distributions of the e↵ects of the
experimental manipulations (i.e., feedback information, outcome valence and their inter-
action) on the DDM parameter coe�cients at the dataset level. Right column: estimated
mean parameters at the dataset level, separately by context.
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the gain domain. There was, however, no interaction e↵ect on the drift-rate (BCI = [-.36 –

.35]). In Figure A.4 we report the posterior distributions of the group parameters separately

for experiments and for the overall dataset.

2.4 Discussion

In the present study, we looked at how di↵erent RL contexts (i.e., partial vs full

feedback, and gains vs losses) a↵ect accuracy and RTs. To do so, we used di↵erent methods

and a relatively large dataset, composed of four separate experiments carried out in di↵erent

centers.

First, we used a meta-analytic Bayesian approach to the analysis of variance of

accuracy and RTs. Replicating previous reports (Palminteri et al., 2015, 2016; Salvador

et al., 2017), we showed that participants were slower in the loss (as compared to the

gain) domain, but not more or less accurate, and that they were more accurate and faster

when complete (as compared to partial) feedback was provided. Interestingly, the similar

accuracy observed in the gain and loss domains is at odds with the notion of loss aversion

(Kahneman & Tversky, 1979): If in our task “losses loomed greater than gains”, we would

expect higher accuracy in the loss domain. However, by inspecting the RTs, we found that

losses made participants slower, showing the importance of considering performance as a

whole.

These results were further supported by the RL analyses: According to the REL-

ATIVE model (Palminteri et al., 2015) predictions, the learned context value a↵ects RTs

on a trial-by-trial base and above learning. In this model, context value is used as reference

point in a particular context to update the Q values in each trial. Palminteri et al. (2015)

showed that including context value in the RELATIVE model improves the model fit to

choice data (by comparing the RELATIVE model to similar RL models without contextual

learning). Here we showed that context value can also be used to explain RTs data. Because

the RELATIVE model decision rule (i.e., the sotfmax rule) does not allow it to predict RTs,

this relationship has not been investigated so far. Moreover, within the RELATIVE model,

we can quantify choice di�culty in each trial (or decision conflict, see, e.g., Cavanagh et

al. (2014)) as the unsigned di↵erence of the learned value of the available options. In line

with previous studies that investigated the di�culty e↵ect in value-based decision making

on both accuracy and RTs (e.g., Milosavljevic et al., 2010; Cavanagh et al., 2014; Frank et
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al., 2015; Lebreton, Jorge, Michel, Thirion, & Pessiglione, 2009; Shenhav, Straccia, Cohen,

& Botvinick, 2014), we show that choice di�culty is a good predictor for out-of-sample

accuracy and RTs data.

Previous studies that applied the SSM framework to value-based decision making

have shown how the di�culty e↵ect can be captured by a decrease in the mean accumulation

rate (Milosavljevic et al., 2010; Cavanagh et al., 2014; Frank et al., 2015; Krajbich et

al., 2010). However, previous studies investigating the valence e↵ect have given mixed

interpretations (Ratcli↵ & Frank, 2012; Cavanagh et al., 2014). Because the reported RL

analyses do not allow to inspect RTs and accuracy simultaneously, and to better understand

this e↵ect on RTs (as well as the interaction between valence and feedback information on

RTs), we turned to the SSM framework and fitted the DDM simultaneously to accuracy and

RTs across the four experiments. The e↵ect of feedback information (i.e., higher accuracy

and speed in the complete contexts) appeared to be driven by an increase of the drift-

rate and of the threshold parameters, and by a decrease of the non-decision time in the

complete compared to partial conditions. On the other hand, valence had a main e↵ect

on the non-decision time (with higher non-decision time in the loss domain), and there

was an interaction of feedback and valence on the threshold (with lowest threshold in the

reward-partial condition). The e↵ect of valence on threshold (higher thresholds in the loss

domain) was not consistent across experiments, and it was higher in experiments with less

time pressure.

While drift-rate di�culty e↵ects have been documented in both economic and per-

ceptual decision making (Milosavljevic et al., 2010; Krajbich et al., 2010; Ratcli↵ & Rouder,

1998), the decrease in threshold in partial feedback contexts may appear counter-intuitive

at first glance, as less information, and therefore higher uncertainty, could increase cautious-

ness. Moreover, previous studies have found that higher di�culty also leads to an increase

in the threshold (e.g., Frank et al., 2015). Yet, a possible psychological interpretation for

this e↵ect is that the outcomes corresponding to the unchosen options are known to elicit

regret, which can increase cautiousness in decision making (Zeelenberg, 1999; Shenhav et

al., 2014). This can thus explain the interaction e↵ect on the threshold, since regret should

be the lowest in the reward-partial condition. This hypothesis could be further supported

by a trial-by-trial mechanism, in which higher feedback of the unchosen options in complete

feedback contexts causes an increase in the threshold in the following trial.

The two e↵ects on the non-decision time (of both feedback and valence) are
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less clear, as non-decision time e↵ects are not very common in the SSM literature, and

are thought to reflect stimulus encoding or purely motor processes (Ratcli↵ & Rouder,

1998). However, previous work in behavioral economics has shown that, by providing

time-dependent payo↵s under high time pressure, RTs can be reduced without any loss

of accuracy (Kocher & Sutter, 2006). Nonetheless, Ratcli↵ and Frank (2012) found that

models with increased threshold or increased non-decision time explained equally well the

e↵ect of losses on RTs. They further linked such e↵ect to the dopamine modulation in the

basal ganglia circuit (i.e., the indirect pathway). In a later study, however, (Cavanagh et

al., 2014) explained the e↵ect of losses on RTs with a threshold e↵ect. Alternative accounts

of the RT slowing in the loss domain typically predict higher accuracy for losses. In deci-

sion field theory (Busemeyer & Townsend, 1993), for example, choices in the loss domain

are characterized by a slowing down of the evidence accumulation process dependent on

the distance from the decision threshold, thus causing slower and more accurate responses.

SSMs that assume a race between the evidence accumulation of competing options (e.g.

S. D. Brown & Heathcote, 2008), also predict di↵erences in accuracy. Finally, Hunt et al.

(2012) proposed a biophysically plausible network model that predicted slower decisions

when choosing between options with overall lower value. However, this model also did not

account for the absence of accuracy e↵ects.

A possible explanation of the increase in non-decision time in the loss domain and

when less information is provided is that less advantageous contexts might provoke motor

inhibition, similarly to a Pavlovian bias (Boureau & Dayan, 2011; Huys et al., 2011). This

e↵ect is also similar to the modulating function of the subthalamic nucleus in the basal

ganglia circuit, which causes a “hold your horses” response (Frank, 2006b) in the presence

of conflict. This would explain why responses could be delayed without a↵ecting accuracy.

Moreover, both e↵ects of losses and partial feedback might not only be present in RTs,

but also in meta-cognitive judgments like decision confidence. This idea is supported by a

growing body of evidence showing how losses reduce confidence judgments in a variety of

tasks (Lebreton, Langdon, et al., 2018; Lebreton, Bacily, Palminteri, & Engelmann, 2018).

A competing explanation might link the slowing down in the presence of losses to

the loss attention framework (Yechiam & Hochman, 2013), i.e., the idea that losses receive

more attention. However, increased attention has been previously linked to increases in the

drift-rate and threshold parameters, and not in the non-decision time, since higher attention

is typically accompanied by higher accuracy (Krajbich et al., 2010; Krajbich, Lu, Camerer,

& Rangel, 2012). Moreover, Cavanagh et al. (2014) found that eye gaze dwell time only
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predicted increases in the drift-rate towards the fixated option, independently on its value.

They also found that pupil dilation was overall higher in the gain compared to the loss

domain, and the relationship between pupil dilation and threshold was stronger in the gain

compared to the loss domain.

In conclusion, RTs and accuracy are two behavioral manifestations of internal

decision processes. These two variables provide complementary and equally important

clues on the computations underpinning a↵ective decision making, and should be jointly

considered in order to build a comprehensive account of goal-directed behavior.
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Abstract : Psychological models of value-based decision making describe how sub-

jective values are formed and mapped to single choices. Recently, additional e↵orts have

been made to describe the temporal dynamics of these processes by adopting sequential

sampling models from the perceptual decision making tradition, such as the di↵usion deci-

sion model (DDM). These models, when applied to value-based decision making, allow to

map subjective values not only to choices but also to response times. However, very few

attempts have been made to adapt these models to situations in which decisions are followed

by rewards, thereby producing learning e↵ects. In this study, we propose a new combined

reinforcement learning di↵usion decision model (RLDDM) and test it on a learning task in

which pairs of options di↵er with respect to both value di↵erence and overall value. We

found that participants became more accurate and faster with learning, responded faster

and more accurately when options had more dissimilar values, and decided faster when

confronted with more attractive (i.e., overall more valuable) pairs of options. We demon-

strate that the suggested RLDDM can accommodate these e↵ects and does so better than

previously proposed models. To gain a better understanding of the model dynamics, we

also compare it to standard DDMs and reinforcement learning models. Our work is a step

forward towards bridging the gap between two traditions of decision-making research.
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3.1 Introduction

Research on value-based decisions investigates how individuals value options and make

decisions between them. Every-day decisions can be based on descriptive information, such

as when choosing a restaurant based on reviews, or on personal experience, such as when

choosing a restaurant based on previous visits. Reinforcement learning (RL, Sutton &

Barto, 1998) describes the processes involved in the latter case, and specifically how the

value associated with an option is updated following reward or punishment.

In the past decades, substantial progresses in understanding the mechanisms of

RL have been made both in psychology (e.g., Estes, 1950; Luce, 1959; Bechara, Damasio,

Damasio, & Anderson, 1994; Erev, 1998; Yechiam & Busemeyer, 2005; Rieskamp & Otto,

2006) and neuroscience (e.g., Schultz, Dayan, & Montague, 1997; Holroyd & Coles, 2002;

Frank et al., 2004; Dayan & Daw, 2008; Niv, 2009). Within this framework, computa-

tional models can be used to infer latent value representations and psychological constructs

(Lewandowsky & Simon, 2010), for instance, the reliance on more recent or past feedback

(often referred to as the learning rate). RL models usually have two components: a learning

component, that describes how past information is integrated with newly received feedback

to update options’ subjective values, and a choice model, that maps the subjective val-

ues associated with the options to the final choice probabilities. Despite providing a good

fit to choice data, this mapping function (e.g., the soft-max choice rule) does not provide

a description of the cognitive processes that lead to a specific decision. Fortunately, these

mechanisms can be revealed by simultaneously inspecting choices and response times (RTs).

For example, making the same choice faster or slower can indicate less or more decision con-

flict, respectively (Frank, Samanta, Moustafa, & Sherman, 2007). Furthermore, choices and

RTs might be di↵erently a↵ected under di↵erent conditions, and those cognitive processes

that only a↵ect RTs would be overlooked by models based on choices alone.

Sequential sampling models (SSMs; for an overview, see Smith & Ratcli↵, 2004;

Bogacz et al., 2006) are process models that aim to describe the cognitive computations

underlying decisions and allow predicting choices and RTs in a combined fashion. SSMs

define decision making as an integration-to-bound process: When deciding between two

options, noisy evidence in favor of one over the other option is integrated over time, and a

response is initiated as soon as the evidence reaches a pre-set threshold. Cautious decision

makers increase their threshold to make more accurate, but at the same time slower deci-

sions. On the other hand, if the situation requires to respond as quickly as possible, the
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threshold can be lowered at the cost of accuracy. When confronted with an easy decision

(i.e., between a very good and a very bad option), the integration (or drift) rate is higher,

leading to faster and more accurate decisions. SSMs have been successfully applied in many

psychological domains (for an overview, see Ratcli↵ et al., 2016), including both perceptual

and value-based decision making (e.g., Usher & McClelland, 2001; Busemeyer & Townsend,

1993). In particular, the di↵usion decision model (DDM; Ratcli↵, 1978), the dominant

model in perceptual decision making, has gained particular popularity in value-based de-

cision making research (Summerfield & Tsetsos, 2012). Thus, the DDM has been used to

directly compare perceptual and value-based choices (Dutilh & Rieskamp, 2016), and it has

been extended to account for and to model eye-movement data in consumer-choice behavior

(Krajbich et al., 2010, 2012). Moreover, building on the discovery of a neural correlate of

the integration-to-bound process during perceptual decisions in non-human primates (Gold

& Shadlen, 2001), SSMs have also been used to link behavioral and neural measures, such

as the decision threshold to activity in the striatum (Forstmann et al., 2008; Gluth et al.,

2012; van Maanen et al., 2016).

While significant progress has been made in describing the processes underlying

value-based decision making, previous work mainly focused on situations in which rewards

are not provided after each choice. SSMs typically assume that the subjective value as-

sociated with some option is stable in time and that repeated choices involving the same

option do not a↵ect its subjective valuation. The assumption of stable preferences might

hold in many choice situations, but is presumably violated when some kind of feedback is

received after every choice. In these cases, SSMs should be extended by adding a learning

component.

To overcome the limitations of both SSMs (i.e., the absence of learning processes)

and RL models (i.e., the absence of mechanistic decision processes), new models need to

be developed. The goal of the present work is to propose a new computational cognitive

model that describes both the processes underlying a single decision (by relying on the SSM

approach of decision making) and how these are influenced by the learning of subjective

values of options over time (by relying on the RL framework). So far, only few attempts

have been made to combine these two approaches (Frank et al., 2015; Pedersen et al., 2017).

In particular, these studies have proposed variants of the DDM in which an RL rule is used

to update the subjective values, and these values in turn are mapped to trial-specific DDM

parameters in a meaningful way (e.g., the di↵erence in subjective values is mapped to the

drift rate). Notably, in these studies, only the reward di↵erences between options were
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manipulated, but not the mean values of di↵erent pairs of options. However, mean values

have been reported to influence the speed of decisions (Polania et al., 2014; Palminteri

et al., 2015; Pirrone, Azab, Hayden, Sta↵ord, & Marshall, 2017), and could therefore be

an important modulating factor of decisions during learning. Finally, an open question

remains whether the subjective-value di↵erences map linearly (as previously proposed) or

non-linearly to the DDM parameters (more similarly to common decision rules in RL models,

such as the soft-max choice rule).

In the present work, we propose a learning task in which not only value di↵erences

but also the mean values across di↵erent pairs of options are manipulated. We first test

behavioral, cross-trial e↵ects related to these manipulations, and develop a combined rein-

forcement learning di↵usion decision model (RLDDM) that captures the observed learning

and value-based behavioral e↵ects. We then compare our model qualitatively and, whenever

possible, quantitatively to other classes of models. We show that some of the value-based ef-

fects would have remained unnoticed if only choices but not RTs were taken into account—in

particular those that are related to the mean value of pairs of options. Finally, we perform

a rigorous model comparison analysis that illustrates the predictive advantages of the new

model and provides insights into the cognitive processes underlying value-based decision

making during learning.

3.2 Method

3.2.1 Participants and procedure

A total of 32 participants (24 female, age: 18-36, M = 22.36, SD = 2.14) com-

pleted the experiment. Participants were mainly psychology students recruited through the

subject pool of the Faculty of Psychology of the University of Basel. Participation in the

experiment was possible for partial fulfillment of course credits or cash (20 Swiss francs per

hour). In addition, a monetary bonus corresponding to the performance in the experiment

was awarded. Before starting the experiment, participants gave informed consent, as ap-

proved by the institutional review board of the Faculty of Psychology, University of Basel.

The instructions of the task were presented directly on the screen. Information about par-

ticipants’ gender, age, handedness, and field of study were also requested on-screen before

starting the task. Since an accuracy above 56% across 240 trials is unlikely due to random
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behavior alone, according to a binomial test (p < .05), only participants who surpassed this

threshold were included in the analyses. Raw data and scripts will be made available upon

publication of the manuscript at https://osf.io/95d4p/.

3.2.2 Learning paradigm

The paradigm was a multi-armed bandit problem (Sutton & Barto, 1998). A total

of four options per block were presented and participants chose between two of them in

each trial. Options were randomly assigned either to the left or to the right of a fixation

cross, and could be chosen by pressing either Q (for left) or P (for right) on the keyboard.

After each choice, participants saw both options’ rewards (i.e., full feedback) and collected

the chosen option’s reward. At the end of the experiment, the accumulated reward, divided

by 1,400, was paid in Swiss Francs to the participants as a bonus (e.g., if they collected

7,000 points, they received 5 Swiss Francs). On average, participants gained a bonus of 8.10

Swiss francs.

Participants completed three experimental blocks of 80 trials, for a total of 240

trials. The payo↵s of each option were not fixed but varied and were approximately normally

distributed (Figure 3.1). The mean rewards of the options in each block were 36, 40, 50,

and 54 for options A, B, C, and D, respectively. The standard deviation was 5 for all

options. The payo↵s were rounded to the unit, and were controlled to have representative

observations (i.e., each participant observed the same outcomes in a di↵erent order, and the

sample mean of each option was equal to the generating mean). The order of the payo↵s

of a single option was di↵erent in each block, and options were associated with four new

visual stimuli (see below for a description of the visual stimuli), so that the options had to

be learned again in a new block.

Each trial (Figure 3.2) was separated by a fixation cross, presented for 750–1,250

ms. The options were presented for up to 5,000 ms. If a response was faster than 150 ms

or slower than 3,000 ms, the trial was discarded and a screen reminding to be slower or

faster, respectively, was presented for 5,000 ms after the participant’s response. Otherwise,

the feedback was presented for 1,500 ms.

https://osf.io/95d4p/
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Figure 3.1: Reward distribution of the options A, B, C, and D in a learning block.

+

750-1,250 ms

CHOICE

1,500 ms

Figure 3.2: Example of a single trial: First, a fixation cross is shown from 750 to 1,250 ms;
then, two of the four options are shown and a choice has to be made; finally, the reward
corresponding to both options is presented, and the reward corresponding to the chosen
option (highlighted by a black rectangle) is collected.
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3.2.3 Design

In each learning block, only four of the six possible pairs of options were presented:

AB, AC, BD, and CD (but not AD and BC). The order was pseudo-randomized so that

the same pair would not be presented more than three times in a row. Presenting these

four couples of options allowed us to test whether our model can predict two established

behavioral e↵ects of reward-based decision making in addition to the learning e↵ects. Pre-

vious studies have shown that, when deciding among options that have similar values (i.e.,

di�cult choices), people tend to be slower and less accurate (e.g., Polania et al., 2014;

Dutilh & Rieskamp, 2016; Oud et al., 2016). We will refer to this e↵ect as the di�culty

e↵ect. In our study, di�culty, given by the mean value di↵erence, was low in pairs AC and

BD (the di↵erence was 14 on average), and high in pairs AB and CD (the di↵erence was

4 on average). Previous studies have also shown that absolute shifts in value can a↵ect

decision speed without necessarily changing accuracy (e.g., Polania et al., 2014; Palminteri

et al., 2015; Pirrone et al., 2017): Participants tend to be faster when deciding between two

higher-valued options as compared to two lower-valued options. We will refer to this e↵ect

as the magnitude e↵ect. In our study, magnitude, given by the mean value of the pairs of

options, was lowest in pair AB (38), followed by AC (43), BD (47), and CD (52). Finally,

we refer to the learning e↵ect as the improvement in performance throughout the trials. In

this study, each pair was presented for 20 trials per block, and each option was presented

in 40 trials per block (since each option is included in two di↵erent pairs).

3.2.4 Stimuli

During the experiment, each participant saw a total of twelve di↵erent figures

(four in each block) representing the options. The figures were matrices of 5⇥5 squares of

which 17 were colored, arranged symmetrically along the vertical axis. To control for visual

salience, we selected twelve evenly spaced colors in the HSLUV space. A black rectangle was

drawn around the chosen option at feedback presentation to highlight the collected reward.

The experiment was programmed and presented using PsychoPy (Peirce, 2007).
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3.2.5 Cognitive models

In total, we estimated three classes of computational models: RL models, the

DDM, and combinations of the two, RLDDM (some of which were previously proposed by

(Pedersen et al., 2017)). In the next sections, we present each class of models in detail.

3.2.5.1 Reinforcement learning models

RL models assume that the subjective values associated with the options are up-

dated in each trial after experiencing a new reward (i.e., the reward feedback). These

subjective values are then mapped to the probability of choosing one option over the other:

Options with higher subjective values are chosen more often. Participants can di↵er in

how much weight they give to new compared to old information: When more weight is

given to old information, they are less a↵ected by sudden changes in the rewards. They

can also di↵er in how sensitive they are to subjective value di↵erences: When they are

very sensitive, their choices become more deterministic as they tend to always choose the

option with the highest value. These two constructs, the stability of the subjective values

and the deterministic nature of choices, are formalized in RL models by two parameters.

The learning rate ⌘ (with 0  ⌘  1), and the sensitivity ✓ (with ✓ � 0). The learning

rate is the weight that is given to new information when updating the subjective value.

When ⌘ is close to 0, the old subjective value remains almost unchanged (implying that

even observations dating far back are taken into account), whereas when ⌘ is close to 1,

the new subjective value almost coincides with the new information (implying that earlier

observations are heavily discounted). The sensitivity parameter regulates how deterministic

the choices are. With a higher ✓, choices are more sensitive to value di↵erences, meaning

that subjectively higher-valued options will be chosen over lower-valued options with higher

probability.

On each trial, the subjective values Q of the presented options are updated fol-

lowing the so-called delta learning rule:

Qt = Qt�1 + ⌘ · (ft �Qt�1) (3.1)

where t is the trial number, and f is the experienced feedback. In the first learning block,

Q-values were initialized at 27.5. This value was the average value shown in the task

instructions at the beginning of the experiment, which was the same for all participants.



68

In the subsequent learning blocks, the Q-values were initialized at the mean values learned

in the previous blocks. We reasoned that adjusting initial Q-values according to prior

knowledge is more realistic than simply initializing them at zero. Indeed, preliminary model

estimations revealed that all models provided better fits when adjusting Q-values to prior

knowledge. Choices in each trial are predicted by the soft-max choice rule:

pt =
e✓Qcor

(e✓Qcor + e✓Qinc)
(3.2)

where p is the probability of choosing the option with the highest mean reward, and Qcor

and Qinc are the subjective values of the options with a higher and lower mean reward,

respectively.

Building on the simplest RL model, we took into account models that incorpo-

rate all possible combinations of two additional mechanisms, one concerning the learning

rule and one concerning the choice rule. The first alternative mechanism allows ⌘ to di↵er

depending on the sign of the reward prediction error. The reward prediction error is the

di↵erence between the feedback ft and the previous reward expectation Qt�1. Previous

studies have found di↵erences in learning rates for positive and negative reward prediction

errors (Gershman, 2015) and have related this feature to optimism bias (Lefebvre, Lebre-

ton, Meyniel, Bourgeois-Gironde, & Palminteri, 2017). The second mechanism allows ✓ to

increase as a power function of how many times an option has been encountered before (as

in Yechiam & Busemeyer, 2005) so that choices become more deterministic throughout a

learning block:

✓t =
�n
b

�c
(3.3)

where n is the number of times an option has been presented, b (with b > 0) is a scaling

parameter, and c (with c � 0) is the consistency parameter. When c is close to 0, ✓ reduces

to 1 and is fixed in time, while higher values of c lead to steeper increase of sensitivity

throughout learning.

3.2.5.2 Di↵usion decision model

The DDM assumes that, when making a decision between two options, noisy evi-

dence in favor of one over the other option is integrated over time until a pre-set threshold

is reached. This threshold indicates how much of this relative evidence is enough to ini-

tiate a response. Since the incoming evidence is noisy, the integrated evidence becomes
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more reliable as time passes. Therefore, higher thresholds lead to more accurate decisions.

However, the cost of increasing the threshold is an increase of decision time. In addition,

di�culty a↵ects decisions: When confronted with an easier choice (e.g., between a very

good and a very bad option), the integration process reaches the threshold faster, meaning

that less time is needed to make a decision and that decisions are more accurate. The DDM

also assumes that a portion of the RTs reflects processes that are unrelated to the deci-

sion time itself, such as motor processes, and that can di↵er across participants. Because

of this dependency between noise in the information, accuracy, and speed of decisions, the

DDM is able to simultaneously predict the probability of choosing one option over the other

(i.e., accuracy) and the shape of the two RT distributions corresponding to the two choice

options. Importantly, by fitting the standard DDM, we assume that repeated choices are

independent of each other, and discard information about the order of the choices and the

feedback after each choice. To formalize the described cognitive processes, the simple DDM

(Ratcli↵, 1978) has four core parameters: The drift rate v, which describes how fast the

integration of evidence is, the threshold a (with a > 0), that is the amount of integrated

evidence necessary to initiate a response, the starting-point bias, that is the evidence in

favor of one option prior to evidence accumulation, and the non-decision time Ter (with

0  Ter < RTmin), the part of the response time that is not strictly related to the decision

process (RT = decision time + Ter). Because, in our case, the position of the options was

randomized to either the left or the right screen position, we assumed no starting-point bias

and only considered drift rate, threshold, and non-decision time. Within a trial, evidence

is accumulated according to the di↵usion process, which is discretized in finite time steps

according to:

xi+1 = xi +N (v · dt,
p

dt), x0 = a/2 (3.4)

where i is the iteration within a trial, and a response is initiated as soon as x � a or x  0

(i.e., the evidence reaches the upper or the lower thresholds, respectively). The time unit

dt is assumed to approach 0 in the limit (when dt = 0, the integration process is continuous

in time). Choices are given by the value of x at the moment of the response (e.g., correct

if x � a, incorrect if x  0).

In total, we fit three versions of the DDM, varying in the number of free between-

condition parameters. The first DDM had separate vs for di�cult and easy choices, to allow

accounting for the di�culty e↵ect: Higher vs lead to faster and more accurate responses.

The second model is as the first, but also has separate as for option pairs with a higher or

lower mean reward. This model variant allows accounting for the magnitude e↵ect: Lower
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as lead to faster, but not much more accurate decisions (Forstmann et al., 2011). This

would explain the magnitude e↵ect as a reduction of cautiousness: When confronted with

more attractive options, individuals reduce their decision times (and therefore the time

to the reward) by setting a lower threshold. The third model is as the second, but has

also separate vs for option pairs with higher or lower mean reward, to check whether the

magnitude e↵ect is attributed only to a modulation of the threshold (i.e., cautiousness) or

also to a modulation of the drift rate (i.e., individuals are better at discriminating two good

options compared to two bad options).

3.2.5.3 Reinforcement learning di↵usion decision models

The goal of our work is to propose a new model that overcomes the limitation

of both the SSM and the RL frameworks. Therefore, we propose an RLDDM that is a

combination of these two classes of models. The RLDDM simultaneously predicts choices

and response times and describes how learning a↵ects the decision process. Here, the DDM

is tightly constrained by the assumed learning process: Instead of considering all choices

as independent and interchangeable, the relationship between each choice, the experienced

reward feedback, and the next choice is taken into account. The RLDDM assumes that,

as in the RL framework, the subjective values associated with the options are updated

after experiencing a reward feedback. The decision process itself is described by the DDM.

In particular, the di↵erence between the updated subjective values influences the speed of

evidence integration in the next trial: When the di↵erence is higher, as it might happen

after experiencing several feedback, the integration becomes faster, leading to more accurate

and faster responses. To formalize these concepts, we built a DDM in which the drift rate

parameter is defined on each trial as the di↵erence between the subjective values that are

updated via the learning rule of RL models. The first and simplest RLDDM has four

parameters (similarly to Model 1 in Pedersen et al. (2017)): one learning rate ⌘ to update

the subjective values following Equation 3.1, a scaling parameter vmod to scale the di↵erence

between values, one threshold a, and one non-decision time Ter. On each trial, the drift

rate is defined as:

vt = vmod · (Qcor,t �Qinc,t) (3.5)

and within each trial evidence is accumulated as in Equation 3.4. Note that, since v is

defined as the di↵erence of subjective values, the di�culty e↵ect naturally emerges from

the model without assuming separate vs for easy and di�cult choices.
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We considered three additional mechanisms and fit di↵erent combinations of them,

resulting in a total of eight di↵erent models. The first variation is similar to one considered

for RL models and includes two separate ⌘s for positive and negative prediction errors (as

in Pedersen et al. (2017)). The second variation is similar to one considered in the DDM

to account for the magnitude e↵ect. However, because subjective values are learned in

time, instead of fitting separate as for di↵erent pairs of options (as we do in the DDM), we

propose a trial-by-trial modulating mechanism:

a = exp(afix + amod ·Qpres) (3.6)

where afix is the fixed threshold, amod is the threshold modulation parameter, and Qpres is

the average subjective value of the presented options. When amod = 0, this model reduces

to the simplest model. The third variation is to make the mapping between subjective

values and choices in the RLDDM more similar to the mapping in the soft-max choice

rule. In Equation 3.5, v is linearly related to the di↵erence in values. Since di↵erent pairs of

options can have very similar or very di↵erent values (e.g., in Figure 3.1, pairs AB and AC),

participants might di↵er in how sensitive they are to these di↵erences. In RL models, this

is regulated by the sensitivity parameter ✓. We therefore propose a very similar, nonlinear

transformation of the value di↵erences in the definition of v:

vt = S
�
vmod · (Qcor,t �Qinc,t)

�
, (3.7)

with

S(z) =
2 · vmax

1 + e�z
� vmax (3.8)

where S(z) is an S-shaped function centered at 0, and vmax is the maximum absolute value

that S(z) can take on: limz!±1 S(z) = ±vmax. While vmax only a↵ects the maximum and

minimum values that the drift rate can take, vmod a↵ects the curvature of the function.

Smaller values of vmod lead to more linear mapping between the value di↵erence and the

drift rate, and therefore less sensitivity to value di↵erences. Note that this model only

resembles the previous models in the limit (i.e., when vmax has higher values).

3.2.6 Analysis of the behavioral e↵ects

To assess the di�culty and the magnitude e↵ects, we fit two separate Bayesian hier-

archical models: a logistic regression on accuracy and a linear regression on log-transformed

RTs. Accuracy was coded as 0 if the option with the lower mean reward was chosen (e.g.,



72

A is chosen over B), and as 1 if the option with higher mean reward was chosen (e.g., B is

chosen over A). For both models, we included magnitude and di�culty as predictors and

tested main e↵ects and the interaction. Magnitude was defined as the true mean reward in

each pair of options, and was standardized before fitting. Easy trials were coded as 1 and

di�cult trials as -1. For simplicity, and because we were interested in cross-trial e↵ects,

even though we were dealing with time-series data, no information about trial number was

included in the models.

All models were fit using PyStan 2.18, a Python interface to Stan (Carpenter et

al., 2017). We ran four parallel chains for 8,000 iterations each. The first halves of each

chain were warm-up samples and were discarded. To assess convergence, we computed

the Gelman-Rubin convergence diagnostic R̂ (Gelman & Rubin, 1992). As an R̂ close to

1 indicates convergence, we considered a model successfully converged when R̂  1.01.

Weakly informative priors were chosen for both models. For a graphical representation of

the Bayesian hierarchical models and for the exact prior distributions, see Appendix B.1.

To assess whether di�culty and magnitude had an e↵ect on the behavioral data,

we calculated the 95% Bayesian credible interval (BCI) on the posterior mean group distri-

bution of the regression coe�cients. If the BCI included 0, we concluded that there was no

e↵ect of a manipulation on either RT or choices. Finally, to assess model fit, we computed

posterior predictive checks (Gelman et al., 1996) for mean accuracy and mean RT for each

pair of options and looked whether the 95% BCIs of the posterior predictive distributions

included the observed mean accuracies and RTs for AB, AC, BD, and CD. Posterior pre-

dictive distributions are useful to assess the quality of the models in their ability to predict

patterns observed in the data. To approximate the posterior predictive distributions, we

drew 500 samples from the posterior distribution, generated 500 independent datasets, and

then computed the mean accuracy and mean RTs in each dataset, separately for choice

pairs.

3.2.7 Model fitting and model comparison

For all classes of cognitive models, parameters were estimated using a Bayesian

hierarchical modeling approach. Again, all models were fit using PyStan. Since the models

vary in their complexity, the sampler was run for a di↵erent number of iterations. We first

started with few samples (i.e., 1,000) and checked for convergence, reflected in R̂  1.01. If
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the model did not converge, more samples were collected. We also checked for saturation of

the maximum tree depth (considered satisfactory if less than .1%), energy Bayesian Fraction

of Missing Information, and for divergences (considered satisfactory if less than .1%). Four

parallel chains were run for all models and only the second half of each chain was kept for

later analyses.

To assess the predictive accuracy of the models, we computed the widely appli-

cable information criterion (WAIC, Watanabe, 2013). To compute the WAIC, we used

the variance of individual terms in the log predictive density summed over the data points

to correct for model complexity, as it approximates best the results of leave-one-out cross-

validation (Gelman, Carlin, Stern, & Rubin, 2014). We also computed the standard error of

the di↵erence in the predictive accuracy of the best RLDDM, DDM, and among the models

of Pedersen et al. (2017), using the R package loo (Vehtari, Gelman, & Gabry, 2017). This

measure provides a better understanding of the uncertainty around the di↵erence in WAIC

scores. We then proceeded with the posterior predictive checks: Posterior predictives were

calculated for mean accuracy and mean RT across learning by binning the trials within the

learning blocks in eight groups of ten trials and across the pairs of options AB, AC, BD, and

CD. As for the regression analyses, we sampled 500 parameter sets from the joint posterior

distribution and generated 500 independent full datasets using those parameters. We then

computed the mean accuracy and RTs in each dataset, separately for choice pairs and trial

bins.

For a graphical representation of the Bayesian hierarchical models, and details

about the prior distributions, see Appendix B.2. It has been shown that RL models can

su↵er from poor identifiability due to low information content in the data (Spektor & Kellen,

2018). To alleviate this concern, we conducted a parameter recovery study whose results

can be found in Appendix B.4.

3.3 Results

Five participants were excluded for not reaching the minimum criterion of accuracy

(see Method section), so that the data of 27 participants were included in the following

analyses. The mean accuracy ranged from .43 to .53 (M = .49, SD = .04) for the excluded

participants, and from .62 to .94 (M = .81, SD = .08) for the remaining ones.
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3.3.1 Behavioral results

On average, participants showed substantial learning e↵ects (Figure 3.3a and

3.3b): The higher-valued option was chosen more often throughout the trials (from M = .71

in the first 20 trials, to M = .86 in the last 20 trials), while at the same time responses

became faster (from M = 1.51 s in the first 20 trials, to M = 1.36 s in the last 20 trials).

They also showed di�culty and magnitude e↵ects (Figure 3.3c and 3.3d): They were more

accurate in easier compared to di�cult choices (M = .89 compared to M = .74), while at

the same time being faster (M = 1.38 s compared to M = 1.46 s); they were not more

accurate in higher valued choice pairs compared to lower valued ones (M = .81 compared

to M = .81), but they were faster (M = 1.35 s compared to M = 1.48 s).

To test di�culty and magnitude e↵ects on accuracy and RTs across trials, we

fit two regression models. Results from the logistic regression model on accuracy suggest

that only di�culty, but not magnitude, had an e↵ect on accuracy. There was no interaction

between di�culty and magnitude on accuracy. In particular, participants were less accurate

when choosing between AB and CD compared to AC and BD. The 95% BCI was higher

than 0 (0.39 to 0.71, M = 0.56) for the mean group di�culty coe�cient (meaning that easier

decisions were more accurate), but it was around 0 for the magnitude coe�cient (-0.27 to

0.16, M = �0.05) and for the interaction coe�cient (-0.26 to 0.15, M = �0.05). To check

whether the regression model predictions fit the data well, we used posterior predictive

checks. In particular, we checked whether the regression model correctly predicts the mean

accuracy across di↵erent pairs of options. As can be seen in Figure 3.4a, the regression

model correctly predicts the observed pattern.

Results from the linear regression model on RTs suggest that both magnitude

and di�culty as well as their interaction had an e↵ect on RTs. In particular, participants

responded faster when BD and CD were presented, compared to AB and AC. They were also

faster in easy trials (pairs AC and BD) compared to di�cult trials (pairs AB and CD) and

this e↵ect was stronger for less attractive options. The 95% BCI was lower than 0 for the

group-level magnitude coe�cient (-0.12 to -0.07, M = �0.10), for the di�culty coe�cient

(-0.04 to -0.02, M = �0.03) and for the interaction coe�cient (-0.06 to -0.02, M = �0.04).

Similarly to the previous regression model, we also checked whether the regression model

correctly predicts the mean RTs across the di↵erent pairs of options. As can be seen in

Figure 3.4b, the regression model correctly predicts the observed pattern.
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Figure 3.3: Mean accuracy (a) and RT (b) across participants as it develops throughout
learning. Solid lines represent the mean across experimental blocks and participants, while
the shaded areas represent 95% confidence intervals. Mean accuracy (c) and RT (d) across
participants and for di↵erent pairs of options. Choices between options AC and BD were
easier than between AB and CD, while the mean reward was highest in pair CD followed by
BD, AC, and AB. The dots represent the mean across trials, while the bars represent 95%
confidence intervals. Multilevel bootstrap was performed to account for repeated measures
and therefore individual variability.
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Figure 3.4: Posterior predictive distributions of mean accuracy (a) and mean RT (b) for
di↵erent option pairs according to the logistic and linear regression models. The mean
data (dotted lines) are compared to the regression model predictions (solid lines). The
shaded areas represent the 95% Bayesian credible interval (BCI) of the posterior predictive
distributions. Pairs AB and CD have similar mean values while pairs AC and BD have
di↵erent mean value. Mean values increase from options AB, to AC, BD and CD.
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3.3.2 Cognitive modeling

To better understand the learning and decision processes underlying value-based

decisions, we fit and compared three di↵erent classes of models: RL models, the DDM,

and RLDDMs, as well as previous attempts of combining RL and the DDM (Pedersen

et al., 2017). While RL models can be only fit to choices, the DDM and RLDDM can

be simultaneously fit to choices and RTs. However, the DDM does not take trial-by-trial

information, such as the reward feedback, into account. In the following section, we report

results from the model fitting and model comparison of these models.

Among the RL models, model 3 provided the most parsimonious account of the

data. This model assumes separate learning rate parameters for positive and negative

prediction errors and has a fixed sensitivity parameter throughout learning. Compared to

the other models (Table 3.1), this model had the best predictive accuracy, as indicated by

a higher log pointwise predictive density (lppd), and had lower complexity compared to

the full model (i.e., model 4), as indicated by the pWAIC. Judging by the WAIC, models 2

and 4, having an increasing sensitivity in time, did not outperform models 1 and 3, while

the separate learning rates increased fitness of the models. This can be further assessed

by looking at the 95% BCI of the posterior predictive distribution of mean accuracy across

learning and pairs of options (Figure 3.5). All models predicted a nonlinear increase in

performance throughout the trials, and a di↵erence between easy (i.e., AC and BD) and

di�cult (i.e., AB and CD) choices.

The most parsimonious DDM was model 2, with separate drift rates for easy (i.e.,

AC and BD) and di�cult (i.e., AB and CD) trials and separate response thresholds for

pairs of options with di↵erent mean reward distributions (i.e., one for each pair: AB, AC,

BD, and CD). As shown in Table 3.2, this model had lower predictive accuracy than model

3, as indicated by the lppd, but had also lower complexity than model 3, as indicated by the

pWAIC. The WAIC was lower for model 2 than for model 3, indicating that model 3 could

not compensate its higher complexity with a better fit. Checking the posterior predictives in

Figure 3.6, we can see that: (a) all three versions of the DDM did not predict any learning

e↵ect (i.e., both accuracy and RT are stable across trials); (b) only the versions of the

DDM with separate thresholds for di↵erent option pairs could predict the magnitude e↵ect

on RTs, without changing accuracy predictions (i.e., having lower thresholds, responses

in higher-valued pairs are not less accurate but only faster); (c) all models could predict

di�culty e↵ects on accuracy and RTs; (d) predictions from model 3 were not qualitatively
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Table 3.1: Widely applicable information criteria of the reinforcement learning models.

Model ⌘ ✓ pWAIC -lppd WAIC

RL 1 one fixed 48 2,636 5,368
RL 2 one power 45 2,645 5,381
RL 3 two fixed 63 2,569 5,265
RL4 two power 72 2,573 5,291

Note. Models 1 to 4 are reinforcement learning (RL) models with learning rate ⌘ and sensitivity ✓.
The models could have a single or separate ⌘ (for positive and negative prediction errors). ✓ could
be fixed in time or increase as a power function of the number of times an option was seen. pWAIC is
the e↵ective number of parameters, lppd is the log predictive accuracy of the fitted model to data,
and WAIC is the information criterion. Lower WAICs indicate better fits to data after accounting
for model complexity.

Figure 3.5: Posterior predictive distributions of mean accuracy according to the reinforce-
ment learning (RL) models. The data (dotted lines) are compared to the 95% Bayesian
credible interval (BCI) of the posterior predictive distribution (shaded areas), separately
for the di↵erent options pairs and for 8 bins of trials within the learning blocks. Model 1
is the simplest RL model with one learning rate ⌘ and one sensitivity parameter ✓. Models
3 and 4 have separate ⌘ for positive and negative prediction errors. In models 2 and 4, ✓
increases as a power function of the number of times an option is seen. According to the
WAIC the best model is model 3.
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Table 3.2: Widely applicable information criteria of the di↵usion di↵usion models.

Model v a pWAIC -lppd WAIC

DDM 1 di�culty one 125 5,194 10,639
DDM 2 di�culty all choice pairs 183 5,034 10,433
DDM 3 all choice pairs all choice pairs 232 4,986 10,435

Note. Models 1 to 3 are di↵usion decision models (DDMs) with drift rate v, decision-threshold a,
and non-decision time Ter. v could depend either on choice di�culty only or di↵erent v could be
fitted for each choice pair. a could be either fixed across conditions, or separate a could be fit for
separate pairs of options.

better than predictions from model 2.

Among our proposed RLDDMs, the most parsimonious model was the last, full

model. In this model, separate learning rates were fit for positive and negative prediction

errors, the drift rate was an S-shaped function of the di↵erence in subjective values, and the

threshold was modulated by the learned average subjective value of the presented options, so

that the threshold was lower when the expected reward was higher. As shown in Table 3.3,

this model had highest predictive accuracy, as indicated by the lppd, and highest complexity,

as indicated by the pWAIC. Having the lowest WAIC suggests that the model’s complexity

is compensated by its superior fit to the data. In Figure 3.7, posterior predictives reveal

how the di↵erent models were able to capture the observed patterns in accuracy and RTs.

In particular: (a) all models were able to capture learning e↵ects as a decrease in RTs and

increase in accuracy over time; (b) all models captured di�culty e↵ects, but only models

5 to 8, by including a non-linear mapping between value di↵erences and drift rate, did

not underestimate accuracy for di�cult (i.e., AB and CD) decisions; (c) only the models

that included a modulating e↵ect of values on the decision threshold could capture the

magnitude e↵ect on RTs. While no significant qualitative pattern could be observed for

two compared to one learning-rate models, all models with two learning rates had slightly

lower WAICs compared to their analogues with only one learning rate. The best RLDDM

also outperformed the best DDM, both in terms of WAIC and in terms of posterior predictive

checks.

Among Pedersen et al. (2017)’s models, the most parsimonious one was a model

with separate learning rates for positive and negative reward prediction errors, a drift rate
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Figure 3.6: Posterior predictive distributions of mean accuracy and response time (RT)
according to the di↵usion decision model (DDM). The data (dotted lines) are compared to
the 95% Bayesian credible interval (BCI) of the posterior predictive distribution (shaded
areas), separately for the di↵erent options pairs and for 8 bins of trials within the learning
blocks. Models 1 and 2 have separate drift rates v for easy and di�cult decisions, while
model 3 has separate v for each option pair. Model 1 has a fixed threshold a, while models
2 and 3 have separate a for each option pair. According to the WAIC the best model among
DDM is model 2.
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Table 3.3: Widely applicable information criteria of the reinforcement learning di↵usion
decision models.

Model ⌘ v a pWAIC -lppd WAIC

RLDDM 1 one linear fixed 111 5,129 10,481
RLDDM 2 two linear fixed 134 5,051 10,369
RLDDM 3 one linear modulated 145 4,942 10,174
RLDDM 4 two linear modulated 159 4,866 10,048
RLDDM 5 one sigmoid fixed 137 4,930 10,135
RLDDM 6 two sigmoid fixed 159 4,861 10,039
RLDDM 7 one sigmoid modulated 164 4,672 9,672
RLDDM 8 two sigmoid modulated 190 4,613 9,607

Note. Models 1 to 8 are reinforcement learning di↵usion decision models (RLDDMs) with learning
rate ⌘, decision threshold a, and non-decision time Ter. The models could have a single or separate
⌘ (for positive and negative prediction errors), linear or non-linear mapping of value di↵erences to
v, and fixed or value-modulated a.
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Figure 3.7: Posterior predictive distributions of mean accuracy and response time (RT)
according to the reinforcement learning di↵usion decision models (RLDDM). The data
(dotted lines) are compared to the 95% Bayesian credible interval (BCI) of the posterior
predictive distribution (shaded areas), separately for the di↵erent options pairs and for 8
bins of trials within the learning blocks. Models 1 to 4 have a linear mapping between
di↵erences in values and the drift rate v, and models 5 to 8 have a non-linear mapping. All
models with even number have separate learning rate ⌘ for positive and negative prediction
errors. Models 1, 2, 5, and 6 have a fixed threshold a, while, in models 3, 4, 7, and 8, a
is modulated by the average value of the options. According to the WAIC the best model
among DDM, RLDDM and the models of Pedersen et al. (2017), is model 8.
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Table 3.4: Widely applicable information criteria of Pedersen et al. (2017)’s models.

Model ⌘ v a pWAIC -lppd WAIC

Pedersen RLDDM 1 one fixed power 118 5,100 10,436
Pedersen RLDDM 2 one power power 112 5,326 10,875
Pedersen RLDDM 3 two fixed power 141 5,020 10,322
Pedersen RLDDM 4 two power power 126 5,240 10,732

Note. Models 1 to 4 are Pedersen et al. (2017) best fitting reinforcement learning di↵usion decision
models (RLDDMs) with learning rate ⌘, decision threshold a, and non-decision time Ter. The models
could have a single or separate ⌘ (for positive and negative prediction errors), fixed or increasing v,
and fixed or decreasing a.

that is linearly proportional to the di↵erence in values of the correct and incorrect options,

and a threshold that decreases as a power function of time within a block. Note that this

was also the most parsimonious model in their task. A quantitative comparison between

the di↵erent combinations of models can be found in Table 3.4, while posterior predictives

can be seen in Figure 3.8. The best of these models neither outperformed any of those

RLDDMs that included the S-shaped mapping function in the drift rate, nor the ones

having a modulating mechanism of value for the threshold.

Lastly, to have a measure of uncertainty of the di↵erence in WAIC scores, we

calculated the standard error of the di↵erence in predictive accuracy of the best fitting

RLDDM with the best fitting DDM, finding a substantial di↵erence between the scores

(elpddi↵ = �415.4, SE = 38.3), and the best fitting model of Pedersen et al. (2017), finding

a substantial di↵erence between the scores (elpddi↵ = �255.1, SE = 33.1).

3.4 Discussion

In the present work, we proposed a new process model for value-based decision

making during learning. To test this model, we collected data from participants performing

a multi-armed bandit task, in which both the value di↵erence between options as well as

the mean reward of di↵erent pairs of options were manipulated. This was done to elicit two

value-based behavioral e↵ects known in the literature: the di�culty (e.g., Polania et al.,

2014; Dutilh & Rieskamp, 2016; Oud et al., 2016) and the magnitude (e.g., Polania et al.,
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Figure 3.8: Posterior predictive distributions of mean accuracy and response time (RT)
according to Pedersen et al. (2017) best-fitting models. The data (dotted lines) are compared
to the 95% Bayesian credible interval (BCI) of the posterior predictive distribution (shaded
areas), separately for the di↵erent options pairs and for 8 bins of trials within the learning
blocks. Models 1 and 3 have a linear scaling parameter for the drift rate v, while in models
2 and 4 this parameter increases as a power function of the trial number. Models 3 and 4
have separate learning rate ⌘ for positive and negative prediction errors. In all models the
threshold a decreases as a power function of the number of trials. According to the WAIC
the best model among the models of Pedersen et al. (2017) is model 3.
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2014; Palminteri et al., 2015; Pirrone et al., 2017) e↵ects. We first assessed value e↵ects

across all trials by fitting regression models on accuracy and RTs. We observed a magnitude

e↵ect on RTs only and a di�culty e↵ect on both RTs and choices. To gain insights into the

separate learning and value mechanisms, we tested our model against RL models (from the

value-based decision-making tradition) and standard DDMs (from the perceptual decision-

making tradition). We also compared our model to a previously proposed class of combined

RLDDM (Pedersen et al., 2017). Di↵erent classes of models were tested, when possible,

quantitatively (i.e., whether our model provided a better account of the data using a relative

measure) and qualitatively (i.e., whether our model captured the observed patterns that

were related to the experimental manipulations).

Our analyses suggest that, while di�culty has an e↵ect on both accuracy and RTs,

magnitude only a↵ects RTs: Di�cult decisions tend to be slower and less accurate, while

decisions among higher-valued options tend to be faster, but not less accurate. These results

confirm previous studies that investigated value-based decisions after preferences have been

formed (e.g., Polania et al., 2014; Pirrone et al., 2017) as well as studies that compared

approach and avoidance behavior (e.g., Cavanagh et al., 2014; Palminteri et al., 2015). In

line with previous studies, we also found that participants tended to become faster and more

accurate during learning, and more so for easy compared to di�cult trials. These behavioral

patterns (a) can only partially be predicted by RL models, as they do not predict RTs, (b)

are not predicted by the DDM, as it does not take trial-by-trial feedback into account, and

(c) are fully predicted by RLDDM. By presenting easy and di�cult pairs of options, we also

showed that a nonlinear mapping between the di↵erence in subjective values (learned via

RL) and the DDM drift rate improved the model fit substantially. In other words, the drift

rate may not double for option pairs whose di↵erence of means is twice as large (for a similar

finding in perceptual decisions, see Teodorescu, Moran, & Usher, 2015). As a consequence,

models that do not assume a nonlinear mapping tend to underestimate the accuracy in

the di�cult trials. Finally, to give an account of the magnitude e↵ect during learning, we

proposed a mechanism in which the threshold is modulated by the mean subjective values

of the presented options. By having a lower decision threshold, decisions between higher-

valued pairs of options become faster, while accuracy only decreases to a minor extent.

This mechanism is also suggested by the estimated thresholds in the DDM, separately fit

for each pair of options: Higher-valued pairs have a lower threshold (see Figure 3.9a). In the

RLDDM, this is obtained by a negative threshold modulation parameter: Negative values

imply a lower threshold for higher-valued options (see Figure 3.9b). Cavanagh et al. (2014)

also reported a reduction of the threshold when comparing approach to avoidance behavior,
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and interpreted this finding as a facilitation e↵ect on the cortico-striatal indirect pathway

due to increased dopamine levels, based on previous work (Wiecki & Frank, 2013). In both

RL and RLDDM models, separating the learning rate for positive and negative prediction

errors increased the predictive accuracy of the models, as indicated by a lower WAIC.

Although a qualitative di↵erence in fit cannot be visualized in the posterior predictive

checks we calculated, this result is in line with previous research (Gershman, 2015; Lefebvre

et al., 2017).

Notably, our proposed model has stricter constraints than the DDM: When fitting

the DDM to behavioral data, all trials are collapsed into two RT distributions for choosing

high- and low-value options, meaning that slower decisions will be in the right tail of the

distribution, independently of their occurrence at the beginning or at the end of a learn-

ing block. In the RLDDM, the trial order is taken into account, as the drift rate and the

threshold depend on the learned values in each trial. When fitting the DDM using di↵erent

parameters per condition, we also have less constraints. By explicitly relating the di↵er-

ence in values to the drift rate, and the mean learned values to the threshold, we propose

mapping functions that can accommodate the observed results, providing more mechanistic

explanations.

We also compared our best RLDDM to previously proposed RLDDMs. We fit the

four best models proposed by Pedersen et al. (2017), and compared them quantitatively

(see Table 3.4) and qualitatively (see Figure 3.8) to our models. The quantitative com-

parison confirmed that our best model had better predictive accuracy than those previous

models. The qualitative comparison shows that the models proposed by Pedersen et al.

(2017), which assume a linear mapping between value di↵erences and drift rate, largely

overestimate the di↵erence in performance between easy and di�cult choices. Models that

assumed an increasing scaling parameter for the drift rate (i.e., models 2 and 4 in Figure 3.8)

predicted an almost linear increase in accuracy throughout time, while the data suggest a

more asymptotic learning curve. Moreover, all models proposed by Pedersen et al. (2017)

predicted that the RTs for di�cult (i.e., AB and CD) decisions do not decrease in time

as much as it was observed in the data. Because Pedersen et al. (2017) did not show the

development of mean RT throughout learning, we cannot assess whether this discrepancy

was also present in their data. Finally, since Pedersen et al. (2017) did not manipulate mean

reward of pairs of options and did not include a mechanism to account for the magnitude

e↵ect, their model is unable to explain this e↵ect.
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Figure 3.9: (a) Posterior distributions of the mean group threshold parameters µa of the
di↵usion decision model in which separate drift rates were fit for easy and di�cult decisions,
and separate thresholds were fit for all di↵erent pairs of choices. Solid lines represent the
95% Bayesian credible interval, and squares represent the mean of the posterior distribution.
(b) Posterior distribution of the mean group (in orange) and of the individual (in grey)
threshold modulator parameters amod of the full reinforcement learning di↵usion decision
model.
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In this study, by combining DDM and RL models, we aimed at providing a psycho-

logical account of the processes underlying behavior in a RL paradigm, where the expected

reward and the di�culty varies across trials. As behavioral e↵ects in this task are not neces-

sarily evident in all behavioral measures (in particular, the magnitude e↵ect is only present

in RTs), we showed how, by simultaneously fitting choices and RTs and constraining them

by feedback data, we can provide a more complete account of the cognitive processes in this

task and identify mechanisms that would remain undetected if only choices but not RTs

were taken into account.

Future work should test whether the best RLDDM is also successful in describ-

ing behavior in di↵erent learning paradigms by, for instance, investigating the magnitude

e↵ect in the presence of gains and losses or by manipulating the dispersion of the reward

distributions. Moreover, RLDDMs could be validated by linking model parameters to neu-

ral measures. Trial-by-trial variables such as prediction errors, reward expectation signals,

trial-by-trial threshold modulations, and individual parameters such as learning rates for

negative and positive prediction errors can be easily estimated using this model. It would

be interesting to see whether the model predictions about prediction errors are in line with

previous work in RL neuroscience (O’Doherty, Hampton, & Kim, 2007), and whether the

trial-by-trial adjustments of decision thresholds are mapped onto the same brain circuitry

which has been reported for decision-making paradigms without learning (van Maanen et

al., 2011; Gluth et al., 2012; Gluth & Rieskamp, 2017). An obvious limitation of any

RLDDM is that it can only be fit to two-alternative forced choice tasks. This is problem-

atic for paradigms such as the Iowa gambling task (Bechara et al., 1994), for example, in

which participants choose between four decks in each trial, or for studying context e↵ects

in experience-based decisions with more than two options (Spektor et al., in press). A dif-

ferent, multi-alternative SSM that is, for instance, based on the linear ballistic accumulator

model (S. D. Brown & Heathcote, 2008) could o↵er an alternative.

In conclusion, by integrating knowledge from two separate research traditions,

we showed how an extended computational model can promote our understanding of the

cognitive processes underlying value-based decisions during learning.
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Abstract : The ability to correctly predict the outcomes of actions based on previ-

ously experienced gains and losses is crucial for our success in a dynamic environment. Using

invasive electrophysiological techniques in animal studies, it was found that the dopamine

neurons, situated in the substantia nigra (SN) and the ventral tegmental area (VTA), have

a crucial role in learning-by-feedback: They fire more or less depending on whether more

or less rewards are delivered compared to previous expectations. Moreover, they modulate

the activity of cortical and subcortical areas that are crucial for goal-directed-behavior.

However, human studies using non-invasive neuroimaging methods, due to technical limi-

tations, have almost exclusively investigated activity in target areas of dopamine neurons

and provided inconclusive results. In this study, we used ultra-high field 7 Tesla magnetic

resonance imaging (MRI) and optimized protocols to extract the signal of the SN and the

VTA while human participants engaged in a gambling task. First, we found a significant

overlap between individual VTA masks and previously proposed SN masks in MNI space.

Therefore, the segmentation of these nuclei based on individual anatomy is crucial in order

to obtain the anatomical precision for separating signals from adjacent deep-brain nuclei.

Second, we found a significant correlation with the reward prediction error in both the SN

and the VTA and no correlation with expected value, confirming the hypothesis that SN

and VTA are responsible for learning-by-feedback. Moreover, activity in both the SN and

the VTA correlated with risk: Their activity was higher when more certain outcomes were

to be expected. Finally, we only found a surprise signal in the SN. This result is in line

with a recent framework that proposed a di↵erential role for the VTA and SN in learning,

respectively, learning of values and learning of salience.
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4.1 Introduction

In order to adapt to an ever changing environment, it is crucial to correctly predict the

outcomes of our choices, as well as to update our expectations when they happen to be

wrong. These learning processes were formalized within the reinforcement learning (RL)

framework (Sutton & Barto, 1998), unifying the fields of psychology and artificial intelli-

gence. In this framework, the reward prediction error (RPE) is defined as the di↵erence

between the expectations and the experienced rewards or punishments, and guides learn-

ing: New expectations are a weighted sum of past expectations and the RPE. By presenting

participants in the lab with di↵erent options and providing feedback after every decision,

psychologists and neuroscientists have investigated two main classes of cognitive processes.

The first class consists of processes related to expectations. These are the expected value

(EV), which is the mean expected outcome, and risk, which is the expected variance of the

outcomes. The second class consists of processes related to the processing of the feedback.

These are the deviation from previous expectations, or RPE, or the salience of the outcome,

or surprise.

A highly distributed network related to expectations and feedback-processing was

found in both the animal and the human brain. Electrophysiological studies in rodents and

non-human primates showed that midbrain dopaminergic neurons (i.e., in the substantia

nigra, SN – specifically in its pars compacta, SNc – and in the ventral tegmental area,

VTA) fire more, equal, or less in association with a positive, zero, or negative RPE (Schultz,

1998, 2015), and their firing ramps up faster with increasing risk expectations (Fiorillo et

al., 2003). Firing of cells in the SNc has also been associated with surprise (Matsumoto &

Hikosaka, 2009). Because dopamine nuclei are more challenging to target using non-invasive

neuroimaging techniques, studies using human participants mainly focused on dopamine

target areas (Arias-Carrión, Stamelou, Murillo-Rodŕıguez, Menéndez-Gonzáles, & Pöppel,

2010). Neural correlates of the RPE have been found in the ventral striatum (VS) and an

expected reward signal has been found in VS, amygdala, as well as in frontal areas such as

the orbital frontal cortex (OFC) and the medial prefrontal cortex (MPFC) (for an overview

see, e.g., O’Doherty, 2004; O’Doherty & Bossaerts, 2008; Clithero & Rangel, 2014; Bartra,

McGuire, & Kable, 2013). Both VS and anterior insula (AI) were found to signal predicted

risk and surprise (Preuscho↵ et al., 2006; Singer, Critchley, & Preuscho↵, 2009; Fouragnan,

Retzler, & Philiastides, 2018).

The measurement of small dopaminergic nuclei signaling using functional MRI
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(fMRI) is very challenging. One challenge pertains to the higher concentration of iron in

the SN. This high concentration causes di↵erences in the magnetic properties of the SN

compared to, for example, cortical areas, and asks for customized structural and functional

MRI scanning protocols (e.g., reduced echo times). Another problem is the physiological

noise in the fMRI data due to the proximity of these areas to major arteries and cerebrospinal

fluid. Finally, their limited volume and distance from the receive elements of the scanner,

combined with anatomical variability and standard procedures such as spatial smoothing,

lead to a high risk of mixing signals from neighboring nuclei (Eapen et al., 2011; de Hollander

et al., 2015, 2017).

Because of these challenges, only very few studies have directly measured activation

of small dopaminergic nuclei in human participants. An exception was the study of Zaghloul

et al. (2009): Using microelectrode recordings during deep brain stimulation surgery in

Parkinsons disease patients, they found SN activation in line with the RPE. However, a

few studies used fMRI and reported contradicting evidence. D’Ardenne et al. (2008) found

positive but not negative RPE in the VTA. Pauli et al. (2015) found only a positive RPE

in the SNc, a negative RPE in the pars reticulata of the SN (SNr), as well as a negative

expected value signal in the SNr. Zhang et al. (2017) found that, while the medial part of

the SN encoded RPE, the lateral and ventral parts encoded surprise.

To the best of our knowledge, previous studies with human subjects (1) have not

compared the VTA and the SN activation, (2) have not looked at all the variables related

to expectations and feedback processing (i.e., they did not always include EV, risk, RPE,

and surprise); (3) have not addressed the above-mentioned fMRI-specific challenges. In

particular, previous studies have used high-field 3 Tesla (3T) MRI, spatial smoothing, and

did not draw individual masks to delineate the VTA or the SN. At the same time, however,

Zhang et al. (2017) used a large dataset (n = 485), thus improving power in their analyses.

Ultra-high-field (UHF) 7 Tesla (7T) MRI can help to increase signal-to-noise ratio

(SNR) and BOLD contrast-to-noise ratio (CNR), leading to a more refined spatial resolution

without loss of power or need for spatial smoothing (van der Zwaag, Schäfer, Marques,

Turner, & Trampel, 2015). In this study, we used UHF-fMRI in combination with scanning

protocols tailored to extract signals from subject-specific masks of the midbrain to overcome

some of the previous limitations and clarify the findings of previous studies, especially

regarding the function of the VTA and the SN. By adapting the paradigm proposed by

(Preuscho↵ et al., 2006), we also investigated important variables such as risk and surprise,
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as well as EV and RPE, thereby targeting processes of both expectation and feedback

processing.

4.2 Method

4.2.1 Participants and procedure

Twenty-seven participants [8 male (mean age=24.7, SD=5.0, min=19, max=35),

19 female (mean age=24.4, SD=4.7, min=19, max=35)] took part in the experiment. The

study was approved by the ethics committee of the University of Amsterdam. All partici-

pants completed two separate sessions, one to obtain multimodal, 0.7 mm isotropic struc-

tural data, and one to obtain 1.5 mm isotropic functional data while engaging in a gambling

task. All participants were recruited from the University of Amsterdam subject pool, via

flyers and posters at the Spinoza center for Neuroimaging and at the Academic Medical

Center in Amsterdam, and via advertisements in the magazine of the Dutch Parkinson So-

ciety. All participants were required to be MRI compatible, between 18 and 40 years old,

right-handed, without previous history of psychiatric conditions or neurological diseases,

and to have normal or corrected-to-normal vision. Before taking part in the sessions they

gave written consent, and, before the second session, they also received written instructions

for the behavioral task. Before going in the MRI scanner, they all completed a training

session in which they could try the experiment on a computer, and were given a written

questionnaire to test their comprehension of the probability of winning and losing in each

scenario of the behavioral task. All participants were given 20 euros for the second session,

were endowed with 10 more euros, and could win or lose up to 7 euros (either added to or

subtracted from the initial endowment) based on their performance in the task, as explained

below.

4.2.2 Data acquisition

All images were acquired at a Philips Achieva 7T MRI scanner, situated at the

Spinoza Centre for Neuroimaging in Amsterdam (Netherlands), using a Nova Medical 32-

channel head array coil. During the first session, participants could choose whether to watch

a movie or not. During the second session, the gambling task was presented using PsychoPy
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(Peirce, 2007).

Structural MRI. T1-weighted, T⇤
2-weighted, and Quantitative Susceptibility Map-

ping (QSM, Langkammer et al., 2012) images were simultaneously obtained using a multi-

echo magnetization-prepared rapid gradient echo (ME-MP2RAGE) sequence (Metere, Kober,

Möller, & Schäfer, 2017; Caan et al., 2018). The sequence parameters were: TI,1 = 670

ms, TI,2 = 3675.4 ms, TR,1 = 6.2 ms, TR,2 = 31 ms, TE,1 = 3 ms, TE,2 = [3, 11.5, 19,

28.5 ms], TR,MP2RAGE = 6778 ms, flip angle1: 4, flip angle2: 4,bandwidth: 404.9 MHz,

acceleration factor SENSE: 2, FOV = 205 x 205 x 164 mm3, acquired voxel size: .7 x .7 x

.7 mm3, acquisition matrix: 292 x 290, reconstructed voxel size: .64 x .64 x .70 mm3, turbo

factor: 150 (resulting in 176 shots). The total acquisition time was 19.53 min.

Functional MRI. The functional MRI protocol was an adaptation of Protocol 3 as

reported by de Hollander et al. (2017), originally designed for a 7T Siemens scanner located

at the Max Planck Institute for Human Cognitive and Behavioral Sciences in Leipzig, Ger-

many. This protocol was used to optimize the temporal signal-to-noise (tSNR) in iron-rich

nuclei in the human midbrain. The present protocol consisted of 2 runs of 719 volumes with

30 slices. The acquisition time was 23.97 min per run. Other parameters were TR = 2,000

ms, TE = 17 ms, flip angle: 60, bandwidth: 2226.2 Hz, voxel size: 1.5 x 1.5 x 1.5 mm 3, FOV

= 192 x 192 x 49 mm3, SENSE acceleration factor, P-reduction (AP): 3, matrix size: 128 x

128. To acquire images with such TE, TR, and voxel-size, the protocol did not employ Fat

suppression, and, to increase SNR, the protocol did not employ Partial Fourier. After the

first run, an EPI image with opposite phase coding direction as compared to the functional

scan was acquired to help correcting for geometric distortions due to inhomogeneities in the

B0 field using the TOPUP technique during preprocessing (see below).

4.2.3 Gambling task

The gambling task used in the present study is an adaptation of the task by

(Preuscho↵ et al., 2006). In each trial (Figure 4.1 A), two numbers were sampled one after

the other between 1 and 5 without replacement. At the beginning of each trial, before seeing

both numbers, participants were asked to bet which of the two numbers will be higher: They

could win 5 euros if they were correct, and lose 5 euros otherwise. Participants were also

instructed that the sampling was (pseudo-) random and that their choice could not influence

sampling. The texts “Second number is HIGHER.” and “Second number is LOWER.”
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I win          I lose

Normal trials vs. Test trials
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First number

Second number

EV 
(ranges from -5 to 

+5, including 0)
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(SD of outcomes, 

ranges from 0 to 5)

RPE 
(ranges from -7.5 to 

+7.5, including 0)
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(|RPE|, ranges from 
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(55 per block) (5 per block)
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A B

Figure 4.1: A. Example of a single trial. Between each event and at the beginning of each
trial, a fixation cross is presented for a period of time between 4 and 10 seconds. A bet has
to be placed within 1 second, and a rectangle is drawn around the corresponding choice for
1 more second. The first number is then shown for 2 seconds: In this example, the expected
reward is 2.5 euros, and the risk is 4.3. Finally, the second number is shown for 2 seconds:
In this case, both the reward prediction error and the surprise are 2.5. In test trials (8%
of the total trials) participants have to specify whether they won or lost. B. Relationship
between risk and expected reward when the first number is shown, depending on the choice.
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appeared on the left and on the right sides of the screen (the position was counterbalanced

across participants) and participants had to press either a left or a right button to place

their bet. They could do so within 1 second, otherwise a bet would be placed for them

at random. The choice (either the participant’s or the random one) was then indicated by

presenting a black frame around the corresponding text for another second.

The first number was subsequently shown for 2 seconds. At this point in time, the

probabilities of winning and losing (both 50% at the beginning of the trial) change. For

example, if a bet is placed on the second number being higher and the first number is 2,

then three out of the four remaining numbers (i.e., 3, 4, and 5) lead to winning (pwinning =

75%), while only one number (i.e., 1) leads to losing (plosing = 25%). The expected value

of the gamble, is calculated as:

EV = pwinning · 5� plosing · 5 (4.1)

and in this case is thus 5 · 0.75 � 5 · 0.25 = 2.5 euros. The risk, defined as the variance of

the possible outcomes (Markowitz, 1952), is thus 4.3. Note that, when the first number is

3, the probabilities of winning and losing remain 50%, the expected reward is always 0, and

the risk is the highest, equal to 5. On the contrary, when the first number is either 1 or 5,

participants already know whether they will lose or win (depending on what the bet was),

therefore the expected value can be �5 or 5 euros and the risk is always 0. Since we were

interested in neural correlates of both EV and risk, it is a crucial aspect of this design that

EV and risk are not correlated (Figure 4.1 B).

At last, the second number is shown for 2 seconds, together with the corresponding

gain or loss. At this point, the reward prediction error (RPE) is calculated:

RPE = outcome� EV. (4.2)

In the example above (i.e., bet on 2nd card being higher; first card is 2), if the second number

is 3, the reward is 5 euros and the reward prediction error is 5�2.5 = 2.5 euros. The surprise,

defined as the absolute value of the distance from the previous expectation (i.e., the reward

expectation after the first card) as in Schultz (2015) and in Hayden, Heilbronner, Pearson,

and Platt (2011), is thus |5�2.5| = 2.5. Since we were also interested in neural correlates of

both RPE and surprise, it was also crucial that they were uncorrelated. This was the case,

since RPE ranged between -7.5 and 7.5 and its distribution over trials was symmetrically

centered around 0, and surprise was simply its absolute value.
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The experiment consisted of 120 trials, divided in two blocks. In each block,

5 test trials were included to encourage participants to remain attentive throughout the

experiment. In these trials, instead of showing the reward, we asked participants to indicate

whether they won or lost. To correctly respond to this question, they needed to remember

both their bet and the first number. At the end of the experiment, we randomly selected

one of the 110 regular trials, and participants received the corresponding reward (i.e., 5 or -5

euros), plus 2 additional euros if they responded correctly to at least 8 of the 10 test trials,

otherwise we subtracted 2 euros to the final reward. Between each event in each trial, and

at the beginning of each trial, a fixation cross was presented for a period of time between

4 and 10 seconds, drawn from a truncated exponential distribution. The long inter-stimuli

intervals were crucial to allow separating the BOLD signals associated with the first and

the second numbers.

4.2.4 Behavioral analysis

Because choices are not influencing the chance of winning and losing in this task,

behavioral analyses had the purpose to check the quality of the data for the fMRI analyses.

The most important indicator of data quality was the accuracy in the test trials: Blocks in

which participants made more than two out of five mistakes were discarded, where misses

also counted as mistakes. Another important indicator was the number of missed bets:

Blocks in which participants missed more than ten out of 60 bets were discarded. Finally,

we checked the percentage of right vs. left responses. Because the position of the texts

corresponding to the specific bets was counterbalanced across – but fixed within – partici-

pants, a similar number of right and left responses needed to be made for a balanced design.

Blocks in which participants made less than ten right or more than fifty right (out of 60)

choices were discarded.

4.2.5 Structural and functional MRI data preprocessing

Registration and preprocessing were performed using FMRIPREP version 1.0.6

(Esteban et al., 2018), a Nipype (Gorgolewski et al., 2011) based tool. Registration across

session was done by registering the functional images (from the second session) to the T1-

weighted structural image multiplied by the first echo of the T⇤
2-weighted structural images

(from the first session). Because the T1-weighted, T⇤
2-weighted, and QSM structural images
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were acquired simultaneously during the same scan in the first session, there was no need

to co-register them first.

Structural images were corrected for intensity non-uniformity using N4 Bias Field

Correction (Tustison et al., 2010) and skull-stripped using antsBrainExtraction.sh. Spatial

normalization to the ICBM 152 Nonlinear Asymmetrical template (Fonov, Evans, McK-

instry, Almli, & Collins, 2009) was performed through nonlinear registration with the

antsRegistration tool of ANTs v2.1.0 (Avants, Epstein, Grossman, & Gee, 2008), using

brain-extracted versions of both T1-weighted volume and template. Brain tissue segmenta-

tion of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed

on the brain-extracted T1-weighted image using fast (FSL v5.0.9) (Zhang, Larcher, Misic, &

Dagher, 2001). Functional data was motion corrected using mcflirt (FSL v5.0.9, Jenkinson,

Bannister, Brady, & Smith, 2002). Distortion correction was performed using an imple-

mentation of the TOPUP technique (Andersson, Skare, & Ashburner, 2003) using 3dQwarp

(AFNI v16.2.07, Cox, 1996). This was followed by co-registration to the corresponding T1-

weighted image using boundary-based registration (Greve & Fischl, 2009) with 9 degrees

of freedom, using flirt (FSL). Motion correcting transformations, field distortion correct-

ing warp, BOLD-to-T1-weighted transformation and T1-weighted-to-template (MNI) warp

were concatenated and applied in a single step using antsApplyTransforms (ANTs v2.1.0)

using Lanczos interpolation.

Physiological noise regressors were extracted applying CompCor (Behzadi, Restom,

Liau, & T.Liu, 2007). Principal components were estimated for the two CompCor variants:

temporal (tCompCor) and anatomical (aCompCor). A mask to exclude signal with cortical

origin was obtained by eroding the brain mask, ensuring it only contained subcortical struc-

tures. Six tCompCor components were then calculated including only the top 5% variable

voxels within that subcortical mask. For aCompCor, six components were calculated within

the intersection of the subcortical mask and the union of CSF and WM masks calculated in

T1-weighted space, after their projection to the native space of each functional run. Frame-

wise displacement (FD, Power et al., 2014) was calculated for each functional run using the

implementation of Nipype.

The preprocessing and registration output was visually inspected for each subject

using the html output files of FMRIPREP. Functional data quality was assessed using

MRIQC (Esteban et al., 2017) prior preprocessing, to check for visual artifacts and excessive

head movements. Finally, after preprocessing and registration, tSNR maps were computed
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using Nipype to assess the tSNR across the region of interests (ROIs).

4.2.6 Anatomical segmentation

One main aim of the present study was to obtain anatomically precise masks in

the individual space for the two ROIs: the ventral tegmental area (VTA) and the substantia

nigra (SN). Because of its relatively high iron concentration, the SN is most discernible in

QSM images (Keuken et al., 2014), as shown in the first row of Figure 4.2. Unlike the

SN, the VTA lacks clear anatomical borders. Segmentation can be performed, however, by

exclusion from the neighboring iron-rich nuclei (i.e., the SN and the red nucleus, RN) and

the CSF, so both should be clearly visible. The CSF is not visible in the QSM image. It is,

however, clearly visible in the T1-weighted image (see Figure 4.2, third row). To ease and

improve the segmentation process, we therefore combined the T⇤
2-weighted and T1-weighted

images, by first normalizing them within the midbrain area (i.e., a pre-selected area of 1.6

x 1.6 x 3.08 cm3) and finally summing them up. The result can be seen in the bottom row

of Figure 4.2.

Manual segmentation was performed using FSLView version 3.0.2, by two inde-

pendent and trained researchers (one of which is the first author of the current manuscript).

Only the voxels that were marked by both researchers were kept in the final masks, i.e.,

the conjunction masks. To assess inter-rater reliability (i.e., the agreement between the

two researcher), we computed the Dice score (Dice, 1945) separately for each participant,

hemisphere, and structure. The Dice score is computed as the ratio between the union of

the two areas and the conjunction of the two areas. It therefore depends on the average

dimension of the structure (with smaller structures having smaller scores) and has to be in-

terpreted accordingly. Scores approaching 1 indicate good agreement between raters, while

scores close to 0 indicate poor agreement between raters.

Drawing individual masks for each subject and area is a time- and resource-

consuming process: High resolution structural images need to be acquired first, and then

two trained researchers need to complete a lengthy segmentation process. To forgo this

costly approach, SN (Keuken et al., 2014) and VTA (Pauli et al., 2018) MRI atlases have

been published in recent years. These atlases consists of probabilistic maps of di↵erent

ROIs in MNI space, and can be thus transformed in the individual space to extract the

signal from these regions. The disadvantage of this less resource-intensive approach is a
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Figure 4.2: Anatomical images of the midbrain area of one participant in the sagittal (first
column), coronal (second column), and axial (third column) planes. The first row is the
QSM image, used for SN segmentation. The second and third row are, respectively, the
average between the third and fourth echo of the T⇤

2-weighted, and the T1-weighted images.
To obtain the image in fourth row, the images in the second and third row were normalized
within the midbrain area (the non-homogeneous grey area in the last row) and then summed.
This image was used for VTA segmentation, as it shows a contrast of both iron-rich nuclei
and of the CSF.
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potential loss of sensitivity and specificity due to disalignment between the individual and

the standard spaces, as well as individual di↵erences. To quantify the loss of information

in this process, we transformed the three SN subregions proposed by Zhang et al. (2017),

based on the 33% thresholded probabilistic masks proposed by Keuken et al. (2014), to the

individual space and measured the overlap with our individual VTA masks as the number

of voxels in common, divided by the overall area. A similar procedure was done with the

proposed VTA and SN subdivisions of Pauli et al. (2018), using their deterministic atlas

(50% thresholded).

4.2.7 fMRI data analysis

We extracted the fMRI signal for each time point within the ROIs (i.e., left and

right SN and VTA) for each subject and computed its average time course for each ROI

separately. We then fitted a GLM to the resulting time series for every region, participant,

and block using statsmodels (Seabold & Perktold, 2010). Specifically, we used the GLSAR

AR(1) model, to account for autocorrelation. The design matrices were constructed using

Nistats (https://nistats.github.io/index.html). In the design matrices, the following

events were convolved with the canonical, double-gamma hemodynamic response function

(HRF), together with their temporal derivatives: the bet at the beginning of the trial, the

appearance of the first card, the appearance of the second card in regular trials, and the

appearance of the second card in test trials. On top of these, we added four parametric

regressors: EV and risk (with onsets at the appearance of the first card and as amplitude

the normalized EV and risk of each trial), and RPE and surprise (with onsets at the ap-

pearance of the second card and as amplitude the normalized RPE and surprise of each

trial). Additional nuisance parameters were the six aCompCor, FD, six head movement

variables provided by fmriprep, and cosine regressors for high-pass temporal filtering. For

these analyses no spatial smoothing was used. After averaging across blocks, we performed

independent two-sided t-tests, separately by ROIs and hemisphere (i.e., left vs. right) for

the mean of the parameters corresponding to EV, risk, RPE, and surprise being equal to

zero. We also estimated the equivalent Bayesian t-tests, as implemented in the BayesFac-

tor R library (https://cran.r-project.org/web/packages/BayesFactor/index.html),

as it quantifies evidence not only for the alternative, but also for the null hypothesis and

therefore complements the frequentist analyses.

For the exploratory and control analyses, we estimated the same GLMs as on the

https://nistats.github.io/index.html
https://cran.r-project.org/web/packages/BayesFactor/index.html
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ROIs, using a mass-univariate, voxel-wise approach with Nistats (https://nistats.github

.io/index.html). At the level of individual runs, we used a smoothing Gaussian kernel

with a FWHM of 3.0 mm. At the participant level, we estimated the size of the baseline

contrasts of the parameter estimates of EV, risk, RPE, and surprise. These participant-

wise contrasts of parameter estimates (COPE) were then transformed to the MNI space and

used in the third and final group-level analysis. Finally, we performed a Gaussian Random

Field cluster analysis on the resulting four z-maps (EV, risk, RPE, and surprise), using

FSL cluster tool. For these analyses, we set an input threshold of 2.3 and a cluster-wise

threshold of p<.05.

4.3 Results

4.3.1 Quality of data assessment

Three blocks (from three di↵erent participants) were discarded based on behavior.

One block was discarded because three out of the five test trials were incorrect, and the

other two blocks were discarded because twelve out of sixty missed bets. In the remaining

blocks, and over the two blocks, participants made on average 1.0 mistakes (SD=1.05,

min=0, max=4), missed on average 4.48 trials (SD=3.65, min=0, max=12), and chose on

average the right option on 57.81 trials (SD=13.75, min=21, max=88).

Two blocks (from two di↵erent participants) were discarded based on excessive

head movements (mean FD over .3 mm). Because one of these blocks was already discarded

based on behavior, a total of four blocks was excluded from the final analyses. In the

remaining blocks, and over the two blocks, participants had an average mean FD of .14 mm

(SD=.06, min=.04, max=.27).

The tSNR across ROIs can bee seen in Figure C.1

4.3.2 Anatomical masks

The Dice scores, measuring the inter-rater reliability, can be seen in Table 4.1.

In general, higher scores were obtained for the SN as compared to the VTA. This is not

surprising, considering that Dice scores are sensitive to overall size (the SN is approximately

https://nistats.github.io/index.html
https://nistats.github.io/index.html


103

3.7 times bigger than the VTA), and that the VTA lacks clear borders. By only keeping

those voxels that both raters agreed on (i.e., the conjunction masks), we ensured that the

voxels included in the analyses lie exclusively in the investigated ROI.

Table 4.1: Anatomical segmentation results.

Mean SD Min Max

SN Right Dice score 0.85 0.04 0.73 0.91
Size (mm3) 520.77 76.75 311.49 637.65

Left Dice score 0.84 0.04 0.74 0.90
Size (mm3) 501.67 60.86 384.26 621.25

VTA Right Dice score 0.56 0.07 0.43 0.68
Size (mm3) 138.91 39.37 76.51 233.26

Left Dice score 0.56 0.06 0.38 0.68
Size (mm3) 137.46 38.30 80.82 224.34

Note. Dice scores and size of the individual conjunction masks of the regions of interest (ROI): left
and right substantia nigra (SN) and left and right ventral tegmental area (VTA). Conjunction masks
are the intersection of the two independent raters’ masks. Dice scores closer to 1 indicate higher
agreement between the two raters, while dice scores close to 0 indicate lower agreement between the
two raters.

In addition to the Dice scores, we also calculated the percentage of overlap between

our individual-level conjunction masks and previously proposed group-level subdivisions of

the SN and the VTA2 (Zhang et al., 2017; Pauli et al., 2018), transformed to the individual

space (see Figure 4.3). We found significant overlap between the medial parts of the SN

and our individual VTA masks. Specifically, there was a mean overlap of 7.23 percent

(SD=10.14, min=0.00, max=34.58, p<0.001) with the medial part of the SNc (mSNc), and

a mean overlap of 1.3 percent (SD=2.14, min=0.00, max=8.36, p<0.001) with the lateral

part of the SNc (lSNc) as defined by Zhang et al. (2017); and a mean overlap of 1.56

percent (SD=2.21, min=0.00, max=11.93, p<0.001) with the SNc as defined by Pauli et

al. (2018). We also found a significant overlap between Pauli et al. (2018)’s subdivisions of

the VTA (i.e., labelled VTA and PBP, where VTA is the more medial and PBP is the more

lateral part) and our individual SN masks. Specifically, there was a mean overlap of 7.76

percent (SD=9.81, min=0.00, max=58.76, p<0.001) with Pauli et al. (2018)’s VTA and a

2 Defined as the ratio between the number of voxels in common and the total number of voxels of the
two regions.
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mean overlap of 8.81 percent (SD=6.47, min=0.00, max=25.76, p<0.001) with Pauli et al.

(2018)’s PBP.

Figure C.2, C.3, and C.4 show, respectively, a comparison between Pauli et al.

(2018)’s atlas with our probabilistic VTA and SN maps in the MNI space, a comparison

between Zhang et al. (2017)’s atlas with our probabilistic VTA and SN maps in the MNI

space, and a comparison between Pauli et al. (2018)’s and Pauli et al. (2018)’s atlases in

the individual space of one example subject.

4.3.3 ROI-wise GLM

Results of the ROI-wise GLM are shown in Table 4.2 and Figure 4.4. At the time

of presentation of the first card, there were no parametric correlations between signal in any

of the ROI with the EV, with the Bayes Factor (BF) pointing to substantial 3 evidence

for the null hypothesis. However, there were significant correlations with risk in both the

left-VTA (p<0.05) and the left-SN (p<0.05), with the BF pointing to strong evidence

towards the alternative hypothesis. At the time of presentation of the second card, there

were significant correlations with RPE in the left- and right-VTA (p<0.05), with the BF

providing substantial support for the alternative hypothesis, and in the right-SN (p<0.05),

with the BF providing weak support for the alternative hypothesis. Finally, we found a

correlation with surprise in the right-SN (p<0.05), with the BF providing weak support for

the alternative hypothesis, and no e↵ect in the VTA, with the BF providing substantial

support for the null hypothesis. Taken together, both VTA and SN were linked to risk

before the outcome was revealed as well as to RPE after the outcome was revealed. Only

SN was additionally associated with surprise about the outcome.

4.3.4 Voxel-wise GLM

Results of the voxel-wise GLM are shown in Table 4.3 and Figure 4.5. After cluster

correction, we found positive correlations with EV in the orbitofrontal cortex and posterior

cingulate cortex and negative correlations with EV in thalamus and anterior insula. We

found positive correlation with risk in the superior temporal gyrus, anterior cingulate cortex

3 see Jarosz and Wiley (2014)
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Figure 4.3: In red: percentage of overlap across our individual ventral tegmental area
(VTA) masks (the conjunction mask across two independent raters) and substantia nigra
(SN) subdivisions as defined by Zhang et al. (2017) and Pauli et al. (2018). The medial
parts of the SN (mSNc, and SNc) overlap more with the VTA than the lateral and ventral
parts of the SN (lSNc, vSN, and SNr). In yellow: percentage of overlap across our individual
SN masks and VTA subdivisions as defined by Pauli et al. (2018). Both the ventral (VTA)
and lateral (PBP) parts of the VTA overlap with the SN. Bars represent 95% confidence
intervals.

Table 4.2: ROI-wise GLM results.

ROI EV risk RPE surprise

SN-left t(26)=-0.16, p=0.87 t(26)=-3.12, p=0.004* t(26)=1.41, p=0.17 t(26)=0.34, p=0.74
BF10=0.21 BF10=9.48 BF10=0.50 BF10=0.21

SN-right t(26)=0.27, p=0.79 t(26)=-1.20, p=0.241 t(26)=2.26, p=0.03* t(26)=2.33, p=0.03*
BF10=0.21 BF10=0.39 BF10=1.76 BF10=2.01

VTA-left t(26)=-0.49, p=0.63 t(26)=-3.52, p=0.002* t(26)=2.97, p=0.01* t(26)=-0.32, p=0.75
BF10=0.23 BF10=22.19 BF10=6.81 BF10=0.21

VTA-right t(26)=0.07, p=0.94 t(26)=-1.31, p=0.202 t(26)=2.66, p=0.01* t(26)=0.97, p=0.34
BF10=0.21 BF10=0.44 BF10=3.68 BF10=0.31

Note. Results of the independent two-sided t-tests for the mean of the predictors of main interest
being equal to zero: expected value (EV) and expected risk (estimated when the trials’ first number
is presented), and reward prediction error (RPE) and surprise (estimated when the trial’s reward
or punishment are presented). These tests were run separately by regions of interest: left and right
substantia nigra (SN), and left and right ventral tegmental area (VTA). Bayes factors (BF) higher
than 1 provide evidence for an e↵ect, while BF lower than 1 provide evidence for the absence of an
e↵ect.
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Figure 4.4: Average e↵ect size across participants of the GLM on the time-series data
extracted from the regions of interest (ROI): left and right substantia nigra (SN) and left
and right ventral tegmental area (VTA). Di↵erent plots represent the predictors of main
interest: expected value (EV) and expected risk (estimated when the trials’ first number
is presented), and reward prediction error (RPE) and surprise (estimated when the trial’s
reward or punishment are presented). Bars represent 95% confidence intervals.
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and amygdala, and negative correlations with risk in anterior insula, dorsal striatum and

posterior cingulate cortex. We found positive correlations with RPE in ventral striatum,

precuneus, anterior insula and fusiform gyrus, and no negative correlations with RPE.

Finally, we found positive correlations with surprise in the inferior frontal gyrus and superior

temporal gyrus, and negative correlations with surprise in precuneus and posterior insula.

4.4 Discussion

Understanding the dopamine circuit is of great importance for both clinical and

cognitive neuroscientists. First of all, the loss of dopaminergic neurons is associated with

Parkinson’s disease symptoms (Fearnley & Lees, 1991; Frank, 2006a) and dysregulations in

the human dopamine circuit are known to play a role in drug addiction (Everitt & Robbins,

2005) and pathological gambling (Bergh, Eklund, Södersten, & Nordin, 1997). Moreover,

the dopamine signal reflects di↵erent aspects of rewards: from the anticipation of risk to the

mismatch between predictions and outcomes (Schultz, 2015). While dopamine neurons are

situated mostly in the midbrain, they are part of a much greater and complex circuit, involv-

ing di↵erent cortical and subcortical areas (Watabe-Uchida et al., 2017; Haber & Knutson,

2010; Frank, 2006b). By transmitting information about changes in reward expectations

and risk in the environment to areas important for action execution and learning, dopamine

likely plays a crucial role in adaptive behavior, i.e., for survival in a dynamic environment,

with limited resources and obstacles to avoid.

To date, most human studies have focused on the target areas (both cortical and

subcortical) of the dopamine neurons because of methodological challenges. Importantly,

human studies that investigated the activity of dopamine nuclei using fMRI provided in-

complete and partially contradicting results. In this paper, we presented the results of a 7T

fMRI study involving human participants performing a gambling task. To the best of our

knowledge, this was the first study to investigate the functional role of both the VTA and

the SN, using UHF-MRI to acquire high-quality, high-resolution functional and structural

images. While previous studies in these areas focused on expected gains or losses and on the

RPE signals, we extended the analysis to expected risk and to surprise. This was based on

previous electrophysiological and fMRI studies that either found this signal in the VTA/SN

or in their target areas (e.g., Fiorillo et al., 2003; Preuscho↵ et al., 2006; Hayden et al.,

2011). While we found no evidence for a linear correlation between reward anticipation
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EV

Risk

RPE

Surprise

Figure 4.5: Results of the voxel-wise GLM after cluster correction, and overlapped onto
the mean functional image across participants and volumes. Each row corresponds to the
predictors of main interest: expected value (EV) and expected risk (estimated when the
trials’ first number is presented), and reward prediction error (RPE) and surprise (estimated
when the trial’s reward or punishment are presented).
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Table 4.3: Results of the voxel-wise GLM after cluster-wise thresholding.

Predictor Cluster Index Voxels p -log10(p) Max Max x (vox) Max y (vox) Max z (vox)

0 EV (positive) 2 939 <0.001 5.37 3.58 6.0 -54.0 18.0
1 EV (positive) 1 373 0.019 1.73 3.65 -42.0 49.5 -15.0
2 EV (negative) 4 1474 <0.001 8.15 -3.52 7.5 -28.5 0.0
3 EV (negative) 3 1082 <0.001 6.15 -3.96 15.0 -64.5 7.5
4 EV (negative) 2 565 0.001 3.09 -3.62 49.5 16.5 -1.5
5 EV (negative) 1 387 0.015 1.83 -3.38 -54.0 15.0 4.5
6 RPE (positive) 7 2409 <0.001 10.30 4.38 9.0 9.0 -4.5
7 RPE (positive) 6 1988 <0.001 8.73 3.89 -15.0 7.5 -9.0
8 RPE (positive) 5 1283 <0.001 5.90 3.98 25.5 -57.0 16.5
9 RPE (positive) 4 931 <0.001 4.29 4.17 43.5 9.0 -12.0
10 RPE (positive) 3 558 0.005 2.34 3.79 15.0 -39.0 -4.5
11 RPE (positive) 2 495 0.011 1.97 4.19 -40.5 46.5 -15.0
12 RPE (positive) 1 397 0.043 1.37 3.63 46.5 46.5 -13.5
13 risk (positive) 7 6993 <0.001 20.60 4.82 -52.5 -4.5 -9.0
14 risk (positive) 6 2859 <0.001 10.30 4.34 33.0 -40.5 7.5
15 risk (positive) 5 1122 <0.001 4.40 3.71 51.0 -33.0 19.5
16 risk (positive) 4 759 0.001 2.84 3.98 18.0 37.5 -6.0
17 risk (positive) 3 675 0.004 2.45 4.20 22.5 -13.5 -19.5
18 risk (positive) 2 522 0.02 1.69 3.59 69.0 1.5 13.5
19 risk (positive) 1 522 0.02 1.69 4.80 -22.5 -16.5 -19.5
20 risk (negative) 6 3931 <0.001 13.30 -5.30 33.0 22.5 -6.0
21 risk (negative) 5 1938 <0.001 7.22 -4.83 -25.5 19.5 -12.0
22 risk (negative) 4 807 0.001 3.06 -3.71 -36.0 52.5 3.0
23 risk (negative) 3 672 0.004 2.43 -3.82 -10.5 12.0 10.5
24 risk (negative) 2 570 0.012 1.94 -4.23 -3.0 -40.5 24.0
25 risk (negative) 1 451 0.048 1.32 -3.88 10.5 10.5 9.0
26 surprise (positive) 5 2639 <0.001 12.80 4.61 57.0 24.0 4.5
27 surprise (positive) 4 1723 <0.001 9.02 5.22 51.0 -34.5 0.0
28 surprise (positive) 3 1373 <0.001 7.22 3.83 -58.5 21.0 7.5
29 surprise (positive) 2 808 <0.001 4.44 3.99 -60.0 -52.5 9.0
30 surprise (positive) 1 760 <0.001 4.16 4.10 -54.0 -25.5 -9.0
31 surprise (negative) 2 572 0.001 3.00 -3.30 -10.5 -73.5 27.0
32 surprise (negative) 1 520 0.002 2.66 -3.77 40.5 -3.0 4.5

Note. Clusters that survive thresholding. We report the number of voxels, cluster probability, log
probability, activation and MNI coordinate of the activation peak voxel in a cluster.
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(involving both gains and losses) and VTA or SN activation, we did find evidence for a

full RPE signal (positive and negative) in both regions, as well as for expected risk signal.

Similarly to Matsumoto and Hikosaka (2009), who found a functional dissociation of VTA

and SN, we also found a surprise signal in the SN but not in the VTA.

Both the SN and the VTA are relatively small brain areas (around 511 mm3 and

138 mm3, respectively, see Table 4.1), they are adjacent to each other as well as to other

nuclei with related functions, such as the red nucleus and the subthalamic nucleus, and

they are susceptible to other possible sources of noise, such as the physiological noise in

the cerebrospinal fluid. The small dimension of the nuclei and their spatial contiguity

increase the risk of confusing the signal from di↵erent regions (de Hollander et al., 2015).

To be able to more reliably extract and separate the signals from the VTA and the SN, we

therefore drew individual masks, based on 0.7 mm isotropic, multimodal, anatomical images

that were acquired for each participant in a separate session. By restricting the analyses

to the individual space, we also prevented disalignment issues that usually occur when

transforming individual images to a group or standard space. To define the final masks,

we adopted a rather conservative approach, by keeping the intersection of the masks drawn

by two independent and trained raters. To illustrate the importance of these precautions,

we compared our masks to previously proposed VTA and SN probabilistic masks in the

standard space. In particular, we considered the SN subdivisions proposed by Zhang et al.

(2017) and the VTA and the SN subdivisions proposed by Pauli et al. (2018). We found

that, when transforming these masks to the individual space – as it is usually done during

ROI signal extraction – the signal from the VTA and the SN is indeed partially confused.

This can have serious impact on the interpretation of the results of an fMRI study. For

instance, Zhang et al. (2017) reported a RPE signal in the medial part of the SN, which –

according to our analyses and results – is the part that overlaps the most with the VTA,

and a surprise signal in the lateral part of the SN. To be able to draw strong conclusions

on the functional specificity of – in this case – SN subdivisions, it is preferable to have

individually drawn masks.

Given previous findings (Fiorillo et al., 2003) and theoretical considerations (a

reward-predicting cue can be seen as a RPE itself; see Hare, ODoherty, Camerer, Schultz,

& Rangel, 2008), one might expect to find EV signals in the SN/VTA. However, as Berke

(2018) recently discussed, EV signals are often found in dopamine target areas, such as the

ventral striatum, but not in the dopamine cell firing itself (Eshel, Tian, Bukwich, & Uchida,

2016). Studies on the firing of dopaminergic nuclei are mostly done with animals that are
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restricted from moving, therefore giving less emphasis on choices. In these tasks, animals

are also extensively trained, to the point that conditioned stimuli – anticipating a reward or

a punishment – are not surprising anymore. Therefore, the absence of an EV signal in both

the SN and the VTA in our task is not too surprising: Since participants were explicitly

instructed that the initial bet’s outcome was random, there was also less focus on the action

and more on the reward structure of the task. While we found positive correlation with

EV in the orbital frontal cortex and negative correlation with EV in the anterior insula, in

line with previous studies inspecting value signalling in the cortex (Schoenbaum, Takahashi,

Liu, & McDannald, 2011; Bartra et al., 2013), the e↵ect in ventral striatum did not survive

the cluster thresholding.

The presence of a full RPE signal in both the VTA and the SN confirms previous

results in animal studies (Schultz, 2015), although most of them are based on signal from

the lateral part of the the VTA alone (Eshel et al., 2016). It also clarifies previous results

on the VTA/SN signals in fMRI human studies (D’Ardenne et al., 2008; Pauli et al., 2015;

Zhang et al., 2017). For instance, D’Ardenne et al. (2008) only found evidence for a positive

– and not negative – RPE in VTA and not in SN. We also found an RPE signal in ventral

striatum and anterior insula, confirming previous fMRI results that looked at dopamine

target areas (Bartra et al., 2013).

Here, to the best of our knowledge, we showed for the first time the presence of

a risk signal in both the VTA and the SN, in line with electrophysiological studies in non-

human animals (Fiorillo et al., 2003). We also found risk signal in anterior cingulate cortex,

amygdala and anterior insula, confirming previous fMRI studies linking these areas to the

coding of risk (Preuscho↵ et al., 2006; J. W. Brown & Braver, 2018).

The presence of a surprise salience signal in the SN and not in the VTA is in

line with results from the animal literature (Matsumoto & Hikosaka, 2009) and with the

framework proposed by Bromberg-Martin et al. (2010). In this framework, there are two

distinct functional groups of dopamine neurons, a motivational value group, that shows the

standard RPE response, and a motivational salience group, that reflects how unexpected

outcomes are – positive or negative alike. Cells of the first group are situated more in

the dorsolateral part of the SNc, while cells of the second group are situated more in

the ventromedial part of the SNc as well as in the VTA. While SNc cells project more to

sensorimotor dorsolateral striatum, VTA cells project more to ventral striatum. Beyond our

ROIs, we also found correlations between surprise and posterior (but not anterior) insula.
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A limitation of our study is that we did not distinguish between the pars com-

pacta and reticulata of the SN, while dopamine neurons are mainly situated in the pars

compacta. However, these two parts are virtually indistinguishable based on MRI contrast

alone (see Figure 4.2). Therefore, to avoid making an arbitrary decisions on where to set

a border between the two, we considered the SN as one structure. By combining di↵erent

methodologies (i.e., di↵usion MRI) further studies might shed further light on SN functional

subdivisions.

Since the BOLD response measured in fMRI is an indirect measure of neuronal

activity and is mainly thought to measure signals input and local processing of neurons

rather than their output (Logothetis & Wandell, 2004), it is important to integrate results

from di↵erent methodologies and species in order to understand the complexity of the

dopaminergic circuit as a whole.

In sum, in this study we used novel methodologies to investigate how the brain

processes gains and losses and updates expectations based on experience. We were able

to show for the first time a risk signal in the dopamine nuclei with human participants,

and provided evidence for a full RPE signal in the presence of both gains and losses, thus

clarifying previous results of human fMRI studies. This study opens the way to a better

understanding of the dopamine circuit in the human brain, especially regarding the func-

tional specificity of the SN and the VTA (or of their subregions) in reward-based decision

making and adaptive behavior. Future studies might extend these methodologies to di↵er-

ent paradigms in which participants need to more actively interact with the environment,

as in trial-and-error learning (Sutton & Barto, 1998).
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Gluth, S., Rieskamp, J., & Büchel, C. (2012). Deciding when to decide: Time-variant
sequential sampling models explain the emergence of value-based decisions in the hu-
man brain. Journal of Neuroscience, 32 (31), 10686–10698. doi: 10.1523/JNEUROSCI
.0727-12.2012
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A.1 Bayesian mixed model ANOVA

In this section, we detail the results of the two-step model-comparison approach

that we used for the Bayesian Mixed Model ANOVA.

In a first step, to determine what would be the base model for the subsequent

analyses, we compared two models: the first one (M0) included only participants as ran-

dom e↵ects and the second one (M1) included also experiment as fixed e↵ect. In the

case of accuracy, a model that does not include experiment as fixed e↵ect was preferred

(BFM0/ BFM1=3.6), indicating that mean accuracy was mostly stable across experiments.

In the case of RTs, a model that includes experiment as fixed e↵ect was preferred (BFM1/

BFM0=1.4e9), indicating that mean RTs di↵ered across experiments.

In a second step, we tested di↵erent combinations of models in which we varied the

possible interactions between experiment and experimental manipulations and the experi-

mental manipulations themselves. In the case of accuracy, all models were tested against

M0 of the previous step of the analyses, while, in the case of RTs, these were tested against

M1 of the previous analyses. The results are summarized in the following Supplementary

Tables 1 and 2.

Finally, the two models with highest BF were compared to each other, to provide

a simple assessment of the evidence in favor of the best model is. There was substantial

evidence for the winning model in the ANOVA of accuracy analyses, M3, compared to its
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runner-up, M8 (BFM3/ BFM8=8.6). There was anecdotal evidence for the winning model

in the ANOVA of RT analyses, M5, compared to its runner-up, M10 (BFM5/ BFM10=1.76).
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Table A.1: Bayes Factors of the ANOVA of accuracy.

Model Random e↵ects Experiment interactions Fixed E↵ects BF log(BF)

M2 participant None Valence 1.11e -1-2.19
M3 participant None Feedback 2.26e7 16.93*
M4 participant None valence+feedback 2.53e6 14.74
M5 participant None valence*feedback 5.25e5 13.17
M6 participant Valence None 9.76e-2 -2.33
M7 participant Valence Valence 1.09e-2 -4.51
M8 participant Valence Feedback 2.64e6 14.79
M9 participant Valence valence+feedback 2.97e5 12.60
M10 participant Valence valence*feedback 6.19e4 11.03
M11 participant Feedback None 9.69e-2 -2.33
M12 participant Feedback Valence 1.08e-2 -4.53
M13 participant Feedback Feedback 1.38e6 14.13
M14 participant Feedback valence+feedback 1.54e5 11.95
M15 participant Feedback valence*feedback 3.21e4 10.38
M16 participant valence+feedback None 9.58e-3 -4.65
M17 participant valence+feedback Valence 1.07e-3 -6.84
M18 participant valence+feedback Feedback 1.62e5 12.00
M19 participant valence+feedback valence+feedback 1.83e4 9.81
M20 participant valence+feedback valence*feedback 3.81e3 8.25

Note. The preferred model is marked with an asterisk.
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Table A.2: Bayes Factors of the ANOVA of response times.

Model Random e↵ects Experiment interactions Fixed E↵ects BF log(BF)

M2 participant None experiment+valence 3.39e24 56.48
M3 participant None experiment+feedback 7.88e-1 -0.24
M4 participant None experiment+valence+feedback 8.35e24 57.38
M5 participant None experiment+valence*feedback 1.23e27 62.37*
M6 participant Valence experiment 6.24e-1 -0.47
M7 participant Valence experiment+valence 1.54e24 55.69
M8 participant Valence experiment+feedback 5.17e-1 -0.66
M9 participant Valence experiment+valence+feedback 4.05e24 56.66
M10 participant Valence experiment+valence*feedback 6.99e26 61.81
M11 participant Feedback experiment 6.92e-2 -2.67
M12 participant Feedback experiment+valence 3.98e23 54.34
M13 participant Feedback experiment+feedback 6.10e-2 -2.80
M14 participant Feedback experiment+valence+feedback 1.18e24 55.43
M15 participant Feedback experiment+valence*feedback 1.90e26 60.51
M16 participant valence+feedback experiment 4.42e-2 -3.12
M17 participant valence+feedback experiment+valence 1.86e23 53.58
M18 participant valence+feedback experiment+feedback 4.10e-2 -3.19
M19 participant valence+feedback experiment+valence+feedback 5.95e23 54.74
M20 participant valence+feedback experiment+valence*feedback 1.13e26 59.99

Note. The preferred model is marked with an asterisk.
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A.2 Reinforcement learning model analyses

In this section, we report some details about the reinforcement learning modelling

procedure.

Figure A.1: Posterior distributions of the hierarchical reinforcement learning (RL) model.

Posterior distributions of the RL model parameters at the individual level (grey lines) for

the 20 participants of Experiment 1. Superimposed (red lines), are the distributions of the

parameters used to generate predictions for new, non-observed participants (in Experiments

2, 3, and 4).
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Figure A.2: Posterior predictives of the hierarchical reinforcement learning (RL) model.

Posterior predictives for mean accuracy in binned trials, separately for learning contexts.

Each bin corresponds to 12 trials, which means 3 trials per choice context. Mean accuracy

was calculated separately across experiments, contexts, and bins. The dotted lines represent

the median of the posterior predictive distribution of mean accuracy. Note that these

are in-sample predictions for Experiment 1 (first row), and out-of-sample predictions for

Experiments 2, 3, and 4 (second row).
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Figure A.3: Control analyses for the reinforcement learning (RL) model. Estimated poste-

rior distributions of the linear model coe�cients corresponding to the —Q—, V, and number

of trial predictors. Separate models were tested to predict either accuracy (left column) or

RTs (right column). Analyses were repeated by fitting the RL model on Experiment 2,

3, and 4 (top, middle, and bottom rows, respectively) and generating predictions for the

remaining experiments (e.g., if the RL model was fitted on Experiment 2, it was then tested

on Experiments 1, 3, and 4).



138

Table A.3: Bayes Factors for the linear model of accuracy.

Model Random e↵ects Fixed E↵ects BF log(BF)

M1 (intercept model) participant + experiment trial 1 0
M2 participant + experiment |�Qt| + trial 7.6e183 423.4*
M3 participant + experiment Vt + trial 1.3e5 11.8
M4 participant + experiment |�Qt| + Vt + trial 3.1e182 420.2

Note. The intercept model is M1. The winning model is indicated with a star.

Table A.4: Bayes Factors for the linear model of response times.

Model Random e↵ects Fixed E↵ects BF log(BF)

M1 (intercept model) participant + experiment trial 1 0
M2 participant + experiment |�Qt| + trial 4.44e50 116.6
M3 participant + experiment Vt + trial 2.80e107 247.4
M4 participant + experiment |�Qt| + Vt + trial 3.18e132 305.1*

Note. The intercept model is M1. The winning model is indicated with a star.
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A.3 Di↵usion decision model analyses

In this section, we report some details about the di↵usion decision model analyses.
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Figure A.4: Posterior distributions of the group parameters of the hierarchical di↵usion

decision model. Posterior distributions of the DDM parameters across experiments (grey

areas) and within experiments. Because valence was coded as 0=reward/1=punishment,

and feedback was coded as 0=partial/1=complete, and the interaction was the product of

the two, intercepts (first row) correspond to the parameters in the reward-partial condition.

Note that while the intercept of the drift-rates are identical across experiments, the thresh-

olds appear to significantly di↵er, with the threshold being seemingly lower in Experiment 4

than in the other experiments. This is consistent with the fact that a shorter decision time

window was allowed in Experiment 4 (see Table 2.1), which led to a reduction in the cau-

tiousness in participants responses. Beyond this e↵ect of experiments on DDM parameters

intercepts, note that the pattern of the coe�cients indexing the e↵ects of the experimental

factors (Feedback, valence and interactions) on DDM parameters was very consistent across

experiments.
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Figure A.5: Posterior predictives of the hierarchical di↵usion decision model. Posterior pre-

dictive distributions for mean accuracy (bottom-left), mean RT (bottom-right), RT quan-

tiles of correct (top-left) and incorrect (top-right) responses. To assess how well the model

fits the observed behavioral patterns, these measures were separately calculated across ex-

periments and experimental conditions. The shaded areas represent the 95% Bayesian

Credible Intervals, while the crosses represent the summary of the data.
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A.4 Di↵usion decision model parameter recovery

We performed parameter recovery of the Bayesian hierarchical di↵usion decision

model(DDM) used in the main analyses of this study. We generated data for four exper-

iments using a simple DDM (with no across-trial variability), with the same number of

participants and trials as in our study.

The generating group parameters (Table A.5) were selected in order to generate a

similar performance to the one observed across the experiments (Figure A.6). Participants

parameters were sampled from the group distributions and NDT and threshold intercepts

were lowered in Experiment 4 of .3 and .05, respectively.

We fitted the DDM following the same procedure used to fit the real data collected

in the four experiments, as described in Section 2.2. To assess the quality of parameter

recovery, we plotted the generating parameter values against a summary (mean and mode)

of the estimated posterior distributions of the 89 participants (Figure A.7). In general,

all parameters were well recovered, although for some parameters we observe a shrinkage

towards the group mean (e.g., for the interaction coe�cient of the drift-rate and for the

valence coe�cient of the threshold) which is a typical feature of hierarchical models.

Table A.5: Generating parameters.

Drift-rate Threshold NDT

Mean intercept 0.6 1.5 0.3

SD intercept 0.2 0.1 0.1

Mean coe�cients (valence, feedback, interaction) 0.00,0.50, 0.00 0.20, 0.10, -0.10 0.12, 0.00, 0.10

SD coe�cients (valence, feedback, interaction) 0.10, 0.05, 0.10 0.05, 0.05, 0.03 0.04, 0.10, 0.08

Note. The generating parameters at the dataset level were used for the parameter recovery.
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Figure A.6: Simulated data. Mean accuracy and response times (RTs) of the simulated

data, separately by experiment and by context.
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Figure A.7: True against recovered di↵usion decision model individual parameters. The

dotted grey lines represent the identity lines, while the red dotted lines are the group mean

parameters. We also calculated correlations between the true and the mean recovered indi-

vidual parameters, indicated by the Pearson’s statistics. Apart from the threshold inter-

action coe�cient parameter, all correlations are significant. We also plotted the generating

group means against the mean of the posterior distribution.
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B.1 Bayesian hierarchical regression models

A graphical representation of the linear regression model of accuracy can be seen

in Figure B.1 on the right. The model, model priors, and hyper-priors were specified as:

µ↵ ⇠ N (0, 5);�↵ ⇠ HN (0, 5)

µ�µ�µ� ⇠ N (0, 5);������ ⇠ HN (0, 5)

↵ ⇠ N (µ↵,�↵);� ⇠ N (µ� ,��)

pt,s = logit(Xt,s�sXt,s�sXt,s�s + ↵s); acct,s ⇠ Bern(pt,s)

where ↵ and ��� are, respectively, the intercept and the vector of coe�cients, and X is

the predictors matrix. N is a normal distribution with parameters mean and standard-

deviation, HN is a half-normal distribution with parameters mean and standard-deviation,

and Bern is a Bernoulli distribution with a success probability parameter.

A graphical representation of the linear regression model of RT can be seen in

Figure B.1 on the left. The model, model priors, and hyper-priors were specified as:

µ↵ ⇠ N (0, 5);�↵ ⇠ HN (0, 5)

µ�µ�µ� ⇠ N (0, 5);������ ⇠ HN (0, 5)

� ⇠ HN (0, 5)
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↵ ⇠ N (µ↵,�↵);� ⇠ N (µ� ,��)

R̂Tt,s = Xt,s�sXt,s�sXt,s�s + ↵s; RTt,s ⇠ N (R̂Tt,s,�)

where ↵ and ��� are, respectively, the intercept and the vector of coe�cients, � is the noise

term, and X is the predictors matrix. N is a normal distribution with parameters mean

and standard-deviation, and HN is a half-normal distribution with parameters mean and

standard-deviation.

Models specification followed the approach of (Gelman et al., 2014), while priors

followed the prior choice recommendations in the Stan manual.



147

Figure B.1: Graphical representation of the Bayesian hierarchical linear regression (on
the left) and logistic regression (on the right) models. Shaded nodes represent observed
variables, while non-shaded nodes represent latent variables. Squared nodes represent de-
terministic variables.
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B.2 Bayesian hierarchical cognitive models

A graphical representation of the full reinforcement learning model (i.e., with sep-

arate learning rates ⌘ for positive and negative prediction error and increasing sensitivity

✓) can be seen in Figure B.2. The model, model priors, and hyper-priors were specified as:

µ⌘± ⇠ N (0, .8);�⌘± ⇠ HN (0, .5)

⌘±± ⇠ �(N (µ⌘± ,�⌘±))

µb ⇠ N (5, .5);�b ⇠ HN (0, .5)

b ⇠ exp(N (µb,�b))

µc ⇠ N (�.5, .5);�c ⇠ HN (0, .5)

c ⇠ exp(N (µc,�c))

acct,s ⇠ Bern(logit(pt,s))

where ⌘± are the learning rates for positive and negative prediction errors, b and c are the

parameters that define the increase of ✓ in time (see Equation 3.3). N is a normal dis-

tribution with parameters mean and standard-deviation, HN is a half-normal distribution

with parameters mean and standard-deviation, and Bern is a Bernoulli distribution with a

success probability parameter.

A graphical representation of the Bayesian hierarchical di↵usion decision model

(DDM) can be seen in Figure B.3. The model, model priors, and hyper-priors were specified

as:

µv ⇠ N (1, 2);�v ⇠ HN (0, 2)

v ⇠ N (µv,�v)

µa ⇠ �(1, 2);�a ⇠ HN (0, .5)

a ⇠ N (µa,�a)

µTer ⇠ U(0, 1);�Ter ⇠ HN (0, .5)

Ter ⇠ N (µTer ,�Ter)

v̂t,s =

8
<

:
vs, if acct,s = 1

�vs, if acct,s = �1
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�⌘� o options
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Figure B.2: Graphical representation of the Bayesian hierarchical full reinforcement learning
(RL) model. Shaded nodes represent observed variables, while non-shaded nodes represent
latent variables. Squared nodes represent deterministic variables.
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RTt,s ⇠ Wiener(v̂t,s, as, Ters , .5)

where Wiener is the Wiener distribution (Navarro & G.Fuss, 2009) with parameters drift

rate, threshold, non-decision time, and relative starting-point, � is a gamma distribution

with parameters shape and scale, and U is a uniform distribution with parameters lower

and upper bounds. In our case, the starting-point is fixed at .5, since the options were

randomly positioned on the right or left of a fixation cross across the trials and we therefore

assumed that participants were not biased towards a particular position.

A graphical representation of the Bayesian hierarchical full reinforcement learning

di↵usion decision model (RLDDM) can be seen in Figure B.4. The model priors and hyper-

priors were specified as:

µvmax ⇠ N (0, 1);�vmax ⇠ HN (0, .5)

vmax ⇠ exp(N (µvmax ,�vmax)

µvmod ⇠ N (�1, 1);�vmod ⇠ HN (0, .5)

vmod ⇠ exp(N (µvmod ,�vmod))

µafixed ⇠ �(1, 2);�afixed ⇠ HN (0, .5)

afixed ⇠ N (µafixed ,�afixed)

µamod ⇠ N (0, .1);�amod ⇠ HN (0, .1)

amod ⇠ N (µamod ,�amod)

Priors and hyper-priors for ⌘± were the same as in the RL model, while for Ter they were

the same as in the DDM.
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Figure B.3: Graphical representation of the Bayesian hierarchical di↵usion decision model
(DDM). Shaded nodes represent observed variables, while non-shaded nodes represent latent
variables. Squared nodes represent deterministic variables.
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Figure B.4: Graphical representation of the Bayesian hierarchical full reinforcement learning
di↵usion decision model (RLDDM). Shaded nodes represent observed variables, while non-
shaded nodes represent latent variables. Squared nodes represent deterministic variables.
Vectors are represented in bold font.
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Table B.1: Group parameter estimates of the full reinforcement learning model.

Parameter M SD 2.5% percentile 97.5% percentile

�(µ⌘+) 0.07 0.02 0.04 0.10
�⌘+ 0.57 0.11 0.38 0.82

�(µ⌘�) 0.24 0.04 0.17 0.34
�⌘� 0.32 0.21 0.02 0.79

exp(µ✓) 0.35 0.05 0.26 0.48
�✓ 0.63 0.12 0.44 0.88

Note. The best fitting reinforcement model had separate learning rates ⌘+ and ⌘� for positive and
negative prediction errors, and fixed sensitivity ✓ throughout learning. Note that µ⌘+ , µ⌘� , and µ✓

were transformed for interpretability.

B.3 Results of parameter estimation

In this section we report the results of estimation of the group parameters for the

best fitting models in each class of models (i.e., RL, DDM, RLDDM, and the models of

Pedersen et al., 2017).
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Table B.2: Group parameter estimates of the di↵usion decision model.

Parameter M SD 2.5% percentile 97.5% percentile

µv,di↵ 0.67 0.07 0.54 0.81
�v,di↵ 0.33 0.05 0.24 0.45
µv,easy 1.28 0.08 1.11 1.44
�v,easy 0.42 0.07 0.31 0.58
µa,AB 1.97 0.06 1.86 2.09
�a,AB 0.27 0.05 0.19 0.37
µa,AC 2.11 0.08 1.94 2.27
�a,AC 0.39 0.07 0.28 0.54
µa,BD 1.81 0.06 1.69 1.94
�a,BD 0.31 0.05 0.22 0.42
µa,CD 1.70 0.05 1.61 1.80
�a,CD 0.23 0.04 0.17 0.32
µTer 0.75 0.02 0.71 0.80
�Ter 0.13 0.02 0.10 0.17

Note. The di↵usion decision model had separate drift rate v for easy (between AC and BD) and
di�cult (between AB and CD) choices, a di↵erent threshold a for each pair of options, and one
non-decision time Ter.
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Table B.3: Group parameter estimates of the full reinforcement learning di↵usion decision
model.

Parameter M SD 2.5% percentile 97.5% percentile

�(µ⌘+) 0.07 0.02 0.03 0.12
�⌘+ 0.75 0.15 0.50 1.09

�(µ⌘�) 0.08 0.02 0.05 0.14
�⌘� 0.58 0.13 0.37 0.87

exp(µvmod) 0.48 0.10 0.32 0.70
�vmod 0.85 0.14 0.59 1.14

exp(µvmax) 3.47 0.25 2.98 3.98
�vmax 0.31 0.07 0.20 0.47
µafixed 1.00 0.20 0.62 1.39
�afixed 0.97 0.14 0.73 1.26
µamod -0.010 0.006 -0.021 0.001
�amod 0.027 0.004 0.020 0.037
µTer 0.76 0.03 0.71 0.81
�Ter 0.13 0.02 0.10 0.17

Note. The full reinforcement model had separate learning rates ⌘+ and ⌘� for positive and negative
prediction errors, two parameters to describe the non-linear mapping between the di↵erence in values
and the drift rate, a scaling parameter vmod, and an asymptote vmax, one fixed threshold parameter
afixed, one value-modulation parameter amod, and finally one non-decision time Ter. Note that µ⌘+ ,
µ⌘� , µvmod , and µvmax were transformed for interpretability.
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Table B.4: Group parameter estimates of the model of Pedersen et al. (2017).

Parameter M SD 2.5% percentile 97.5% percentile

�(µ⌘+) 0.09 0.02 0.05 0.14
�⌘+ 0.57 0.11 0.39 0.81

�(µ⌘�) 0.17 0.03 0.12 0.25
�⌘� 0.47 0.13 0.24 0.75

exp(µm) 0.14 0.01 0.12 0.17
�m 0.41 0.08 0.27 0.60

exp(µbp) 0.013 0.005 0.005 0.023
�bp 1.321 0.237 0.894 1.821
µbb 1.85 0.06 1.74 1.95
�bb 0.27 0.04 0.20 0.36
µTer 0.75 0.03 0.70 0.80
�Ter 0.13 0.02 0.10 0.17

Note. The model of Pedersen et al. (2017) had separate learning rates ⌘+ and ⌘� for positive and
negative prediction errors, a drift rate scaling parameter m, two parameters to define the trial-by-
trial decrease of threshold, bp and bb, and one non-decision time Ter. Note that µ⌘+ , µ⌘� , µm, and
µbp were transformed for interpretability.
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B.4 Parameter recovery

Models in decision making, and particularly RL models, can su↵er from poor

identifiability and parameter recovery, especially when the information content in the data

is low (Spektor & Kellen, 2018). To alleviate this concern, we conducted a parameter

recovery study for the most complex model, the one that is most likely to su↵er from

poor identifiability. We ran 10 independent simulations based on the original dataset (i.e.,

with the same number of participants and trials per participant) and using the most likely

samples of the estimated joint posterior distribution. We then estimated the group and

individual parameters for each individual synthetic dataset as described in the Methods

section.

We inspected the results in three di↵erent ways: (1) correlations across the samples

of the group parameters (i.e., mean and standard deviations); (2) ability to correctly infer

the group means; (3) ability to correctly infer the individual parameters, summarized as

mean and median of the individual posterior distributions.

The correlations across samples can be seen in Figure B.5, obtained by averaging

the correlation matrices across the independent simulations, together with the SD across

correlations. The highest observed significant positive correlation (⇢=.19, p¡.05) was found

between �vmax and �vmod , while the highest significant negative correlation (⇢=-.15, p¡.05)

was found between µvmax and µvmod .

The posterior distributions of the mean group parameters for the 10 independent

simulations can be seen in Figure B.6. While most group means and standard deviations

were successfully recovered, �vmax was sometimes underestimated.

Finally, recovery of individual-level parameters is shown in Figure B.7. Most

parameters recovered well and showed a slight shrinkage to the mean (which is a feature of

hierarchical models).
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Figure B.5: Mean (and, between brackets, SD) of the correlation between the samples of
the group-level parameters, across simulations.
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Figure B.6: 95% BCI of the estimated mean and standard deviation of the group parameter
distributions (grey lines) and true generating group parameters (grey squared dots).
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Figure B.7: Scatter plot of the estimated individual parameters, summarized as mean
and median of the posterior distribution, against the true generating parameters. All 10
simulations are plotted here together.
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Figure C.1: Temporal signal-to-noise ratio (tSNR) across regions of interests (ROI): left
and right substantia nigra (SN) and left and right ventral tegmental area (VTA). Bars
represent 95% confidence intervals.
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Figure C.2: Hard lines: Pauli et al. (2018)’s deterministic masks for the ventral tegmental
area (VTA), parabrachial pigmented nucleus (PBP) – which together form what is usually
referred to as VTA – substantia nigra pars reticulata (SNpr), and and pars compacta(SNpc)
– which together form the SN. Red to yellow gradients: probabilistic map of the VTA,
estimated in the current study. Blue to light-blue gradient: probabilistic map of the SN,
estimated in the current study. Note that, in the probabilistic maps, darker colors represent
lower probability for a voxel to belong to the ROI. Only voxels with probability higher than
30% were kept. In the top row, the background image is Pauli et al. (2018)’s template,
while the mean functional image of the current study, in MNI space, is the background in
the bottom row.



164

A

R

P

L

S

R

I

L

S

P

I

A

A

R

P

L

S

R

I

L

S

P

I

A

1 cm

vSN 
(Zhang)

mSNc 
(Zhang)Probabilistic 

VTA

Probabilistic 
SN

1 cm

lSNc 
(Zhang)

Figure C.3: Hard lines: Zhang et al. (2017)’s deterministic masks for the medial and
lateral parts of the substantia nigra pars compacta (mSNc and lSNc) and for the ventral
part of the substantia nigra (vSN) – which together form the SN. Red to yellow gradients:
probabilistic map of the VTA, estimated in the current study. Blue to light-blue gradient:
probabilistic map of the SN, estimated in the current study. Note that, in the probabilistic
maps, darker colors represent lower probability for a voxel to belong to the ROI. Only
voxels with probability higher than 30% were kept. In the top row, the background image
is Pauli et al. (2018)’s template, while the mean functional image of the current study, in
MNI space, is the background in the bottom row.
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