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Abstract
In silico design of new molecules and ma-
terials with desirable quantum properties by
high-throughput screening is a major challenge
due to the high dimensionality of chemical
space. To facilitate its navigation, we present
a unification of coordinate and composition
space in terms of alchemical normal modes
(ANMs) which result from second order per-
turbation theory. ANMs assume a predomi-
nantly smooth nature of chemical space and
form a basis in which new compounds can be
expanded and identified. We showcase the
use of ANMs for the energetics of the iso-
electronic series of diatomics with 14 electrons,
BN doped benzene derivatives (C6−2x(BN)xH6

with x = 0, 1, 2, 3), predictions for over 1.8 mil-
lion BN doped coronene derivatives, and genetic
energy optimizations in the entire BN doped
coronene space. Using Ge lattice scans as ref-
erence, the applicability ANMs across the pe-
riodic table is demonstrated for III-V and IV-
IV-semiconductors Si, Sn, SiGe, SnGe, SiSn, as
well as AlP, AlAs, AlSb, GaP, GaAs, GaSb,
InP, InAs, and InSb. Analysis of our results
indicates simple qualitative structure property
rules for estimating energetic rankings among
isomers. Useful quantitative estimates can also

be obtained when few atoms are changed to
neighboring or lower lying elements in the pe-
riodic table. The quality of the predictions of-
ten increases with the symmetry of system cho-
sen as reference due to cancellation of odd or-
der terms. Rooted in perturbation theory the
ANM approach promises to generally enable
unbiased compound exploration campaigns at
reduced computational cost.

1 Introduction
A quantum mechanics based understanding of
chemical compound space (CCS) is crucial for
gauging the predictive power and versatility of
theoretical chemistry models, as well as and for
the computational design of molecular and solid
matter. Due to its universality to account for
the physics of electrons which govern the be-
havior of matter the use of quantum mechan-
ics is mandatory in this context. The com-
plexity of its solutions, however, hampers the
intuitive understanding and conceptualization
of the solutions obtained. High-throughput-
screening campaigns have therefore been pro-
posed to tackle materials design challenges,1–3
and extensive materials quantum data records
have been established.4–7 Still, the high dimen-
sionality of CCS8,9 combined with the consid-
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erable cost for repeatedly evaluating quantum
properties from scrach severely hampers even
the most sophisticated optimization algorithms,
let alone screening.

Figure 1: The shell-structure of alchemi-
cal hyper-spheres, illustrated for the chemical
space of all diatomics with 14 electrons (ANM1

= 1/
√

2− 1/
√

2, ANM2 = 1/
√

2 + 1/
√

2, ε1 =
−3.65 a.u., ε2 = −2.987 a.u.. Homo-nuclear di-
atomics (vertical axis) correspond to the ridge.
Interatomic distance dependence is shown in 2
for all neutral diatomics (horizontal axis).

Given thousands of previously acquired rep-
resentative reference examples used for train-
ing, quantum machine learning models have re-
cently emerged as a viable option to further
accelerate materials design by multiple orders
of magnitude,10–15 reaching prediction errors
on par with DFT.16,17 Alas, also these meth-
ods require representative training sets, and the
combinatorial nature of chemistry simply pro-
hibits the establishment of a comprehensive en-
cyclopedia. Consequently, more powerful ap-
proaches are needed, e.g. exploiting a more rig-
orous notion of chemical space.18 Here, we in-
vestigate such an alternative, physics- rather
than statistics-based approach for the sampling
of CCS which reaches machine learning speed
and accuracy. Instead of massive training sets
which must be representative, it requires only a
single reference calculation which must be rel-
evant. It is rooted in second-order perturba-
tion theory and includes variations in nuclear

charges, a.k.a. “alchemical changes”. Alchemi-
cal perturbations have been used in quantum
chemistry every since Hückel’s work on pre-
dicting substituent effects in benzene,19 and
Pauling’s follow up work.20,21 More modern ap-
proaches include Refs.,22–31 and more recently,
substantial progress has been made along sim-
ilar lines32–41 using first and second order per-
turbations. Here, we use second order pertur-
bation theory to introduce alchemical normal
modes (ANMs), resulting from diagonalization
of a unified Hessian, to form a complete, low-
dimensional, and intuitive basis which spans
CCS. Building on this, we provide a novel un-
derstanding of the structure of chemical space,
and we show how to utilize it for solving inverse
design problems with unprecedented speed and
accuracy. The expansion of individual query
molecules in their ANMs enables rapid energy
estimates which we demonstrate for screen-
ing over 1.8 M BN-doped coronene derivatives
based on a single quantum reference calcula-
tion.
The remainder of this paper is structured as

follows, we introduce the theoretical underpin-
nings of the ANMs in the Theory section, ex-
emplifying their usage for molecular nitrogen
which is sufficiently simple to easily gain an
intuition. Subsequently, we demonstrate and
assess the performance of ANMs for the com-
plete CCS of all BN doped benzene derivatives.
ANMs of coronene are then used to (i) predict
electronic energies of over 1.8 M of its BN doped
derivatives, and (ii) to discover those structures
with lowest and highest lying energy, as identi-
fied by a genetic optimization algorithm. The
applicability of ANMs is also demonstrated for
solid systems, as exemplified for III-V and IV
semi-conductors. After the discussion of our re-
sults we briefly conclude this investigation. Fi-
nally, methodological details are given for the
computational aspects.

2 Theory
Within the Born-Oppenheimer approxima-
tion, the total potential ground-state energy
of a compound, U = E + VNN , consists
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of the nuclear Coulomb repulsion (VNN =∑
I>J ZIZJ/|RI − RJ |) and the electronic

energy E, the solution of the electronic
Schrödinger equation (SE). In order to facilitate
the discussion, all results and discussions in the
following will be concerned exclusively with the
latter. Subsequent addition of the VNN -term,
often necessary when aiming for comparison
to experimental numbers, is trivial since com-
position and coordinates are always assumed
to be known. From the quantum mechanical
point of view of the potential energy hyper-
surface, systems differ only by nuclear charges
{ZI}, atomic coordinates {RI}, and number of
electrons N . Within second order perturbation
theory, we can therefore Taylor expand the elec-
tronic energy of any target system xt around
the electronic energy of a reference system x0,

E(xt) = E(x0) + gdx +
1

2
dxTHdx + · · ·(1)

where x = (Z1, Z2, · · · , ZM ,R1,R2, · · · ,RM , N),
and g and H represent a unified gradient and
Hessian, respectively. First order terms are
firmly established for all variables through the
Hellmann-Feynman theorem for changes in nu-
clear positions (to relax or run ab initio molecu-
lar dynamics42), and charges.22,27,32,33,36,37,43–45
The derivative with respect to N is related
to ionization potential and electron affinity by
virtue of Koopman’s and Janak’s theorem,46
and exhibits the well established derivative
discontinuity at integer N ,47,48 so important
for the construction of improved exchange-
correlation approximations.49
Some elements in the Hessian,

H =



∂2E0

∂ZI∂ZJ

∂2E0

∂ZI∂RJ

∂2E0

∂ZI∂N

∂2E0

∂RI∂ZJ

∂2E0

∂RI∂RJ

∂2E0

∂RI∂N

∂2E0

∂N∂ZJ

∂2E0

∂N∂RJ

∂2E0

∂N2


(2)

are also part of text-book chemistry: The co-
ordinate subspace matrix corresponds to the
conventional Hessian, related to the harmonic
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Figure 2: TOP: The electronic energy is shown
as a function of interatomic distance and differ-
ence in nuclear charge. BOTTOM: The error of
ANM based predictions of neighboring systems
is shown at fixed interatomic distance at 1.1 Å.
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molecular vibrational normal modes, or the
second order derivative of the electronic en-
ergy with respect to the number of electrons
is the chemical hardness, introduced by Parr
and Pearson.50 The ∂2E0

∂ZI∂ZJ
block corresponds to

the alchemical hardness.35,43 The least conven-
tional off-diagonal blocks correspond to nuclear
Fukui functions, ∂2E0

∂N∂RJ
,51 alchemical Fukui

Functions ∂2E0

∂N∂ZJ
,43,44 and the alchemical force,

∂2E0

∂RI∂ZJ
=
∫
dr(∂RI

ρ(r))/|r−RJ | =
∫
dr(ρ(r) +

ZJ∂ZJ
ρ(r))(r−RI)/|r−RI |3 (due to Maxwell-

relation). To the best of our knowledge, such a
unified Hessian has not yet been studied in full,
despite the well-known non-linearities of quan-
tum properties in chemical space.
In analogy to vibrational normal modes, di-

agonalization of this unified Hessian for any
meaningful reference system defines an orthog-
onal and complete basis in which other chem-
ical compounds and their intra-molecular mo-
tion can be expanded. The resulting eigen-
values and eigenfunctions, the “alchemical nor-
mal modes” (ANMs), correspond to principal
curvatures, and thus carry fundamental impor-
tance for our understanding of CCS (Transfor-
mation from Hessian matrix to second funda-
mental form may be required). The composi-
tion of any target molecule can be linearly ex-
panded in the complete vector basis spanned
by the ANM matrix (Q) of the reference com-
pound x0, i.e. xt = x0 + dx. The necessary
coefficients are given by c = Qdx, resulting in
the second order energy estimate,

E(xt) ≈ E(x0) + gdx +
1

2
cTΥc (3)

where Υ is the diagonal eigenvalue matrix of
the unified Hessian H. This framework leads
to an encompassing definition of the structure
of CCS which couples configurational, com-
positional, and electronic degrees of freedom.
Let us consider projections onto lower dimen-
sional manifolds of this structure. Firstly,
for fixed composition (|{ZI}), the conventional
picture of changes in configurations (geome-
try) and electron number (redox-properties),
emerges. Secondly, when fixing geometry and
electron number for n atom systems instead, an

n-dimensional alchemical hyper-sphere (AHS)
can be defined for reference compounds with
maximal symmetry (vide infra why) being at
the origin (i.e. that system for which all atoms
have same nuclear charge, ZI = Np/n ∀ I where
Np = |Z|). The AHS has a shell structure where
integer nuclear charge combinations emerge for
integer radii, |dZ|, i.e. systems with a corre-
spondence in reality. Fig. 1 illustrates the AHS
for the di-atomics with N = 14 electrons which
can be expanded in ANMs of molecular nitro-
gen. ANM q1 corresponds to charge-neutral
simultaneous depletion and growth of the nu-
clear charge at the two respective atomic sites,
covering the series N2, CO, BF, ..., AlH, Si.
ANM q2 corresponds to the simultaneous addi-
tion or removal of protons at the two respec-
tive atomic sites, covering the series ..., B4−

2 ,
C2−

2 , N2, O2+
2 , F4+

2 , ... Linear combinations
of q1 and q2 define all the other possible di-
atomics which can be defined on shells with
radii |dZ| = 1, 2, 3, .... e.g. NO+, expanded in
ANMs of N2, corresponds to 1/

√
2q1 + 1/

√
2q2.

Obviously, while target compounds with large
q2 component will be increasingly charged and
unstable without changes in electron number,
in the absence of external fields or extreme con-
ditions, this extended unified structure of CCS
is general in scope as it accounts for a contin-
uum of “alchemical” chemistries with fractional
nuclear charges. We note that extensions of re-
ality to include such fictitious degrees of free-
dom have a long-standing track-record in ther-
modynamics and statistical mechanics, e.g. in
the form of extendended Lagrangians, and can
be used for any state function.

3 Results and discussion
Within the first subsection we present and
discuss results obtained for the neutral iso-
electronic diatomic series with 14 electrons, in-
cluding all interatomic distances and all pos-
sible nuclear charge combinations. In order
to facilitate the discussion and visualization of
results in the subsequent subsections, we re-
strict ourselves to fixed geometries and electron
number, and we focus on changes in composi-

4



Figure 3: TOP: Expansion of BN doped benzene mutants in alchemical normal modes of benzene
(ordered by eigenvalue (Ha)). BOTTOM: ANM based predicted electronic energy and correspond-
ing target energy of each mutant in ascending order. ANMs of benzene and eigenvalues are shown
as inset.

5



0.0 500.0 k 1.0 M 1.5 M
# index

-25

-20

-15

-10

-5

∆E
 [a

.u
.]

ANM
DFT

20 k40 k60 k80 k
# histogram

-25

-20

-15

-10

-5

∆E
 [a

.u
.]

histogram

Figure 4: TOP: Alchemical normal modes
of coronene and corresponding eigenvalues in
Hartree. BOTTOM: ANM based estimates
of energy change from coronene for ∼1.8 M
BN doped coronene mutants in ascending order
(black solid). Their distribution is shown as a
histogram (black dashed). Validating DFT re-
sults for sub-sample of ∼2 k examples shown
for comparison (red).

tion only without any loss of generality. This
restriction is obviously severe for large, high-
dimensional systems which sample many effec-
tive degrees of freedom, e.g. proteins with many
shallow conformational minima. However, for
materials classes with rigid lattices and an ef-
fectively low dimensionality e.g. crystals with
high symmetry under ambient conditions, the
relevant configurational degrees of freedom can
easily be scanned and enable the exploration of
combinatorially growing compositional spaces
with ease.

3.1 Diatomic series with 14 elec-
trons

Figure 5: Genetic algorithm maximization (up-
per panel) and minimization (lower panel) on
electronic energy for (BN)12H12. The differ-
ence electronic energy for optimization history
(gray dotted lines), current optimal molecule
(black crosses), average over the parent pool
(blue dashed lines) and the corresponding chil-
dren (green dashed lines) are plotted respec-
tively. The optimized molecules are shown on
the right where B and N are represented by red
and blue atoms.

The projection of the unified ANMs based
structure of CCS onto lower dimensional re-
alistic systems is straight-forward. We exem-
plify this for the electronic energy of the neu-
tral iso-electronic N = 14 electron series with

6



Figure 6: Genetic algorithm energy optimiza-
tion run. The target energy corresponds to left
hand molecule. The black line (best) corre-
sponds to the best molecule in population. The
blue line (average) corresponds to the average
value of the population. The target molecule
is discovered within 7 steps out of ∼4 billion
compounds. Energies of mid and right hand
side molecule deviate only by 0.4 and 0.5 mHa
from target.

variable Z and {RI}, as shown in Fig. 2. Note
the text-book dependence of the electronic en-
ergy on interatomic distance (decaying towards
the united atom energy of Si), the well known
concavity for fixed N and {R},18 and the ridge
corresponding to the homo-diatomic N2 (∆Z
= 0). The apparent monotonic and smooth be-
havior of the electronic energy in this sub-space
corroborates the applicability of perturbation
theory. This implies that, in analogy to vibra-
tional normal modes, the gradient with respect
to Z must be zero at the ridge. And it is obvi-
ous, indeed, that the corresponding Hellmann-
Feynman derivative,

∫
dr ρ(r)( 1

|r−R1
− 1
|r−R2|),

30

must be zero due to the symmetry of the elec-
tron density, just as well as all higher odd or-
der energy derivatives. As such, when mutat-
ing nuclear charges, the reference system with
symmetrical atomic densities will always corre-
spond to a maximum in the electronic energy E.
This observation would suggest that it is prefer-
able to select reference systems with maximal
symmetry in order to quench odd higher order
effects.

Numerical electronic energy estimates of al-
chemically adjacent systems |dZ| = 2 within
the same neutral iso-electronic diatomic se-
ries with N = 14 electrons (lower panel in
Fig. 2) support this idea: The prediction er-
ror increases systematically for estimates of CO,
BF, and BeNe when using systems as refer-
ence which decrease in symmetry, i.e. N2, CO,
and BF, respectively. These results confirm,
not surprisingly, that the harmonic approxi-
mation works best at the ridge, in complete
analogy to harmonic vibrational normal-modes
working best at zero Kelvin. The error be-
comes largest for changes involving substantial
changes in electron densities, e.g. when valence
electrons flow from p to s orbitals and from
principal quantum number 2 to 1 and 3 (for
example when targeting or referencing BeNe,
LiNa, or HeMg). Also note the negative sign
of the error as one predicts CO from N2, BF
from CO, and BeNe from BF. This implies an
exponent of the actual energy surface which is
larger than 2, which is in line with independent
findings for the energy of free atoms scaling as
∼ −Z7/3 1. It is also interesting to note the
left/right anti-symmetry in the error of most
predictions, e.g. the error made when predict-
ing the electronic energy of CO using BF as
a reference has the same magnitude as its re-
verse counterpart, i.e. predicting the electronic
energy of BF using CO as a reference. This
suggests, that the exponent is not much larger
than 2. And it is to be contrasted with the
findings for first order based estimates of en-
ergy changes, e.g. for alchemical predictions of
covalent bond energies,34,35 where, due to the
concavity of the electronic energy in Z, the er-
ror is clearly not symmetrical upon exchange of
reference and target system.

3.2 BN doping of benzene

While any iso-electronic diatomic series can be
expanded in the ANMs of the corresponding
homo-diatomic, the maximum ridge in the elec-
tronic energy, ANMs become less obvious for
larger molecules. Based on above symmetry

1K. Burke, oral contribution, IPAM reunion 2018
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arguments, the benzene molecule with point
group D6h emerges as an intuitive 2D poly-
atomic reference system. Considering all the
possible neutral iso-electronic changes of car-
bon to B and N it is clear that some odd order
energy derivatives will be zero due to symme-
try. Scaling up the coordinates will lead to the
electronic energy of the dissociated free atoms,
while scaling them down leads to nuclear fusion,
i.e. the energy of the united atom, Mo (Z = 42).
Here, we remind the reader that we do not con-
sider nuclear Coulomb repulsion, and that for
this and the remaining examples, ANM based
predictions are always exemplified for changes
in nuclear charges only, i.e. keeping coordinates
and electron numbers fixed.
Fig. 3 illustrates eigenvalues and ANMs of

benzene and their use for predicting the iso-
electronic doping of benzene with B and N
(keeping number of electrons and geometry con-
stant) at all possible atomic sites, i.e. for all pos-
sible constitutional isomers with sum formula
C4BNH6, C2(BN)2H6, and (BN)3H6. It is in-
triguing to note the similarity of form, degen-
eracy, and energy ordering to ordinary Hückel
orbitals of benzene. Also note that, in anal-
ogy to Hückel, the eigenvalues decrease as the
number of nodes in the ANM decrease. Obvi-
ously, however, there is no π-electron structure
at the atom’s origin, and also the eigenvalues do
not correspond to solutions to Hückel’s secular
equation. While the eigenvalues depend on the
level of theory used, because of symmetry the
ANMs are independent of that.
Apart from their appealingly simple and in-

sightful structure, one can use these ANMs to
easily estimate relative energetics of possible
mutations on the back of an envelope. For
example, using ANM based CCSD predictions
of the electronic energies according to Eq. 3,
i.e. E(xt) ≈

∑
i εic

2
i , of the three constitutional

isomers of BN doped benzene result in -1.226,
-1.312, -1.348 Ha for ortho, meta, and para
substitutions, respectively. Compared to actual
values, the energetic ordering is conserved, and
the estimates are in decent agreement with the
corresponding CCSD energies (-1.275, -1.362,
-1.401 Ha), i.e. systematically overestimating
the truth by ∼0.05 Ha. Predicted and actual

changes in energy with respect to pure benzene
are also on display in Fig. 3 for all the pos-
sible mutants, and indicate very decent quali-
tative agreement. Qualitatively, the energetic
order can also be explained by noting that the
closer the poles of the perturbing potential, the
smaller the integral of their product with the
electron density response, the smaller the de-
viation from the energy of benzene. This is
consistent with the fact that ANMs with fewer
nodes have lower eigenvalues. By consequence,
the isomers with sum formula (BN)3H6 will
decrease in energy when decreasing the num-
ber of nodal surfaces between B and N mu-
tations, i.e. E(B3N3H6) < E(B2NBN2H6) <
E(BNBNBNH6). Inspection of the linear com-
bination of ANMs resulting in each of these
isomers also clearly indicates that the energy
decays as ANMs with fewer nodes are being
blended in. Unfortunately, before one can com-
pare to experiments, addition of the nuclear re-
pulsion terms will obfuscate this ranking unless
the inequalities introduced by Mezey can be ap-
plied.24 We believe nevertheless that these rules
are obviously useful for estimating the rank-
ing of electronic energies in constitutional iso-
mers which is of utmost relevance for gaining a
deepened and more intuitive grasp of quantum
chemistry based relationships. We do not think
that these rules have been noted yet.

3.3 BN doping of coronene

In order to explore the applicability of this ap-
proach to the computational design problem
of real materials we have considered the case
of BN doping also for coronene (C24H12), rele-
vant for molecular electronics applications.52,53
BN doping of coronene results in the 24 ANMs
and eigenvalues shown in the upper panel of
Fig. 4. Coronene possesses three symmetrically
distinct classes of carbon atoms: Six atoms cor-
responding to the inner ring, six atoms bonded
to the inner ring, and the twelve outer atoms.
Consequently, first order derivatives with re-
spect to iso-electronic BN doping within any
of these three groups of atoms are zero. Doping
with BN pairs within these classes, we have gen-
erated over 1.8 M mutants, and estimated their

8



8.5 8.0 7.5 7.0 6.5 6.0 5.5
Etar [Ha]

8.5

8.0

7.5

7.0

6.5

6.0

5.5
Epr

d  [
Ha

]

Si
SiGe

Sn
SiSn

GeSn
GaAs

= +AlP
= +AlAs
= +AlSb
= +GaP
= +GaSb
= +InP
= +InAs
= +InSb

Figure 7: Alchemically predicted vs. true scat-
ter plot for first (gray) and second order (black)
estimates of total energies for various III-V
and IV-IV semiconductors expanded in Ge
ANMs in periodic table (blue/red within pe-
riod, white/black within column).

energy based on coronene’s ANMs. Duplicates
have been removed using the sorted Coulomb
matrix representation.10,54 The resulting ener-
gies are shown in ascending order in the lower
panel of Fig. 4, together with a sub-sample of
more than two thousand validating cases for
which the corresponding DFT PBE energy has
been calculated. Clearly, the overall qualitative
trends of DFT and ANM based estimates agree
well with each other. A linear fit of predic-
tions to validations for the 2 k mutants yields
a MAE of ∼28 kcal/mol. Further analysis in-
dicates that the error grows with number of
BN pairs by, on average, ∼6.5 kcal/mol per BN
pair. In the case of the hundred coronene mu-
tants closest in energy to coronene, for exam-
ple, the MAE amounts to only ∼2.1 kcal/mol.
Fig. 4 also reports the energy distribution of the
1.8 M coronene mutants. Discrete peaks cor-
respond to higher lying mutant stoichiometries
with less BN content.
We have also explored the usefulness of ANM

based energy estimates for the molecular design
challenge of finding those constitutional isomers
of (BN)12H12 with the respectively lowest and
highest electronic energy. A genetic optimiza-
tion algorithm based on first (which now can
be non-zero due to BN doping among symmet-
rically inequivalent carbon atoms) and second

order energy estimates only converges within a
few hundred steps. The optimization history,
together with the converged molecules, are on
display in Fig. 5. The most and least stable
isomers correspond, not surprisingly, to those
N and B distributions which localize the va-
lence electron density most and least, respec-
tively. Results in Fig. 6 summarize the genetic
optimization history when searching for the en-
ergy of the coronene mutant resulting from BN
doping in para position of the inner carbon
ring. The target molecule is identified by the
genetic optimizer after just over 1500 optimiza-
tion steps.
These calculations can serve to illustrate the

scope of the computational savings which result
from the use of ANMs: ∼1000 CPU core hours
were necessary on average to calculate the over
2 k validating DFT energies. The ANM based
estimates of 1.8 M mutants, by comparison, in-
curred negligible overhead (∼30 CPU core min-
utes).

3.4 Expanding III-V and IV-IV
semiconductors in ANMs of
Ge

Finally, we have investigated the applicability
of ANMs to solids. More specifically, we have
considered iso-valence-electronic expansions in
the ANMs resulting from a minimal unit cell in
the pseudopotential parameter space of two Ge
atoms. Using 15 parameters in the analytical
pseudopotentials of Goedecker and Hutter,55,56
four dimensions have been considered per atom:
Right and left in a period of the periodic ta-
ble (analogous to Z as discussed above), and
up and down in a column of the periodic table
(corresponding to changes in principal quantum
number). The pseudopotential parameters were
coupled to these dimensions with the chain-rule,
as explained in the Methods section. The re-
sulting projection yields the ANMs of Ge used
for expansion as shown in Fig. 7 for all possible
IV-IV and III-V semiconductors which neigh-
bor Ge in the periodic table, i.e. Si, Sn, SiGe,
SnGe, SiSn, as well as AlP, AlAs, AlSb, GaP,
GaAs, GaSb, InP, InAs, and InSb. More specif-

9



ically, the figure shows first and second order
total potential energy estimates vs. actual DFT
evaluations for various lattice scans. Note that
first order gradients are non-zero due to lack of
symmetry in pseudopotential parameter space,
i.e. while the reference electron density is sym-
metric, the perturbing potential is not perfectly
anti-symmetric. A clear correlation is found
for first order estimates. Inclusion of second
order contributions through ANM based pre-
dictions improves the overall correlation, and,
maybe more importantly, results in a system-
atic overestimation of the energies of the target
systems (consistent with aforementioned obser-
vations made for molecules). The prediction
quality for IV-IV crystals is particularly en-
couraging, in all likelihood profiting from near-
linear changes in valence electron density as one
changes from one period to the next. ANM
based estimates of III-V materials, however, are
more challenging. However, the errors appear
to be rather systematic in their overestimation.
This raises hope that it can still be quite feasi-
ble to correct it once third order contributions
are being included.

4 Conclusions
The Born-Oppenheimer approximation im-
plies a parametric dependency of the elec-
tronic ground-state energy on nuclear posi-
tions, charges, and electron number. In order
to obtain a general yet rigorous framework of
chemical space, we have unified all the relevant
degrees of freedom by extending the ordinary
normal mode procedure used for atomic po-
sitions by alchemical normal modes (ANMs)
which also include nuclear charges and electron
number. Applied within Taylor expansions,
the energy of iso-electronic target compounds
can be expanded in ANMs. The resulting es-
timates are exact up to third order if electron
densities in reference system and perturbing
potential are symmetric and anti-symmetric,
respectively. We have illustrated the concept
for diatomics using molecular nitrogen as a ref-
erence, for all and ∼1.8 M BN doped mutants
of benzene and coronene, respectively. The ap-

plicability to solids has been demonstrated for
all III-V and IV-IV semiconductors neighbor-
ing GeGe. Future extension to higher orders to
improve predictive power, to other properties,
excited states, and generalizations to entire
functional groups can also be envisioned.

5 Methods

6 Unified Hessian matrix for
N2

The full Hessian matrix as defined in Eq. 2
for N2 at its equilibrium geometry (using
PBE57 with uncontracted cc-pVDZ basis func-
tion in Gaussian0958). All matrix elements are
rounded to the third decimal numbers.

H =

∆Z1 ∆Z2 ∆R ∆N


−3.126 0.139 0.121 −0.575 ∆Z1

0.139 −3.126 0.121 −0.575 ∆Z2

0.121 0.121 −9.477 −0.121 ∆R
−0.575 −0.575 −0.121 0.139 ∆N

(4)
The corresponding eigenvalues and eigenvec-

tors are

ANM1 ANM2 ANM3 ANM4


−0.018 0.168 0.707 0.687 ∆Z1

−0.018 0.168 −0.707 0.687 ∆Z2

1. 0.016 −0. 0.022 ∆R
0.01 −0.971 −0. 0.238 ∆N
−9.48 0.34 −3.27 −3.18 ε

(5)
where ANM1 and ANM2 are mostly chang-

ing R and N with eigenvalues -9.48 [Ha/bohr2]
and 0.34 [Ha/e2] respectively. ANM3 (eigen-
value -3.27 [Ha/e2]) is purely antisymmetric in
changes in Z1 and Z2. ANM4 (eigenvalue -
3.18 [Ha/e2]) is remarkable: one can see how
in this principle component the increase of the
nuclear charge on both atoms requires also an
increase in number of electrons (to compensate
the change in Z) and requires a slight increase
of the distance between the atoms. It should be
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noted that due the seminegative definite nature
of the linear response function, the eigenvalues
with respect to the changes in R, Z are all neg-
ative.

6.1 Computational details

For the diatomics and coronene, we used PBE57

with uncontracted cc-pVDZ Ne basis function
for all atoms in Gaussian0958 and HORTON59

for all molecular examples.
For benzene, we used CCSD/cc-pvdz in Gaus-

sian0958 with the massage keyword to modify
the nuclear charges. As such, the Carbon cc-
pvdz basis functions were also used for Nitrogen
and Boron (uncontracting it was computation-
ally very expensive and created instabilities we
could not resolve). To calculate the curvature,
Benzene was calculated +- 0.25×eigen vector.
So for the completely symmetric A1g, this
means the carbon nuclear charge +0.25×1/

√
6

= 6.1020620725.
For the energy calculations of solids, a 1x1x1

face-centered cubic (fcc) primitive super cell
with two atoms was used (no k-point sampling)
within the plane-wave basis set code CPMD,60
in combination with the PBE57 functional, a
plane-wave cutoff of 100 Ha, and Goedecker-
Teter-Hutter pseudopotentials.55,56

6.2 ANM based estimates

One can expand the potential energy ground
state hyper surface of any target system
Et({R, Z}) around a symmetric iso-electronic
reference system with identical atomic coor-
dinates and energy E0 by means of a Taylor
expansion in coupling parameter 0 ≤ λ ≤ 1,

Et({R, Z}) ≈ E0 +
1

2

∂2E0

∂λ2
dλ2 + EHOT(6)

Et({R, Z}) ≈ E0 +
1

2

∑
IJ

∂2E0

∂ZI∂ZJ
dZJdZI

+EHOT

(7)

for ∂λZJ = dZJ and for dλ = 1, and EHOT
corresponding to even higher order terms. Note
that instead of nuclear charges {ZI} one can use

pseudopotential parameters {σi} just as well.
To simplify this equation, let Q be the matrix of
the eigenvectors of the second order derivative
matrix HIJ = ∂2E0

∂ZI∂ZJ
(or Hessian),

HQ = QΥ (8)

where Υ is a diagonal matrix with the eigenval-
ues εm of H. The eigenvalues εm are solutions
of the alchemical secular equation,

det(∂2
ZI ,ZJ

E0 − δIJεm) = 0 (9)

We now define the alchemical normal mode
vector Qi consisting of the columns of Q. For
a given target molecule, changes in the nuclear
charge vector (dz = ∂λz(λ)), can be expressed
in the new basis of the alchemical normal modes
as a linear combination:

c = Qdz (10)

resulting in∑
IJ

∂E0

∂ZI∂ZJ
dZIdZJ =

∑
i

εic
2
i (11)

The energy along a chosen alchemical path
z(λ) can be expressed as E(z(λ)) where the
corresponding alchemical derivative at the ref-
erence system 0 is

∂λU0

(
z(λ)

)
= ∇E0(z) · dz =

∑
I

(∂ZI
E0)∂λZI ,

(12)
where E0(z) = E0(Z1, · · · , ZN) is a RN 7→ R
function described by {ZI}.
Within the orthogonalization transformation,

the basis is changed from nuclear charges {ZI}
to alchemical normal modes {Qi} where the
magnitude in each dimension ci denotes the am-
plitude of each normal mode. In other words,
the energy is rewritten as

E0(z)⇒ E0(c) = E0(c1, · · · , cN). (13)

Notice that c is a linear function in λ due to
Eq. (10) where Q is independent of λ and z is
linear in λ.
The alchemical derivative within alchemical

11



normal mode basis is

∂λE0

(
c(λ)

)
=
∑
i

(∂ciE0)∂λci. (14)

Notice that ∂λci =
∑

J QiJ∂λZJ . And the sec-
ond order derivative is

∂2
λE0 = ∂λ

(∑
i

∂E0

∂ci

∂ci
∂λ

)
=

∑
i

(∑
j

∂

∂cj

∂E0

∂ci

∂cj
∂λ

)∂ci
∂λ

=
∑
ij

∂2E0

∂ci∂cj
(∂λci)(∂λcj).

(15)

Notice that ∂2
λci = 0 because dz is linear in λ.

And ∂2E0

∂ci∂cj
= δijεi is the diagonal matrix and it

is connected to ∂2E0

∂ZI∂ZJ
via

( ∂2E0

∂ci∂cj

)
ij

= QT
( ∂2E0

∂ZI∂ZJ

)
IJ

Q (16)

And the Eq. (11) can be rewritten as∑
IJ

∂E0

∂ZI∂ZJ
dZIdZJ = dzT

( ∂2E0

∂ZI∂ZJ

)
IJ
dz

= dzTQT
( ∂2E0

∂ci∂cj

)
ij
Qdz

= cT
( ∂2E0

∂ci∂cj

)
ij
c

=
∑
i

εic
2
i

(17)

6.3 Pseudopotential space

When pseudopotentials (PP) are used, ANM
space is spanned by the PP parameters. For
fcc primitive cell of two atoms, there are 30 pa-
rameters (15 per atoms). The Hessian matrix
elements can be approximate by finite difference

Hij =
∂2E

∂σi∂σj

=
∂

∂σi

( ∂E
∂σj

)
≈ ∂

∂σi

(E(σi, σj + ∆σj)− E(σi, σj)

∆σj

)
≈ 1

∆σi

(
E(σi + ∆σi, σj + ∆σj)− E(σi + ∆σi, σj)

∆σj

−E(σi, σj + ∆σj)− E(σi, σj)

∆σj

)
.

(18)
That is, there are four finite difference cal-

culations required for each of the matrix ele-
ments: E(σi + ∆σi, σj + ∆σj), E(σi + ∆σi, σj),
E(σi, σj + ∆σj), E(σi, σj), where only the first
term is unique for each element.
Note that the finite difference formula

is different for diagonal terms Hii =
E(σi+∆σi)−2E(σi)+E(σi−∆σi)

∆σ2
i

. The required finite
difference calculations are

• E(σi + ∆σi, σj + ∆σj): N(N − 1)/2 cal-
culations for i 6= j.

• E(σi + ∆σi): N calculations.

• E(σi −∆σi): N calculations.

• E(σi, σj): 1 calculation

which adds up to N2

2
+ 3

2
N + 1 calculations,

where N is the number of parameters in the
system.
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