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We introduce an orbital free electron density functional approximation based on alchemical per-
turbation theory. Given convergent perturbations of a suitable reference system, the accuracy of
popular self-consistent Kohn-Sham density functional estimates of properties of new molecules can
be systematically surpassed—at negligible cost. The associated energy functional is an approxima-
tion to the integrated energy derivative, requiring only perturbed reference electron densities: No
self-consistent field equations are necessary to estimate energies and electron densities. Electronic
ground state properties considered include covalent bonding potentials, atomic forces, as well as
dipole and quadropole moments.

With the success of electronic structure methods in
the materials, chemical, and biological sciences, the need
for ever more accurate yet ever computationally more
affordable methods grew. Approaches like the Harris
functional[1, 2] tried to employ an approximate density
rather than a fully self-consistent one by following the
Kohn-Sham scheme[3] for one step only. While the result-
ing energies have been shown to be of acceptable accu-
racy for bulk crystals[4, 5], the difference in density how-
ever is quite significant[6] and the energies of the Harris
functional are neither upper nor lower bounds to the self-
consistent energy[7, 8]. This has been attributed to the
non-variational approach and subsequently addressed by
treating the approximate wavefunction as perturbation
to the true wavefunction[9, 10]. In line of applications
however, this concept faced technical difficulties depend-
ing on the exchange-correlation functional employed[11]
and was found to depend strongly[11] of the quality of
the approximate density which often has been obtained
by superimposing self-consistent fragment densities as
suggested by Harris. Nevertheless, the Harris approach
to employ (perturbative) approximate densities has been
useful in improving convergence[11] or in deriving kinetic
energy functionals in the context of orbital-free DFT[12].
Other approaches were introduced by Foldy and Wil-
son, Reif, Frost, and Daza [13–17]. The transition func-
tional method of Nagy[18] allows to calculate energy dif-
ferences of two molecules if both their electron densities
are known. Similar approaches have helped addressing
the hard problem of a reliable kinetic energy expression
in the context of orbital-free DFT[19–21].

If and only if densities change smoothly along iso-
electronic integration path, the mean value theorem man-
dates that evaluating the integrand once for one (un-
known) point on the integration path is sufficient to
obtain an accurate energy[22]. Based on scaling nu-
clear charges, a relation for the ground state energy as
a function of the electrostatic potential at the nuclei
was given[23]. It has also been suggested to expand the
total energy in polynomials of the nuclear charges[24].
This expansion converges quickly for small systems[25]

and can treat the nuclei-electrons and electron-electron
interactions[26]. Despite the parametrization, the model
was used to show conceptionally that the electron-
electron interaction energy is limited in isoelectronic
molecular series[27] and to propose bounds on neutral
atom energies[28].

More recently, alchemical perturbations in the spirit
of Foldy and Wilson gained traction. In analogy to
the well-established adiabatic coupling in the context
of e. g. free energy calculations, the electronic Hamil-
tonians of two (isoelectronic) systems are adiabatically
coupled via an arbitrary path described by a single
mixing parameter, similar to the integration paths be-
tween molecules in the Wilson scheme[22, 29]. From
the perspective of one of the molecular endpoints, the
change in nuclear charges then can be considered to
be a perturbation[30, 31]. Although this perturbation
is by no means small, the approach has been success-
ful in screening of alkali halide crystals[32], estimating
the chemical potential of binary mixtures[33], calculat-
ing bond potentials[34, 35], estimating energies, struc-
tures and volume in solid metals[36], band-structures
in III-V semiconductors[37], predicting reaction barri-
ers and molecular adsorption on metals[38, 39], predict-
ing changes in adsorption energy of water on graphene
due to BN doping[40], calculating higher order energy
derivatives[41], exploring chemical space[42], predicting
BN doped C60[43], or probing the non-local nature of
the electron density [44]. By contrast, in this letter
we describe the application of alchemical perturbation
theory to the electron density, resulting in an orbital-
free alchemical perturbation density functional theory
(APDFT) formulation. Given a single reference electron
density and energy, accurate electron densities and ener-
gies of iso-electronic query systems with identical nuclear
positions are obtained at negligible computational cost.

The overall goal is to calculate the electronic energy
and the electron density of some target molecule if the
total electronic energy and the electron density and the
derivatives thereof are known for some reference molecule
that is identical in geometry, but may differ in atomic
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FIG. 1. Electronic energy error of He as a function of expan-
sion order n (Eq. 4) evaluated using HF and various DFA.
CCSD values from (Eq. 1) applied to a polynomial fit of E(λ).
The reference system is H2 at 1Å interatomic distance with
def2-TZVP basis set. Inset shows the HF/def2-TZVP elec-
tron density profile along the molecular axis for three λ val-
ues.

composition. This is achieved via alchemical perturba-
tion, i.e. typically coupling the two involved electronic
molecular Hamiltonians via a linear mixing parameter
λ as Ĥ(λ) ≡ λĤt + (1 − λ)Ĥr. The resulting energy
for a system can be expanded in a Taylor series around
the reference molecule (i.e. λ = 0) Et ≡ E(λ = 1) =∑∞

n=0 ∂
n
λ

〈
ψλ

∣∣∣Ĥ(0)
∣∣∣ψλ〉 /n!

∣∣∣
λ=0

which can be expressed
as

Et =

∞∑
n=0

1

n!

∂nE(0)

∂λn

∣∣∣∣
λ=0

= Er +

∞∑
n=1

1

n!

∂nE(0)

∂λn

∣∣∣∣
λ=0

(1)

According to the Hellmann-Feynman theorem[45], the
first order partial derivative is the difference in external
potential v acting on any pair of iso-electronic molecular
Hamiltonians [31],

∂E(λ)

∂λ
= 〈ψλ|Ĥt − Ĥr|ψλ〉 =

∫
dr (vt(r)− vr(r))︸ ︷︷ ︸

≡∆v

ρλ(r),

(2)

and higher order partial derivatives correspondingly from

further differentiation ∂nλE(λ) =
∫
dr∆v∂

(n−1)
λ ρλ. Inser-

tion into Eq. 1 gives for the change in energy,

Et − Er =

∞∑
n=1

1

n!

∫
dr∆v

∂n−1ρλ
∂λn−1

∣∣∣∣
λ=0

(3)

where ∂0
λρ = ρ. This integral can be restricted to the

finite volume Ω, either because both ρt(r) and ρr(r) be-
come zero far from the nuclei or because periodic bound-
ary conditions require a finite unit cell. Further assuming

uniform convergence of the sum allows to switch the sum
and the proper integral:

Et − Er =

∫
Ω

dr∆v

∞∑
n=1

1

n!

∂n−1ρλ
∂λn−1

∣∣∣∣
λ=0︸ ︷︷ ︸

≡ρ̃

=

∫
Ω

dr∆v(r)ρ̃(r) (4)

The sum builds a new shadow electron density, ρ̃ which
we can understand using integration,

Et − Er =

∫ 1

0

dλ
∂E

∂λ
=

∫
Ω

dr∆v(r)

∫ 1

0

dλρλ(r). (5)

Expansion of ρλ as a Taylor series in λ

ρt ≡ ρ(λ = 1) = ρr +

∞∑
n=1

1

n!

∂nρ(0)

∂λn
(6)

recovers exactly the expression for ρ̃. Thus, ρ̃ is neither
the density of the reference nor the target. It rather
corresponds to the lambda-averaged density. Already in
1978, Levy has shown the existence of such a density
that allows calculation of all energy contributions via
Eq. 4[22]. While Levy approximated ρ̃ by the average of
ρr and ρt, we rather focus on its approximation through
the Taylor expansion in ρr which is crucial for rendering
the computational investment constant and independent
of target system.

For N2, we exemplify ρ̃ in Fig. (3). Note also that
Eq. (5) implies convergence in λ as long as ∂λE does not
diverge. Using Kato’s cusp condition one can also demon-
strate convergence for free atoms (see SI). While we show
convergence for hydrogenic atoms and free atoms (see SI),
we cannot offer a mathematically rigorous proof of con-
vergence for all systems. It is likely, however, that the
electron density can be described by an analytic func-
tion, i.e. a function with a converging Taylor series,
since it is common in quantum chemistry calculations
to approximate the electron density with Gaussian func-
tions, both in the context of Gaussian type orbitals and
Machine Learning[46]. With Gaussian functions being
analytic and infinitely differentiable, any density deriva-
tive is analytic, as is any sum thereof, which means that
ρ̃, the lambda-averaged electron density, converges to a
finite value. As shown numerically in the following sec-
tions, this sum can be truncated after few terms for iso-
electronic alchemical interpolations at fixed nuclei. This
allows to formulate an energy functional that only de-
pends on the reference electron density ρr(r) and its per-
turbations in nuclear charge, or pseudo-potential param-
eters for that matter[35, 37], which can be connected to
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a change in λ through repeated use of the chain-rule:

∂ρ

∂λ
=
∑
I

∂ρ

∂ZI

∂ZI
∂λ

(7)

∂2ρ

∂λ2
=
∑
I

∂ρ

∂ZI

∂2ZI
∂λ2

+
∑
J

∂2ρ

∂ZI∂ZJ

∂ZI
∂λ

∂ZJ
∂λ

(8)

This way, all higher order derivatives contain only the
perturbations in nuclear charge of the reference electron
density ρ. Formally, this approach could be extended
to deal also with non-isoelectronic systems through frac-
tional number of electrons. However, due to the known
derivative discontinuities with respect to electron num-
ber, we would expect much worse performance in prac-
tice.

We find it exciting to note that no quantum calculation
is necessary for the target molecule. Its specific chemistry
enters solely by virtue of the analytically known terms,
the nuclear repulsion energy and ∆v(r). It is therefore
obvious to ask if APDFT estimates based on explicitly
correlated electron densities can be used to efficiently and
reliably estimate the energies and quantum properties
of other molecules. While interesting in general, such a
functional could be particularly useful for large screening
calculations where the total electronic energy of many
similar molecules has to be assessed very quickly, since
in this case only one self-consistent density is required.

In order to test how fast (and if) above equations con-
verge, we have first estimated the energy of He using
alchemical perturbations up to four orders for H2 as a ref-
erence system. More specifically, we have used the linear
annihilation of one proton in H2 (internuclear distance
d = 1.0 Å), and simultaneous increase of the nuclear
charge in the other atom from 1 to 2. Figure 1 shows the
resulting energy estimate errors as a function of highest
order in the Taylor expansion that has been taken into
account for this simple two-electron system. Regardless
of the reference method (HF, LDA, GGA, Hybrid-GGA,
CCSD), the error is reduced systematically with higher
order terms. Due to symmetry in geometry, even expan-
sion orders give symmetric density contributions while
odd orders give antisymmetric ones, which means that
even orders in the expansion do not contribute due to
parity of the integrand. This can be clearly seen in Fig-
ure 1 where any change is obtained for additional odd
expansion terms. This example also highlights that van-
ishing nuclei can be treated without any further adjust-
ment to the method[31].

Going from 2-electron toy model systems, such as H2

and He, to more relevant molecules, we have estimated
the covalent binding energy of CO perturbing the elec-
tron density of N2 up to second order. Figure 2 shows
the resulting estimates over a wide range of interatomic
distances for various levels of theory used for the refer-
ence calculation. It is evident that the proposed method
consistently gives numbers close to the actual potential
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FIG. 2. Binding potential of CO including the nuclear-
nuclear repulsion energy ENN. Left: Alchemical second order
estimates (symbols) obtained from N2 for various methods
(dashed) and def2-TZVP basis set. Plus/cross symbols denote
equilibrium bond lengths for target/alchemicy, respectively.
Right: Error for various methods in small (S=6-31G(d)) and
large basis (L=def2-TZVP). Raw data given in the SI.

energy curve for any given level of theory that has been
used to derive the electron density and its derivatives
at the reference molecule. This applies not only to the
overall shape but also to the absolute potential energy
and highlights that the proposed method approximates
the energy of the reference level of theory rather than
the true ground state energy. Moreover, the location of
the minima of the dissociation curves of CO in Figure 2
are nearly identical for both the proposed method and
the respective reference calculations. While the different
level of theory give somewhat different answers for the
minimum bond geometry, these differences are conserved
when approximating the potential energy surface.

Following the potential energy surface over the course
of a bond dissociation covers a significant potential en-
ergy range. While it is desirable to reproduce the over-
all shape, systematic accuracy for intermediate distances
is needed. This applies both to the range close to the
minimum geometry e.g. in the context of geometry op-
timization and to ranges far from minimum geometry,
e.g. in transition states. Figure 2 shows the difference
between the expected result, i.e. the potential energy
of CO with the same basis set and level of theory that
has been used for the N2 density, and the true answer,
i.e. the energy of the self-consistent CO density. Over a
wide range of bond distances the approximate potential
energies are accurate to 20-30 mH for a small 6-31G(d)
basis set, while a larger def2-TZVP basis set yields an
accuracy of about -10 mH. This is different for the CCSD
densities where – regardless of basis set – the accuracy
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is some 2 mH for non-dissociative geometries. The sta-
ble and systematic error that is exhibited for all levels of
theory under investigation shows the consistency of the
proposed method. Table I in the SI shows that the en-
ergy estimates as obtained from aCCSD are significantly
better than the ones obtained from established methods,
which suggests to employ few alchemical perturbations
at a higher level of theory rather than many lower level
calculations. This is with the exception of HF for a small
basis set and a bond distance of 1.5 Å, where the finite
difference scheme we employed introduces numerical arti-
facts. Note that the finite difference scheme for obtaining
the density derivative is by no means a requirement but
rather has been used for proof-of-concept work.

In all test cases the use of a larger basis set yields
more accurate potential energies. This is in part because
the overlap of the atom-centered basis set decreases as
the bond length increases, since this offers fewer degrees
of freedom for electron density to follow the change in
nuclear charges. The major contribution that is visible
also in the case of particularly short interatomic distances
comes from the finite number of expansion terms. While
we have no rigorous proof, the expansion appears to con-
verge faster for a larger basis set. Second order perturba-
tion of N2 yields significantly worse results for BF. This is
not surprising since the electron density changes are sub-
stantially more dramatic (vide infra). Inclusion of third
order terms, however, rectifies the problem and results
in improved binding potentials (see SI). For comparison,
we have also calculated covalent bonding energies in CO
and BF using Levy’s density averaging approach [22].
Depending on interatomic distance they can respectively
deviate by up to ≈0.6 and 2.5 Hartree from the CCSD
numbers (see SI).

Overall, however, the APDFT results are interesting
since they imply that making an alternative investment
of compute resources in high level (for example CCSD
in a large basis), and high order perturbations of refer-
ence systems might well enable the screening of an un-
precedented number of alchemically related materials—
without sacrificing predictive power. Even considering
the increasingly worse scaling of the computational com-
plexity of higher level methods, the combinatorial num-
ber of accessible targets scales much faster: for N atoms
e.g. in a graphene sheet of which 2n are alchemically
transformed, the total number of target compounds is

N∑
n=1

(
N

2n

)(
2n

n

)
' 3N

5
(9)

which grows much faster than any of the just polynomi-
ally scaling higher level methods (e.g. Nq with q = 6 for
CCSD).

Having seen that the level of theory for the reference
quantum calculations is largely determining the accuracy
of the energy predictions, one can wonder how APDFT

performs for the prediction of electron density. Figure 3
shows densities and electrostatic potentials for CO and
BF as calculated from N2. The electron density of CO
and the derived electrostatic potential converges quickly.
Considering the the dipole moment µ =

∫
dr ρ(r)r, the

quadrupole moments Qij =
∫
dr ρ(r)(3rirj − |r|2δij) and

the ionic forces FI = ZI

∫
dr, ρ(r)(r − RI)/|r − RI|3,

shown in Table I: including terms of second order repro-
duces µ and Q to about 1 %. Since for linear molecules
Qxx = Qyy and ∀i 6= j : Qij = 0, the electron density also
has the expected axial symmetry. Generally, and as one
would expect, estimates for CO converge more quickly
than for BF even though the densities of both molecules
are obtained from the same N2 calculations. This conver-
gence behavior is expected since the difference in nuclear
charges is more moderate for CO than for BF, i.e. the
domain to be covered by the Taylor expansion is larger,
and, hence, convergence is slower, ultimately limited by
the numerical accuracy we can obtain. The limited ac-
curacy of multipole moments as demonstrated in Table I
can be understood when taking the electrostatic poten-
tial in Figure 3 into account: since the regions more dis-
tant to the nuclei converge slower with expansion order,
multipole moments are more strongly affected while con-
tributions to ionic forces decay with distance from the
nuclei.

As shown in Table I, HF and the different DFT func-
tionals perform similarly for all cases, highlighting the
reliability and black-box nature of the established meth-
ods. In comparison to CCSD however, alchemical pre-
dictions are often more accurate than their DFT coun-
terparts. The table shows all alchemical predictions up
to numerically stable orders, i.e. 3 or 4.

Due to the nature of the density expansion, negative
electron densities can arise for intermediate values, e.g.
odd orders in the BF case. While negative electron den-
sities are unphysical, at no step the derivation requires
the truncated series expansion to be strictly positive. In-
termediate deviations from the limit value are generally
possible in series expansions. In this case however, it
is a sign that higher orders of the expansion should be
included, which is illustrated by the improvement from
order 1 to 3 in the BF case. Qxx and Qyy being nearly
identical even for high expansion orders is a sign of the
numerical stability which conserves the symmetry of the
electron density.

It is important to emphasize the fact that APDFT is
not a black-box method which can be applied blindly
throughout compositional and configurational space.
The choice of reference system, for example, is crucial
for the predictive performance. While we have tried
to identify and use those reference systems which max-
imize predictive accuracy in the examples shown above,
it should be clear that poor reference choices will lead to
poor predictions. Furthermore, more fundamental lim-
itations of the method arise from the derivation of the
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FIG. 3. Top row: Left hand panel shows shadow-density ρ̃ of N2 (from Eq. 4), obtained from the individual (anti-)symmetrized
electron density derivatives (other panels in row one) of the different orders of perturbations towards CO/BF. CO and BF total
electron densities (second and fourth row) and the electrostatic potential (third and fifth row) in the bond plane are compared
to CCSD/def2-TZVP (left hand column). Electron density and electrostatic potential converge faster for CO than for BF.
Contour levels for the electron density and electrostatic potential are shared within the respective row and are derived from
evenly spaced percentiles of the electron density. The density derivatives have independent contour levels. All red contour
lines denote positive values, blue contour lines denote negative ones. Nuclei are colored according to their respective element.
Multipole convergence shown in Table I.

density functional. The density response due to changes
in the nuclear charges needs to be continuous. For a rig-
orous derivation, this response needs to be smooth and
the sum building ρ̃ needs to be uniformly converging.
While we are not aware of a formal proof of the latter
conditions, one notable case where the density response is
sudden would be the H+

2 one-electron system where an in-
finitesimally small perturbation of the molecular symme-
try results in abrupt changes in the entire electron den-
sity [35]. Also, as has been pointed out earlier[47], scaling

all nuclear charges down, i.e. going from N2 towards and
beyond C2−

2 can have a discontinuity in the density re-
sponse when one of the electrons cannot be bound any
more. Within a certain radius around the nucleus of a
free atom, we show in the SI that the density expan-
sion converges. Another more technical requirement for
the density response to be smooth is that the atomic ba-
sis functions overlap sufficiently well. This is illustrated
by the distance dependency in Figure 2. Finally, and
from a more technical perspective, the proposed method
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N2 → CO N2 → BF
Method n |µ| δ|µ| [%] Qxx δQxx [%] |F| δ|F| [%] |µ| δ|µ| [%] Qxx δQxx [%] |F| δ|F| [%]

d = 1.1 Å
CCSD - 12.54 − −27.57 − 10.96 − 11.03 − −25.24 − 9.91 −
aCCSD 0 14.55 16.05 −31.37 13.76 12.96 18.22 14.55 31.89 −31.37 24.27 14.58 47.20
aCCSD 1 12.48 −0.45 −27.09 −1.77 11.07 0.99 10.41 −5.61 −22.80 −9.65 10.33 4.28
aCCSD 2 12.49 −0.41 −27.46 −0.40 10.95 −0.09 10.43 −5.42 −24.31 −3.68 9.80 −1.11
aCCSD 3 12.52 −0.12 −27.55 −0.08 10.96 −0.04 10.72 −2.84 −25.01 −0.90 9.85 −0.59
aCCSD 4 12.54 −0.01 −27.62 0.18 10.96 −0.04 10.95 −0.72 −26.15 3.61 9.84 −0.64
HF - 12.42 −0.92 −27.43 −0.50 10.82 −1.33 11.07 0.32 −25.74 1.97 9.83 −0.81
LDA - 12.60 0.47 −27.67 0.37 10.91 −0.53 11.09 0.54 −25.09 −0.59 9.92 0.10
PBE - 12.60 0.49 −27.70 0.46 10.85 −1.02 11.10 0.59 −25.17 −0.28 9.88 −0.30
PBE0 - 12.54 0.01 −27.59 0.05 10.85 −1.03 11.08 0.45 −25.34 0.40 9.87 −0.41

d = 1.5 Å
CCSD - 16.53 − −47.53 − 6.20 − 13.94 − −41.81 − 5.55 −
aCCSD 0 19.84 20.05 −56.55 18.97 7.32 18.17 19.84 42.37 −56.55 35.25 8.24 48.31
aCCSD 1 16.73 1.22 −47.72 0.39 6.25 0.80 13.62 −2.31 −38.89 −7.00 5.81 4.69
aCCSD 2 16.64 0.70 −47.34 −0.41 6.24 0.73 13.27 −4.78 −37.37 −10.61 5.80 4.36
aCCSD 3 16.10 −2.57 −46.12 −2.98 6.21 0.19 8.95 −35.75 −27.60 −33.99 5.49 −1.09
HF - 16.15 −2.31 −46.79 −1.57 5.96 −3.77 13.93 −0.04 −42.45 1.53 5.43 −2.16
LDA - 16.63 0.60 −47.90 0.78 6.08 −1.82 14.10 1.20 −42.04 0.55 5.52 −0.61
PBE - 16.64 0.66 −47.93 0.84 6.04 −2.49 14.11 1.27 −42.12 0.74 5.49 −1.07
PBE0 - 16.47 −0.34 −47.48 −0.10 6.03 −2.69 14.02 0.63 −42.13 0.77 5.48 −1.40

TABLE I. Dipole moments µ, quadrupole moments Qxx and ionic forces F as calculated from the reference CCSD/def2-TZVP
densities and the alchemically perturbed CCSD/def2-TZVP densities for CO and BF for two different bond lengths, d, and for
various expansion orders n. All quantities are only electronic, i.e. without nuclear-nuclear contributions. All data given in a.u.,
errors δ relative to CCSD given in percent.

requires the electron density to be mapped on an inte-
gration grid. This work uses a Becke-Lebedev[48, 49]
grid. To evaluate ρ̃, the density derivatives w.r.t. nu-
clear charges need to be available. The employed finite
difference scheme however, could be replaced by these
derivatives all together. This is desirable since the em-
ployed finite difference scheme uses a direct connection
of the density between the reference and target molecule,
which requires a superposition of all basis sets of the in-
volved atoms. Note that this is only a consequence of the
finite difference scheme, and not of the method[50].

To conclude, we introduced an orbital free alchemi-
cal perturbation density functional theory (APDFT). We
have shown that the electron density of target molecules
can be constructed by the same reference information in
a way that not only forces but also electrostatic poten-
tial, dipole moments and quadrupole moments are repro-
duced. The accuracy of such quantum property predic-
tions converges with perturbation expansion order for all
close-by (i.e. ∆Z = 1) target systems studied. Similar
to forces that allow geometry optimization but are only
strictly valid at the reference geometry, the alchemical
gradients allow optimization in chemical composition. In
the same way how the Hessian can be used for increas-
ing the step length in geometry optimisations, alchemical
higher orders are required for target systems farther away
in chemical space or with lower density overlap. Using
CCSD reference calculations for N2, APDFT affords pre-

dictions of CO and BF of similar or better quality than
PBE0 for energies, forces, and electrostatics already at
relatively low perturbation order 3 and 4. Since the ref-
erence information is identical for all target molecules, es-
timating quantum properties for any target system comes
at negligible additional cost.

Since only the electron density information is required,
APDFT can be applied to any quantum chemistry ref-
erence calculation that gives electron densities. We have
demonstrated that the accuracy of both energy and den-
sity is comparable to the level of theory employed for
the one reference calculation if convergence is reached.
This means that computational efforts can be shifted
from a brute-force screening approach calculating many
molecules at intermediate quality to few high quality cal-
culations as a reference for alchemical estimates. De-
pending on accuracy requirements, our results suggest
systematic accuracy improvement by inclusion of higher
order terms, or, conversely, coverage of larger regions of
chemical space—from one reference perturbation alone.

We acknowledge support by the Swiss National Sci-
ence foundation (No. PP00P2 138932, 407540 167186
NFP 75 Big Data, 200021 175747, NCCR MAR-
VEL). Some calculations were performed at sciCORE
(http://scicore.unibas.ch/) scientific computing core fa-
cility at University of Basel.
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