
J. Chem. Phys. 150, 064105 (2019); https://doi.org/10.1063/1.5053562 150, 064105

© 2019 Author(s).

Operators in quantum machine learning:
Response properties in chemical space 

Cite as: J. Chem. Phys. 150, 064105 (2019); https://doi.org/10.1063/1.5053562
Submitted: 23 August 2018 . Accepted: 19 November 2018 . Published Online: 12 February 2019

Anders S. Christensen , Felix A. Faber, and O. Anatole von Lilienfeld 

COLLECTIONS

 This paper was selected as an Editor’s Pick

ARTICLES YOU MAY BE INTERESTED IN

Alchemical and structural distribution based representation for universal quantum machine
learning
The Journal of Chemical Physics 148, 241717 (2018); https://doi.org/10.1063/1.5020710

SchNet – A deep learning architecture for molecules and materials
The Journal of Chemical Physics 148, 241722 (2018); https://doi.org/10.1063/1.5019779

Perspective: Computational chemistry software and its advancement as illustrated through
three grand challenge cases for molecular science
The Journal of Chemical Physics 149, 180901 (2018); https://doi.org/10.1063/1.5052551

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L16/2002358258/x01/AIP/Zurich_JCP_PDF_June2019/Zurich_JCP_PDF_June2019.jpg/4239516c6c4676687969774141667441?x
https://doi.org/10.1063/1.5053562
https://aip.scitation.org/topic/collections/editors-pick?SeriesKey=jcp
https://doi.org/10.1063/1.5053562
https://aip.scitation.org/author/Christensen%2C+Anders+S
http://orcid.org/0000-0002-7253-6897
https://aip.scitation.org/author/Faber%2C+Felix+A
https://aip.scitation.org/author/von+Lilienfeld%2C+O+Anatole
http://orcid.org/0000-0001-7419-0466
https://aip.scitation.org/topic/collections/editors-pick?SeriesKey=jcp
https://doi.org/10.1063/1.5053562
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5053562
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.5053562&domain=aip.scitation.org&date_stamp=2019-02-12
https://aip.scitation.org/doi/10.1063/1.5020710
https://aip.scitation.org/doi/10.1063/1.5020710
https://doi.org/10.1063/1.5020710
https://aip.scitation.org/doi/10.1063/1.5019779
https://doi.org/10.1063/1.5019779
https://aip.scitation.org/doi/10.1063/1.5052551
https://aip.scitation.org/doi/10.1063/1.5052551
https://doi.org/10.1063/1.5052551


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Operators in quantum machine learning:
Response properties in chemical space

Cite as: J. Chem. Phys. 150, 064105 (2019); doi: 10.1063/1.5053562
Submitted: 23 August 2018 • Accepted: 19 November 2018 •
Published Online: 12 February 2019

Anders S. Christensen, Felix A. Faber, and O. Anatole von Lilienfelda)

AFFILIATIONS
Department of Chemistry, University of Basel, Basel, Switzerland

a)Electronic mail: anatole.vonlilienfeld@unibas.ch

ABSTRACT
The role of response operators is well established in quantum mechanics. We investigate their use for universal quantum machine
learning models of response properties in molecules. After introducing a theoretical basis, we present and discuss numerical
evidence based on measuring the potential energy’s response with respect to atomic displacement and to electric fields. Predic-
tion errors for corresponding properties, atomic forces, and dipole moments improve in a systematic fashion with training set
size and reach high accuracy for small training sets. Prediction of normal modes and infrared-spectra of some small molecules
demonstrates the usefulness of this approach for chemistry.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5053562

I. INTRODUCTION

Time-independent electronic ground-state quantum
properties can be expressed as expectation values of the elec-
tronic wave function and an operator, typically defined via
the quantum-classical correspondence principle. The perfor-
mance of supervised machine learning models of these quan-
tum properties, a.k.a. quantum machine learning (QML),1–4 can
be conveniently assessed using learning curves that moni-
tor the decay of the out-of-sample prediction error (devi-
ation of the predicted properties from reference for query
compounds not included in training) as a function of com-
pound training set size N. Due to the leading prediction
error decaying as a/Nb, log-log plots have become the rec-
ommended practice in the field with log(a) and b denoting
the off-set and learning rate (or efficiency), respectively.5–7

While, in principle, supervised ML models can be generated
for any cause and effect relationship, it is the very philos-
ophy of QML that representation and the kernel function
(when using kernel ridge regression) are property indepen-
dent8,9 in the same way in which the electronic wave func-
tion and its Hamiltonian are property independent. However,
there is a select and highly relevant set of quantum proper-
ties which can be understood as response properties, obtained

through the use of response operators and perturbation the-
ory. Common examples include derivatives of the energy with
respect to the nuclear displacement or charge, an external
electric field, an external magnetic field, or nuclear magnetic
moments, and they can efficiently be accounted for within
density functional theory.10,11 We note that energy response
properties also form the basis for conceptual density func-
tional theory12,13 as well as computational alchemy.14–21 It has
previously been observed that prediction errors of many con-
ventional QML models of response properties can converge
relatively slowly, even for QML models that are able to achieve
remarkably high accuracy for energies.2,8,22–24 In this paper,
we investigate if the use of response operators is beneficial
for deriving improved QML models that afford learning curves
with lower off-sets and better learning rates.

Perhaps the most relevant quantum response property
is the force exerted on each atom in the system, the first
order energy derivative with respect to nuclear displace-
ment.25 Quite recently, tremendous efforts have been made
to predict atomic forces accurately within QML models for
the purpose of running ab initio quality molecular dynamics
simulations at low computational cost.26–38 Treating the force
as the first derivative of the energy is tantamount to using
the gradient operator, as commonly implemented in quantum
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chemistry packages. Doing so leads directly to energy conser-
vation, a crucial property for most statistical mechanics appli-
cations, which has also been already obtained by others.35,39

The use of response operators, however, has not yet been
applied generally to generate QML models for other response
properties.

Here, we extend the principle of using response opera-
tors to investigate the potential total energy and its response
to a change in (i) atomic coordinates and (ii) an external elec-
tric field, i.e., the dipole moments. Other QML models capa-
ble of predicting dipole moments have already been pub-
lished.2,8,40–45 The work of Schütt et al. presented a neural
network that is able to predict the dipole moment of the
QM9 dataset46,47 with very high accuracy41 by training on the
dipole moment vector itself. The other approaches rely on a
charge model predicted from a neural network to estimate
intensities in an infrared spectrum where the frequencies are
obtained from a molecular dynamics simulation.42,44 Similarly
to Schütt et al., we propose to learn the dipole moment by
training on the quantum mechanical observable directly, but in
contrast we train a model to describe the energy for which the
dipole moment can be calculated as a response property by
taking the derivative of the energy with respect to an external
electric field. The modeling of highly accurate molecular
potential energy surfaces has also been thoroughly investi-
gated with several ML techniques, due to their important con-
nection to infrared (IR) spectroscopy.28,48–50 We show how our
operator formalism can lead to ML potential energy surfaces
that reproduce the vibrational normal modes of molecules
across chemical space and even reproduces the IR spectrum
of a molecule by using the relevant response operators with a
suitable training set.

This paper is organized as follows: first we present the
derivation for a kernel-based regression model capable of pre-
dicting response properties by letting the response operator
act on the kernels. We then implement a representation that
allows us to simultaneously train on properties that depend
on both the external electric field and the internal degrees of
freedom of the molecule. The hydrogen fluoride molecule is
used as a toy model to demonstrate the principle. We bench-
mark the operator-based machine learning model on a num-
ber of existing data sets that account for forces, energies,
and dipole moments across chemical space and show how
our response model improves learning the dipole moment
of molecules when compared to conventional kernel ridge
regression models. Finally, we discuss how the model natu-
rally couples force and energy predictions with dipole moment
predictions and we show how the response model can directly
predict properties related to second order derivatives, includ-
ing mixed derivatives, such as infrared intensities, harmonic
vibrational frequencies, and normal modes.

II. THEORY
A. Operator quantum machine learning (OQML)

Within kernel-based regression,51–54 the total potential
energy U∗ of a query molecule C in its electronic ground-state
can be decomposed into a sum of atomic energies, which are

calculated using a basis of kernel functions

U∗C =
∑
I∈C

U∗local

(
q∗I

)
=

∑
I∈i

∑
J

k
(
qJ, q∗I

)
αJ, (1)

where J runs over all atoms in the atomic environment in the
basis, αJ is its regression weight, qI is the representation of the
Ith atom in the molecule, and here the asterisk denotes query
atom.

Writing Eq. (1) in matrix form, we have

U = Kα. (2)

Note that in contrast to conventional Kernel Ridge Regres-
sion (KRR) and Gaussian Process Regression (GPR) based QML
models,9 this kernel matrix is not symmetric since first dimen-
sion is over the atoms used to build the basis and the second
dimension has one entry for each observable, e.g., energies for
molecules in the example in Eq. (2).

In this work, we approximate a response property ω,
i.e., an observable which can be computed by applying a
differential operator O acting on the energy U∗, defined in
Eq. (1),

ω = O[U] = O[K]α. (3)

The set of regression coefficients, α, can be obtained by
minimizing the Lagrangian

J(α) =
∑
γ

βγ ‖Oγ[Uref] −Oγ[Kα]‖2L2(Ωγ )

≡
∑
γ

βγ

∫
Ωγ

[
Oγ[Uref] −Oγ[Kα]

]T [
Oγ[Uref] −Oγ[Kα]

]

(4)

with respect to α over some training set of known values of
O[Uref].Ωγ is the domain over which the corresponding opera-
tor should be minimized, e.g., all rotational degrees of freedom
if the operator acts on a SO(3) group. γ denotes the specific
perturbation of any order so that the model can be trained
for multiple properties simultaneously, for example, energies,
gradients, and dipole moments. βγ is a weight, specific to each
perturbation. In this work, β is set to 1 throughout. For simplic-
ity, we pick Ω such that ∫ Ω = 1 for the remainder of this study.
α can be obtained, e.g., by solving the associated normal equa-
tions or using an orthogonal factorization such as a QR55 or a
singular-value decomposition (SVD). The corresponding nor-
mal equation (see the supplementary material for derivation)
to this problem is given by

α =
[ ∑
γ

βγ

∫
Ωγ

Oγ[K]TOγ[K]
]−1 [ ∑

γ

βγ

∫
Ωγ

Oγ[Uref]TOγ[K]
]
.

(5)

However, solving the normal equations can be numeri-
cally unstable since it effectively squares the condition num-
ber, i.e., κ(KTK) = (κ(K))2.

For the practical implementation and the results dis-
cussed here, an SVD factorization has been used to solve
Eq. (4), as it has several practical and efficient implemen-
tations. In contrast to the QR factorization, the SVD fac-
torization is more numerically stable if K is rank-deficient,
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e.g., if K contains rows or columns that correspond to atoms
or molecules that are identical or only differ by symmetry
operations to which the representation is invariant.

In the case of under-determined equations, the SVD fac-
torization is performed ignoring singular values smaller than a
threshold, which can be treated as a hyperparameter similarly
to regularization within ordinary KRR.

B. Operators
This section is dedicated to discussing some impor-

tant response operators in quantum mechanics, defining the
domain Ω over which the Lagrangian is to be minimized,
and providing the corresponding solutions to the integrals in
Eq. (5).

We define the response operator for some external

parameter ~η = {ηx,ηy,ηz } which can be written as Oδ ~η ≡
∂

∂~η
.

Applying such an operator would map the scalar field to a
three dimensional vector field. All rotational degrees of free-
dom can then be integrated out with the following solutions.
The solutions to the two integrals in Eq. (5), respectively, are
thus

∫
Ωδ ~η

Oδ ~η [K]TOδ ~η [K] =
1
3

∑
ν∈x,y,z

(
∂

∂ην
K
)T (

∂

∂ην
K
)
, (6)

∫
Ωδ ~η

Oδ ~η [Uref]TOδ ~η [K] =
1
3

∑
ν∈x,y,z

(
∂

∂ην
Uref

)T (
∂

∂ην
K
)
. (7)

Correspondingly, this procedure can be used to solve the
equations for the second order response operator, with
respect to two different perturbations ~η and ~η′,

∫
Ω
δ ~ηδ ~η′

Oδ ~ηδ ~η′[K]TOδ ~ηδ ~η′[K]

=
1
9

∑
ν,ν′∈x,y,z

(
∂2

∂ην∂η
′
ν′
K
)T (

∂2

∂ην∂η
′
ν′
K
)
, (8)

∫
Ω
δ ~ηδ ~η′

Oδ ~ηδ ~η′[U
ref]TOδ ~ηδ ~η′[K]

=
1
9

∑
ν,ν′∈x,y,z

(
∂2

∂ην∂η
′
ν′
Uref

)T (
∂2

∂ην∂η
′
ν′
K
)
. (9)

A step-by-step derivation of these equations is given in the
supplementary material. We note that the above equations
are only true if the kernel is invariant with respect to rota-
tions around θ and φ, which is true for the FCHL represen-
tation used in conjunction with a rotationally invariant kernel
function, such as the Gaussian kernel.

Now we can explicitly write the matrix elements for
the operators investigated within this study. The uppercase
indices I, J, and K correspond to atomic centers, and the
lowercase indices i, j, and k correspond to molecules.

The unperturbed kernel corresponds to the energy or
identity operator acting on the kernel. The elements of the

unperturbed kernel K are given as

(K)iJ =
∑
I∈i

k
(
qJ, q∗I

)
. (10)

The kernel elements that correspond to the force, i.e., minus
the nuclear gradient operator acting on the kernel, are given
by

−
∂

∂x∗I
(K)IJ = −

∑
K∈i

∂k
(
qJ, q∗K

)
∂x∗I

, where I ∈ i. (11)

The kernel elements that correspond to the response of the
external electric field ~E are given by

∂

∂E∗ν
(K)iν J =

∑
K∈i

∂k
(
qJ, q∗K

)
∂E∗ν

, where ν ∈ {x, y, z}. (12)

Correspondingly, the nuclear Hessian kernel is given by

∂2

∂x∗I′∂x
∗
I

(K)I′IJ =
∑
K∈i

∂k
(
qJ, q∗K

)
∂x∗I′∂x

∗
I

, where I′, I ∈ i. (13)

Finally, the kernel that yields the dipole derivatives neces-
sary for the infrared intensities is written as the mixed second
order derivative,

∂2

∂E∗ν∂x∗I
(K)iν IJ =

∑
K∈i

∂k
(
qJ, q∗K

)
∂E∗ν∂x∗I

,

where I ∈ i and ν ∈ {x, y, z}. (14)

We are not aware of any other QML model which can account
for these effects simultaneously.

C. Comparison to Gaussian process regression
In conventional GPR, the response properties (e.g.,

derivatives) of the learned function can be included in the
training and the operators are enforced by adding a kernel for
each operator of each learned function in the training set.56

For example, including the nuclear gradient in addition to the
energy will add one additional kernel function for each gradi-
ent component in the training set. The GPR kernel matrix that
simultaneously incorporates the energy, u, and the gradient,
g, is written as

KGPR =



Ku,u∗ Ku,g∗

Kg,u∗ Kg,g∗


, (15)

where Ku∗ ,u is the covariance between two molecules, i and j.
For example, using a local decomposition, this is given by the
following double sum:

Ku,u∗
ij =

∑
I∈i

∑
J∈j

k
(
qJ, q∗I

)
. (16)

Likewise, the first of the two blocks that contain only one
derivative is given by

Ku,g∗
iKj =

∑
I∈i

∑
J∈j

∂k
(
qJ, q∗I

)
∂x∗K

(17)
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and the second block is equal to the transpose. The last block
that comprises the largest part of the full kernel matrix is the
double derivative given by

Kg,g∗
iKjL =

∑
I∈i

∑
J∈j

∂k
(
qJ, q∗I

)
∂xL∂x∗K

. (18)

Thus, the memory requirement for a kernel for a train-
ing set with N molecules, each with M atoms is domi-
nated by the 2nd derivative covariance kernel that scales as
O

(
9N2M2

)
. With numerical derivatives, a gradient is twice

as expensive as the kernel itself and the 2nd derivative is
four times as expensive. With these factors, the number
of kernel evaluations of the 2nd derivative kernel scales as
O

(
36N2M4

)
.

Within our OQML formalism (Secs. II A and II B), we do
not extend the basis by adding additional kernel functions, but
we rather enforce the derivatives of the kernel elements in
the regression. Note that OQML assigns only one α coefficient
per atom, regardless of the dimensionality of the perturba-
tion. This choice of basis has similarities to the sparsification
introduced by Bartók and Csányi,57 although the mathematical
origins are different.

In practice, this means that the number of kernel
function evaluations needed to train the model is reduced
drastically.

The size of the kernel necessary to train our OQML model
in Eq. (5) is O

(
N2M2

)
, regardless of the perturbation. The num-

ber of kernel evaluations when the gradient is included in
the training will scale as roughly O

(
6N2M3

)
. For the exam-

ples in this work, memory requirements and training times
are reduced by factors of ∼10 and ∼100, respectively, com-
pared to conventional GPR with the same amount of training
data.

In GPR, the training error will usually be close to zero
since each additional label in the training set will be described
by an additional basis kernel function. Since Eq. (5) uses a
constant number of basis functions, the normal equation will
describe an overdetermined set of equations, when the size of
the perturbation exceeds the number of basis functions. For
example, there are always more gradient components than
the number of atoms in a molecule, while for molecules >3
atoms there are always more atoms than dipole moment com-
ponents. The fact that the problem can become noticeable also
means that training errors can become noticeable. Here, we
found that in some cases they can even become as large as the
test set error.

D. Representation
In this work, we extend the Faber-Christensen-Huang-

Lilienfeld (FCHL) representation23 to explicitly include the
dependence on an externally applied electric field. This
is crucial in order to learn dipole moments and other
electric field-dependent properties. The FCHL represen-
tation consists of a set of M-body expansions AM(I)
= {A1(I),A2(I),A3(I), . . . ,AM(I)}. The terms in the many-body
expansion correspond to element type, interatomic distances,

and interatomic angles, for the one-, two-, and three-body
terms, up to order M, respectively.

It has previously been shown that the off-set in the learn-
ing curve is improved when the two- and three-body terms
are multiplied by scaling factors such that features that con-
tribute more to the learned property are weighted higher
in the regression.58 For energy learning, it was shown that
1/rn and an Axilrod-Teller-Muto term59,60 are suitable scaling
factors for the FCHL two- and three-body terms, respectively.

In this paper, we extend the FCHL representation to
include a dependence on the external electric field. Our mod-
ified FCHL∗ representation (denoted by an asterisk) compares
the same features as the original formulation (i.e., element
type and interatomic distances and angles), but an extra term
is added to the scaling function to emulate the physics of
the electric-field dependence of the representation and adjust
the weighting accordingly. The new two-body scaling function
(denoted by an asterisk) is given by

ξ∗IJ2 = ξ IJ2 − ε (~µIJ · ~E), (19)

where ξ IJ2 is the 1/rn scaling function in the original FCHL rep-
resentation, ~E is the externally applied electric field, and ~µIJ is a
fictitious dipole arising from fictitious partial charges assigned
to the atomic site of the atoms I and J, and ε is a scaling
parameter that balances the two terms in the scaling func-
tion. This parameter was fitted ad hoc to ε = 0.005 Hartree−1

using toy models. The center-of-nuclear-charge convention
is used to define the origin of the coordinate system. In prac-
tice, the fictitious partial charges are taken from the Gastieger
charge model61 as implemented in Open Babel.62 However,
we note that the exact values of the fictitious partial charges
are unimportant and any partial charge model could likely be
used. Note that the model does not learn these fictitious par-
tial charges or does it use these as a proxy to learn the dipole
moment. The model learns the scalar field of the energy, and
the charges merely serve as dummy variables which enforce
the right physical dependence of the kernel elements on the
electric field.

The augmented three-body scaling function for an atom I
interacting with the atoms J and K is similarly given by

ξ∗IJK3 = ξ IJK3 − ε (~µIJK · ~E), (20)

where ξ IJK3 is the Axilrod-Teller-Muto scaling factor used to
weight the three-body terms in the FCHL representation
and ~µIJK is the fictitious dipole arising from fictitious par-
tial charges assigned to the atomic site of the atoms I, J,
and K.

In the absence of an externally applied electric field, the
FCHL∗ kernel elements are identical with the original FCHL
kernel elements, but the derivative with respect to a per-
turbing field is now non-zero. We also note that this repre-
sentation is “non-polarizable;” the second derivative of the
representation with respect to the field is zero with a linear
kernel. This could be amended, for example, by using on-site
multipole moments with polarizability tensors, e.g., from a
polarizable force field or a chemical-potential equalization
charge model, rather than a static charge model.
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III. RESULTS
A. Toy model for force learning

In this section, we demonstrate numerically the response
of the kernel elements with respect to two very different kinds
of perturbations, namely, (1) the nuclear coordinates and (2) an
external electric field. The hydrogen fluoride molecule (H–F)
is used as a toy model, and to show how including the vector
quantities in the training improves learning.

We now show how the derivative of the kernel improves
learning the potential energy of H–F. The MP2/aug-cc-pVTZ
potential energy curve for the H-F molecule is used as train-
ing data. Upon selecting four training points (see Fig. 1),
models were trained on these four points with and with-
out the interatomic forces in the training set. Not training
on forces using the FCHL representation with the default
hyperparameters,23 the resulting model poorly describes the
dissociation curve; at the minimum-energy distances it even
predicts a spurious transition state, and the energy decreases
sharply when d→ 0. However, with forces included the poten-
tial energy surface is reproduced remarkably almost quanti-
tatively, despite only four points being used to fit the model.

B. Toy model for electric field-dependent properties
Here we demonstrate the effect of including the dipole

moment in addition to the energy in the training data. We now
use a GPR model since our approach in Sec. II A would only
contain two basis functions, while we are including up to four
components, i.e., energy and dipole moment components. The
toy model demonstrates the properties of the FCHL∗ repre-
sentations which are fully transferable to the ML approach we
present herein. We place a H–F molecule in an electric field
of 0.001 a.u. which is rotated 360◦, and the energy and dipole
moment are calculated at each step of 1◦ at the MP2/aug-cc-
pVTZ level of theory. We select just one point as a training set
and train two GPR models: one with the MP2 energy and dipole

FIG. 1. The MP2/aug-cc-pVTZ potential energy surface of the hydrogen
fluoride (H–F) molecule is displayed as a solid red line. Four training points (red
dots) are selected, and two models are trained and used to predict the potential
energy surface: one including the interatomic force in addition to the MP2 energy
(blue, dashed-dotted) and the other using only the MP2 energy (blue, dotted).

moment components and the other with the MP2 energy but
without the dipole moment. The energy predictions of these
models as a function of the rotation of the field are displayed
in Fig. 2. Without fitting to the dipole moment, the energy
change due to the electric field is close to 0, only fluctuat-
ing by a bit of numerical noise from the fit. When the dipole
moment is included, the curve is reproduced almost quanti-
tatively with only a negligible deviation at the lowest energy
point, presumably due to very small polarization effects and
numerical noise.

This demonstrates how including a dipole-like depen-
dence on the electric field in the representation is an efficient
way to capture the underlying physics of the dipole moment
into the kernel.

C. Force and energy learning
Here we use the FCHL∗ representation within the pre-

sented OQML model to study two existing benchmark sets for
learning forces and energies. The MD17 consists of molecu-
lar dynamics (MD) snapshots from MD trajectories of different
molecules for which reference forces and energies are avail-
able.35 We benchmark our models to seven molecules out of
the MD17 dataset, namely, ethanol, salicylic acid, aspirin, mal-
onaldehyde, toluene, naphthalene, and uracil. Similarly, the
ISO17 consists of MD snapshots of isomers with the chemi-
cal formula C7O2H10. The ISO17 additionally comes with two
different test sets.37,63 The first consists only of isomers with
a connectivity that is present in the training set (“known”),
and the other that contains only isomers with a connectiv-
ity that is not present in the training set (“unknown”). Briefly
the two datasets benchmark the conformational freedoms and

FIG. 2. A hydrogen fluoride (H–F) molecule is placed in an external electric
field of 0.001 a.u., and the MP2/aug-cc-pVTZ energy is calculated as a func-
tion of the angle between the H–F molecule and the field vector, displayed as
a red line. A single point is selected as a training set (red dot), and two mod-
els are trained and used to predict the energy in the electric field: one includ-
ing the dipole moment of the molecule in addition to the MP2 energy (blue,
dashed-dotted) and the other using only the MP2 energy (blue, dotted). The
alignment between the field and the molecule is sketched at the bottom for
clarity.
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constitutional freedoms of molecules, respectively. Since
there is no electric field applied to the molecules in these
data sets, note that the FCHL∗ representation reduces to the
original FCHL representation.23

Learning curves for the two datasets are displayed in
Figs. 3 and 4. For reference, we compare FCHL∗ to the
Gradient-Domain Machine Learning (GDML) method,35 which
is closely related to GPR with the inverse distance matrix as
representation, and the SchNet neural network.37 We note
that a promising modification to GDML exists, sGDML, which
shows higher accuracy compared to GDML for molecules that
have atoms that are related by symmetry operations.64 For the
MD17 dataset, the out-of-sample MAE errors of the predicted
energies are similar among FCHL∗, GDML, and SchNet, with
SchNet being slightly less accurate in most cases (see Fig. 3).
FCHL∗ and SchNet perform best for ethanol and malonalde-
hyde, while GDML is best for salicylic acid and naphthalene.
Uracil is best modeled by GDML, with relatively poor SchNet
forces, and FCHL being in between. At this point, we remind
the reader that the GDML approach is only applicable to a
given system, while FCHL∗ and SchNet are capable of learn-
ing across chemical space. Note however, that a direct com-
parison between the different ML approaches is not possible.
Ultimately, the OQML approach is different from SchNet and
GDML, not only because of the use of operators, but also in
the choice of representation.

Performance across constitutional space is tested on the
constitutional isomers in the ISO17 dataset (Fig. 4). For the two
test sets of “known” and “unknown” molecules in the ISO17, the
FCHL∗ model displays a good learning rate, that is, qualitatively
comparable to the SchNet model. Note that, here, the name
“known” only implies that the isomers of the same constitution
are known to the machine, but not the conformations in the
test set. Unfortunately the learning curves between the FCHL∗

FIG. 4. The learning curves of our model for the ISO17 dataset, and in addition the
accuracy for SchNet when using 4000 training samples is shown. The top panel
shows the out-of-sample MAE energy prediction for a set of isomers known to the
trained machine (“known”) and for a set of unknown to the machine (“unknown”).
The bottom panel shows the out-of-sample MAE force prediction for the same
two sets. Note that “known” in this context only concerns whether the isomers are
included in the training set or not. In both cases, only isomers with a conformation
unknown to the machine are used as test data.

FIG. 3. The learning curves of our model for the MD17 dataset, for the seven molecules in the MD17 dataset (from left to right) ethanol, salicylic acid, aspirin, malonaldehyde,
toluene, naphthalene, and uracil. The out-of-sample mean absolute error (MAE) energy prediction (E, top row) and MAE force component prediction (FX , bottom row) are
shown for the presented FCHL∗ (blue) model as well as for the GDML35 (green) and SchNet (red) models.37,63
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models and SchNet do not overlap, so the two models can-
not be compared quantitatively here, but the out-of-sample
accuracy seems comparable.

Overall, we find that our operator approach leads to
forces with state-of-the-art accuracy, on par with two of the
most accurate models already published in the literature.

D. Learning dipole moments of QM9
Prediction errors of machine learning models of dipole

moments converge slowly for conventional QML models.8,22,23

Here we demonstrate how including the underlying physics
for the dipole moment into the representation improves
the learning rate, as opposed to learning the dipole norm
with conventional kernel ridge regression. We compare two
approaches to learn the dipole moment norm of the molecules
in QM9: (1) using the FCHL∗ representation with the OQML
approach outlined in Sec. II A to fit the dipole moments as
derivatives of the energy and (2) learning the dipole moment
norm as a scalar using kernel ridge regression with the FCHL
representation as done in our earlier paper.23 The learning
curves of the two models are displayed in Fig. 5. The MAE
out-of-sample predicted dipole moment norm is decreased
substantially with our new approach. For instance, training
on 5000 random molecules, the out-of-sample MAE error is
reduced by 54% (from 0.67 D to 0.31 D). We also note that
not only is the learning curve offset lower when the dipole
moment operator is used, compared to conventional KRR, but
it is also substantially steeper. This demonstrates the strength
of the approach of using the correct response operators in the
kernel to learn the corresponding response properties.

E. Learning normal modes
In this section, we assess the ability of the methodology

to predict vibrational normal modes of a number of organic
molecules.

FIG. 5. The out-of-sample prediction error of the dipole norm as a function of the
QM9 training data set size. The red curve corresponds to a conventional KRR
model learning the scalar with the original FCHL representation, taken from Faber
et al.23 The blue curve shows the predictions from a machine trained on the
energy and dipole moments of QM9 molecules, which in turn predicts the dipole
vector from which the norm is calculated.

We randomly selected 83 molecules from the QM9
dataset with 9 heavy atoms. For each of these molecules, we
create a minimal training set consisting of all sub-fragments of
the molecules with up to 7 heavy atoms, following the method-
ology of Huang and von Lilienfeld.58 Effectively this approach
can be used to prove that the machine can extrapolate from
the known properties of smaller molecules to predict the same
properties for larger molecules.

For each of these generated fragments, a conformational
search is performed using RDKit65 and the unique conformers
are minimized at the ωB97xD/6-31G(d) level of theory. From
each of these minimized geometries, a number of distorted
geometries are generated using normal-mode sampling66 at
the same level of theory. For each of the distorted geometries,
a single-point energy and force evaluation is performed at the
ωB97xD/6-31G(d) level of theory, and the forces and energies
are saved. Using the sets of distorted fragment geometries for
each of the 83 molecules, we train machines on forces and
energies with increasing numbers of samples of each fragment
in the sets.

In order to benchmark the performance of the trained
machines, we set up the following test: a vibrational analysis
is performed at the ωB97xD/6-31G(d) level of theory for each
of the 83 molecules. Using the normal modes of the molecules
obtained from the vibrational analysis, we generate scans of
the potential energy surface along each normal mode. The
scan consists of structures that are distorted from the equi-
librium geometry along each of the normal modes in 10 steps
along the positive and negative directions. The distortions
along each normal mode are scaled using the force constants
such that the energy of the geometry with the largest distor-
tion along a normal mode is about 0.5 kcal/mol higher than
that of the equilibrium geometry. For each of these poten-
tial energy scans along the normal modes, we let the trained
machines to predict the potential energy and then we com-
pare this to the QM energy. If the machine predicts a well-
defined minimum within the 0.5 kcal/mol scan range, this is
counted as a success, otherwise this is counted as a failure.
As an example, we show predicted normal mode scans for the
15 normal modes with lowest frequency for a QM9 molecule
(C6N3H7, ID# 036682, SMILES string: C1C2C3C4OCOC13C24) in
Fig. 6. The molecular structure and its corresponding atom-
in-molecule fragments (am-ons) used for training are shown
in Fig. 7.

In addition, we present predictions from machines
trained on N ∈ {1, 2, 4, 8, 16, 32} distorted samples of
each sub-fragment in the database. Data to reconstruct sim-
ilar plots for all 83 molecules are available from Figshare
at https://doi.org/10.6084/m9.figshare.6994445. For the
machine trained on only N = 1 sample per fragment, a total
of 11 normal modes do not have a well-defined minimum
within the scan range. By increasing the training set to
N = 2, the machine only predicts two normal modes with
minima outside the scan range. At N = 4, all normal modes
have a well-defined minimum inside the scan range, but when
increasing to N = 8, two of the low normal modes that cor-
respond to very non-local conformational changes are not
identified correctly to lie within the scan range. Increasing
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FIG. 6. ML predicted energy changes of C6N3H7 as a function of distortion along each of the 15 normal modes with lowest frequency. The molecular structure and its
corresponding atom-in-molecule fragments used for training are shown in the figure. Stiffer normal modes are easier to learn and therefore not shown. The complete result
set is provided in the supplementary material. Each row and each column correspond to a normal mode and training set size N/maximum possible rank of the kernel matrix,
respectively. N is the number of samples for each amon (i.e., sub-fragment). Displacements are scaled such that the maximum distortion energy is close to 0.5 kcal/mol. The
X-axis displays the root-mean-square deviation (RMSD) in coordinates to the QM equilibrium geometry after the molecule has been displaced along that normal mode. The
Y-axis is the energy difference to the equilibrium geometry, calculated with either QM (blue) or ML (green/red). The curves predicted from ML are displayed in green if there
is a defined minimum within the scan range and red (fail) otherwise. The locations of the minima are marked by black vertical dashed lines.
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FIG. 7. Panel (a) displays the QM9
molecule with the ID# 036682 (SMILES
string: C1C2C3C4OCOC13C24) for
which normal modes are predicted in
Fig. 8. Panel (b) displays the fragments
identified using the method of Huang
and von Lilienfeld,58 which are used
to generate the training set for the
molecule.

again to N = 16 samples, the minima are well-defined again,
and at N = 32, the QM potential energy curves are almost
quantitatively reproduced.

We note that the higher normal modes, which mostly cor-
respond to very local distortions such as a single hydrogen
bond stretching, are almost always very well reproduced. By
contrast, the lower normal modes, which often are more non-
local in nature and correspond to very flat energy surfaces,
require larger training set sizes to reproduce correctly.

Upon repeating the same test for all of the 83 QM9
molecules, we can plot the fraction of normal modes which
are incorrectly described as a function of the training set size.
Here, training set size is measured as the maximum possible
rank of the kernel matrix, which corresponds to the number of
regression coefficients and the number of atoms in the train-
ing set. This is plotted for all 83 molecules in Fig. 8 for the
corresponding machines training on N ∈ {1, 2, 4, 8, 16, 32} dis-
torted samples of each sub-fragment. We note a trend that
larger training sizes yield a smaller chance that the machine
fails to identify a well-defined minimum close to the minimum
in the reference geometry.

F. Infrared spectrum for dichloromethane

In order to demonstrate the utility of the above develop-
ments, we have combined them in order to learn and pre-
dict IR spectra. More specifically, a vibrational analysis is

performed to get the harmonic frequencies and the IR intensi-
ties for the dichloromethane molecule. We note that although
our methodology is transferable, the results of this exer-
cise are very dependent on the training set. Thus we restrict
this section to only one molecule and demonstrate that the
methodology yields higher order derivatives, including mixed
derivatives that systematically improve with the training set.

Models are trained on distorted geometries of the
dicholoromethane molecule, for which MP2/def2-TZVP
energies, forces, and dipole moments had been previously cal-
culated. The training set consists of 100 distorted geometries
that are generated by normal-mode sampling following the
protocol of Smith et al.66 Using the trained model, a standard
vibrational analysis using the rigid-rotor harmonic-oscillator
approximation is performed in a standard quantum chemistry
package (Gaussian09)67 via an interface to the QML code68

which supplies the necessary energies and derivatives to the
quantum chemistry program. First, the molecule is optimized
on the machine learned potential energy surface by supply-
ing the optimizer in the Gaussian program with the energies
and nuclear gradients. Second, the vibrational analysis is per-
formed by supplying the Gaussian program with the numerical
nuclear Hessian and dipole derivatives.

As a reference, we compare the IR spectrum from the
vibrational analysis on the potential energy surface of the
machine learning model to the IR spectrum from a standard
vibrational analysis at the MP2/def2-TZVP level.
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FIG. 8. Fraction of failed normal mode predictions for 83 QM9 molecules with 9
heavy atoms as a function of training set size. For each molecule, six machines are
trained with increasing numbers of molecules in the training set. The X-axis shows
the rank of the kernel matrix (i.e., the number of regression coefficients) for each
training set used to train a model for a molecule. The Y-axis shows the fraction
of modes for the same molecule, for which the machine predicts a well-defined
minimum within a reasonable distance (see text) from the reference equilibrium
geometry.

Five models are trained on a decreasing number of
samples (100, 50, 25, 10, and 5) of randomly selected
configurations from the full 100 configuration training set.
Then, a geometry optimization and a vibrational analysis are
performed with each of the trained models. The resulting IR
spectra for dichloromethane are displayed in Fig. 9. Quali-
tatively the FCHL∗ models reproduce the frequencies of the
true MP2 reference with close agreement between the vibra-
tional frequencies of the tallest peaks, even with as few as
10 training samples. The three most intense peaks in the
spectrum are located at 743, 793, and 1318 cm−1 when using
the largest training set (100 samples), compared to 740, 793,
and 1315 cm−1, respectively, for the reference MP2 spectrum.
Training the model on only five randomly selected samples
does not lead to a meaningful IR spectrum; however, already
with ten instances, decent frequencies and underestimated
intensities are obtained for the first two peaks. Learning the
intensities via the dipole derivatives seems to be a harder
task for the machine, compared to the peak locations, and
the relative peak intensities are not qualitatively correct until
N = 50 training samples.

We note that the dichloromethane molecule has 9 nor-
mal modes, and it is therefore expected that at the very least
9 samples would be necessary to have the minimally required
sampling along all the possible normal modes. Further increas-
ing the training set size to 25 and 50 samples improves
the locations of the peaks to MAE vibrational frequencies of
25.6 and 5.7 cm−1, respectively. At 100 training samples, the

FIG. 9. The unscaled infrared spectrum of dichloromethane calculated via
vibrational analysis. (Top/red) Calculated at the MP2/def2-TZVP level of the-
ory; (bottom/blue) using QML to calculate the necessary derivatives of the
energy with respect to the nuclear coordinate and the dipole moment.
The spectra are convoluted using Lorentzian distributions69 with a width of
γ = 8 cm−1.

spectrum is almost at spectroscopic precision with an MAE of
only 2.5 cm−1.

This demonstrates the generality of the response
operator-based machine learning model. The IR intensities
correspond to a second order mixed derivative, indicating that
the model accounts even for higher order effects after includ-
ing only energy and first order derivatives. These results sug-
gest that the systematic addition of higher order effects has
the potential to improve the performance even further.

IV. METHODOLOGY
A. Used software

All energy, gradient, and dipole-moment calculations for
the H-F molecule were performed in ORCA 4.0.170 at the
MP2/aug-cc-pVTZ level of theory with no RI approximation
and the NoFrozenCore keyword. The relaxed MP2 density was
used to calculate the dipole moment as the correct derivative
of the energy.

Since only the dipole norms are supplied with the QM9
dataset,46,47 the dipole moment vectors of QM9 were re-
calculated using ORCA 4.0.1. To ensure consistency with the
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B3LYP/6-31G(2df,p) method and basis set used in the origi-
nal QM9 dataset, the B3LYP/G option was used for the B3LYP
functional71 and the 6-31G(2df,p) basis set was manually set up
to the same contraction coefficients and exponents as used in
the original calculations.

Energies, forces, and vibrational analyses for the QM9
molecules and fragments in Sec. III C were calculated at the
ωB97xD/6-31G(d) level of theory using the Gaussian09 pro-
gram.67 The structures and the corresponding data can be
found in comma-separated value (CSV) format from Figshare
at https://doi.org/10.6084/m9.figshare.7000280.

The forces, energies, and dipole moments of the
dichloromethane molecule were calculated at the MP2/def2-
TZVP level of theory in the Gaussian09 program. The
MP2 vibrational analysis was also carried out in Gaus-
sian09. The vibrational analyses that employ machine learn-
ing were also carried in Gaussian09 via a Python inter-
face to the machine learning code, and the keywords
freq=(numer,fourpoint,step=100) were used to get the sec-
ond derivatives. Our current implementation employs two-
point numerical first derivatives, except for geometry opti-
mizations for which it was necessary to use a five-point
numerical derivative due to the sensitivity to numerical noise
in the optimizer.

The reader can carry out machine learning with the pre-
sented algorithms, i.e., implemented kernel functions, efficient
solvers, and the FCHL∗ representation. The necessary code is
freely available from our open source machine learning toolkit
QML68 at http://github.com/qmlcode/qml.

B. Hyperparameters
All hyper parameters of the FCHL∗ representation were

kept fixed to the same values as those found to be optimal
in our previous paper,23 and the only new parameter is the
newly introduced ε = 0.0005 Hartree−1 parameter in the scal-
ing functions. In all examples, a Gaussian kernel function is
used with the kernel width set to σ = 0.64 and the cap for
smallest singular values to keep in the SVD decomposition was
set to 10−9 in units of the largest singular value. These param-
eters were not rigorously fitted to any dataset, so it is possible
that more optimal values exist.

V. CONCLUSION
This paper explores a kernel-based supervised machine

learning model that is capable of learning response proper-
ties by applying the corresponding response operator to the
kernel function. Within this framework, we have extended
the FCHL representation by a physically motivated response
term for the application of an external electric field. Using the
hydrogen fluoride molecule as a toy model, we have demon-
strated how the machine learning model and representation
can account for the right physics in simple systems with only
a minimal number of training samples. Upon benchmarking
the accuracy of our model for force and energy prediction on
the MD17 and ISO17 dataset, our OQML model achieves state-
of-the-art accuracy, on par or better than the GDML and
SchNet models. For learning the dipole norm of the molecules

in the QM9 dataset, using the operator formalism leads to an
improvement of 54% compared to learning the same quan-
tity as a scalar with the same representation. Finally, we allude
to the possibility to obtain higher order derivatives, including
mixed derivatives. This idea has been demonstrated by train-
ing a model on the energies, forces, and dipole moments for
the dicholoromethane molecule. Using the resulting model,
we have performed a vibrational analysis and presented the
resulting infrared spectrum which systematically approaches
the reference spectrum (calculated at the corresponding ab
initio level of theory) as more training cases are being added.

Our results suggest that it is advantageous to learn
response properties via the corresponding response opera-
tors. The OQML methodology presented here is, in principle,
not limited to derivatives of the energy with respect to the
nuclear positions or the external electric field. We envision
extending the representation to account for a multitude of
other properties, such as higher order response properties,
including magnetic properties such as nuclear magnetic reso-
nance (NMR) chemical shifts and spin-spin coupling constants
or alchemical derivatives. Since the OQML formalism is not
restricted to any choice of operator, it might also be possi-
ble to go beyond response operators. For instance, with the
right representation, it should be possible to even learn more
fundamental properties of molecules such as the electronic
density or the kinetic energy.

SUPPLEMENTARY MATERIAL

See supplementary material for a detailed derivation of
the formalism.
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