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Abstract. Solution spaces are sets of good designs that satisfy all de-
sign goals. They serve as target regions for robust and independent
component development in a distributed design process. So-called solu-
tion boxes provide best decoupling, however, they are often small and
therefore impractical. This article proposes an algorithm that computes
two-dimensional permissible regions for pairs of design variables that
are substantially larger than solution boxes. This is accomplished by
modifying the existing sampling-based optimization algorithm for boxes
and extending it by box-rotation.

1. Introduction

Uncertainty is present in many engineering problems, especially in the early
development phase. The uncertainty relevant for this article emerges in
distributed design processes where system designers, i.e., engineers that are
responsible for the overall system performance, specify design goals for com-
ponent designers, i.e., engineers that are responsible for component perfor-
mance. From a system designer’s perspective, component performances are
the design variables, denoted as x = (x1, x2, . . . , xd) ∈ Rd. They are un-
certain in an epistemic sense, since, first, they are not known exactly in
an early development stage, and, second, this uncertainty will be removed
during the course of the design process. The source of this uncertainty lies
in the nature of a distributed development process. When a system designer
requests a particular performance of a component designer he/she cannot
be certain about the result. The request may be technically impossible to
realize, too expensive or be in conflict with other requirements. Eventually,
when the design is finalized, the uncertainty is removed by confirmation that
a component design actually can be realized. The approach presented here
enables design in presence of this kind of epistemic uncertainty.

If there were no uncertainty, the goal of computation would be to find the
optimal design variables with respect to an objective function f out of a
space of admissible designs Ωds. This would lead to solving an optimization
problem

(1.1) f(x)→ min
x∈Ωds

.
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Popular methods to solve this kind of black-box optimization problem are
the Nelder-Mead method and genetic algorithms such as differential evo-
lution (see [1, 16, 20]). However, when uncertainties are present in the
problem, it is possible to deal with them by increasing the robustness of
the solution. This could be done by robust design optimization, reliability-
based design optimization or sensitivity analysis, see [2, 3, 4, 5, 6, 21, 22]
for example. These methods require certain assumptions on the problem
under consideration. For robust design optimization and reliability-based
design optimization, the variability of the design variables has to be known,
which may be expressed by probability density functions. Unfortunately,
this data is typically not available for the uncertainty related to distributed
development processes. In this case, an alternative method as proposed in
this article may be applied.

In addition to treating uncertainty appropriately, the following challenges
are to be overcome:

• The design variables x1, . . . , xd are coupled with each other, i.e., they
simultaneously affect the overall system performance.
• The evaluation of f is expensive. Therefore, it is mandatory to keep

the number of function evaluations small.
• f is a black-box function. It is possibly noisy and no information

about the gradient is available. Hence, classical optimization tech-
niques cannot be applied.
• There are a large number of design variables, so Ωds is high-dimen-

sional.

One approach to deal with these challenges is set-based design, cf. [18, 15, 17].
Before committing to a design, the design teams identify sets of feasible
designs, e.g., expressed as regions of permissible design variable intervals.
Design teams restrict themselves to work only with design variables from
these sets.

This article extends a computational method to optimize high-dimensional
subsets of feasible designs, so-called solution spaces, proposed in [23]. Syn-
onym for solution spaces are permissible design spaces or feasible design
areas, cf. [7, 10]. On a solution space, the objective function f assumes only
subcritical output values, i.e., they are good designs.

Solution spaces are used to treat uncertainty in a particular sense. They are
not used to predict what deviation from the intended system performance
will occur, but rather what tolerances for intended component performances
are required. Tolerances for component performances may be optimized such
that the number of permissible designs, i.e., the overall tolerance is maxi-
mized. This approach assumes a top-down view for systems design rather
than a bottom-up view for uncertainty propagation. It is particularly useful
in situations where data about uncertainty, like distribution functions, are
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not available, since it is not required for this approach. Epistemic uncer-
tainty in early development stages lacks this information and can therefore
be treated with solution spaces. The same is true for aleatory uncertainty,
however, in early design stages of distributed development processes, epis-
temic uncertainty tend to be more relevant, see [24].

Definition 1.1. A design x is called a good design or a good design point
if f(x) ≤ c and bad design or bad design point if f(x) > c for a critical
value c ∈ R which is given by the problem. Additionally, the set of all good
designs is defined as the complete solution space

Ωc := {x ∈ Ωds : f(x) ≤ c} .

The key idea of [23] has been to express the solution space sought by intervals
for each input design variable, thus representing a high-dimensional, axis-
parallel box Ωbox:

Ωbox :=
d∏
i=1

[ai, bi] ⊂ Ωds.

A design will always evaluate as good, as long as the values of its design vari-
ables remain within their respective intervals. By specifying target intervals
that do not depend on the choice of interacting design variables, design vari-
ables are said to be uncoupled, enabling the independent development of the
involved components. As the size of the intervals and thus the volume of the
box are to be maximized, the following semi-infinite optimization problem
can be formulated:

Maximize the volume
µ (Ωbox)→ max

Ωbox⊂Ωds

over all axis-parallel boxes Ωbox ⊂ Ωds subject to

f(x) ≤ c for all x ∈ Ωbox.

This problem can be solved by applying the algorithm proposed in [23] and
studied in [13], which will be referred to as (sampling-based) box optimiza-
tion. The algorithm starts by constructing a small box Ωbox somewhere in
Ωds. Then, during the so-called exploration phase, design points are sam-
pled in Ωbox. Bad designs are removed by appropriately modifying the box
boundaries (trimming) and extending it again (growing). Applying this pro-
cedure, the box will move towards a large area of good design space in Ωds.
Finally, in the consolidation phase, the box is trimmed until no more bad
design points are detected by sampling.

The box optimization is well established in vehicle design, see [8, 12, 13, 23]
for example. In applications, however, often some design variable intervals
are too small for practical use. For example, if Ωc takes the form of a diagonal
strip in two dimensions (see Fig. 1), an axis-parallel box will be small in
relation to the whole Ωc. In this article, the original problem statement is
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therefore modified to allow two-dimensional box-rotations for specific design
variable pairings. On the one hand, this introduces coupling between these
pairs (note that pairs remain uncoupled from each other). On the other
hand, this increases the solution space considerably, especially if strongly
correlated design variables are taken as pairs. It is of note that the coupling
of pairs of design variables has been studied in [9] in the case when f is
a linear function. The algorithm proposed there finds very large solution
spaces by using an interior-point algorithm (compare [19]).

The rest of this article is structured as follows. In Section 2, the concepts
of 2D-maps and the box-rotation are explained. Then, in Section 3, the box
optimization is extended in order to handle the box-rotation. The numerical
experiments and the comparison of the box-rotation algorithm to the box
optimization are described in Section 4. Finally, the conclusion is drawn in
Section 5.

2. Box-rotations for 2D-maps

In order to allow for box-rotations, the concept of 2D-maps is utilized. They
have been introduced as 2D-spaces in [9].

Definition 2.1. The 2D-map Ωi,j is defined as

Ωi,j :=
{
y ∈ R2 : y = πi,j(x), x ∈ Ωds

}
,

where πi,j is the projection (x1, . . . , xd) 7→ (xi, xj) with 1 ≤ i, j ≤ d. That
is, the 2D-map Ωi,j is the projection of Ωds onto the dimensions i and j.
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Figure 1. An axis-parallel box (left) and a rotated box
(right) as solution spaces. Good and bad design regions are
green and red, respectively.

The box-rotation algorithm extends the box optimization by the following:
Two design variables xi and xj are paired and associated with the 2D-map



A SAMPLING-BASED OPTIMIZATION ALGORITHM FOR SOLUTION SPACES 5

Ωi,j . The projection πi,j(Ωbox) in Ωi,j is rotated such that it is no longer axis-
parallel in these two dimensions. The design variables xi and xj are thereby
coupled again. However, this trade-off is acceptable since the coupling does
not include the other design variables. This means that changes can be
made to the design variable xi, for example, and only xi and xj have to be
checked whether they still lie within the rotated box πi,j(Ωbox). The other
design variables are not affected, which saves time and resources during the
design process.

A meaningful choice of design variables to be coupled in one 2D-map may be
inferred from the design problem. It may make sense, e.g., to couple design
variables associated with one component while keeping them uncoupled from
those associated with another component. Each design variable is paired
with at most one other design variable, such that each design variable is
associated with at most one 2D-map. Some design variables may not need to
be paired with any other design variables, usually because they are expected
to have enough available design space. These design variables are assigned
to intervals, as in the box optimization. Therefore, the box Ωbox is the
product of one-dimensional intervals Ik and two-dimensional rotated boxes
Bi,j ,

Ωbox :=
∏
k∈JI

Ik ×
∏

(i,j)∈Jpair

Bi,j ,

where JI = {i ∈ {1, . . . , d} : i is an unpaired dimension}, JB = {1, . . . , d} \
JI , and Jpair = {(i, j) ∈ JB × JB | the dimensions i and j are coupled}.
During the execution of the algorithm, Ωbox is represented as a vector-matrix
pair (V,M). The vector V ∈ Rd denotes an arbitrary vertex of the box and
acts as origin of the rotated coordinate system described by the edges of
the box. The matrix M = [m1, . . . ,md] ∈ Rd×d contains the basis of this
rotated coordinate system. Each column m1, . . . ,md of M is the distance
vector from V to one of its neighbouring vertices. They are ordered such
that the edge that is axis-parallel in dimension i occupies the i-th column
and the two edges that are associated with a 2D-map Ωi,j occupy the i-th
and j-th column (see the example below).

This representation of rotated boxes turned out the most useful for the
following reasons:

• All other vertices of the box can be constructed by a linear combi-
nation of V and the columns of M.
• Representing a d-dimensional rotated box by its vertices would re-

quire a list with 2d entries. For large d, this would be infeasible.1

• Any affine transformation of the rotated box can be carried out by
applying that transformation to V and M.

1For example, for d = 100 spatial dimensions, we would need about 2100 ·100 ·64 Bit =
1023 Gigabyte of disk space to store the 2100 vertices.
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• The intervals Ik and two-dimensional rotated boxes Bi,j can be re-
trieved by setting

Ik := {x ∈ R | x = vk + t ·mk,k, t ∈ [0, 1]}
and

Bi,j :=

{
x ∈ R2

∣∣∣∣x =

[
vi
vj

]
+ s ·

[
mi,i

mi,j

]
+ t ·

[
mj,i

mj,j

]
, (s, t) ∈ [0, 1]2

}
.

For example, the rotated box given by the vertices
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expressed by
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Figure 2. A rotated box in three dimensions.

3. Analysis of Covariance

Sometimes it might not be obvious which pairs of design variables should be
chosen for technical reasons. One idea to maximize the resulting solution
space is to analyse in a first step of the optimization procedure the covariance
matrix of good design points. To this end, design points are randomly
sampled from the whole design space Ωds and all the good design points are
put into the matrix

Xgood =
[
(1)x

good, . . . , (ngood)x
good

]
∈ Rn

good×d.

Then, the corresponding covariance matrix Σ ∈ Rd×d is calculated, with

Σi,j = cov
(
Xgood
i ,Xgood

j

)
, 1 ≤ i, j ≤ d.
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Here, Xgood
i and Xgood

j denote the i-th and j-th column of the matrix Xgood

and the respective covariance cov(Xgood
i ,Xgood

j ) is defined by

cov(Xgood
i ,Xgood

j ) =
1

ngood − 1

ngood∑
k=1

(
Xgood
i,k − µi

)(
Xgood
j,k − µj

)
,

where

µi =
1

ngood

ngood∑
k=1

Xgood
i,k , µj =

1

ngood

ngood∑
k=1

Xgood
j,k

is their mean.

Since the covariance matrix Σ indicates the dimensions that admit a strong
coupling, it is useful in determining the choice of design variables for a 2D-
map. The 2D-maps Ωi,j with the strongest coupling of the dimensions i
and j can be found iteratively by choosing those pairs (i, j) with Σi,j =
max(k,`)∈I |Σk,`| and

I =
{

(k, `) ∈ {1, . . . , d}2 : k < ` and k, ` not part of another 2D-map
}
.

It should be noted that this way of determining the coupled pairs of design
variables is purely mathematical and does not take aspects of design into
account.

4. Box-rotation algorithm

The algorithm in this article is based on the same steps as the sampling-
based box optimization algorithm and extends it by one step to rotate the
candidate box. “Rotate box” is performed after sampling the design points
and before trimming. The flowchart in Fig. 3 gives an overview of the box-
rotation algorithm, where the “Rotate box” step is highlighted by the red
background colour. All steps had to be modified to account for the no longer
axis-parallel boxes in the algorithm. A detailed explanation of all the steps
is provided in the following subsections.

4.1. Box initialization. The initial box is either given by the problem or
can be constructed by using a classical optimization algorithm and building a
sufficiently large box around around an optimal design point. Also a genetic
algorithm, such like differential evolution for example, cf. [13], can be used.
This step is the same as in the box optimization.

4.2. Exploration phase. In the exploration phase, the box moves around
through the design space in order to find a large region of good design. This
is done by trimming, rotation and growing the box for nexp steps, where
nexp is a fixed number given in advance by the user.
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Box initialization

Sample
design
points

Rotate box

Trim box

Box
trimmed
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times?

Grow box

Sample
design
points

Trim box

Box
trimmed
ncon

times?

Final trimmed box

Exploration phase

no

yes

Consolidation phase

no

yes

Figure 3. The box-rotation algorithm. It coincides with
the box optimization if the field “Rotate box”, highlighted in
light red, is removed.
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4.2.1. Sample design points. Inside Ωbox, N uniformly distributed random
design points are sampled.2 The designs are evaluated by the objective func-
tion f and divided into a set X good =

{
(1)x

good, . . . , (ngood)x
good

}
containing

all good design points and a set X bad =
{

(1)x
bad, . . . , (nbad)x

bad
}

containing
all bad design points. The elements of these sets are ordered from high-
est to lowest by their objective value f(x). Additionally, all design points
are mapped to the d-dimensional unit cube [0, 1]d to normalize all design
variables.

Figure 4. The design points and principal components
(dotted) before (left) and after (right) rotation. The blue
line indicates the axis-parallel bounding box around the ro-
tated box.

4.2.2. Rotate box. The optimal box-rotation is determined with the help
of the principal component analysis (PCA, see [14]) applied to the good
design points X good, projected onto the respective 2D-map Ωi,j . Namely,
the coordinate system of Ωi,j is rotated such that the two dominant principle
components form the coordinate axes (see Fig. 4). Ωbox and all design points
are transformed into the new coordinate systems. They are transformed such
that the origin of the rotated coordinate system is the center of gravity of
the good design points Xgood.

The details of the box-rotation step are shown in the Box-Rotation Algo-
rithm. The first input parameter (see line 1) is Ωbox = (V,M). The second
and third inputs are two matrices

Xgood =
[
(1)x

good, . . . , (ngood)x
good

]
∈ Rn

good×d,

Xbad =
[
(1)x

bad, . . . , (nbad)x
bad
]
∈ Rn

bad×d.

2For practical applications, N = 100 turned out to be a good choice, compare [13].
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These are the sets X good and X bad written as matrices, where each row
contains one design point.

The algorithm begins by iterating over the 2D-maps Ωi,j , see line 3 of the
Box-Rotation Algorithm. On each 2D-map, we calculate the principal com-
ponents of the good design points, which are the eigenvectors of the sample
covariance matrix of the good design points on that map (line 4). The pro-
cedure eigenvectors(·) calculates the normalized eigenvectors E = [e1, e2]
of this 2× 2 covariance matrix.

In line 5 of the Box-Rotation Algorithm, the mean µi and µj of the good
design points in the dimensions i and j are calculated. Subsequently, in lines
6 and 7, the actual rotation of the design points happens. The means µi
and µj are subtracted from all design points to normalize them with respect
to the origin. Then, the design points are multiplied with the matrix E to
rotate them such that the principal components form the new coordinate
axes. Finally, in lines 8 and 9, the same rotation to the respective values of
the tuple (V,M) are applied, which determines the solution space Ωbox in
the dimensions i and j.

Box-Rotation Algorithm. This algorithm rotates the box by rotating the
coordinate system.

1: Input: Ωbox, Xgood, Xbad

2: Output: Ωbox, Xgood, Xbad

3: for all 2D-maps Ωi,j do

4: E← eigenvectors

([
cov(Xgood

i ,Xgood
i ) cov(Xgood

i ,Xgood
j )

cov(Xgood
j ,Xgood

i ) cov(Xgood
j ,Xgood

j )

])
5: [µi, µj ]← 1

ngood

∑ngood

k=1 [xk,i, xk,j ]

6:

[
Xgood
i ,Xgood

j

]
←
[
Xgood
i − µi,Xgood

j − µj
]
·E>

7:
[
Xbad
i ,Xbad

j

]
←
[
Xbad
i − µi,Xbad

j − µj
]
·E>

8:
[
vi, vj

]
←
[
vi − µi, vj − µj

]
·E>

9:

[
mi,i mi,j

mj,i mj,j

]
←
[
mi,i mi,j

mj,i mj,j

]
·E>

10: end for

4.2.3. Trim box. In this part of the algorithm, the trimming from the box
optimization is applied to the design points in the rotated coordinate system.
However, a few adjustments have to be made before the box can actually be
trimmed.

With respect to the new coordinate system, determined in Subsection 4.2.2,
the solution space Ωbox is still a product of one-dimensional intervals Ik and
two-dimensional rotated boxes Bi,j . Nonetheless, the original trimming from
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[13] is only applicable to axis-parallel boxes. Therefore, Ωbox is modified by
constructing a bounding box around each rotated box Bi,j , that is

Bi,j ⊂
[
ãi, b̃i

]
×
[
ãj , b̃j

]
,

where
ã` = min{x` : (xi, xj) ∈ Bi,j}
b̃` = max{x` : (xi, xj) ∈ Bi,j}

}
` = i, j.

This yields a new box that is axis-parallel in the rotated coordinate system
(compare Fig. 4):

Ω̃box =
d∏
i=1

[
ãi, b̃i

]
.

Now, the original trimming algorithm can be applied to this box, resulting
in a box Ω?

box that is axis-parallel in the rotated coordinate system. With
respect to the original coordinate system, the box has seemingly been rotated
such that it lies in those directions of the good design points that maximize
their variance. The pseudo code is given in the Box Trimming Algorithm.
Note that the notation from [11] has been modified such that it matches this
article.

Box Trimming Algorithm. This algorithm trims the box such that the
smallest number of good design points is removed.

1: Input: Ωbox, X good,X bad

2: Output: Ω?
box

3: for all xgood ∈ X good do
4: Ω?

xgood =
∏d
i=1 [a?i , b

?
i ]← Ωbox

5: for all xbad ∈ X bad do
6: [ngood,nbad] = countpoints(xgood,xbad,Ωbox,X good,X bad)

7: Igood ←
{
i ∈ {1, . . . , d}

∣∣∣ngood
i = minj∈{1,...,d} n

good
j

}
8: Ibad ←

{
i ∈ Igood

∣∣∣nbad
i = maxj∈Igood n

bad
j

}
9: i? ∈rand Ibad

10: if xbad
i? < xgood

i? then a?i? ← xbad
i? else b?i? ← xbad

i? end if
11: end for
12: X good

∩ ← X good ∩∏d
i=1 [a?i , b

?
i ]

13: for all a?i 6= ai do a?i ← min
xgood∈X good

∩
xgood
i end for

14: for all b?i 6= bi do b?i ← max
xgood∈X good

∩
xgood
i end for

15: end for
16: Ω?

box ← arg maxΩ?
xgood

µ
(
Ω?
xgood

)
The Box Trimming Algorithm requires an axis-parallel solution space Ωbox =∏d
i=1 [ai, bi] as well as sets of good and bad design points X good and X bad as
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inputs (line 1). The output (line 2) is a trimmed box Ω?
box =

∏d
i=1 [a?i , b

?
i ].

Ωbox is trimmed by moving its boundaries onto the bad design points until
there are only good design points left. Because there is no unique way to
do this, multiple boxes Ω?

box are calculated, such that for each good design

point xgood there exists at least one trimmed box Ω?
xgood that contains it,

cf. [11]. From those boxes, the one with the largest volume is chosen as the
final box Ω?

box.

The Box Trimming Algorithm iterates therefore over all good design points
xgood (line 3), initializes a new box Ω?

xgood in line 4, and then begins a loop

over the bad design points xbad in line 5. For each bad design point, it counts
how many design points would get removed if the box is trimmed to xbad in
line 6, using the procedure countdesign points(), introduced in the Count
Points Algorithm and described below. Then, it finds the dimensions where
the fewest good design points are removed (line 7), chooses from those the
dimensions where the most design points are removed (line 8), and finally, if
it has not found a unique dimension yet, chooses one of those dimensions at
random (line 9). In line 10, the box is trimmed in the chosen dimension to
the current bad design point such that the current good design point does
not get removed.

After having iterated over all bad design points, the remaining good design
points are gathered (line 12) and the boundaries are trimmed further to the
nearest good design points in dimensions where the boundaries actually had
to be trimmed (lines 13 and 14). Finally, after iterating over all good design
points, the box Ω?

xgood with the highest volume µ is chosen as the output
(line 16).

The procedure countpoints(), as implemented in Count Points Algorithm,
counts the removed design points if the box is trimmed to xbad

i in dimension
i. It takes a good design point xgood, a bad design point xbad, a solution
space Ωbox, and two sets of good and bad design points as inputs. The
outputs are two vectors ngood and nbad that count how many good and
bad design points get removed if the boundary of Ωbox in dimension i is
moved onto xbad

i , but the design point xgood is left inside Ωbox. To this end,
the algorithm iterates over all dimensions (see line 3), and decides whether

xbad
i < xgood

i or xbad
i ≥ xgood

i (lines 4 and 7). Then, it counts the number of

design points between the boundary and xbad
i (lines 5–9).

4.2.4. Grow box. The last part of one exploration step k is growing the box.
Each interval [ai, bi] is stretched by a growth rate g(k) such that

Ωbox =
d∏
i=1

[
ai, bi

]
with

ai := ai − g(k) · (bi − ai), bi := bi + g(k) · (bi − ai).
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Count Points Algorithm. This algorithm counts the design points which
are removed by the trimming step.

1: Input: xgood,xbad,Ωbox,X good,X bad

2: Output: ngood,nbad

3: for i = 1, . . . , d do

4: if xbad
i < xgood

i then

5: ngood
i ← #

{
x ∈ X good

∣∣ ai ≤ xi ≤ xbad
i

}
6: nbad

i ← #
{
x ∈ X bad

∣∣ ai ≤ xi ≤ xbad
i

}
7: else
8: ngood

i ← #
{
x ∈ X good

∣∣ xbad
i ≤ xi ≤ bi

}
9: nbad

i ← #
{
x ∈ X bad

∣∣ xbad
i ≤ xi ≤ bi

}
10: end if
11: end for

The growth rate may either be a constant g(0) set at the beginning of the
algorithm, such that

g(k) := g(k−1),

or, before growing the box, it may be updated according to the formula

g(k) :=
agood
k

atarget
· g(k−1),

where agood
k = ngood

k /N is the fraction of good design points before trimming
the box in exploration step k and atarget is the desired fraction of good design
points.

Note that the box may grow into the exterior of Ωds, including design vari-
ables that are out of scope. In the box optimization, this has been solved by
simply retracting the axis-parallel box onto the boundary of Ωds. It did not
lose any good design space in the process. However, if a rotated box has to
be retracted into Ωds, a large amount of the good design space that has al-
ready been found could be lost, simply by trying to fit the box in Ωds. Thus,
without further change of the notation, the following two modifications are
introduced:

(1) In each step “Sample design points”, design points are sampled
within Ωbox ∩ Ωds instead of only Ωbox.

(2) In each step “Trim box”, when the volume µ
(
Ω?
xgood

)
is calculated,

the volume µ
(
Ω?
xgood ∩ Ωds,rot

)
is calculated instead, where Ωds,rot is

the transformation of [0, 1]d (which is the normalized design space)
into the rotated coordinate system prescribed by the 2D-maps,

Ωds,rot =
∏
k∈II

[0, 1]×
∏

(i,j)∈Jpair

ρi,j
(
[0, 1]2

)
,
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and ρi,j is the coordinate transform of the map Ωi,j in the box-
rotation step.

The box is not grown in the final step nexp of the exploration phase. This
growth step is skipped and the algorithm switches to the consolidation phase.

4.3. Consolidation phase. The box is no longer rotated or grown in this
phase, since it is expected to be in a position with a large amount of good
design space. However, the box might still contain some bad design space,
and the goal of this phase is to remove as much bad design space as possible.
Thus, one step of the consolidation phase consists of sampling design points
and then trimming the box. The consolidation phase is terminated after
either a fixed number of ncon steps or when no bad design points have been
sampled three times in series. Terminating after three of those steps is done
to save time, the reasoning being that more consolidation steps change little
in the quality of the box. The final solution space of the consolidation phase
is taken as the result of the box-rotation algorithm.

5. Numerical experiments

5.1. Problem 1: Diagonal solution space. It is clear that the princi-
ple component analysis converges to the correct angle if the sample size is
increased. In order to verify the convergence of the entire box-rotation al-
gorithm, we test whether the angles of the rotated boxes converge to the
correct angle. To this end, the design space Ωds = [0, 1]2 is considered and
the objective function is defined such that the good solution space generates
a diagonal corridor of width 1√

2
in the design space. The angle between the

corridor and the x-axis is 45◦, see Fig. 5 for an illustration. The growth of
the box is dynamic, with atarget = 0.8 and an initial growth rate of 0.1.

The algorithm is repeated 100 times each for the different sample sizes N =
50, 60, 70, . . . , 500. For each final box, the angle between the box and the
x-axis is calculated. The mean of the angles is close to 45◦ for all sample
sizes, and the standard deviation of 2.5◦ does not change significantly for
sample sizes larger than about 200. The observed results form a funnel,
compare Fig. 6. This can be interpreted as a sign that, with growing sample
sizes, the angle of the final rotated box converges to 45◦.

Next, the box-rotation algorithm is tested for different corridor widths,
i.e. 0.05, 0.1, . . . , 0.75, with the number of design points fixed to 100. The
algorithm is executed 100 times for each width, skipping the consolidation
phase in every execution.

As can be seen in Fig. 7, the angle of the box varies the more the wider the
corridors become. This is due to the fact that, for a large corridor size, the
box taps into the region outside the design space, where no design points
are sampled. Thus, the final position of the box varies a lot more. This
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Figure 5. 100 solution boxes for the sample size N = 500
for problem 1: diagonal solution space.
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Figure 6. Funnels sample sizes from 50 to 500.

observation is confirmed by Fig. 8, where the solution boxes are found for
the corridor width 0.1 (left plot) and the corridor width 0.75. The non-
defined space contained in the solution box is much larger in the right plot
than in the left plot. However, the mean stays very close to 45◦ throughout
the whole test, and the standard deviation is only about 5◦ for a corridor
of width 0.75, compare Fig. 7. This suggests that the resulting boxes again
converge to 45◦ and the algorithm works as intended.
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Figure 7. The test results for a varying corridor widths.
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Figure 8. The final box for a corridor of width 0.15 (left)
and for a corridor of width 0.75 (right).

5.2. Problem 2: 6D linear problem from vehicle dynamics. The
solutions of the box optimization and the box-rotation algorithm are com-
pared. To that end, the algorithms are applied to a chassis design problem.
A similar problem with more dimensions has been analyzed in [9]. The
problem at hand is considered relevant because it is derived from a real-
world application. Some pairs of design variables have a strong physical
interaction with each other, which yields a natural choice for the 2D-maps.
Based on this, one can also expect that the good solution space is skewed
in the coupled dimensions, which in turn should favour the box-rotation
algorithm over the box optimization. In this problem, the design space is
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Ωds = [0.5, 3]2 × [0.6, 1.4]2 × [0.5, 2]2. The design variables are the scaling
factors of certain vehicle characteristics. Their descriptions and the intervals
assigned to them can be found in Table 1.

Design

Variable
Interval Scaling Factor

x1 [0.5,3]
force-velocity characteristics of

the dampers of the front axle

x2 [0.5,3]
force-velocity characteristics of

the dampers of the rear axle

x3 [0.6,1.4]
force-displacement of the

bearing spring of the front axle

x4 [0.6,1.4]
force-displacement of the

bearing spring of the rear axle

x5 [0.5,2]
stiffness of the anti-roll bar

of the front axle

x6 [0.5,2]
stiffness of the anti-roll bar

of the rear axle
Table 1. Design variables for Problem 2.

The design variables for all other components (shock absorbers, tires, etc.)
are assumed to already have been fixed earlier in the development process.
They are not influenced by the choice of the design variables x1, . . . , x6.

The linear objective function f : Ωds → R is obtained by the following
procedure: Let

gc =
[
0.421,−0.054, 0.414, 0.724, 0.243, 0.027, 0.371

]>
and

G =



0 0 0.036 −0.203 0.258 −0.102
0 0 0.111 −0.313 0.540 −0.165
0 0 −0.115 0.273 −0.495 0.143

−0.152 −0.025 −0.078 0.121 −0.329 0.057
−0.020 0.216 −0.148 0.339 −0.586 0.155

0 0 0.088 0.144 0.391 0.072
0 0 −0.088 −0.144 −0.391 −0.072


.

Given x ∈ Ωds, normalize x with respect to the cube [−1, 1]6 in accordance
with

xnormi = 2
xi − xlowi
xupi − xlowi

− 1, i = 1, . . . , 6,

where xlow = [0.5, 0.5, 0.6, 0.6, 0.5, 0.5]> and xup = [3, 3, 1.4, 1.4, 2, 2]>. Then,
apply the matrix G such that

y := Gxnorm.
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Absolute Volume Normalized Volume

Box Optimization 0.0035 3.9 · 10−4

Box-Rotation Algorithm 0.014 1.6 · 10−3

Table 2. Results from a single experiment.

Finally, the objective function is

f(x) =

{
0, if yi ≤ g(i)

c for all i = 1, . . . , 6,

1, otherwise,

with the critical threshold c = 0.5. Additionally, the growth of the box is
again dynamic, with atarget = 0.8 and an initial growth rate of 0.1.

Since the problem is linear, the largest possible solution space is determined
by means of the linear solution space algorithm proposed in [9]. Its volume is
0.025 and the normalized volume is 2.8 ·10−3, the latter of which is obtained
by rescaling Ωds onto the six-dimensional unit cube [0, 1]6. The same initial
box and growth parameters are used for both the box optimization and
the box-rotation algorithm. For the box-rotation algorithm, those design
variables are coupled that describe the same component of the vehicle on
2D-maps. This results in the 2D-maps Ω1,2 = [0.5, 3]2, Ω3,4 = [0.6, 1.4]2 and
Ω5,6 = [0.5, 2]2.

The results are found in Fig. 9. The solution space found by the linear
solution space algorithm on each 2D-map is drawn and green. The space
drawn in red is discarded by the linear solution space algorithm, but may
still contain good designs. The solution boxes of the two other algorithms,
drawn in grey, are laid over the solution space given by the linear solution
space algorithm. As can be clearly seen, the rotated box is larger than the
axis-parallel box on every 2D-map. Additionally, the rotated box adjusts to
the solution space found by the linear algorithm. As can be seen from Table
2, the rotated box optimization computes a solution box that is about three
times larger compared to the box optimization.
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Figure 9. The final solution boxes for the 6D linear problem.
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This experiment is repeated 100 times for the box optimization and for
the box-rotation algorithm, respectively. Then, the mean of the normalized
volumes of the computed solution spaces is calculated for both algorithms.
The result for the box algorithm is 2.7 · 10−3 and the result for the box-
rotation algorithm is 1.6 · 10−3. Therefore, the conclusion is that the box-
rotation algorithm is clearly superior to the box optimization when trying
to maximize the size of the box.
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Figure 10. The final solution box for the 6D linear problem
with an a-priori analysis of covariance, volume = 6.9 · 10−3.

Finally, the covariance of the good design points from a sample of 100 design
points are analyzed before running the experiment (see Section 3). The
2D-maps proposed by this analysis are Ω1,2 = [0.5, 3]2 and Ω3,5 = Ω4,6 =
[0.6, 1.4] × [0.5, 2]. Using these 2D-maps, the experiment is again repeated
100 times for the box-rotation algorithm. The mean volume of all boxes is
3.7 ·10−3, which is significantly more volume than what is achieved with the
given 2D-maps Ω1,2, Ω3,4 and Ω5,6, regardless of the algorithm. It is worthy
to note that this increase in volume is achieved with a low computational
cost, since the objective function f has to be evaluated only a hundred times
more, which is equivalent to making one more step in the exploration or the
consolidation phase. Additionally, it is interesting to see that the analysis
of covariance couples the design variables by where they act in the vehicle
(x3 and x5 both act on the front axle, where x4 and x6 both act on the
rear axle) instead of coupling the design variables that belong to the same
component. A visualization of the new 2D-maps can be found in Fig. 10.

Note that the visualization for this figure (and the following figures) is differ-
ent from that in Fig. 9. For each 2D-map Ωi,j , 10 000 design points x = (xk)
are sampled such that xk ∈ Ωbox for k 6= i, j and xk ∈ Ωi,j for k = i, j. Thus,
each design point x lies within Ωbox, except for its entries xi and xj , which
may lie anywhere in the 2D-map Ωi,j . That way, the design space sur-
rounding Ωbox from “inside” Ωbox is seen, especially whether the result is
acceptable or not. It can be concluded from Fig. 10 that the algorithm finds
a region of good designs and fills it out very well since Ωbox lies close to bad
design space.
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5.3. Problem 3: 8D nonlinear problem from acoustics. Consider a
simple acoustics engineering problem where nine different transfer paths of
noise are to be designed such that the total noise level does not exceed
a critical threshold value. Each source emits noise with a complex-valued
transfer function

Ak(ω)eiφk(ω)

adding up to the total noise level

f(x) =
∣∣x1e

ix2 + x3e
ix4 + · · ·+ x17e

ix18
∣∣ .

Note that the dependency on the frequency ω is dropped, since the analysis
is carried out for each relevant frequency. Additionally, all the amplitudes
are set to a constant value, i.e. x1 = x3 = · · · = x17 = 1, and the frequency
x2 is fixed to x2 = 0. Altogether, the objective function in this problem is

f(x) =

∣∣∣∣∣1 +
8∑
`=1

eix`

∣∣∣∣∣ .
with Ωds = [0, 2π]8 and c = 1.5. With these settings, the good solution space
has a symmetrical, but otherwise very irregular shape (compare Fig. 11).

This analysis is relevant for vehicle design for acoustic performance. Here,
sound travels along several separate transfer paths in the vehicle body, each
associated with different components. The total sound pressure perceived
by a passenger is the sum of these separate sound waves that may add up
or cancel each other depending on their relative phase angle. In the analysis
carried out here, phase angles are the design variables that are pair-wise
coupled for larger solution spaces. Permissible regions of phase angles serve
as design goal for component designers.

Again, the box optimization and the box-rotation algorithm are applied 100
times to the problem. Again, the growth of the box is dynamic, with atarget =
0.8 and an initial growth rate of 0.1. Two exemplary boxes are found in
Fig. 11. Especially, it can be seen that the problem under consideration
leads to highly non-linear interfaces between the areas of good and bad
design points.

There is also evidence of multiple regions of good design space (see the 2D-
map Ω7,8 in Fig. 11). Dependent on the initial box position and the growth
rate, the box optimization as well as the rotated box optimization may move
into either of these two regions. If the growth rate is small, the algorithms
will gravitate towards the region closest to the initial position of the box. If
the growth rate is sufficiently large, the algorithm will move randomly into
the region where more good design points are sampled. Because of this, the
solutions of both algorithms are only locally optimal.
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Figure 11. Axis-parallel box (left) and rotated box (right)
for the 8D problem; the normalized volume is 7.3 · 10−8 for
the axis-parallel box and 2.5 · 10−6 for the rotated box.

For the box-rotation algorithm, the design variables on the 2D-maps Ω1,2 =
Ω3,4 = Ω5,6 = Ω7,8 = [0, 2π] are coupled. The mean volume for the normal
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box optimization is 8.4 · 10−8, while the mean volume for the rotated box
optimization is 2.9 · 10−6. This is a huge increase of 35 times more volume.

6. Conclusion

In the present article, the box optimization from [23] has been extended such
that it is able to include rotated rectangles. This algorithmic modification
can be realized by adding the step “Rotate box” to the box optimization.
The concept of 2D-maps introduces a weak coupling to the design variables,
but it greatly improves the algorithm in the sense that the final solution box
has a much larger volume. Numerical results demonstrate the effectiveness
of this approach.
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Replication of results. The results presented in this article can be repli-
cated by implementing the data structures and algorithms presented in this
article. The objective function of each problem can be used as described in
section 5 and only requires the inputs specified in the description of that
problem.
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