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Nanocarriers encapsulating gold nanoparticles (AuNPs) hold tremendous promise for numerous biomedical applications. 

So far only a few fabrication strategies have been investigated and efficient processes for the manufacturing of gold 

nanohybrids (AuNHybs) are still missing. We encapsulated a tetrachloroaurate/citrate mixture within nanocarriers and 

initiated the AuNP formation after self-assembly of the nanomaterial by a temperature shift. This nanoreactor approach 

was successfully combined with the film-rehydration, nanoprecipitation, or microfluidics method. Different nanomaterials 

were validated including phospholipids and copolymers and the process was optimized towards encapsulation efficiency 

and physico-chemical homogeneity of AuNHybs. Our nanoreactor technology is versatile, efficient, and highly 

reproducible. Dynamic light scattering and electron microscopy techniques confirmed that generated lipid and polymer 

based AuNHybs were of uniform size below 130 nm and contained a single AuNP. The AuNHyb solutions had a deep-red 

color and exhibited the specific surface plasmon absorption of AuNPs. The unique optical properties of AuNHybs were 

used to visualize cellular uptake of nanocarriers in vitro demonstrating the promising applicability of AuNHybs as 

bioimaging tool.  

Keywords: gold nanoparticle; nanoreactor; liposome; polymer nanoparticle; hybrid system; microfluidics; bioimaging 

 

1. Introduction  

Gold nanoparticles (AuNPs) have attracted great interest since Michael Faraday first described them in 1857.1,2 The application 

of AuNPs in the field of imaging and therapy were based on their unique properties, which include; (I) advantageous 

physico-chemical characteristics, (II) non-toxic and inert properties, (III) facile preparation of monodisperse AuNPs, and (IV) 

various modification options.3–5 Different methods for the synthesis of AuNPs have been described.6,7 The most widely used 

approach is the chemical reduction of gold salt (Au3+) such as tetrachloroaurate (HAuCl4) to metallic gold (Au0) using the 

Turkevich 8,9 or Brust-Schiffrin 10 method. Moreover, synthesis methods using microwaves, UV irradiation, microfluidics, or 

biologic approaches were examined.3,11 Ultimately, AuNPs have to be modified with capping agents to avoid aggregation, 

provide solubility in aqueous media, and improve stability.12 

Encapsulation of AuNPs into different nanocarriers such as liposomes or polymeric nanoparticles is an interesting option for a 

wide range of applications such as smart drug delivery, imaging, or photothermal therapy.13–18 In recent decades, great progress 

has been made in the field of hybrid nanocarriers using AuNPs and several strategies for their synthesis have been investigated. 

For example, lipid based gold nanohybrids (lipid-AuNHybs) have been prepared using the following methods: improved cholate 
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dialysis 19, incorporation of hydrophobic AuNPs 20–22, physical absorption 23,24, or precipitation of gold within liposomes using 

either, glycerol including formation or reverse-phase evaporation 25,26.  

However, these strategies exhibited marked variability in homogeneity, reproducibility, size distribution, and morphology of gold 

nanohybrids (AuNHybs). To overcome these challenges, we developed a novel and versatile strategy to encapsulate AuNPs into 

different nanocarriers with high reproducibility using a nanoreactor approach. The goal of the present study was, (I) the 

encapsulation of a tetrachloroaurate/citrate mixture within nanocarriers and (II) the initiation of AuNP formation after self-

assembly of the nanomaterial. Selected nanomaterials (i.e. lipid and polymer based) were validated and the encapsulation 

efficiency, homogeneity, and robustness of our approach were optimized. Nanocarriers loaded with AuNPs were prepared by 

three different methods depending on the physico-chemical properties of the nanocarrier material.  

The film-rehydration-extrusion method 27 was used for conventional (non-PEGylated) liposomes, the nanoprecipitation method 
28 was used for di-block copolymer nanoparticles, and the microfluidics method 29,30 was used for PEGylated (sterically stabilized) 

liposomes (Figure 1). The most important feature of our nanoreactor approach is the production of nanocarriers at room 

temperature (RT), which avoids the formation of AuNPs before self-assembly. AuNP formation is subsequently initiated by a 

temperature shift. The applicability of the AuNHybs as bioimaging tool was demonstrated in vitro using HepG2 human 

hepatocellular carcinoma cells. 

2. Experimental section 

2.1 AuNP synthesis 

AuNPs were synthesized following a modified Turkevich method.7 Optimization of AuNP synthesis using a 23 full factorial design 

of experiment (DoE) [Stavex 5.2, Aicos Technologies, Basel, Switzerland] is described in detail in the Supplementary Information 

(Table S1). Briefly, ddH2O with 1 mM tetrachloroaurate (Sigma-Aldrich, Buchs, Switzerland) were heated to 70°C for 20 min 

under vigorous stirring. To start the formation of AuNPs, citrate solution (170 mM; 50 mg mL-1) was added as a reducing and 

capping reagent. The HAuCl4/citrate gold reaction mixture (AuR-solution) was stirred at 70°C for 10 min until the solution had a 

deep-red color.  

 

2.2 AuNHyb formation using film rehydration 

The film rehydration method was used for lipids with a transition temperature (Tm) below RT with modifications described 

elsewhere.31 Liposomes were produced at a temperature which inhibits the AuNP formation. In brief, 1-palmitoyl-2-oleoyl-sn-

glycero-3-phosphocholine (15 µmol) [POPC] (Avanti Polar-Lipids, Alabaster, USA) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-

1'-rac-glycerol (5 µmol) [POPG] (Avanti Polar-Lipids, Alabaster, USA) were dissolved in chloroform/methanol (2:1, v/v) and a 

homogenous dry lipid film was prepared using a Rotavapor A-134 (Büchi, Flawil, Switzerland). The lipid film was rehydrated with 

a freshly prepared AuR-solution (HAuCl4:citrate ratio - 1:4) at RT and 120 rpm for 10 min with 3 g glass beads (diameter 5 mm). 

Different lipid (20 mM) to AuR-solution ratios were tested starting from 1 mM HAuCl4 / 4.1 mM citrate up to 

8 mM HAuCl4 / 32.8 mM citrate. 

The resulting multilamellar vesicles were subjected to three freeze-thaw cycles and extruded through polycarbonate membranes 

with two different pore sizes using a barrel extruder (Lipex; Northern Lipids, Vancouver; Canada). Liposomes were extruded at RT 

3 times through a 200 nm polycarbonate membrane and 11 times through a membrane with a pore size of 100 nm (VWR 

International, Dietikon, Switzerland). AuNPs, which were formed during the extrusion procedure, bind to the filter membranes. 

Finally, the unilamellar liposomes were heated to 70°C for 10 min to start the formation of AuNPs. To separate liposomes from 

free AuNPs, the sample was purified by FPLC using a Superose 6 prep column (GE Healthcare, Glattbrugg, Switzerland) eluting 

with 0.01 M phosphate buffered saline (PBS) containing 150 mM sodium chloride, pH 7.4 (Sigma-Aldrich, Buchs, Switzerland).  

 

2.3 AuNHyb formation using nanoprecipitation 

A nanoprecipitation method was used for the di-block copolymer polyethyleneglycol-polycaprolactone [PEG-PCL] (Sigma-Aldrich, 

Buchs, Switzerland). The polymer (5 mg) was dissolved in THF (50 µL) [Sigma-Aldrich, Buchs, Switzerland] under constant stirring 

with a magnetic bar (750 rpm). The AuR-solution (HAuCl4:citrate ratio - 1:4) was added dropwise (one drop per five seconds). The 

mixture was stirred for 10 min at 750 rpm followed by 10 min on a thermomixer at 70°C and 300 rpm. Different polymer to 

AuR-solution ratios were tested starting from 1 mM HAuCl4 / 4.1 mM citrate up to 8 mM HAuCl4 / 32.8 mM citrate. To separate 

the PEG-PCL-AuNHybs from free AuNPs, a FPLC purification step was used (see above). 

 

2.4 Microfluidics device design and fabrication 

The microfluidics device was fabricated with 0.05 mm thick polystyrene foil (GoodFellow, Huntingdon, UK) and NOA 81 (Norland, 

Cranberry, USA) using standard soft-lithography techniques according to the procedure described previously.32,33 The 

microfluidics device had seven inlet channels converging to a single staggered herringbone micromixer. The rectangular cross-
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section had dimensions of 468 µm length, 80 µm width, and 40 µm / 200 µm height (Figure 1C). Detailed experimental 

procedures are given in the Supplementary Information. 

 

2.5 Flow visualization and Computational Fluid Dynamics Simulation 

Detailed experimental procedures are given in the Supplementary Information. 

 

 

2.6 AuNHyb formation using microfluidics 

The microfluidics method was used for lipids with a transition temperature above RT (55°C). Therefore, the AuNP formation 

during the liposome production was hampered due to decreased temperature. 1,2-distearoyl-sn-glycero-3-phosphocholine 

(DSPC) [5.75 µmol] (Avanti Polar-Lipids, Alabaster, USA), cholesterol [4 µmol] (Sigma-Aldrich, Buchs, Switzerland), and 

1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-(methoxy(polyethylene glycol)-2000) (DSPE-PEG2000) [0.25 µmol] (Avanti 

Polar-Lipids, Alabaster, USA) were dissolved in ethanol. The microfluidics device was primed with water for the outer streams 

and with ethanol for the central inlet (1 µl s-1) using syringe pumps.  

Afterwards four different syringes were connected: (I) double-distilled water, (II) citrate solution (4.1 mM - 32.8 mM), and 

(III) tetrachloroaurate (HAuCl4) solution (1 mM - 8 mM) were connected to the outer streams (always with a HAuCl4:citrate ratio 

of 1:4) and (IV) lipids in ethanol (5 mM) were connected to the central inlet. The speed was set to 4 µl s-1 for syringe I, 2 µl s-1 for 

syringe II/III and 1 µl s-1 for syringe IV. The sample was collected at the outlet. Finally, the liposomes were heated to 70°C for 

10 min to start the formation of AuNPs. To separate lipid-AuNHybs from free AuNPs, the sample was purified by FPLC using a 

Superose 6 prep column eluting with 0.01 M PBS pH 7.4.  

 

2.7 Size analysis using dynamic light scattering 

Dynamic light scattering (DLS) measurements of AuNPs and all lipid- and polymer-AuNHybs were conducted using a Delsa Nano C 

Particle Analyzer (Beckman Coulter, Nyon, Switzerland). The laser was adjusted to 658 nm and scattered light was detected at a 

165° angle. Data was converted using CONTIN particle size distribution analysis. The AuNHyb size was analyzed three times in 

PBS at RT.  

 

2.8 UV-Vis and fluorescence measurements  

Ultraviolet-visible (UV-Vis) absorption from 260 nm to 750 nm (step size one nm) of different samples was measured using a 

SpectraMax M2 (Molecular Devices, Sunnyvale, USA). Fluorescence of lipid-AuNHybs containing rhodamine labelled 

phospholipids (Rho-PE) [Avanti Polar-Lipids, Alabaster, USA] was analyzed by excitation at 560 nm and detection between 

572 nm to 750 nm. 

 

2.9 Transmission electron microscopy of gold nanohybrids 

Size and shape of the AuNPs and AuNHybs were analyzed by transmission electron microscopy (TEM) using a CM-100 (Philips, 

Eindhoven, Netherlands) operating at 80 kV. Samples were prepared by deposition onto a 400-mesh carbon-coated copper grid 

(Polysciences Inc., Eppelheim, Germany). Prior to sample deposition, the grid was exposed to plasma for 10 seconds to increase 

sample binding. Grids were washed with double-distilled water to prevent precipitation of uranyl salts by phosphate ions. Then 

the samples were negatively stained using a 2% uranylacetate solution (Sigma-Aldrich, Buchs, Switzerland), the excess of 

uranylacetate was removed using filter paper, and the samples were dried at RT overnight. Nanocarrier integrity was preserved 

by this procedure as confirmed by Cryo-EM analysis using sample vitrification (see below). To characterize the size of AuNPs 

inside of AuNHybs, the diameter of at least 100 AuNPs was determined. 

 

2.10 Cryo-TEM of gold nanohybrids 

Aliquots (4 µL) of AuNHybs were adsorbed onto holey-carbon supported grids (Quantifoil, Glossloebichau, Germany), blotted 

with Whatman 1 filter papers, and vitrified in liquid nitrogen-cooled liquid ethane using a Vitrobot IV (FEI Company, Eindhoven, 

Netherland). Cryo-electron imaging was performed with a Philips CM200-FEG electron microscope operated at an acceleration 

voltage of 200 kV. Micrographs were recorded with a 4k × 4k TemCam-F416 CMOS camera (TVIPS, Gauting, Germany).  

 

2.11 Preparation of fluorescent lipid based AuNHybs 

Detailed experimental procedures are given in the Supplementary Information.  

 

2.12 Passive uptake of AuNPs and AuNHybs in HepG2 cells 
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HepG2 cells were seeded on a 10 cm plate and cultured in 10 mL Dulbecco´s modified Eagle´s culture medium high glucose 

supplemented with 10% fetal calf serum (FCS), 100 units mL-1 penicillin, and 100 μg mL-1 of streptomycin (DMEM comp). All cell 

culture media components were purchased from Sigma-Aldrich (Buchs, Switzerland). Cells were allowed to adhere for 24 h 

before the AuNPs or AuNHybs were added. After incubation at 37°C for 18 h, the tissue culture plate was washed three times 

with DMEM comp (37°C). Afterwards, the cells were fixed with DMEM containing 3% formaldehyde (Sigma-Aldrich, Buchs, 

Switzerland) and 0.3% glutaraldehyde (Sigma-Aldrich, Buchs, Switzerland) for two hours at RT and stored overnight at 4°C. The 

following day, cells were scraped, pelleted, and washed three times with water, and then incubated with 2% uranylacetate for 

two hours at 4°C in the dark. The sample was washed, dehydrated by series of methanol, and infiltrated with LR-gold resin 

(London Resin, London, UK) according to the manufacturer’s instructions. Polymerization was performed at -10°C by UV light for 

one day. Sections of about 70 nm were collected on carbon-coated Formavar-Ni-grids (EMS, Hatfield, USA) and stained for 

15 min with 4% uranylacetate followed by two minutes in Reynolds lead citrate solution. Sections were viewed using a Phillips 

CM-100 electron microscope. 
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3. Results and discussion  

3.1 Film Rehydration (Conventional Liposomes)  

For the preparation of AuNP loaded liposomes, the most direct approach is the rehydration of a lipid film with presynthesized 

AuNPs. The well-characterized method developed by Turkevich and Frens is ideal to synthesize AuNPs with diameters of 

approximately 20 nm (see Supplementary Information for experimental details).7,34,35 However, the AuNP encapsulation 

approach has several issues. The AuNPs often form aggregates up to several hundred nanometers (Figure 2A), which results in 

low encapsulation efficiency (Figure 2D) and renders extrusion impossible due to blocked filter membranes. Therefore, we 

developed an alternative strategy and combined the film-rehydration method with a ‘nanoreactor approach’. We rehydrated the 

lipid film with the Turkevich reaction mixture consisting of tetrachloroaurate and citrate. Then the formation of AuNPs was 

initiated inside the core of preassembled liposomes by a shift in temperature [70°C, 10 min] (Figure 1A).  

To prevent the formation of AuNPs during the preparation of liposomes, we selected lipids that are characterized by a low 

transition temperature (Tm). The lipid composition consisted of POPC and POPG, which provides a Tm of -2°C. The lipid film was 

rehydrated with a tetrachloroaurate and citrate reaction solution in different ratios and the liposomes were extruded at RT 

before initiation of AuNP formation. The final AuNHyb sample exhibited the characteristic ruby-red color resulting from the 

surface plasmon resonance of encapsulated AuNPs.36 To test if the temperature affected the efficiency of the process, the entire 

procedure was also carried out at 4°C. However, there was no difference between AuNHybs prepared at RT or at lower 

temperatures. TEM showed that the AuNPs were encapsulated inside the AuNHybs (Figure 2B). Encapsulation efficiency (i.e. the 

ratio between liposomes encapsulating AuNPs and liposomes that were empty) was significantly higher using the nanoreactor 

approach compared with either extrusion at high temperature (data not shown) or use of preformed AuNPs (Figure 2D). The 

latter condition lead to the formation of AuNP aggregates in the medium surrounding the liposomes (Figure 2D). In contrast, the 

nanoreactor approach resulted in the encapsulation of a single AuNP in the inner liposomal core.  

POPC/POPG-AuNHybs were also analyzed by Cryo-TEM (Figure 2C). Under these conditions, the native, hydrated state of the 

lipid formulation is presented.37 Cryo-TEM showed that lipid-AuNHybs were spherical, mainly unilamellar, and efficiently loaded 

with AuNPs (Figure 2C). AuNPs were located in the hydrophilic core of the liposomes (Figure 2C), consistent with TEM analysis 

(Figure 2B). Interestingly, some AuNPs were located in close proximity to the lipid bilayer. This could be either an artefact from 

the drying process during the TEM grid preparation or an interaction of the AuNPs with one of the phospholipids. The number of 

AuNPs encapsulated was dependent on the concentration of the AuR-solution. The highest AuNP encapsulation efficiency was 

achieved with 4 mM tetrachloroaurate, 16.3 mM citrate, and 20 mM lipids. Higher AuR-solution to lipid ratios resulted in the 

formation of AuNP agglomerates outside of the liposomes. On the other hand, lower AuR-solution to lipid ratios led to a 

significant amount of empty nanocarriers. Interestingly, TEM analysis revealed that the AuNPs, which were synthesized inside 

liposomes were significantly smaller than AuNPs synthesized without lipids (approximately 12.0 nm vs. 21.5 nm) (Figure 2A vs. 

Figure 2B). It is tempting to speculate that the limited amount of tetrachloroaurate and citrate available inside the nanocarriers 

is limiting the maximum size of the AuNPs. The POPC/POPG-AuNHybs were analyzed by DLS. The size of POPC/POPG-AuNHybs 

(104.7 nm ± 5.2 nm) was similar to the size of empty liposomes (Figure 3A). Thus, AuNPs did not influence the nanocarrier 

diameter. In Figure 4A, the absorption spectra of empty POPC/POPG liposomes (negative control), AuNPs (positive control), and 

POPC/POPG-AuNHybs are compared. As expected no absorption maximum was observed for empty POPC/POPG liposomes in 

the wavelength range from 500 nm to 600 nm. In contrast, AuNPs and POPC/POPG-AuNHybs showed a distinct surface plasmon 

absorbance peak at 525 nm. This indicates the successful encapsulation of AuNPs inside POPC/POPG liposomes. 

 

3.2 Nanoprecipitation (Di-block Copolymer Nanoparticles)  

To demonstrate the broad applicability of our nanoreactor approach, we investigated the formation of polymer-AuNHybs using 

nanoprecipitation (Figure 1B). For this method, the AuR-solution was added dropwise to the di-block copolymer PEG-PCL 

dissolved in THF (see Supplementary Information for experimental details). Similar to the lipid-AuNHybs, the addition of 

preformed AuNPs to the polymer resulted in low encapsulation efficiency (Figure S1A). In contrast, high encapsulation efficiency 

with one AuNP per polymeric nanocarrier was achieved using the nanoreactor approach (Figure 2E). Cryo-TEM analysis 

confirmed that AuNPs with a size of 14.1 nm ± 3.1 nm were located inside the polymer-AuNHybs (Figure S1B).  

Polymer-AuNHybs consisting of PEG-PCL presented a spherical morphology in which polymer chains self-assemble as solid 

polymeric nanoparticles. Thus, the hydrophilic parts of the di-block copolymer are exposed towards the outer buffer 

environment (Figure S1B). Recently, this was also shown for other polymeric nanoparticles.38 DLS analysis showed a 

monodisperse formulation of polymer-AuNHybs (polydispersity index = 0.088) with a diameter of 77.5 nm ± 3.9 nm (Figure 3B). 

Additionally, the polymer-AuNHybs showed a characteristic surface plasmon band at 527 nm due to the unique optical 

properties of AuNPs (Figure 4B). 
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3.3 Microfluidics (PEGylated Liposomes)  

Recently, it has been demonstrated that rapid microfluidic mixing offers a controlled method to produce lipid nanocarriers.39 

Defined interfacial forces between the nanomaterial components result in a controllable and highly reproducible self-assembly 

process.40 To facilitate the production of AuNP loaded PEGylated liposomes, we developed a microfluidics platform for the 

preparation of lipid-AuNHybs using lipids with a transition temperature above RT. Briefly, PEGylated lipid based gold nanohybrids 

(PEG-Lipo-AuNHybs) were synthesized by rapid mixing of an ethanolic lipid solution (5 mM, consisting of DSPC, cholesterol, and 

DSPE-PEG2000) and the aqueous Turkevich AuR-solution. In the last step of the process, the PEGylated liposomes were heated to 

70°C to start the formation of the AuNPs inside the liposomes. 

In more detail, our microfluidics device consisted of seven inlet channels which converged into a single staggered-herringbone 

micromixer (see Supplementary Information). At the junction of the inlets, the center stream was hydrodynamically focused to 

improve the mixing. To illustrate the nanomanufacturing process, we simulated the flow patterns and visualized them with a 

fluorescent dye (Figure 1D/E; Suppl. Figure S2). Liposomes are formed at the interface between the hydrodynamically focused 

lipid stream and the AuR-solution. The mechanism of controlled, focused, and rapid mixing 41 is visible both in the experimental 

setting (Figure 1D) and the computer simulation (Figure 1E). The central inlet was used for the model ethanolic lipid solution 

[5mM] (Figure S2B). The other six, outer inlets were used for tetrachloroaurate (Figure S2C), citrate (Figure S2D), and water (two 

inlets for each solution). Syringe pumps were used with flow rates up to 4 µL s-1. The reagents were supplied by separate inlets 

because the use of tetrachloroaurate and citrate in the same inlet resulted in premature AuNP formation in the herringbone 

micromixer (Figure S3D).40 In addition, the use of preformed AuNPs resulted in a low encapsulation efficiency, as observed for 

the film-rehydration and nanoprecipitation method with preformed AuNPs (Figure S3E). Therefore, the best results were 

achieved using a microfluidics platform with seven different inlets (Figure 1C-E).  

Water (4 µL s-1) was used to improve the hydrodynamic flow focusing of the lipid stream and to decrease the final ethanol 

concentration. Furthermore, we used a higher flow rate for the outer inlets to increase the water to ethanol ratio. This is 

important to prevent the destabilization of liposomes caused by elevated ethanol concentrations.42 Microfluidics parameters 

were adjusted to optimize encapsulation efficiency and size distribution. A continuous and efficient production was achieved 

with 2 mM tetrachloroaurate / 8.2 mM citrate solution (for 5 mM lipids); and flow rates of 2 µL s-1 for the AuR-solutions, and 1 µL 

s-1 for the lipid solution. The absolute production speed was 420 µL min-1 (Figure S2A). Increasing the concentration of the 

AuR-solution for the microfluidics manufacturing resulted in an increased number of encapsulated AuNPs per AuNHyb (Figure 

S3A-C) until agglomerates were observed. AuNHybs with several encapsulated AuNPs mostly resulted in Janus-like vesicle 

structures (i.e. asymmetrical loading) as recently shown for Janus magnetic liposomes.43 DLS and TEM showed that the size of 

PEG-Lipo-AuNHybs was similar to that of empty PEGylated liposomes (Figure 2F; Figure 3C). PEG-Lipo-AuNHybs with a mean 

hydrodynamic diameter of 123 nm ± 2.5 nm (Z-average) and a monodisperse size distribution were obtained (Figure 3C). Each 

liposome incorporated one AuNP with a diameter of 6.8 nm ± 1.5 nm as shown by TEM (Figure 2F). A characteristic plasmon 

absorption at 525 nm was observed using UV-Vis spectroscopy (Figure 4C).  

 

3.4 Characterization of Nanoreactor Approach  

We showed that our nanoreactor approach is applicable for a wide range of nanomaterials, as well as different preparation 

methods. The film rehydration method can be used for lipids with a transition temperature below RT, whereas the 

nanoprecipitation method is suitable for several polymer nanomaterials.28,44 The microfluidics method is especially designed for 

lipids with a transition temperature above RT. However, this technique is suitable for all nanomaterials, that need highly 

controlled nanomanufacturing.40  

The most important step of our nanoreactor approach is the speed of the nanocarrier production. The nanocarrier formation 

needs to be faster than AuNP aggregate formation. Therefore, the AuNP formation inside the nanocarriers is initiated by a 

temperature shift after self-assembly. AuNP aggregates formed outside of the self-assembled nanocarrier are removed by size 

exclusion chromatography. During this step, the outer buffer can be exchanged to a physiological compatible medium such as 

PBS. Several publications have shown that a difference in tonicity between the nanocarrier lumen and the outer buffer 

environment is not affecting the stability or morphology of nanocarriers.  45–47 

All tested combinations resulted in efficient and reproducible formation of AuNHybs. Moreover, DLS, TEM, and Cryo-TEM 

analysis showed that the final AuNHybs preserved the initial dimensions of the empty nanocarriers. Four distinct observations 

indicate that the AuNPs were encapsulated inside the nanocarriers. Firstly, the AuNHybs passed easily through the size exclusion 

chromatography medium (Superose 6 prep) whereas non-encapsulated AuNPs showed a high affinity for the chromatography 

medium, which was recently also shown for quantum dots.48 Secondly, the AuNHybs exhibited an improved stability in PBS and 

aggregation was prevented as compared to free AuNPs. Thirdly, electron microscopy analysis showed a single AuNP entrapped 

per nanocarrier and no clusters of AuNPs were observed. Finally, the deep-red AuNHyb solutions exhibited a specific surface 

plasmon absorption peak at 525 nm, and a low 650 nm/530 nm ratio, which is characteristic for non-agglomerated AuNPs.49  
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3.5 Cellular Uptake Experiments  

To demonstrate the use of AuNHybs for bioimaging, we performed uptake experiments with the AuNHybs in HepG2 cells 

exploiting the unique optical properties of AuNPs. The electron-density of AuNPs was used for further TEM analysis of cells 

(Figure 5) as shown recently for surface-modified AuNPs.50 Due to the high quality and uniform size of AuNPs, TEM observations 

were possible without silver enhancement. Using this approach, fundamental insights about nanocarrier uptake and intracellular 

fate can be obtained. For example, proteins covering the surface of nanocarriers after administration to biological medium can 

influence cellular uptake. However, formation of a protein corona and opsonisation can be minimized using PEGylated 

nanocarriers (i.e. PEG-PCL nanoparticles or PEGylated liposomes).51,52 It remains to be elucidated to which degree protein 

adsorption onto non-modified nanocarriers such as conventional liposomes has to be taken into account for biomedical 

applications. 53,54  

The interaction of free AuNPs with HepG2 cells is shown in Figure 5A and 5D. Free AuNPs formed aggregates which were located 

on the cellular plasma membrane (Figure 5A) or taken up into the cell (Figure 5D). These observations are in agreement with 

published results.50,55 Figure 5 shows the interaction with cells of lipid (Panel B/E) or polymer based AuNHybs (Panel C/F). In 

contrast to the uptake of free AuNPs, no AuNP aggregates were detected using AuNHybs. Different internalization steps were 

observed. An early stage in the cellular uptake mechanism was indicated by parts of the cellular plasma membrane around 

endosomes located near the cellular membrane (Figure 5B). Compartments filled with more than one AuNP are most likely 

caused during maturation of different AuNHyb-filled vesicles (Figure 5E/F).  

AuNHybs could thus be used to examine nanoparticle-cell-interactions and the intracellular fate of the nanocarriers inside the 

cells using TEM, a technique which offers greater resolution compared to confocal microscopy. It should be noted that liposomes 

encapsulating AuNPs can act simultaneously as a carrier for fluorescent dyes (see Supplementary Information for experimental 

details). For example rhodamine labelled phospholipids (Rho-PE) can be used to fluorescence label AuNHybs (Figure S4b). This 

offers the possibility to image fluorescent AuNHybs by confocal fluorescence microscopy or to quantify them with flow 

cytometry analysis. 

 

4. Conclusions 

In conclusion, we have developed a novel strategy for the preparation of lipid and polymer based AuNHybs. After encapsulation 

of the required reagents inside nanocarriers, formation of AuNPs was triggered by a temperature shift. In future, a similar 

approach could be used for the preparation of alternative metal nanohybrids such as silver nanoparticles. Different preparation 

techniques were used in combination with various nanomaterials. To the best of our knowledge, this nanoreactor approach is 

unique and was not used previously. The high reproducibility and versatility of our nanoreactor approach is unprecedented and 

makes this technology suitable for many nanomaterials. Microfluidics offers the possibility for an efficient and large scale 

production.  

The produced AuNHybs have a size of 70 nm to 130 nm, which makes them ideal for bioimaging applications 56. In addition, 

AuNHybs can be stored over a prolonged period of time (i.e. >3 months / 4°C) maintaining their initial size and monodispersity.  

In order to target specific cells or tissues, AuNHybs can be easily modified using surface-conjugated receptor ligands 57. Our 

nanoreactor approach will be instrumental to develop a better understanding of cellular uptake and intracellular trafficking of 

targeted nanocarriers. 
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Figures 

 

 

Figure 1. Different methods for the preparation of gold nanohybrids. Schematic representation of the, (A) film-rehydration-

extrusion method for lipids with Tm < room temperature (RT), (B) nanoprecipitation method for the di-block copolymer PEG-PCL, 

and (C) microfluidics platform for lipids with Tm > RT. The formation of gold nanoparticles inside the nanocarriers was initiated by 

temperature increase after self-assembly. (C) The microfluidics device had seven inlet channels converging to a single staggered 

herringbone micromixer. (D) Microfluidic streams were visualized using the fluorescence dye fluorescein. (E) Computational fluid 

dynamics simulation of concentration gradients (in a.u.) in the microfluidics device. Scale bars indicate 100 µm. 
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Figure 2. Characterization of gold nanoparticles (AuNPs) and gold nanohybrids (AuNHybs). Representative transmission 

electron microscopy (TEM) (A/B, D-F) and Cryo-TEM (C) images are shown. (A) AuNPs were synthesized using a modified 

Turkevich method. (B) POPC/POPG-AuNHybs were analyzed by TEM and (C) Cryo-TEM. (D) The film-rehydration method for a 

lipid formulation with preformed AuNPs resulted in agglomerates. (E) PEG-PCL-AuNHybs prepared by nanoprecipitation and (F) 

PEG-liposome-AuNHybs after microfluidics platform preparation contain a single AuNP. Scale bars indicate 100 nm. 
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Figure 3. Dynamic light scattering analysis of gold nanohybrids (AuNHybs). Intensity distribution of (A) POPC/POPG-AuNHyb, (B) 

PEG-PCL-AuNHyb, and (C) PEGylated liposome-AuNHyb. Mean values of size and polydispersity index (PDI) are given ± SD (n=5). 

 

 

  

Figure 4. UV spectra of empty nanocarriers, gold nanoparticles (AuNPs), and gold nanohybrids (AuNHybs). Relative UV-Vis 

absorption from 260 nm to 750 nm (step size one nm) was measured for (A) POPC/POPG, (B) PEG-PCL, and (C) PEG-lipid based 

nanocarriers. Spectra were normalized to an OD260 of 1.0. All AuNHybs showed a characteristic surface plasmon band at 

approximately 525 nm. 
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Figure 5. Uptake experiments of gold nanoparticles (AuNPs) and gold nanohybrids (AuNHybs) in HepG2 cells. (A) AuNPs 

localized at the cell surface or (D) inside the cell. Representative uptake images of (B/E) POPC/POPG-AuNHybs and (C/F) 

PEG-PCL-AuNHybs (Arrows). ER = endoplasmatic reticulum; LYS = Lysosome; M = mitochondria; MVB = multi vesicular body; 

PM = plasma membrane. Scale bars indicate 200 nm. 
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