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Abstract

Motivation: Pathway reconstruction has proven to be an indispensable tool for analyzing the mo-

lecular mechanisms of signal transduction underlying cell function. Nested effects models (NEMs)

are a class of probabilistic graphical models designed to reconstruct signalling pathways from

high-dimensional observations resulting from perturbation experiments, such as RNA interference

(RNAi). NEMs assume that the short interfering RNAs (siRNAs) designed to knockdown specific

genes are always on-target. However, it has been shown that most siRNAs exhibit strong off-target

effects, which further confound the data, resulting in unreliable reconstruction of networks by

NEMs.

Results: Here, we present an extension of NEMs called probabilistic combinatorial nested effects

models (pc-NEMs), which capitalize on the ancillary siRNA off-target effects for network reconstruc-

tion from combinatorial gene knockdown data. Our model employs an adaptive simulated anneal-

ing search algorithm for simultaneous inference of network structure and error rates inherent to

the data. Evaluation of pc-NEMs on simulated data with varying number of phenotypic effects and

noise levels as well as real data demonstrates improved reconstruction compared to classical

NEMs. Application to Bartonella henselae infection RNAi screening data yielded an eight node

network largely in agreement with previous works, and revealed novel binary interactions of direct

impact between established components.

Availability and implementation: The software used for the analysis is freely available as an R

package at https://github.com/cbg-ethz/pcNEM.git.

Contact: niko.beerenwinkel@bsse.ethz.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Network biology attempts to understand the complex interactions

required to maintain the structure and function of a cell through a

network-based description. Discerning the relations among different

genes provides insight into underlying biological mechanisms and

processes. In particular, identifying the defects in different compo-

nents of signalling pathways involved in diseases can facilitate the

discovery of novel drug targets. High-throughput measurements of

responses to experimental perturbations of different genes provide a

rich set of information to reconstruct the dependencies between

them (Molinelli et al., 2013). RNA interference (RNAi) (Fire et al.,

1998), CRISPR-Cas9 Knockouts (Shalem et al., 2014), gene

knockouts (Hughes et al., 2000) and perturbations from targeted

drugs (Molinelli et al., 2013) are some extensively used experimental

techniques for observing effects of active perturbations in biological

systems. Despite access to high-dimensional phenotypic profiles

from such experiments, data-driven inference of intracellular net-

works remains a key challenge in computational biology.

Several models have been developed to effectively infer signalling

networks from perturbation experiments with varying degrees of

complexity. A full Bayesian method based on a linear ODE model

with a sparsity-enforcing prior on the network was developed by

Steinke et al. (2007). Molinelli et al. (2013) proposed an approach

to construct context specific, de novo, and predictive network
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models of signalling pathways based on non-linear differential equa-

tions from single and paired drug perturbation data. Transitive

Reduction and Closure Ensemble (TRaCE), developed by Ud-Dean

and Gunawan (2014), generates an ensemble of digraphs from a

given gene knockout dataset. The algorithm produces the smallest

and the largest networks that bound the complexity of networks in

the ensemble, with the edges differing between them deemed uncer-

tain. Franks et al. (2016) developed a compartment specific hier-

archical graphical model integrating an ensemble of heterogeneous

data sources for refining the network hypothesis.

Another well characterized computational framework for infer-

ring networks from high-dimensional RNAi screens are the nested

effects models (NEMs) (Markowetz et al., 2005). NEMs are a class

of probabilistic graphical models that aim to infer the connectivity

between different perturbed genes using the nested structure of

observations. Several extensions of NEMs have been proposed since

their conception, including general effects model for inference of

DAGs (Tresch et al., 2008), dynamic NEMs for inference from time

series data (Fröhlich et al., 2011), NEMix for inference under uncer-

tainty of a stimulation from single-cell observations (Siebourg-

Polster et al., 2015), and B-NEMs which combine the use of

downstream effects with the higher resolution of signalling pathway

structures in Boolean networks (Pirkl et al., 2015), among others.

However, the inference of signalling pathways from perturbation

data still remains a challenge. The precision of inference depends on

the underlying model assumptions, the computational complexity of

the inference algorithm and the availability of relevant information

in the data. Often, the information in the data is confounded or un-

available due to several underlying physical, chemical and biological

effects in the experimental approach. One such pervasive effect

observed in RNAi screens are the strong off-target effects displayed

by the siRNAs (Jackson et al., 2006). Off-target activity of siRNAs

involves binding of siRNAs to unintended targets by partial comple-

mentarity, leading to unintended silencing and convoluted pheno-

types. In general, the estimated cumulative off-target contribution to

the observed phenotype is much higher than the on-target contribu-

tion (Schmich et al., 2015). Fedorov et al. (2006) showed that off-

target effects are capable of inducing strong, and quantifiable toxic

phenotypes. Further, they also demonstrated that depending on the

specificity of the assay, off-targets can be responsible for as many as

30% of the positives identified in a screen. Thus, in reality the

observed effects are a combination of multiple knockdowns, making

the interpretation of RNAi screens complex.

In this article, we propose that taking the ancillary off-target in-

formation explicitly into account can improve network inference.

Seed sequence dependent siRNA off-target information can be pre-

dicted using tools such as TargetScan (Lewis et al., 2005). We devel-

oped an extension of NEMs called probabilistic combinatorial

nested effects models (pc-NEMs) to infer the underlying network

structures using probabilities of combinatorial gene knockdowns

(Fig. 1). We demonstrate the power of our approach in a detailed

simulation study as well as on real data, and apply our model to B.

henselae infection screening data.

2 Materials and methods

Here, we formally present a novel extension of NEMs called pc-

NEMs, and a new inference algorithm based on adaptive simulated

annealing. Further, we elaborate on the simulation setup and the

analysis of image-based single-cell data for application to infection

screening data.

2.1 NEM
NEMs are two-layered graph models, designed to infer signalling

networks from observations of perturbation experiments. A NEM

consists of two types of genes: the perturbed (e.g. silenced) genes

called signalling genes (S-genes), and the downstream measurable

entities called effect genes (E-genes) (Markowetz et al., 2005). Let E
be a set of L effect genes and S be a set of N signalling genes.

Knocking down a specific S-gene Si obstructs the signal flow in the

downstream pathway, affecting the E-genes attached to Si and all of

its downstream genes. This results in a nested structure of effects

which can be used to reconstruct the original signalling graph

(Markowetz et al., 2005).

Formally, the dependencies among S-genes are given by a binary

N�N adjacency matrix U (signalling graph), with Uij ¼ 1 whenever

S-gene i is upstream of S-gene j for all i; j 2 S. The linking of E-genes

to S-genes is formally represented by a N�L binary matrix H

(effects graph), with Hse ¼ 1 indicating a connection between

E-gene e 2 E and S-gene s 2 S. It is assumed that each effect gene is

attached to at most one signalling gene, thereby accounting for unin-

formative effects. Given U and H, NEMs ascertain that perturbing

S-gene s 2 S leads to an observable downstream effect for E-gene

e 2 E if there is a path from s to e, i.e. there exists s0 2 S such that

Uss0 ¼ 1, and Hse ¼ 1. Thus, mathematically a NEM, F, is the prod-

uct (Tresch et al., 2008),

F ¼ UH (1)

2.2 pc-NEM
Off-target effects resulting from non-specific binding of siRNAs,

pose one of the biggest challenges in network inference from RNAi

screens. We present a novel variation of NEMs called probabilistic

combinatorial nested effects models (pc-NEMs), which make use of

the combinatorial gene knockdown information resulting from

off-targets (Fig. 2). Let K be a set of K knockdown experiments.

Fig. 1. Network inference exploiting off-target effects. A schematic example

showing the improvement in inference using off-target information. K1–K4

are the perturbation experiments designed to knockdown S1–S4 genes, and

E1–E4 are the observed effects. In the ideal situation with no off-target effects,

NEMs successfully infer the true network (left). In the presence of an off-target

effect E3 in experiment K2, an additional edge is inferred between S2 and S3

(red solid line), since NEMs assume the perturbations to be strictly on-target

(middle). However, by explicitly accounting for the off-target perturbation of

S3 in experiment K2 (red dashed line), pc-NEMs can successfully recover the

original network (right). The dashed edges are known perturbations and the

solid edges are inferred
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The predicted knockdown information obtained from TargetScan

(Lewis et al., 2005) is encoded in a perturbation map q, which we

defined as a K�N matrix with each entry qij describing the prob-

ability of S-gene j 2 S being knocked down in experiment i 2 K.

Given a perturbation map q and a signalling graph U, we then com-

pute the propagation matrix P, which is also a K�N matrix with

each entry Pks describing the probability of S-gene s 2 S being

silenced by experiment k 2 K. It is defined recursively as the prob-

ability of S-gene s 2 S or any of its ancestors being silenced in ex-

periment k 2 K,

Pks ¼ 1�
"
ð1� qksÞ

Y
i2paUðsÞ

ð1�PkiÞ
#

(2)

For a given effects graph H, the pc-NEM is

Fpc ¼ PH; (3)

a K�L matrix with each entry describing the probability of observ-

ing an effect in a perturbation experiment. Extending the assump-

tions of NEMs to pc-NEMs, we require that every E-gene can be

attached to only one S-gene. Thus, each entry Fpc
kl is the probability

of observing effect l 2 E in experiment k 2 K and is given by PksðlÞ,

where the subscript s(l) denotes that the effect l is connected to

S-gene s 2 S.

Fpc
kl ¼ PksðlÞ (4)

We assume that the observations from perturbation experiments

are binary and are stored in a L�K binary data matrix D. Each

entry Dlk takes a value of 1 if an effect occurred from the

perturbation and 0 otherwise. In an experimental setting, the data is

subject to noise. We may observe 0 when there is a true effect from

the perturbation with a probability b (false negative rate) and 1

when there is no true effect from the perturbation with a probability

a (false positive rate). For a given perturbation map q, the probabil-

ity of each entry Dlk given U; H; a and b is given by

PðDlk ¼ 1jq;U;HiðlÞl; a; bÞ ¼ PkiðlÞð1� bÞ þ ð1�PkiðlÞÞa

PðDlk ¼ 0jq;U;HiðlÞl; a; bÞ ¼ ð1�PkiðlÞÞð1� aÞ þPkiðlÞb
(5)

The overall likelihood PðDjFpcÞ is then the product of the terms

in Equation (5) across all L effects and K experiments,

PðDjFpcÞ ¼ PðDjq;U;H; a; bÞ

¼
YL
l¼1

YK
k¼1

PðDlkjq;U;HiðlÞl; a; bÞ
(6)

However, as we do not know the topology of the effects graph H

and we are typically not interested in inferring it from the data, we

marginalize the likelihood over all H as in the case of classical

NEMs (Markowetz et al., 2005). Assuming an uniform prior over

topologies, the marginal likelihood is

PðDjq;U; a;bÞ ¼ 1

ðN þ 1ÞL
YL
l¼1

XNþ1

i¼1

PðDl:jq;U;HiðlÞl; a; bÞ

¼ 1

ðN þ 1ÞL
YL
l¼1

XNþ1

i¼1

YK
k¼1

PðDlkjq;U;HiðlÞl; a; bÞ

(7)

The additional node in the signalling graph accounts for unin-

formative effects.

2.3 Inference algorithm
We developed an inference algorithm maximizing the likelihood

(Equation 7) based on adaptive simulated annealing. In contrast to

NEMs, pc-NEMs are not restricted to transitively closed graphs but

are defined for all directed acyclic graphs (DAGs). Generally for bin-

ary data, the likelihood landscape is very rugged, thus increasing the

chances of getting stuck at a local maximum. We employed adaptive

simulated annealing (ASA), a global optimization algorithm in

which the parameter space can be sampled efficiently, thus making

it a good candidate to explore such a rugged likelihood landscape

(Ingber, 1996).

ASA is a variant of simulated annealing (SA), which is a meta-

heuristic for finding global optima with random moves and escaping

local optima. The degree of randomness is dictated by the global

time-varying temperature parameter T. At higher temperatures the

system performs more random moves while at lower temperatures

the system behaves increasingly analogous to the greedy algorithm.

In classical SA, the algorithm begins with a high temperature and is

gradually cooled down according to a user defined cooling scheme,

ending the run with T¼0. In ASA, the temperature parameter is

automatically regulated by the algorithm progress, thus making it

more flexible and independent of the fixed user defined cooling

scheme. The temperature is adapted as

Ti ¼ Ti�1 eð0:5�ac
i
Þb (8)

where

c ¼ �log ð2Þ
log ðaidealÞ

Fig. 2. A schematic summary of pc-NEMs. Given the perturbation map q, a

pc-NEM is parameterized by a signalling graph ðUÞ encoding the relations

between signalling genes (S-genes), and an effects graph ðHÞ delineating the

attachment of each effects gene (E-gene) to a S-gene. The perturbation map

encodes the knockdown probabilities of different S-genes (S1–S3) in each ex-

periment, and is graphically represented by the weighted dashed edges. The

data represents the observable effects (E1–E6) for different perturbation

experiments (K1–K6), and includes both on-target and off-target observa-

tions. By explicitly accounting for the combinatorial perturbation information

encoded in q, pc-NEMs enable successful inference of the signalling graph

and the associations between effects and the signalling genes. In addition to

off-target effects, the data is subject to noise, resulting in false positive (FP)

and false negative (FN) observations, which are modeled using noise param-

eters a and b, respectively. The dashed edges are known perturbations and

the solid edges are to be inferred
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In our implementation of ASA, the temperature is adapted at

intervals of 100 steps. The temperature at the end of ith interval is

proportional to the temperature at the end of ði� 1Þth interval

(Ti�1), the acceptance rate for the ith interval (ai) and a constant

adaptation rate b (Equation 8). The parameter c is a scaling constant

to ensure a symmetric difference between ideal acceptance rate aideal

and ai. The temperature is adapted based on the location in the land-

scape and hence is proportional to the acceptance rates. If stuck at a

local maximum, the acceptance rates reduce, thereby increasing the

temperatures, making the search more randomized. Alternatively,

when the acceptance rates are high, the temperatures reduce, simpli-

fying the search to greedy algorithm. The extent of sampling at every

step is inversely proportional to the ideal acceptance rate and we

chose a default value of aideal ¼ 1
N. For all the simulation studies, we

used default parameters of 20 000 iterations, initial temperature of

50, aideal ¼ 0:125, and adaptation rate b¼0.3. Supplementary

Figure S1 describes the choice of default parameters for the algo-

rithm in detail.

In addition to inferring the network structure, our method can

also estimate the error rates a and b inherent to the data. For infer-

ring both the network and the error rates, the moves stochastically

alternate between two distinct spaces, one for the graphs and one

for the error rates. For the error rates, the new value is sampled

from a bivariate normal distribution with the current value as the

mean and a covariance matrix which is updated every 100 steps. For

the network structure, the new network is sampled from the neigh-

bourhood of the current DAG, a set of all DAGs generated by add-

ing, deleting and reversing an edge in the current DAG.

The complexity of recursively computing the propagation matrix

(Equation 2) is OðKN2Þ, which is computationally expensive to re-

peat for every newly sampled graph. However, we can also express

the propagation matrix P, as a function of total number of paths

from all the ancestors of a given node. Given a N�N path count

matrix C with each entry Cij denoting the total number of paths

(both direct and indirect) from node i to node j, the total probability

of S-gene s 2 S being silenced by experiment k 2 K is

Pks ¼ 1�
YN
i¼1

ð1� qkiÞCis (9)

This expression allows us to easily update only the entries

affected by the move and hence avoid the recomputation of the en-

tire propagation matrix. Since the moves involve simple operations

of addition, deletion or reversal of an edge, at most N – 1 nodes

are affected and this can be updated at a cost of OðKNÞ. The model

and the inference algorithm were implemented as part of the

R/Bioconductor package nem.

2.4 Data generation for simulation study
We performed simulations to assess the performance of pc-NEMs

for varying dataset sizes and error rates. TargetScan (Lewis et al.,

2005) Version 6.2 was used to predict siRNA off-targets on a

genome-wide single-siRNA library from Qiagen. We analysed the

predicted siRNA-to-gene target relations matrix with 91 003

siRNAs (rows) and 27 240 genes (columns) (Schmich et al., 2015) to

assess the genome-wide off-target distribution. For all simulation

studies we used networks sampled from the KEGG pathway data-

base (Kanehisa and Goto, 2000). In order to exploit the off-target

effects for network inference from combinatorial knockdown data,

we were interested in sub-networks with the corresponding siRNAs

exhibiting a large degree of off-targets. Since the siRNAs targeting

the genes involved in different pathways do not exhibit the same

degree of off-targets, we first ranked the KEGG pathways in

decreasing order of off-target frequencies. For the prioritisation, we

first calculated the weight of each gene i,

wi ¼
jaij
A

X
j2ai

jgjj
G

(10)

where A is the number of siRNAs (91 003) and G is the number of

genes (27 240) from the target relations matrix, gj is the set of genes

knocked down by siRNA j and ai is the set of siRNAs knocking

down gene i. The weight of each gene is proportional to the number

of experiments perturbing that gene and the degree of off-targets dis-

played by those experiments. The score for each pathway Pk, was

then defined as the difference of weights of genes within and outside

the pathway.

scorePk
¼
X
i2Pk

wi �
X
i 62Pk

wi (11)

The crux of this scoring function is to weigh heavier off-target dense

pathways or pathways with genes that have been perturbed by large

number of siRNAs, thus maximizing the combinatorial knockdown

within the network. While pathway hsa01100 corresponding to the

whole network of ‘Metabolic pathways’ ranked first in this priori-

tisation scheme, it was not suitable due to its large size. Thus, we

chose the second ranked pathway, hsa05200, which is titled

‘Pathways in cancer’. Further, to evaluate the dependency on the

density of off-target effects, we also used the least scoring pathway

hsa00030, which is titled ‘Pentose phosphate pathway’. We sampled

30 sub-networks, each consisting of eight signalling genes from both

pathways, using random walks. Subsequently, we derived the corre-

sponding perturbation maps from the target relations matrix for

each of these sub-networks. To assess robustness of our model to

uncertainty in knockdown strength predictions by TargetScan, we

used different perturbation maps for data generation and network

inference. We used the perturbation maps derived from target rela-

tions matrix for inference and simulated perturbation maps for gen-

erating the data. For the simulated perturbation maps, each entry

~qks was an independent and identically distributed random variable

drawn from a beta distribution with mean equal to the predicted

knockdown strength (qks) and variance inversely proportional to

scaling factor d, equal to 100,

~qks � Betaðqksd; ð1� qksÞdÞ

For performance assessment of pc-NEMs in comparison to

NEMs, we generated data from transitive closure of the 30 DAGs

sampled from hsa05200. In order to evaluate the performance as a

function of the number of phenotypic effects, we used a fixed, ran-

domly generated effects graph with L 2 f32; 64; 120;320g for all

networks such that the prior probability of attachment of E-genes to

S-genes was uniform. We appended new random phenotypic effects

to existing effects, assigning 10% of the effects to uninformative

effects. Given the network, simulated perturbation map and effects

graph, we simulated binary data. In order to compare the perform-

ance as a function of noise, we repeated this process for noise levels

ða; bÞ 2 fð0:01; 0:01Þ; ð0:20; 0:05Þ; ð0:05;0:20Þg. Finally, to assess

the performance of the two models on networks with average off-

target densities we repeated this exercise with 30 transitively closed

networks sampled at random from KEGG pathways, 320 phenotyp-

ic effects, and all three noise levels.

We setup another study for estimating the error rates from the

data. We used the same 30 DAGs from hsa05200 and for each DAG

we sampled four pairs of error rates given by independently and
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identically distributed random variables drawn from Uð0; 0:5Þ,
to generate 120 different datasets each with 320 phenotypic effects.

In the last study evaluating the performance of network inference

as a function of noise, for each pair of a and b in

f0:01; 0:1; 0:2; 0:3; 0:4; 0:45; 0:49;0:5g, we generated datasets with

320 phenotypic effects and the same 30 DAGs from hsa05200.

For scalability assessment of our inference algorithm, we simu-

lated data from 30 networks of size N 2 f8; 12; 16g each, with 320

informative phenotypic effects, additional 10% uninformative

effects and ða; bÞ ¼ ð0:01;0:01Þ. The networks were sampled at ran-

dom from KEGG pathways.

2.5 Infection screening data
In the context of infection signaling, we applied pc-NEMs to RNAi

screening data monitoring B. henselae infection. The data was

derived from microscopy image-based infection assays where ATCC

HeLa cells were transfected with a genome-wide single-siRNA li-

brary from Qiagen followed by infection with B. henselae. The cells

were then fixed, stained and imaged. The images were corrected for

illumination distortion using CIDRE (Smith et al., 2015).

Subsequently, the cell features (phenotypic effects) were extracted

from the grid of nine images per knockdown experiment using

screeningBee CellProfiler an in-house image analysis solution based

on CellProfiler (Carpenter et al., 2006). Features were grouped

based on their source segmented objects (parts of the cell), which

include: Cells (cell body), Nuclei (cell nuclei) and Perinuclei

(perinuclear space). In addition, features derived from Voronoi seg-

mentation of the images were included.

The Qiagen siRNA library typically consists of four different

siRNAs per gene, with the exception of talin1 and Cdc42, which

had three and eight siRNAs, respectively. We used TargetScan’s

(Lewis et al., 2005) predicted off-targets to define the perturbation

map for the eight genes across the 35 experiments.

In order to convert single-cell data to gene-level binary data, we

first applied B-score normalization to correct for row, column and

plate effects. Then we further normalised the data using MARS

(multivariate adaptive regression splines) and z-scoring. This entire

process was performed using the R package singleCellFeatures

(Bennet, 2015). We defined a control distribution because the bio-

logical controls were subject to strong edge effects from the experi-

mental setup. The first and last two columns of wells constituted the

control wells. We performed Wilcoxon tests between all pairs of

control populations and generated a distribution of P-values for

each feature, choosing the lower 5th percentile as the critical P-value.

This was done to capture the differences across control populations.

For the gene-level data, the knockdown populations were compared

to six random control populations (�10% of control wells) using a

Wilcoxon test. The resulting P-values were combined using Fischer’s

method, and this meta P-value was compared to the critical P-value.

The feature was significant and took a value of 1 if the meta P-value

was less than the critical P-value and 0 otherwise. The resulting

gene-level binary dataset consisted of 288 features across 35 knock-

down experiments.

Additionally, to compare the performance of pc-NEMs and

NEMs as a function of off-target frequency we used previously pub-

lished human rhinovirus (HRV) screening data (Rämö et al., 2014;

Siebourg-Polster et al., 2015). The screens were performed using

genome wide and kinome wide pooled siRNA libraries (Dharmacon

Smart Pool), respectively. Siebourg-Polster et al. (2015) explicitly

avoided off-target effects by choosing five MAPK signalling path-

way (hsa04010) genes with low off-target effects. We binarized the

available log density data resulting in a binary dataset with 288 fea-

tures across five knockdown experiments. We used the L2 norm

based scoring scheme presented by Siebourg-Polster et al. (2015) to

choose genes with high off-target effects and sampled 30 sub-

networks, each consisting of five signalling genes from MAPK sig-

nalling pathway (hsa04010). We used the kinome wide screen data

and converted the single-cell image-based data to gene-level binary

data as described above. The resulting gene-level binary datasets

consisted of 372 features across five knockdown experiments. The

perturbation maps and the L2 norm scores were derived from the

predicted siRNA-to-gene target relations matrix for the Dharmacon

library (Schmich et al., 2015).

3 Results

We have developed pc-NEM, a new model based on NEM, which

probabilistically models combinatorial perturbations. We first show

that pc-NEMs are identifiable and then assess the performance of

pc-NEMs in an extensive simulation study and on real data. Finally,

we apply the model to infection screening data.

3.1 Identifiability of pc-NEMs
The classical NEMs reconstruct networks from subset relations or

nested data, and are identifiable only in the space of transitively

closed networks. Tresch et al. (2008) relaxed the constraint of nest-

edness in the data and extended the model to general effects models

defined over the space of all DAGs. This implied that the perturb-

ation of every parent only affected the parent and its immediate chil-

dren. However, the interpretation of such reconstructed networks is

questionable in the context of biological signalling pathways as sig-

nals propagate downstream, beyond the immediate neighbours. Our

model overcomes the limitations of NEMs and general effects mod-

els by inferring DAGs from nested data. Modelling the perturbations

probabilistically makes pc-NEMs identifiable over the entire DAG

space. Thus, pc-NEMs can be used to distinguish between equiva-

lent DAG structures from nested data, as opposed to classical NEMs

or general effects models. The detailed proof is provided in the

appendix.

3.2 Performance evaluation on simulated data
Since NEMs can only infer transitively closed networks, we

restricted the comparison of the performance of NEMs and pc-

NEMs with varying number of effects and noise levels to data gener-

ated from transitively closed networks (Fig. 3). We used structural

Hamming distance (SHD) between the inferred graph and the

KEGG graph as a measure of performance. Each panel in Figure 3

describes the performance of the models for inferring networks from

data with fixed noise levels and increasing number of effects. Since

we developed a new model and a novel inference algorithm, we first

ran NEMs with the module network algorithm (Fröhlich et al.,

2008), and NEMs with adaptive simulated annealing and compared

their performances to performance of pc-NEMs with adaptive

simulated annealing. We chose module network as it performed

best among all other inbuilt algorithms in the nem package

(Supplementary Fig. S2). In general we observed an increase in per-

formance (decrease in SHD) with increasing number of effects across

all noise levels. With as few as 64 effects the performance of pc-

NEMs was consistently superior across all three noise levels. Our

model showed similar results on networks with average off-target

densities (Supplementary Fig. S5). For completeness we also

Probabilistic combinatorial nested effects models i523

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/34/13/i519/5045779 by W
W

Z Bibliothek (O
effentliche Bibliothek der U

niversitÃ¤t Basel) user on 08 O
ctober 2018

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty240#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty240#supplementary-data


compared pc-NEMs to NEMix and show that pc-NEMs outper-

forms NEMix (Supplementary Fig. S6).

Next, we relaxed the transitive closure constraint and extended

the simulation study to the entire DAG space. Although general

effects models are not restricted to transitively closed networks

(Tresch et al., 2008), as the data generated is still nested it would al-

ways infer a transitively closed network, providing pc-NEMs with a

huge advantage over them a priori. Thus, we assessed the perform-

ance of only pc-NEMs and observed that the performance improved

with increasing number of effects. In order to study the effect of de-

gree of off-targets on performance, we performed a simulation study

for inferring networks from KEGG pathways with high (hsa05200)

and low (hsa00030) densities of off-targets (Fig. 4A) and varying

number of effects and noise levels. The average numbers of off-

targets per network for the high and low density pathways were

28.27 and 9.33, respectively. The performance of pc-NEMs once

again improved with increasing number of effects and was inde-

pendent of the frequency of off-targets at a number of 320 effects.

While the variance was smaller for reduced off-target effects, the

overall performance was consistent across noise levels and frequen-

cies of off-target effects. In general, the simulation studies show that

using the additional information of siRNA off-target effects encoded

in the perturbation map improves the network inference from com-

binatorial gene knockdown data.

So far it was assumed in all the simulations that the noise param-

eters were known, i.e. the networks were inferred with the same

noise parameters used for generating the data. Since pc-NEMs can

also estimate error rates, we set up a simulation study to assess the

performance of inferring the error rates from 120 different pairs of

error rates (Fig. 4B). The maximum likelihood estimates of the

errors had a Pearson’s correlation of 0.967 and 0.784 for a and b,

respectively, with their true values. The outliers typically correspond

to datasets with high values of both a and b. The general trend of

slight overestimation of parameters, especially b, is a consequence of

imbalanced datasets with more zeroes than ones and reduced accur-

acy of network inference. However, given the true network, there is

no bias in noise parameter estimation (Supplementary Fig. S3).

Finally, to evaluate the robustness of both structure and noise

parameter inference, we evaluated the performance of network in-

ference as a function of varying error rates without a priori know-

ledge of the error rates (Fig. 4C). Our method achieved very low

values of SHD under extreme values of error rates and continued to

consistently perform well up to error rates as high as a¼0.5 and

b¼0.3 or vice versa (Supplementary Fig. S4). This is critical since

we observe these levels of noise in the experimental setting and the

study confirms that pc-NEMs are robust against a wide range of

noise levels.

In order to assess the scalability of our inference algorithm, we

inferred 30 networks of size N 2 f8;12;16g from simulated data

(Supplementary Table S1). The median runtime for eight genes is

around 13 min. As the number of S-genes increases the number of

experiments increases along with a super-exponential increase in the

search space of topologies. Further, for a constant number of pheno-

typic effects the number of E-genes per S-gene reduces. Thus, the

cost of updating the propagation matrix for each newly sampled

DAG increases and the algorithm requires larger number of itera-

tions, increasing the overall runtime.

3.3 Performance evaluation on human rhinovirus data
Extending the comparison to real data, we assessed the performance

of pc-NEMs and NEMs as a function of off-target frequency on pre-

viously published human rhinovirus (HRV) screening data (Rämö

et al., 2014; Siebourg-Polster et al., 2015). Under low off-target con-

ditions, pc-NEMs behave analogous to classical NEMs, thereby hav-

ing similar performances. For the genes with high off-target effects,

we only retained those networks with estimated ða; bÞ values less

than ð0:4;0:2Þ, respectively. This threshold was chosen based on

earlier simulation studies measuring the performance as a function

of noise (Supplementary Fig. S4). Of the remaining 20 networks,

we observed that pc-NEMs performed significantly better than

NEMs (Supplementary Fig. S7). This is illustrated by an example

of networks inferred on a dataset with high off-target effects

(Supplementary Fig. S8).

3.4 Application to pathogen infected single-cell data
We applied pc-NEMs to genes associated with Bartonella henselae

infection. B. henselae is transmitted to humans by cat scratches or

bites, and causes infections that manifest a broad spectrum of symp-

toms. Rhomberg et al. (2009) and Truttmann et al. (2011) demon-

strated that integrin b1, FAK, Src kinase, paxillin, vinculin, talin1,

Rac1 and Cdc42 are required for invasome-mediated uptake of the

bacteria. These genes constitute members of the focal adhesion

Fig. 3. Results from simulation study on transitively closed networks. Structural Hamming distance (SHD) measuring the performance (y-axis) of pc-NEMs

(yellow) and NEMs with adaptive simulated annealing (green) and module network (blue) algorithms, on simulated data from 30 different transitively closed net-

works of size N¼8 and perturbation maps, with varying number of phenotypic effects and noise levels. The networks were sampled from hsa05200 pathway
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complex and are thus involved in cell attachment and migration.

The siRNAs designed to knockdown these genes displayed a high

degree of off-targets (off-target frequency ¼ 38), thus making pc-

NEMs a good fit for inferring the relations among them.

First, we applied pc-NEMs to the entire dataset (Fig. 5A), then

we repeated the inference on 100 bootstrap samples of the original

dataset for robustness assessment (Fig. 5B). All the edges inferred

with a threshold of 0.5 on the bootstrap samples with the exception

of the edge between paxillin (PXN) and vinculin (VCL) provided

support for a subset of the edges inferred in the single run using all

the data. The corresponding inferred error rates on the bootstrap

samples were a ¼ 0:49060:016 and b ¼ 0:21160:031, respectively.

As seen from the simulation studies, these noise levels, although

high, are still manageable by the model and the inference algorithm.

In this experimental setting, they could be attributed to the lack of

coherent biological controls and the pervasively weak signals

observed in the Qiagen screens.

The optimal pc-NEM was able to infer a network in good ac-

cordance with knowledge from existing literature. In the inferred

network, paxillin is connected to focal adhesion kinase (FAK), vin-

culin and talin1 (TLN1); FAK, vinculin and integrin b1 (ITGB1) are

interacting with talin1. Horton et al. (2015) presented a curated net-

work of the consensus integrin adhesome providing strong evidence

for these interactions. Our model also reported an edge between

paxillin and integrin b1, a physical interaction suggested by Tanaka

et al. (1996).

A

C

B

Fig. 4. Results from simulation study on DAGs. (A) (Left column) Histograms of predicted strength of knockdown depicting the frequency of off-target effects for

30 different DAGs of size N¼8, each sampled from hsa05200 (high density) and hsa00030 (low density) pathways. (Right column) Structural Hamming distance

(SHD) measuring the performance (y-axis) of pc-NEMs on simulated data from the corresponding DAGs with varying number of phenotypic effects (x-axis) and

noise levels. The box-plots correspond to the inference from data with 32, 64, 120 and 320 effects and known error rates of a ¼ 0:01 and b ¼ 0:01 (yellow),

a ¼ 0:05 and b ¼ 0:20 (orange), and a ¼ 0:20 and b ¼ 0:05 (dark-orange). (B) Comparison of 120 different MLE false positive (a) and false negative (b) rates learned

using pc-NEMs against true a and b used to generate the data. In estimation of aðbÞ, each point is coloured based on the corresponding bðaÞ value used to gener-

ate the data. The error rates are inferred from simulated data with 320 phenotypic effects, without a priori knowledge of the true network structures.

(C) Performance (y-axis) of pc-NEMS for network inference without a priori knowledge of error rates, on simulated data with 320 phenotypic effects at different

noise levels. The horizontal dashed and solid lines correspond to the lower, median and upper quantile values of SHD for random DAGs
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The regulation of actin cytoskeleton is complex and plays an im-

portant role in many cellular processes. pc-NEMs inferred a relation

between Cdc42 and Rac1, which is known to be involved in the

regulation of the actin cytoskeleton (Verma and Ihler, 2002).

Further, our model reported relations between Src kinase (SRC) and

vinculin and between FAK and Cdc42. Both these interactions are

known to play a role in the context of cellular motility (Ito et al.,

1982; Zhang et al., 2004; Zhao and Guan, 2011).

Some established interactions such as FAK—Src (Mitra et al.,

2005) and SRC—integrin b1 (Huveneers and Danen, 2009) were

not reported by our model. However, this could be attributed to the

low signal to noise ratio as these edges had a bootstrap support of

0.36 and 0.34, respectively.

In addition to the well characterized interactions, our model

inferred edges from Cdc42 and Rac1 to talin1, and from Rac1 to integ-

rin b1. The PPI network reported by STRING indicates that these asso-

ciations have been reported in curated databases. Thus, these novel

interactions, subject to further experimental investigations, may help

provide new insights into the mechanism of B. henselae infection.

4 Discussion

RNAi screens are highly confounded by off-target effects rendering

their analysis challenging. The conventional methods of network in-

ference from perturbation data do not account for these off-target

effects, leading to incorrect inference of the network. To address this

limitation, here we have developed a novel model based on NEM,

called pc-NEM, which handles the combinatorial off-target effects

in a probabilistic manner.

In extensive simulation studies and on real data, we have demon-

strated that by accounting for off-target effects, pc-NEMs improve

inference of network topology and error parameters over classical

NEMs. We have established a superior performance of pc-NEMs

over NEMs in the simulation study over transitively closed net-

works. While the transitive closure constraint helps explain the

nested architecture of the data in the classical setting, it also gives

rise to equivalent classes of networks. The probabilistic aspect of the

model enables us to relax the strong transitivity constraint of NEMs

and still explains the subset relations in the data, thus making the

model both biologically relevant and mathematically identifiable.

The combinatorial treatment of perturbations empowers us to

account for off-target effects, thereby reducing the number of false

positive edges.

We have also demonstrated that the model performance is in-

variant to the density of off-target effects inherent to the data. In

contrast to classical NEMs, pc-NEMs can also estimate the error

rates in the data as illustrated by the results of our simulation stud-

ies. This feature of pc-NEMs is particularly important as it sheds

light on the quality of the data or potential model misspecification.

Subsequently, we have shown that our model is robust against high

noise values. Using pc-NEMs, we reconstructed the network

describing the relations between genes involved in B. henselae infec-

tion from perturbation data with a high degree of off-target effects

and high levels of noise. Apart from the well established interac-

tions, we also found novel edges that show potential for improving

our understanding of the underlying mechanism. The use of off-

target information in combination with the ability to infer error

rates reduces the number of false positive edges, making pc-NEMs

more suitable for such extreme experimental conditions over classic-

al NEMs.

A challenge for our method lies in scaling with network size. The

search space of topologies increases super-exponentially with the

number of signalling genes, thereby requiring longer runs for larger

networks. In the current implementation, the computation of mar-

ginal likelihood, and the subsequent estimation of effects graph for

every sampled topology is expensive. Improving the efficiency of

this step is a subject of future research. In general, for a heuristic ap-

proach such as ours, there is a trade off between accuracy and run-

time, i.e. higher accuracies require longer runs. Furthermore, the

model could be extended to handle continuous datasets, enhancing

its flexibility.

While the application of the model in the article is restricted to

siRNA off-target effects, it can in general be used in any combina-

torial perturbation setting. Especially, in light of double and triple

knockdown screens, which are becoming more and more common,

pc-NEMs provide a suitable computational framework for network

inference.
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