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SPARSE GRID APPROXIMATION OF THE RICCATI
OPERATOR FOR CLOSED LOOP PARABOLIC CONTROL
PROBLEMS WITH DIRICHLET BOUNDARY CONTROL

HELMUT HARBRECHT AND ILJA KALMYKOV

ABSTRACT. We consider the sparse grid approximation of the Riccati oper-
ator P arising from closed loop parabolic control problems. In particular,
we concentrate on the linear quadratic regulator (LQR) problems, i.e. we
are looking for an optimal control ., in the linear state feedback form
Uopt (t, ) = Px(t,-), where z(t,-) is the solution of the controlled partial differ-
ential equation (PDE) for a time point t. Under sufficient regularity assump-
tions, the Riccati operator P fulfills the algebraic Riccati equation (ARE)
AP+ PA—-PBB*P+Q =0,

where A, B, and @ are linear operators associated to the LQR problem. By
expressing P in terms of an integral kernel p, the weak form of the ARE
leads to a non-linear partial integro-differential equation for the kernel p — the
Riccati-IDE. We represent the kernel function as an element of a sparse grid
space, which considerably reduces the cost to solve the Riccati IDE. Numerical
results are given to validate the approach.

1. INTRODUCTION

Operator Riccati differential equaions play an important role in a number of dif-
ferent applications in engineering, physics, and mathematics. To give a few exam-
ples, we mention model reduction ([24, 17]), filtering ([25]), scattering theory ([33]),
radiative transfer and the solution of two point boundary value problems via the
theory of invariant embedding ([2]). A well-known application of the Riccati equa-
tion stems from the optimal control theory, in particular from the unconstrained
linear quadratic (LQ) optimal control of parabolic partial differential equations, see
e.g. [2, 5, 29, 32] and the references therein. In Section 2, we consider unconstrained
LQ optimal control for infinite time horizon. In this case, the optimal control can be
obtained by solving the algebraic Riccati equation (ARE). We refer to the solution
of the ARE as Riccati operator P.

In order to obtain an approximation of the Riccati operator, we follow the ap-
proach presented in [8, 23]. Therein, the representation of P in terms of a kernel
function p(z,§) is considered:

(Pu)(z) = fﬂpmou(s) .

By this means, the solution of the ARE can be characterized via an integro-
differential equation of Riccati type (Riccati-IDE) for the kernel p(x, ). We present
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the derivation of the Riccati-IDE for the Dirichlet boundary control of the heat
equation in Section 3.

The Riccati-IDE is a non-linear equation with a non-linearity in form of a qua-
dratic term. A number of methods for the solution of non-linear equations, which
have been studied for the ARE (see e.g. [3, 4, 28] for a survey), can similarly be
implemented for the Riccati-IDE. In this article, we apply Newton’s method as sug-
gested in [27]. We describe this approach for the discretization of the Riccati-IDE
with a standard finite elements method in Section 4.

As the Riccati operator P is a linear operator on the state space with domain €2,
the kernel p(z, ) is defined on the product domain Qx ). Provided we use N degrees
of freedom for the discretization of the state space, the discretization of the kernel
by a regular tensor product approach p(z, ) amounts to N? degrees of freedom.
This leads in general to a cubic over-all complexity O(N 3) for the evaluation of the
right-hand side and the computation of the gradient in the Newton’s method.

The O(N 3)—Complexity is a major bottleneck in the numerical treatment of the
LQ optimal control problems and large scale AREs. At least for d = 3 spatial dimen-
sions, the quadratic growth of the memory requirements makes the discretization
in the regular tensor product space prohibitively expensive if not even impossible.
This is an example of a more general problem known as curse of dimensionality.
Different approaches, like e.g. multigrid methods [15] or H-matrices [16] have been
studied to overcome this drawback. In the present article, we discretize the Riccati-
IDE in the sparse tensor product space — a numerical technique, which allows to
overcome the curse of dimensionality to some extend. Thus, the kernel p(z, &) is
represented by only O(N log N) degrees of freedom, which in turn improves the
over-all complexity. We will introduce the sparse tensor product space and the
corresponding discretization of the Riccati-IDE in Section 5.

In Section 6, we verify our approach by numerical experiments, in which con-
vergence rates for the approximation of the Riccati kernel p(z,&) as well as the
computational complexity are considered. Finally, in Section 7, we state conclud-
ing remarks.

2. LQR DIRICHLET BOUNDARY CONTROL

This section briefly describes the main ideas of the linear quadratic (LQ) optimal
control of partial differential equations. A detailed discussion of this topic can be
found e.g. in [5, 32, 37].

2.1. Heat equation with Dirichlet boundary conditions. We consider the
heat equation on the domain 2 < R? with Dirichlet boundary control

%z(t,x) — Az(t,z) =0 in Q x (0,T],
(1) 2(0,z) = zp(z) forxzeQ,
z2(t,z) =u(t) (z,t)eX=Tx][0,T],

where I' = 09, z, € L*(Q), and u € L*(2) is a given control function. The existence
and uniqueness of the solution to (1) in LQ((O,T); Q) can be shown, e.g., by the
method of transposition (cf. [32, Chapter III, Section 9]). Here, following [5, 9,
30], we will interpret (1) as an abstract differential equation. To this end, we first
introduce some notation.
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Let H, U, YV be Hilbert spaces of states, controls, and observations, respectively.
In the particular case of Dirichlet control for the heat equation (1), we set

H="L*Q), U=L*T), Y=R
The abstract differential equation corresponding to the system (1) reads

%z(t) = Az(t) + Bu(t), te(0,T],
2(0) = zp,

(2)

where
we L*((0,T);U), 2 € H.

The derivative % is interpreted in a vector distributional sense, compare [5, pp. 87 and 202,

37, p. 117]. The linear operator A is defined by
(3) A: DA cH->H, v—Av=A7A,v,

where D(A) = Hy(Q) n H*(Q).

The definition of the control operator B is more involved. In general, for the
boundary control of parabolic partial differential equations, B is considered to be
a continuous linear operator from the control space U to D(A*)’, whereat A* is the
adjoint operator of A, compare [5, p. 210, 11]). In fact, boundary control problems
are defined by B being an element of C(Z/l , D(A*)') in contrast to distributed control
problems, where we have B € L(U,H). This viewpoint arises in the variational
formulation as well as in the method of transposition for the Dirichlet boundary
control of parabolic problems (cf. [5, Part II, Chapter 2] and [32, Chapter III]).

Another assumption is for the control operator to be of the form B = (A\y— A)D
(see [5, Part IV, Section 1] or [11]). Here, Ay € p(A) is an element of the resolvent
set of A such that )\, is strictly larger than the type of semigroup generated by A.
Note that B is of this form for parabolic Dirichlet boundary control problems as
well as for parabolic Neumann boundary control problems.

In the case of the Dirichlet boundary control, the operator D is the Dirichlet
mapping defined as an extension of the Green mapping G : H%(I‘) — H'(Q) for
the problem

{Au =0 in Q,

u=g onl,
cf. [5, p. 436] or [35, p. 254]. In other words, we have
(4) DeLU,H), v Dv=w, where Aw=0inQ, w=vonT.

A from (3) is a strictly negative self-adjoint operator in L*() and therefore a
generator of an analytic semigroup of negative type, cf. [5, p. 436]). By this means
we can set \g = 0, i.e. we obtain B = —AD.

With these observations regarding the control operator B we can rewrite the
problem (1) as

(5) q2(t) = A=(t) — ADu(®), ¢ (0,77,
z(0) = 2o,
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where u € LQ((O, T);U), 29 € H,D asin (4), and A : H — D(A")’ being an extension
of (3). According to [5, Part II, Chapter 3], there exists a unique solution

e
Cde
for abstract differential equations of the type (5).

ze {v e L*((0,T); H) e L*((0,7); D(A*)’)}

2.2. Optimal control problem. We introduce the following quadratic cost func-
tional for the abstract differential equation (5)

Totw) = [ {1C=01 + I} @

0

where C' € L(H,)) is an observation operator. As we consider the case T — o0,
further assumptions on the existence of a control u € L? ((0,00);U) with J(u) < o0
has to be made. Such a control is called admissible. If there exists an admissible
control for each initial state z, the system (5) is called C-stabilizable, cf. [5, p. 517].
For C-stabilizable systems, we can consider the unconstrained (i.e. with respect to
the control space) linear quadratic optimal control problem for the heat equation
with Dirichlet boundary control
min  Jy(u)
(6) ueL?((0,00);U)
subject to system (5).

The optimal control u,, to the problem (6) is given by the feedback formula (cf. [5,
Part V, Chapter 2, 13, 30, 32, Chapter III, Section 4])

uopt(t) = _B*onpt(t)7

where B” is the adjoint of the control operator B, Zopt 18 the solution of the closed
loop system (see e.g. [5, p. 518]) and P is the unique solution of the algebraic Riccati
equation (ARE):

(7) A*P+ PA—PBB*P+C*C =0.

It can be shown that P —the Riccati operator— is a positive, self-adjoint, and
bounded operator on the state space H.
If A= A" holds, as in the case of the heat equation, (7) is equivalent to

(8) AP + PA— PBB*P + C*C = 0.
By this result, we can proceed with solving the ARE (8) to obtain the solution to
the optimization problem (6).

3. RICCATI PARTIAL INTEGRO-DIFFERENTIAL EQUATION

There are different approaches to the solution of equation (8) (see e.g. [8, 23,
Chapters 3 and 4, 32, Chapter 3, 31, 34]). In this article, we concentrate on the
representation of the Riccati operator in terms of a kernel function

(9) [Pg] (x) = L Pl €)6() de,

where in general p(z, §) is a distribution on 2 x  (cf. [32, Chapter III, Section 5]).
The existence of such a kernel is guaranteed by the Schwartz kernel theorem.
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3.1. Variational formulation. Next, we want to combine (9) with the weak form
of the ARE (8):

(10) (Ao, PY)+ (Pg, Ap) — (B P, B* P)y +(C"Ch, ) = 0 for all ¢, € D(A).

For the sake of brevity, here and in the following, (-,-) denotes the scalar product in
the state space H, while (-, -);; denotes the scalar product in /. In addition, we shall
assume that p € H*(Q x Q). Then, for all p(z,&) = ¢(x)y(€) with ¢,¢ € C(Q),

we obtain

(Ag, Pip) = L Ad(z) fgp(x,fwf) dzdg = L L P, €) A, d(x) () da dé
= j p(xvg)AwSD(fvé) d(xvé.) = _J v$p($,§)v$30(l‘,f) d(x,g),
OxQ Qx0

and likewise

(Po, AY) = fﬂ fﬂp(mw&) a¢ Ag() da = L L Pl €)b(x) Aetb(€) dar dé
- L ROGINCCGEEOR —fﬂ Vepla, V(. €) . 6),

where we used the relation p(z, &) = p(&, ) which comes from P being self-adjoint.
We thus deduce

(A, Pi) + (P, A) = — j Vp(e, €) V(e €) d(z, €).

QxQ

We proceed with the non-linear term. First, notice that it holds for arbitrary
nel and ¢ € Hy(Q)

(Bi, ) = — (ADn.46) = — (D, Aup) = — Lwn)(mw(x) da
__ L Dn(x)%(x) ar + L Y Diy(2)Vi(z) da,

which yields in view of the definition of D in (4)

(Br.v) = - [ o) Gh@ar = (=5, = 0B

Therefore, the operator B” is given by

B* e L(D(A"),U), v~ B'v= —@,
ov
compare [5, pp. 189, 195] and [29, p. 181]).

We can now plug in B* into the non-linear term of (10)

(B*Pé, B* i)y, = LF’; Lp(@x)qﬁ(x)dx- d Lp(c,f)w(f)dédfg

(’7\I/C

0 0
- L e L p(z,C)d(z) dz - v Lp(gaw(a) d¢dr,.
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By applying Fubini’s theorem, we conclude

* * ap ap

(B*P¢,B"P)y = LJQ éT/C(%CW(w) dz Jﬂ T%(C’O"/’(@ de dr,
dp op

- LQ L Tu((””’oa(@f) dl¢ oz, €) d(z, §).

Note that the boundary integral is well-defined if we assume that it holds dp/dv, €
L*(T x Q) and likewise dp/dve € L*(Q@T).

In order to complete the derivation in terms of kernel functions, we assume in
accordance with [8] and [23, Chapter 3]) the operator C' : H — Y to be of the form

Co = J c(z)p(x) do
Q
with ¢ € L*(2). By this means C*C takes the form

(C*Cé.9) = (C6,C)e = f e(@)dz dxfﬂcs)w(g
- j e(2)e() (@) (€) d(, ©).
QxQ

We thus set
(1) Q=C"C:H—H, v Quv= j e(2)e(€)o(€) dE = j a(z, €)0(€) dé,
Q Q

where ¢(z, &) = ¢(z)c(€) is the kernel of Q.
Therefore, since Cf(Q x Q) is dense in Hy(Q x Q), the kernel p solves the
following variational problem

(12)
op op
|, TrmoveEoamo | [ FenilEodree o

[ @) for all e (@ x ).
QxQ

3.2. Boundary conditions. In order to derive the boundary conditions for p(z, £),
we follow [5, p. 520]). To this end, we note first that

(13) Pe c(H,D((—A)M)),

where for A as in (3) we can choose a € (0,1/4). Furthermore, it holds
H*1=9(Q), if a € (3/4,1),
{ue H*'"(Q) :u=00n0Q}, ifac(0,3/4).
Therefore, we deduce from (13) and (14) that

(14 D477 = {

(15) forallveH:Pve {u e H*'(Q) 1 u =0 on 89} , where a € (0,1/4).

We next assume that there exists a part I'x Q2 0(©2 x Q) of the boundary such that
p(x,€) # 0 for almost all (x,&) € T x 2. Then, taking some v € H with < supp v,
we have

u(z) = Lpu,av(s) d¢ > 0
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for almost all € I', which is a contradiction to (15). Hence, with the symmetry of
p(z, &), we conclude

p(l‘,f):(), rzel, §e€Q,

p(x7§>:0a reQ, (el

compare also [32, p. 158].
We therefore arrive at the following result.

Theorem 3.1. The kernel p € V for the Riccati operator associated with the
Dirichlet boundary control of the heat equation (2), where
V= feHg(QxQ):ﬁeﬁ(er) andﬁeLQ(er) ,
(91/35 &1/5
is the weak solution of the following integro-differential equation (IDE) of Riccati
type:

0 0
(@03, (C.E Al = g(a.§) Q2 xQ T =00
¢ <

ov,

(16) —Ap(@,6) + L

p(z, &) =0 on d(2 x Q).

In [32, Chapter 111, Section 5], several results of this type are derived, in parti-
cular for distributed control (i.e. B € L(U, H)) and Neumann boundary control. [23,
Chapter 3] considers the Riccati-PDE for Robin boundary control. The Riccati-
PDE for Dirichlet boundary control in the one-dimensional situation can be found
in [8]. There, the results are based on a stronger regularity of the kernel p(z,£),
ie. pe C(Q x Q), compare [26] for one-dimensional problems.

4. FINITE ELEMENT DISCRETIZATION

In this section, we derive a discrete version of the Riccati-IDE (16) by means of
a Galerkin discretization by finite elements. To this end, we consider the full tensor
product discretization of functions defined on the product domain € x €.

4.1. Tensor product approximation. Let Z be a Hilbert space with
ZQR7Z 'V,

where ® denotes the algebraic tensor product, cf. [19, p. 52]. The closure can be
taken with respect to an appropriate norm. Furthermore, suppose we are given a
finite dimensional subspace Z; = Z. We define the full tensor product space V; ;
via

(17) VJ’J = ZJ®ZJ.

If @ i= {6}, is a basis of Z;, i.e. N; = dim Z,, then
Ny
J1:J2=1

;P = {d;, ® ¢}

is a basis of V; ;. Thus, we obtain dimV; ; = N?.

The finite dimensional subspace Z; might be given by the span of globally con-
tinuous, piecewise linear ansatz functions defined with respect to a triangulation or
tetrahedralization of 2, respectively. Thus, the tensor product space V; ; would be
spanned by products of those functions, compare Section 5 for details.
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Next, we want to discuss the discretization of Riccati-IDE (16) with respect to
the full tensor product space V; ;. We make the following ansatz

(18) p(z,§) = Z Pjy.52 %5, (2)95,(8) € Vi g

J1,J2=1

for the discretization of the kernel function in the space V; ; and write
PyJ = [pl,lapl,Za"'vaJ,NJ]T
for the coefficient vector of the Riccati kernel.

4.2. Linear part and right-hand side. First, let us consider the linear part of
(12), i.e., the evaluation of

(19) Vp(z,§)Ve(z,§) d(x,§) for all o(xz, &) = oy, () by, (£),

QxQ
which corresponds to the weak formulation of Laplace operator on the product

domain  x Q. Denoting by A; = [ak,é]gz Land E; = [e, e]ké , the stiffness and

mass matrices with respect to the ansatz space 7, respectlvely, ie.

(20) agp = L Vo (x)Voe(r)de, e, = fﬂ b1 (2)pp(x) du,
we obtain the following discrete representation for (19):

(A;@E; +E;®A))pyg

Since the right-hand side is a rank-1 function, compare (11), it can simply be
computed in accordance with

Qs =q;®qy; where q; = [Qk] Z, and g, = L c(x)pp () dw

4.3. Nonlinear part. The nonlinear part of the Riccati equation (16) reads

LQJ (C §)dl¢ o(x, &) d(,€)

for all (x,&) = é, () Py, ()

We plug in the ansatz (18) for the Riccati kernel p(z, £) into (21) and consider first
the integral over the boundary I'. We find

(C) (Cf)ng

(21)

Ny O,
Z ¢i1 ¢]2(£ Z Piy iy Z Pji.ds ¢ . (C) (bh (C) dFC

i1,j2=1 ig=1 Jji=1

Hence, defining the matrix B; = I:Bk.yg]k J_L € RN7Ns with

90k (222

= T
b ¢ . GVC( E (¢)dr;

and setting

T T
p-,f = [pl,Z: . "apNJ,é] and pé,o = I:pé,la "'apﬂ,NJ:I for £ = 1) . "aNJa
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we conclude

(22) f Py of(cg o= S 60 @0 s" B,

i1,J2=1

With this intermediate result, we can investigate the evaluation of the full expres-
sion (21

f | 2ot ot odewe
QxQ 4 v,

2 o Bypa,, L 6, (@), (1, (1001, (6) A, €).

i1,J2=1
Setting
Tiyip = pijl,oBJpo,izv
we can interpret this term as multiplication of the vector
ryg = [7'1?1, ce TN T2 ,rNJ,NJ]T

with the row corresponding to the test function ¢, ® ¢y, of the matrix £; ® E;,
where F; is the mass matrix as defined in (20). Thus, the discretization of the
non-linear part leads to

(23) (Ey®E )y
A slightly different representation in terms of matrices can be obtained by setting
N, N;xN
Py= [pk7€]k,2:1 e ROV

We first can write

Ny
(24) [pz;,.BJP.,jz] = P;B; Py,

i1,J2=1
and, in view of (23), we get

N,
(C §)dl¢ ¢y, (7) by, (€) d(z, ) =FE;P;B;P;E;.
8
OxQ Vc; Ky ko=1

This expression corresponds to the usual discretization of the ARE.

Theorem 4.1. The computational cost of evaluating the Riccati-IDE discretized
d—1

by the finite element method are of the order O(N?NJT).

Proof. The computational cost are dominated by the evaluation of the quadratic

term. Here, we have to evaluate a matrix product P;B;P;, whereat P; is a dense
matrix having N E—matrix coefficients. The matrix B consists of integrals of normal

d—1
derivatives on the boundary I' of which only O(N ;7 ) do not vanish. Due to locality

a1
of the finite element basis and of the normal derivative operator, B; has O(N ;7 )
non-zero entries. Making use of this observation we can evaluate the inner part of

d—1

(24) with complexity O(N;? ) for each fixed i, jo. Therefore, the over-all cost
d—1

amount to (’)(N?NJ . O
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4.4. Newton’s method. The Riccati-IDE is a non-linear equation with quadratic
non-linearity. Thus, to find a solution, we have to apply some iterative scheme. To
this end, we use Newton’s method as suggested in e.g. [27].

We first introduce the following notation to simplify the presentation. The linear
part of the Riccati-IDE (16) is given by the Laplace operator on Q x 2. We set

(25) Ry pes [so - LQ Vp(2,6)Vip(s, €) d(oaf)] -

The quadratic part is

dp
Rusip= o= [ [ 05O dwo)|.

Finally, the right-hand side can be written as

Q:igm [so -] aw e d(x,s)] -
QxQ
With these operators at hand, we can write the Riccati-IDE as
Ri(p) —Rnr(p) + Q=0.
Applying the Newton’s method to this equation results in
DR, = Ryp) V1 (0" = p1") = =(Rp(0™) = Ry (0) + Q),

where D denotes the Fréchet derivative and 4 the iteration index of the Newton’s
method.
The Fréchet derivative of a linear operator is the operator itself, i.e. we obtain

DR[g](h) = R (h),
while the Fréchet derivative of the non-linear part is given by

DRyl
oh dg
o fmf S QGG+ S O ZC dTe, d(e )

Therefore, for Newton’s method in the i-th iteration, we seek the new iterate p(”l)

such that
(26)  (Rp = DRl (")) = (R (@) +Q), i=1,2,....

The discrete version of Newton’s method (26) is the Sylvester type equation of
the form

(EP\"B, — AP\ VE, + E,PY™(B,PVE, - A;) = E,P\"B,PYE; + Q.
Notice that, in accordance with Theorem 4.1, each iteration of Newton’s method can

d—1
be realized within O(N;N ;%) cost if an optimal preconditioner like the multigrid

d—1
method is used. Therefore, the over-all cost are O( lterNgNJ‘i ), where Njie,
denotes the number of iterations used by Newton’s method.
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5. SPARSE GRID DISCRETIZATION

Sparse grids are a numerical discretization approach, which is especially of in-
terest for high dimensional problems. In this section, we intend to discretize and
evaluate the Riccati-IDE (19) in a sparse grid space. A detailed presentation and
introduction to sparse grids can be found in [1, 7, 12, 14, 36], see also [6, 18, p. 260,
19, p. 280, 20, 21, 22]. This section recalls the main ideas, where the representation
follows [40].

5.1. Discretization by sparse grids. As in Section 4, we consider Hilbert spaces
Z and V with Z® Z < V. Suppose we are given a nested sequence of finite
dimensional subspaces Z; of Z, that is

ZocZyCcZyc---CcZycC Z.

We are going to construct a finite dimensional subspace of V', which will be our
ansatz respectively test space later, upon the spaces Z;. In accordance with [7, 14,
21], let us introduce hierarchical difference spaces W; of dimension N; = dim W;
via
W;=2,0Z;_q,

where we set Z_; = {0}. We shall assume that N; behaves like an increasing
geometric sequence, which is for example the case if the sequence {Z;} is constructed
from dyadic subdivisions of a given coarse grid triangulation or tetrahedralization
of the underlying domain.

For the multi-index j = (jy,j2), let Wj = W; ; denote the tensor product of
two spaces W, and W,

Wi = W;, @W;, = (2}, ©2;,1) ® (2;,02;,-1)
where it obviously holds Nj := dimWj = N; N, . With these spaces at hand, we

can write the full tensor product space V; ; from (17) also as a direct sum of spaces

W

(27) Vie= @ W= @ W

0<j1,d2<J 0<jll o<
The idea of a sparse grid is to consider now only those basis function in the space
V.7, which have a large contribution to the representation of an interpolated func-

tion f eV, cf. [7, 14]. We denote the sparse grid function space with ‘7}7 7 and give
the following formal definition

(28) Vigi= @ W= @ W

0<j1+ja<J 0<|jfl,<J
From the representation (28) we infer that 17JJ consists only of hierarchical differ-
ence spaces with j; + jo < J. This construction leads to the relation

],\}J,J = dim‘/}{],] = O(NJ IOgNJ)

In general, for sparse grids on m-fold tensor product spaces, there holds N JJ =
dim ‘A/JJ — O(N;log N7""') while essentially no approximation power is lost pro-
vided that the function to be approximated exhibits extra smoothness in terms of
bounded mixed derivatives. In other words, the exponential dependency is only in
the log N; factor, which substantially reduces the dimension of of the sparse grid
space compared to the full grid.
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We proceed analogously to Section 4 and discretize the Riccati kernel in the

sparse grid space V; ;. To this end, we assume the space Z; to be spanned by some

hierarchical basis ®; := {qﬁi}ﬁvz']l, i.e. the spaces Z; are spanned by subsets of ;.

Let us denote by 6(j) < {1,..., N;} the index set of the basis functions which span
the difference space W, i.e.

W; =span{¢, € ®;:i€d(j)}.

In what follows, we will include for sake of clearness of representation the level in
the notation, i.e., we will write ¢,  instead of ¢, for k € §(j).

Furthermore, for W; = W; ® W;_ we set 0(j) := 0(j1) x 6(j2). Thus, the ansatz
p for the Riccati kernel reads

(29) p(x,&) = Z Z D kPix (7€) E‘A/J,J,

[3ll1<J ked (5)

where we abbreviated ¢;x = ¢; 1, ® ¢, r, € Wj. The vector p; ; € RNo of
coeflicients takes the form

brs = [psl <
where p; € RS are the coefficients vectors corresponding to the spaces Wj, i.e.

Py = [Pj,k]kes(j) :

5.2. Linear part. First, we shall be concerned with the linear part of the Riccati-
IDE (16). It is possible to consider the application of a linear operator L on V to a
function from the sparse grid space ‘7}7 7 in a rather abstract setting. Note that the
spaces Z; do not even need to be nested. The only additional assumption, besides
(28), is of the operator L to be a tensor product operator. This means that L must
be an extension from Z ® Z to V of a tensor product of operators S;, Sy acting
on Z, ie. Lizgz = 51 ® Ss, see e.g. [19, p. 72] for tensor product operators. This
extension is unique if Z ® Z is a dense subspace of V' and S; ® Sy is continuous on
ZR®Z, see [18, p. 122, 39, p. 48]. Together with the definition (28), the assumption
on L of being a tensor product operator leads to a block tensor structure of the
discretization matrix of L with respect to the space ‘7:]7 7, compare [40]. The block
tensor structure, in turn, can be utlized for fast matrix—vector multiplication.
Provided the operators Sy, S, can be evaluated with linear complexity O(N;)

on the spaces Z;, the product operator L can be applied to an element of ‘A/J’ 7
with O(Njlog N;) operations, cf. [40]. The algorithm for the evaluation of the
matrix-vector product in the space ‘7]7 7 is called UNIDIR, cf. [7, 40]. Algorithms
which employ similar techniques have been developed in [20, 21, 22].

The linear part of the Riccati-IDE (16) is given by the Laplace-operator on §2 x

ACHNQ Q) > HIQx Q). pes [w ~[ eV d(x,a] |

Here we have

Hy(Q) ® Hy () © Ho(2 x Q),
and H}(Q) ® Hy(Q) is dense in Hy (€ x ), cf. [19, p. 103]. This means that we
can write

Al yemto) = e ®Td+1A®A, : Hy(Q) © Hy(Q) — H™' (2 x Q),
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with

Ax,Angé(Q)aHfl(Q), v [w»—»j Vvadx],
and !
(30) Id: Hy(Q) —» H'(Q), v~ [w — L vw dx] ,

(see also Section 4.2), and A is a sum of tensor product operators, as required by
the UNIDIR algorithm.

Besides the tensor product structure, we have to ensure that A,, A,, and Id
can be evaluated with linear complexity on the discretization spaces Z;. There
are different examples of appropriate sequences {Z;} and corresponding bases @,
like e.g. hierachical bases ([7]), wavelets ([10]), multilevel frames ([21, 40]), or poly-
nomials of different degrees ([1, 7]). In this article, we will take Z; spanned by
the hierarchical basis of standard hat functions (cf. [7, 21]). We provide an exact
definition in Section 5.3.

Thus, albeit the discretization of the term (19) with sparse grids leads to a matrix
which is not sparse (cf. [21, 40]), the product

(AJ/®\EJ + E;’®\AJ) D1

can be computed with complexity O (N;log N;), i.e. linear in the number of degrees
of freedom of the sparse grid.

5.3. Nonlinear part. In general, for the evaluation of the non-linear part (21) of
the Riccati-IDE, we have to consider the evaluation of a non-linear operator

Ryip= o= [ [ 05O dwo)|.

We can apply some quadrature rule to calculate the boundary integral, i.e. we
approximate the operator

p(raf)H (C) (Cé“)dl“g

by
S S
(31) Z (cé 4;7 Zﬁ ps(&) = r(x,€),

where r € Hy () ® Hy () is a finite sum of tensor products. Note that, e.g. for the
discretization of p(x, &) by hat functions, the integral can be evaluated exactly by
an appropriate quadrature rule. However, the discrete output associated with the
function r lives on the full tensor product space.

Let us consider the evaluation of (31) for the ansatz (29)

op 8

(32) a (;Ij C@) = 5 Z Z pj, kSO_]k €T Cs)

v 31 < ked(§)

= Z Z ¢j17k1( Z Z Pj .k ¢)J2 B2 (Cs)

J1<J k1€6(51) Jo<J—Jj1 ke€6(j2)
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We set

0.
im0 ) gm0k €000,

. . . k aVC
J2<J—J1 ka€6(j2)

and
ﬁjl (Cs) = [ﬁjl,kl (cs)]kle,;(jl) € Rle'

The expressions for p; ;. can be calculated by a point evaluation of the derivatives
of the ansatz functions. Due to the hierarchical sorting of the basis, this operation
is of the complexity O (J — j;). The overall complexity for the evaluation of (32)
is therefore

N #6() - (J—j) < Y. 2T = O (N, log N,)

Jisd Ji<J

and, hence, O(SN;log N;) for the complete quadrature of the boundary integral
(31).
In the next step, we would compute the linear combination

S
D7D (@)Ds(€),
s=1
where

Pe@) =D D1 Bk bik, (@),

J1<J k1€6(41)

P =D D> B (©),

J2<J ka€6(j2)

are full grid functions on 2. The evaluation of the tensor products
ﬁs(l‘)ﬁé‘(g)’ 821)""57

is of complexity O(N?) each. However, we can first apply the operator Id ® Id with

the test space is V; ; and the ansatz space V; ;. In this case, utilizing the tensor
product structure

(Id®Id) P, ()P, (€) = (1dP,(2)) ® (1dp,(€)),

we need O(N;log N;) operations for the evaluation. This means that we obtain
the overall complexity of O (SN;log N;) for the evaluation of the nonlinear part

d-1
Ry of the Riccati equation with sparse grids ansatz. In view of S ~ N ;¢ | since

we integrate only over the boundary I' of €2, we end up with the computational
d—1

complexity O(N sN;7 logN. J) for evaluating the Riccati-IDE. This means that we
save essentially one order in IN; in both, memory requirement and computation
time, compared to the traditional finite element discretization from the previous
section:

Theorem 5.1. The computational cost of evaluating the Riccati-IDE discretized

d—1
by the sparse grid method are of the order O(N;N ;7 log Nj) while the memory
requirement is of the order O(N;log Ny).
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Remark 5.2. 1. The realization of Newton’s method based on the above algorithms
is straightforward, compare Section 4.4. Especi%llly, the over-all cost for computing
the optimal kernel function p are O(Nyo, N;N ;7 log N), where Ny, denotes the
number of iterations used by Newton’s method.

2. The bottle-neck of the presented sparse grid discretization is the evaluation
of the non-linear term Ry, which does not scale linearly. A much more involved
algorithm is able to evaluate Ry in complexity O(NJN;QTI). This is still not of
linear complexity but is essentially the square root of the cost the finite element
method has.

3. The discretization of the Riccati-IDE has been performed in an exact way,
meaning that we compute the exact Galerkin system. Instead, one could also eval-
uate Ry n an approrimate way, reducing the over-all complexity further. This
would introduce a consistency error which, however, would not matter if it is of the
same order than the discretization error.

6. NUMERICAL RESULTS

‘We shall present numerical results of the sparse grid discretization of the Riccati-
IDE (16). To this end, we assume that Q = (0,1) < R is one-dimensional. Hence,
Q x Q = (0,1)% is the unit square.

6.1. Discretization space. The sparse grid spaces ‘7J7J on (0, 1)2 are constructed
by piecewise linear hat functions (see e.g. [7]). Given a multi-index j = (ji, j2), we
write

hj = (hjl’hjz) = (2j1’2j2)

for the tuple of mesh parameters, which represents the spatial resolution in every
dimension. We define the following points

T = (Tj, by Tiy )y Tjok, = ke - hy,, t=1,2,

and consider the mesh, i.e., a collection of spatial points, Q g
A 2 . .
Oy = {zce R 2 il <, ke o(i}

The multi-index j is also referred to as level and k defines the position of the point

‘Tj,k'
Next, we introduce a set of basis functions defined on 2 which span the discrete
spaces Z;. Let us start with the standard linear hat function

¢(z) = max{l — |z],0}, zeR.

For level j and index k, we define by translation and dilatetation
x—Fk-h; .
biate) = o (T ) = ofa )

h;

The basis functions on 2 x ) are the piecewise bilinear hat functions

b5x(X) = 05, 1, (T1) D), &, (T2),

where x = (x;,2,5) € Q x Q.
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FIGURE 1. Piecewise linear hierarchical basis for levels j = 1,2,3
(solid) and nodal point basis (dashed).

Due to the homogeneous boundary conditions of the Riccati-IDE (16) for the
Dirichlet boundary control case, we omit functions which are not zero in 0Q = {0, 1}
and consider one-dimensional discrete space

Z; = span{¢j7k:k: 1,...,2j}.

The spaces W;, W; . , ‘A/JJ are constructed as in Section 5. Figure 1 shows the
one-dimensional linear hat functions corresponding to the hierarchical difference

spaces W, W, and W35 as well as a nodal point basis of level 3.

6.2. About the quadratic term of the Riccati-IDE. The evaluation of R,
simplifies considerably for a one-dimensional domain Q = (0,1) < R. In this case,
we obtain

0 0 0 0

0 0 0
L AP O3, PG = 2p(w0) 5 p(0.6) + a1 p(0L,),

where the notation

0 _ (2 0 _ (7
A= (o) gote = (Gc0))

is used with ¢ € {0,1} = Q. In other words, the scalar product on the space of
controls U is reduced to a finite sum. This means that U is a finite dimensional
space, in particular dimif = 2.

(=c
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The operator Ry, can be represented in terms of tensor product operators, i.e.,
for an elementary tensor p = p; ® pg, we have

Rs) = | (@02 0.0+ E@1E00) o

(33) (20 [ nw dx) (S0 [ mate) ac)

(20 ) (20 )

We proceed with the discretization of (33) and consider exemplary the term stem-
ming from the evaluation of the normal derivative in the point 0:

8812 ’ Z Z Dk ke, ¢)k1 ¢k2 (O)

a
Ve < ked ()

0
D UTREND P 10

31 <J k1€6(41) k2€5(12)
0Py,
=Z Z b, (x Z Z Dk, ks 61/2 0).
J1<J k1€8(51) J2=1ko€6(j2)

This computation will give thus regular grid functions:
op op

— (2,0 0,§)e 2
e (520 508 € 2
Likewise, we can obtain

0 0
1
o Dz, )ac

by the evaluation of the normal derivative in the point 1.
In the second step, we have to apply the identity operator to the tensor products

op op
e AN 1.0,

p(1,€) e Z;

0)® (0 £),

i.e., we compute

op op
Ryslr) = taom) (Lm0 e Lo.o+ LeneLa).
which can be done with complexity O(N; log Ny). Hence, the overall complexity is
of O(Njlog N;), which is consistent to the estimate obtained in Theorem 5.1 for
d=1.

op

(x 0)®

6.3. Computation time. First of all, we shall confirm the expected linear com-
plexity of O(N;log N;) by measuring computation times. To this end, the algo-
rithm for the solution of the Riccati equation is implemented based on a general
sparse grids library SG++, see [36, 38]. We measure the computation times with
boost: :timer as an estimation for complexity. In particular, we consider the mean
value over 20,000 measurements of the computation time for the evaluation of the
quadratic part Ry, (p) from (33).

Figure 2 shows the binary logarithm of the measured time against the level J
of the sparse grid. Here, we observe a nearly linear growth of computation time
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FIGURE 2. Measurement of the computation time for the quadrat-
ic term of the Riccati equation.

with increasing level. A more detailed information is presented in Table 1. Therein,
besides the measured time, we calculate the complexity rates

(1) =1d =d|{—-———|=14+1d|— ) — 1,
) (ti—l) (21_1(2'—1)) <2—1>

where t; is the computation time on level 4, and Id denotes the binary logarithm.

TABLE 1. Mean value over 20,000 measurements of the computa-
tional time and corresponding complexity rates n;(t) = 1d(¢;/t;_1)
for the quadratic term of the Riccati-IDE.

level time[s] n;(t) level time[s] n;(t) level time[s] #n;(t)

2061 5 + 9 1329 5, 1.12 16 5249 ;, 1.17
2.808_5 049 10 2718 5 1.03 17  1.112, 1.08
4281 5 056 11 5942 5, 1.13 18 2191, 0.98
7557 5 0.82 12 1172, 098 19 4672, 1.09
1433, 092 13  3.081, 139 20 1013, 1.12
2.932_, 1.03 14  9.700_, 1.65 = x x
6.123_, 1.06 15 2341, 1.27

0 O UL Wi

6.4. Experiment 1. In the first numerical experiment, we consider the following
function ¢(z, )

q(z,§) = (1 —[2z —1|)(1 — |26 — 1)),
which is illustrated in Figure 3, besides the approximation of the corresponding
Riccati kernel.
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FIGURE 3. Right-hand side ¢(x,&) (left) and an approximation of
the associated Riccati kernel p(x, &) (right) for the first numerical
experiment.

The configuration of the numerical experiment is as follows. The tolerance on
the £y-norm of the residuum for the Newton method is set to 1072, We obtain a
reference solution on a regular grid with 12,801 x 12,801 points and measure the
error on a regular grid of 201 x 201 points. The error is measured with the following
L, respectively L, estimators

Hpref — Ds HQ
D._ g

2 \/m ) egO = Hpref 7pngOO'

The theoretical convergence for a sparse grids approximation of functions with
bounded second mixed derivatives, i.e. elements of H*(Q) ® H*(Q), is O(27>7.)),
whereby J denotes the level of discretization, as described in Section 5. In the first
numerical experiment, we observe nearly this rate.

In Figure 4, logarithms of both error estimators are plotted against the level.
Detailed information on error as well as convergence rates is given in Table 2.
Expected theoretical value for the convergence rates is

pi(e)—ld<ei_1) —ld<22 (1—1>> —2+1d<1_1_> =iy
€; 7 7

where e; is the error for level i.

TABLE 2. Estimations €4 of the L*(2) and €%, of the L*(£2) errors
and the corresponding convergence rates p;(e) = 1d(e;_;/e;) for the
first numerical experiment.

level €5 pi(es) e piles) level eh piles) e pi(€cx)

949 , x 2945 = 8 258, 199 225 4 159
249 , 193 1035 151 9 6525 199 7.33_, 1.62
6355 197 321, 168 10 1653 198 231, 167
1615 1.98 9765 1.72 11 4214 197 7.06_g 1.71
4056 199 3.06_5 167 12 111, 192 213 ¢ 1.73
1.02 4 199 6.77 5 218  « * x x *

N O U W N
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FIGURE 4. Estimations €& of L*(Q x Q) and e, of L®( x Q)
errors for the first numerical experiment.

6.5. Experiment 2. In the second example, the right-hand side ¢(z, £) is given by
q(z,€) = X[1,37x[2,3)(2, §)-

101
Figure 5 shows the function ¢(x,&) as well as the approximation of the associated
Riccati kernel.

1072

7 N\
AR
MY »
",’l'lllm',',',"
HILT [

p(x1,%2)

FIGURE 5
Right-hand side ¢(z,£) (left) and an approximation of the associated Riccati
kernel p(x,&) (right) for the second numerical experiment.

In this experiment, we use the same setting as in the first one. As the plot in
Figure 6 illustrates, we do not achieve the convergence rate of 2 in this case, which
indicates that the Riccati kernel is not a function with bounded mixed second
derivatives. Again, detailed numbers for errors and associated convergence rates p
are presented in Table 3.
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FIGURE 6. Estimations €& of L*(Q x Q) and e, of L*(2 x Q)
errors for the second numerical experiment.
TABLE 3. Estimations €% of the L*(2) and €&, of the L*(£2) errors
and the corresponding convergence rates p;(e) = 1d(e;_; /e;) for the
second numerical experiment.
level eb piles) e pilen) level eb piles) ey piles)
2 191, x 5855  « 8 320, 149 243 . 0.99
3 5.06_, 192 162_5 185 9 1.13_4 1.5 1.11_5 1.13
4 1.86_, 145 5.76_, 149 10 4.00_, 1.5 6.04_¢ 0.87
5 6.83_5 145 248_, 122 11 141_, 151 2.70_4 1.16
6 2.50_5 145 1.16_4 1.1 12 487_g 153 149_4 0.86
7 897, 148 485, 126 = x x N N

7. CONCLUSION

In the present article, we considered the numerical solution of the algebraic
Riccati equation by means of sparse grids. To that end, we did not start with the
algebraic Riccati equation but with its continuous counterpart — the Riccati-IDE.
This partial differential equation has then been discretized by the Galerkin method
with sparse grid ansatz spaces. We have shown that both, memory requirements
and computation times, are reduced considerably in comparison with a tensor-
product finite element discretization. Nonetheless, future research has to be focus
on further speeding-up the computational process.
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