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SPARSE GRID APPROXIMATION OF THE RICCATI
OPERATOR FOR CLOSED LOOP PARABOLIC CONTROL
PROBLEMS WITH DIRICHLET BOUNDARY CONTROL

HELMUT HARBRECHT AND ILJA KALMYKOV

Abstract. We consider the sparse grid approximation of the Riccati oper-
ator P arising from closed loop parabolic control problems. In particular,
we concentrate on the linear quadratic regulator (LQR) problems, i.e. we
are looking for an optimal control uopt in the linear state feedback form
uoptpt, ¨q “ Pxpt, ¨q, where xpt, ¨q is the solution of the controlled partial differ-
ential equation (PDE) for a time point t. Under sufficient regularity assump-
tions, the Riccati operator P fulfills the algebraic Riccati equation (ARE)

AP ` PA ´ PBB
‹
P ` Q “ 0,

where A, B, and Q are linear operators associated to the LQR problem. By
expressing P in terms of an integral kernel p, the weak form of the ARE
leads to a non-linear partial integro-differential equation for the kernel p – the
Riccati-IDE. We represent the kernel function as an element of a sparse grid
space, which considerably reduces the cost to solve the Riccati IDE. Numerical
results are given to validate the approach.

1. Introduction

Operator Riccati differential equaions play an important role in a number of dif-
ferent applications in engineering, physics, and mathematics. To give a few exam-
ples, we mention model reduction ([24, 17]), filtering ([25]), scattering theory ([33]),
radiative transfer and the solution of two point boundary value problems via the
theory of invariant embedding ([2]). A well-known application of the Riccati equa-
tion stems from the optimal control theory, in particular from the unconstrained
linear quadratic (LQ) optimal control of parabolic partial differential equations, see
e.g. [2, 5, 29, 32] and the references therein. In Section 2, we consider unconstrained
LQ optimal control for infinite time horizon. In this case, the optimal control can be
obtained by solving the algebraic Riccati equation (ARE). We refer to the solution
of the ARE as Riccati operator P .

In order to obtain an approximation of the Riccati operator, we follow the ap-
proach presented in [8, 23]. Therein, the representation of P in terms of a kernel
function ppx, ξq is considered:

pPuqpxq “
ż

Ω

ppx, ξqupξqdξ.
By this means, the solution of the ARE can be characterized via an integro-
differential equation of Riccati type (Riccati-IDE) for the kernel ppx, ξq. We present
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the derivation of the Riccati-IDE for the Dirichlet boundary control of the heat
equation in Section 3.

The Riccati-IDE is a non-linear equation with a non-linearity in form of a qua-
dratic term. A number of methods for the solution of non-linear equations, which
have been studied for the ARE (see e.g. [3, 4, 28] for a survey), can similarly be
implemented for the Riccati-IDE. In this article, we apply Newton’s method as sug-
gested in [27]. We describe this approach for the discretization of the Riccati-IDE
with a standard finite elements method in Section 4.

As the Riccati operator P is a linear operator on the state space with domain Ω,
the kernel ppx, ξq is defined on the product domain ΩˆΩ. Provided we useN degrees
of freedom for the discretization of the state space, the discretization of the kernel
by a regular tensor product approach ppx, ξq amounts to N2 degrees of freedom.
This leads in general to a cubic over-all complexity OpN3q for the evaluation of the
right-hand side and the computation of the gradient in the Newton’s method.

The OpN3q-complexity is a major bottleneck in the numerical treatment of the
LQ optimal control problems and large scale AREs. At least for d “ 3 spatial dimen-
sions, the quadratic growth of the memory requirements makes the discretization
in the regular tensor product space prohibitively expensive if not even impossible.
This is an example of a more general problem known as curse of dimensionality.
Different approaches, like e.g. multigrid methods [15] or H-matrices [16] have been
studied to overcome this drawback. In the present article, we discretize the Riccati-
IDE in the sparse tensor product space – a numerical technique, which allows to
overcome the curse of dimensionality to some extend. Thus, the kernel ppx, ξq is
represented by only OpN logNq degrees of freedom, which in turn improves the
over-all complexity. We will introduce the sparse tensor product space and the
corresponding discretization of the Riccati-IDE in Section 5.

In Section 6, we verify our approach by numerical experiments, in which con-
vergence rates for the approximation of the Riccati kernel ppx, ξq as well as the
computational complexity are considered. Finally, in Section 7, we state conclud-
ing remarks.

2. LQR Dirichlet boundary control

This section briefly describes the main ideas of the linear quadratic (LQ) optimal
control of partial differential equations. A detailed discussion of this topic can be
found e.g. in [5, 32, 37].

2.1. Heat equation with Dirichlet boundary conditions. We consider the
heat equation on the domain Ω Ă Rd with Dirichlet boundary control

(1)

$
’’&
’’%

B
Btzpt, xq ´ ∆zpt, xq “ 0 in Ω ˆ p0, T s,

zp0, xq “ z0pxq for x P Ω,

zpt, xq “ uptq px, tq P Σ “ Γ ˆ r0, T s ,
where Γ “ BΩ, z0 P L2pΩq, and u P L2pΣq is a given control function. The existence
and uniqueness of the solution to (1) in L2`p0, T q; Ω˘ can be shown, e.g., by the
method of transposition (cf. [32, Chapter III, Section 9]). Here, following [5, 9,
30], we will interpret (1) as an abstract differential equation. To this end, we first
introduce some notation.
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Let H, U , Y be Hilbert spaces of states, controls, and observations, respectively.
In the particular case of Dirichlet control for the heat equation (1), we set

H “ L2pΩq, U “ L2pΓq, Y “ R.

The abstract differential equation corresponding to the system (1) reads

(2)

$
&
%

d

dt
zptq “ Azptq `Buptq, t P p0, T s,
zp0q “ z0,

where
u P L2`p0, T q;U˘, z0 P H.

The derivative d
dt is interpreted in a vector distributional sense, compare [5, pp. 87 and 202,

37, p. 117]. The linear operator A is defined by

(3) A : DpAq Ă H Ñ H, v ÞÑ Av “ ∆xv,

where DpAq “ H1
0 pΩq XH2pΩq.

The definition of the control operator B is more involved. In general, for the
boundary control of parabolic partial differential equations, B is considered to be
a continuous linear operator from the control space U to DpA‹q1, whereat A‹ is the
adjoint operator of A, compare [5, p. 210, 11]). In fact, boundary control problems
are defined by B being an element of L

`
U ,DpA‹q1˘ in contrast to distributed control

problems, where we have B P LpU ,Hq. This viewpoint arises in the variational
formulation as well as in the method of transposition for the Dirichlet boundary
control of parabolic problems (cf. [5, Part II, Chapter 2] and [32, Chapter III]).

Another assumption is for the control operator to be of the form B “ pλ0 ´AqD
(see [5, Part IV, Section 1] or [11]). Here, λ0 P ρpAq is an element of the resolvent
set of A such that λ0 is strictly larger than the type of semigroup generated by A.
Note that B is of this form for parabolic Dirichlet boundary control problems as
well as for parabolic Neumann boundary control problems.

In the case of the Dirichlet boundary control, the operator D is the Dirichlet
mapping defined as an extension of the Green mapping G : H

1
2 pΓq Ñ H1pΩq for

the problem "
∆u “ 0 in Ω,

u “ g on Γ,

cf. [5, p. 436] or [35, p. 254]. In other words, we have

(4) D P LpU ,Hq, v ÞÑ Dv “ w, where ∆w “ 0 in Ω, w “ v on Γ.

A from (3) is a strictly negative self-adjoint operator in L2pΩq and therefore a
generator of an analytic semigroup of negative type, cf. [5, p. 436]). By this means
we can set λ0 “ 0, i.e. we obtain B “ ´AD.

With these observations regarding the control operator B we can rewrite the
problem (1) as

(5)

$
&
%

d

dt
zptq “ Azptq ´ADuptq, t P p0, T s ,
zp0q “ z0,



4 HELMUT HARBRECHT AND ILJA KALMYKOV

where u P L2`p0, T q;U˘, z0 P H,D as in (4), and A : H Ñ DpA‹q1 being an extension
of (3). According to [5, Part II, Chapter 3], there exists a unique solution

z P
"
v P L2`p0, T q;H˘

:
dv

dt
P L2`p0, T q;DpA‹q1˘

*

for abstract differential equations of the type (5).

2.2. Optimal control problem. We introduce the following quadratic cost func-
tional for the abstract differential equation (5)

J8puq :“
ż 8

0

!
}Czptq}2Y ` }uptq}2U

)
dt,

where C P LpH,Yq is an observation operator. As we consider the case T Ñ 8,
further assumptions on the existence of a control u P L2`p0,8q;U˘ with J8puq ă 8
has to be made. Such a control is called admissible. If there exists an admissible
control for each initial state z0, the system (5) is called C-stabilizable, cf. [5, p. 517].
For C-stabilizable systems, we can consider the unconstrained (i.e. with respect to
the control space) linear quadratic optimal control problem for the heat equation
with Dirichlet boundary control

(6)

$
&
%

min
uPL2pp0,8q;Uq

J8puq

subject to system (5).

The optimal control uopt to the problem (6) is given by the feedback formula (cf. [5,
Part V, Chapter 2, 13, 30, 32, Chapter III, Section 4])

uoptptq “ ´B‹Pzoptptq,
where B‹ is the adjoint of the control operator B, zopt is the solution of the closed
loop system (see e.g. [5, p. 518]) and P is the unique solution of the algebraic Riccati
equation (ARE):

(7) A‹P ` PA´ PBB‹P ` C‹C “ 0.

It can be shown that P –the Riccati operator– is a positive, self-adjoint, and
bounded operator on the state space H.

If A “ A‹ holds, as in the case of the heat equation, (7) is equivalent to

(8) AP ` PA´ PBB‹P ` C‹C “ 0.

By this result, we can proceed with solving the ARE (8) to obtain the solution to
the optimization problem (6).

3. Riccati partial integro-differential equation

There are different approaches to the solution of equation (8) (see e.g. [8, 23,
Chapters 3 and 4, 32, Chapter 3, 31, 34]). In this article, we concentrate on the
representation of the Riccati operator in terms of a kernel function

(9) rPφs pxq “
ż

Ω

ppx, ξqφpξqdξ,

where in general ppx, ξq is a distribution on ΩˆΩ (cf. [32, Chapter III, Section 5]).
The existence of such a kernel is guaranteed by the Schwartz kernel theorem.
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3.1. Variational formulation. Next, we want to combine (9) with the weak form
of the ARE (8):

(10) pAφ,Pψq`pPφ,Aψq´pB‹Pφ,B‹PψqU `pC‹Cφ,ψq “ 0 for all φ, ψ P DpAq.
For the sake of brevity, here and in the following, p¨, ¨q denotes the scalar product in
the state space H, while p¨, ¨qU denotes the scalar product in U . In addition, we shall
assume that p P H1pΩ ˆ Ωq. Then, for all ϕpx, ξq “ φpxqψpξq with φ, ψ P C8

0 pΩq,
we obtain

pAφ,Pψq “
ż

Ω

∆φpxq
ż

Ω

ppx, ξqψpξqdx dξ “
ż

Ω

ż

Ω

ppx, ξq∆xφpxqψpξqdx dξ

“
ż

ΩˆΩ

ppx, ξq∆xϕpx, ξqdpx, ξq “ ´
ż

ΩˆΩ

∇xppx, ξq∇xϕpx, ξqdpx, ξq,

and likewise

pPφ,Aψq “
ż

Ω

ż

Ω

ppx, ξqφpξqdξ∆ψpxqdx “
ż

Ω

ż

Ω

ppx, ξqφpxq∆ξψpξqdxdξ

“
ż

ΩˆΩ

ppx, ξq∆ξϕpx, ξqdpx, ξq “ ´
ż

ΩˆΩ

∇ξppx, ξq∇ξϕpx, ξqdpx, ξq,

where we used the relation ppx, ξq “ ppξ, xq which comes from P being self-adjoint.
We thus deduce

pAφ,Pψq ` pPφ,Aψq “ ´
ż

ΩˆΩ

∇ppx, ξq∇ϕpx, ξqdpx, ξq.

We proceed with the non-linear term. First, notice that it holds for arbitrary
η P U and ψ P H1

0 pΩq

pBη, ψq “ ´ pADη, ψq “ ´pDη,Aψq “ ´
ż

Ω

pDηqpxq∆ψpxqdx

“ ´
ż

Γ

DηpxqBψ
Bν pxqdΓ `

ż

Ω

∇Dηpxq∇ψpxqdx,

which yields in view of the definition of D in (4)

pBη, ψq “ ´
ż

Γ

ηpxqBψ
Bν pxqdΓ “

´
η,´Bψ

Bν
¯
U

“ pη,B‹ψqU .

Therefore, the operator B‹ is given by

B‹ P LpDpA‹q,Uq, v ÞÑ B‹v “ ´ Bv
Bν ,

compare [5, pp. 189, 195] and [29, p. 181]).
We can now plug in B‹ into the non-linear term of (10)

pB‹Pφ,B‹PψqU “
ż

Γ

B
Bνζ

ż

Ω

ppζ, xqφpxqdx ¨ B
Bνζ

ż

Ω

ppζ, ξqψpξqdξ dΓζ

“
ż

Γ

B
Bνζ

ż

Ω

ppx, ζqφpxqdx ¨ B
Bνζ

ż

Ω

ppζ, ξqψpξqdξ dΓζ .



6 HELMUT HARBRECHT AND ILJA KALMYKOV

By applying Fubini’s theorem, we conclude

pB‹Pφ,B‹PψqU “
ż

Γ

ż

Ω

Bp
Bνζ px, ζqφpxqdx

ż

Ω

Bp
Bνζ pζ, ξqψpξqdξ dΓζ

“
ż

ΩˆΩ

ż

Γ

Bp
Bνζ px, ζq Bp

Bνζ pζ, ξqdΓζ ϕpx, ξqdpx, ξq.

Note that the boundary integral is well-defined if we assume that it holds Bp{Bνx P
L2pΓ ˆ Ωq and likewise Bp{Bνξ P L2pΩ b Γq.

In order to complete the derivation in terms of kernel functions, we assume in
accordance with [8] and [23, Chapter 3]) the operator C : H Ñ Y to be of the form

Cφ “
ż

Ω

cpxqφpxqdx

with c P L2pΩq. By this means C‹C takes the form

pC‹Cφ,ψq “ pCφ,CψqR
2 “

ż

Ω

cpxqφpxqdx
ż

Ω

cpξqψpξqdξ

“
ż

ΩˆΩ

cpxqcpξqφpxqψpξqdpx, ξq.
We thus set

(11) Q “ C‹C : H Ñ H, v ÞÑ Qv “
ż

Ω

cpxqcpξqvpξqdξ “
ż

Ω

qpx, ξqvpξqdξ,
where qpx, ξq “ cpxqcpξq is the kernel of Q.

Therefore, since C8
0 pΩ ˆ Ωq is dense in H1

0 pΩ ˆ Ωq, the kernel p solves the
following variational problem

ż

ΩˆΩ

∇ppx, ξq∇ϕpx, ξqdpx, ξq `
ż

ΩˆΩ

ż

Γ

Bp
Bνζ pζ, xq Bp

Bνζ pξ, ζqdΓζϕpx, ξqdpx, ξq
(12)

“
ż

ΩˆΩ

qpx, ξqϕpx, ξqdpx, ξq for all ϕ P H1
0 pΩ ˆ Ωq.

3.2. Boundary conditions. In order to derive the boundary conditions for ppx, ξq,
we follow [5, p. 520]). To this end, we note first that

(13) P P L
´
H,D

`p´Aq1´α˘¯,

where for A as in (3) we can choose α P p0, 1{4q. Furthermore, it holds

(14) D
`p´Aq1´α˘ “

#
H2p1´αqpΩq, if α P p3{4, 1q,
 
u P H2p1´αqpΩq : u “ 0 on BΩ(, if α P p0, 3{4q.

Therefore, we deduce from (13) and (14) that

(15) for all v P H : Pv P
!
u P H2p1´αqpΩq : u “ 0 on BΩ

)
, where α P p0, 1{4q.

We next assume that there exists a part rΓˆrΩ Ă BpΩˆΩq of the boundary such that
ppx, ξq ‰ 0 for almost all px, ξq P rΓˆ rΩ. Then, taking some v P H with rΩ Ă supp v,
we have

upxq “
ż

Ω

ppx, ξqvpξqdξ ą 0
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for almost all x P rΓ, which is a contradiction to (15). Hence, with the symmetry of
ppx, ξq, we conclude #

ppx, ξq “ 0, x P Γ, ξ P Ω,

ppx, ξq “ 0, x P Ω, ξ P Γ,

compare also [32, p. 158].
We therefore arrive at the following result.

Theorem 3.1. The kernel p P V for the Riccati operator associated with the
Dirichlet boundary control of the heat equation (2), where

V :“
"
f P H1

0 pΩ ˆ Ωq : Bf
Bνx P L2pΓ ˆ Ωq and Bf

Bνξ P L2pΩ ˆ Γq
*
,

is the weak solution of the following integro-differential equation (IDE) of Riccati
type:

(16)

$
&
%

´∆ppx, ξq `
ż

Γ

Bp
Bνζ px, ζq Bp

Bνζ pζ, ξqdΓζ “ qpx, ξq in Ω ˆ Ω, Γ “ BΩ
ppx, ξq “ 0 on BpΩ ˆ Ωq.

In [32, Chapter III, Section 5], several results of this type are derived, in parti-
cular for distributed control (i.e. B P LpU ,Hq) and Neumann boundary control. [23,
Chapter 3] considers the Riccati-PDE for Robin boundary control. The Riccati-
PDE for Dirichlet boundary control in the one-dimensional situation can be found
in [8]. There, the results are based on a stronger regularity of the kernel ppx, ξq,
i.e. p P CpΩ ˆ Ωq, compare [26] for one-dimensional problems.

4. Finite element discretization

In this section, we derive a discrete version of the Riccati-IDE (16) by means of
a Galerkin discretization by finite elements. To this end, we consider the full tensor
product discretization of functions defined on the product domain Ω ˆ Ω.

4.1. Tensor product approximation. Let Z be a Hilbert space with

Z b Z Ă V,

where b denotes the algebraic tensor product, cf. [19, p. 52]. The closure can be
taken with respect to an appropriate norm. Furthermore, suppose we are given a
finite dimensional subspace ZJ Ă Z. We define the full tensor product space VJ,J
via

(17) VJ,J :“ ZJ b ZJ .

If ΦJ :“  
φj
(NJ

j“1
is a basis of ZJ , i.e. NJ “ dimZJ , then

ΦJ b ΦJ “  
φj1 b φj2

(NJ

j1,j2“1

is a basis of VJ,J . Thus, we obtain dimVJ,J “ N2
J .

The finite dimensional subspace ZJ might be given by the span of globally con-
tinuous, piecewise linear ansatz functions defined with respect to a triangulation or
tetrahedralization of Ω, respectively. Thus, the tensor product space VJ,J would be
spanned by products of those functions, compare Section 5 for details.
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Next, we want to discuss the discretization of Riccati-IDE (16) with respect to
the full tensor product space VJ,J . We make the following ansatz

(18) ppx, ξq “
NJÿ

j1,j2“1

pj1,j2φj1pxqφj2pξq P VJ,J

for the discretization of the kernel function in the space VJ,J and write

pJ,J :“ “
p1,1, p1,2, . . . , pNJ ,NJ

‰ᵀ

for the coefficient vector of the Riccati kernel.

4.2. Linear part and right-hand side. First, let us consider the linear part of
(12), i.e., the evaluation of

(19)
ż

ΩˆΩ

∇ppx, ξq∇ϕpx, ξqdpx, ξq for all ϕpx, ξq “ φk1
pxqφk2

pξq,

which corresponds to the weak formulation of Laplace operator on the product
domain ΩˆΩ. Denoting by AJ “ “

ak,`
‰NJ

k,`“1
and EJ “ “

ek,`
‰NJ

k,`“1
the stiffness and

mass matrices with respect to the ansatz space ZJ , respectively, i.e.

(20) ak,` “
ż

Ω

∇φkpxq∇φ`pxqdx, ek,` “
ż

Ω

φkpxqφ`pxqdx,

we obtain the following discrete representation for (19):

pAJ b EJ ` EJ bAJq pJ,J .
Since the right-hand side is a rank-1 function, compare (11), it can simply be

computed in accordance with

QJ “ qJ b qJ where qJ “ rqksNJ

k“1 and qk “
ż

Ω

cpxqφkpxqdx.

4.3. Nonlinear part. The nonlinear part of the Riccati equation (16) reads

(21)

ż

ΩˆΩ

ż

Γ

Bp
Bνζ px, ζq Bp

Bνζ pζ, ξqdΓζ ϕpx, ξqdpx, ξq
for all ϕpx, ξq “ φk1

pxqφk2
pξq.

We plug in the ansatz (18) for the Riccati kernel ppx, ξq into (21) and consider first
the integral over the boundary Γ. We find

ż

Γ

Bp
Bνζ px, ζq Bp

Bνζ pζ, ξqdΓζ

“
NJÿ

i1,j2“1

φi1pxqφj2pξq
NJÿ

i2“1

pi1,i2

NJÿ

j1“1

pj1,j2

ż

Γ

Bφi2
Bνζ pζqBφj1

Bνζ pζqdΓζ .

Hence, defining the matrix BJ “ “
Bk,`

‰NJ

k,`“1
P RNJˆNJ with

bk,` :“
ż

Γ

Bφk
Bνζ pζqBφ`

Bνζ pζqdΓζ

and setting

p‚,` :“
“
p1,`, . . . , pNJ ,`

‰ᵀ and p`,‚ :“ “
p`,1, . . . , p`,NJ

‰ᵀ for ` “ 1, . . . , NJ ,
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we conclude

(22)
ż

Γ

Bp
Bνζ px, ζq Bp

Bνζ pζ, ξqdΓζ “
NJÿ

i1,j2“1

φi1pxqφj2pξq pTi1,‚BJp‚,j2 .

With this intermediate result, we can investigate the evaluation of the full expres-
sion (21):

ż

ΩˆΩ

ż

Γ

Bp
Bνζ px, ζq Bp

Bνζ pζ, ξqdΓζ ϕpx, ξqdpx, ξq

“
NJÿ

i1,j2“1

pTi1,‚BJp‚,j2

ż

ΩˆΩ

φi1pxqφj2pξqφk1
pxqφk2

pξqdpx, ξq.

Setting
ri1,i2 :“ pTi1,‚BJp‚,i2 ,

we can interpret this term as multiplication of the vector

rJ,J :“ “
r1,1, . . . , rNJ ,1

, r1,2, . . . , rNJ ,NJ

‰ᵀ

with the row corresponding to the test function φk1
b φk2

of the matrix EJ b EJ ,
where EJ is the mass matrix as defined in (20). Thus, the discretization of the
non-linear part leads to

(23) pEJ b EJqrJ,J .
A slightly different representation in terms of matrices can be obtained by setting

PJ :“ “
pk,`

‰NJ

k,`“1
P RNJˆNJ .

We first can write

(24)
”
pTi1,‚BJp‚,j2

ıNJ

i1,j2“1
“ PJBJPJ ,

and, in view of (23), we get
„ż

ΩˆΩ

ż

Γ

Bp
Bνζ px, ζq Bp

Bνζ pζ, ξqdΓζ φk1
pxqφk2

pξqdpx, ξq
NJ

k1,k2“1

“ EJPJBJPJEJ .

This expression corresponds to the usual discretization of the ARE.

Theorem 4.1. The computational cost of evaluating the Riccati-IDE discretized
by the finite element method are of the order OpN2

JN
d´1
d

J q.
Proof. The computational cost are dominated by the evaluation of the quadratic
term. Here, we have to evaluate a matrix product PJBJPJ , whereat PJ is a dense
matrix having N2

J -matrix coefficients. The matrix BJ consists of integrals of normal
derivatives on the boundary Γ of which only OpN d´1

d

J q do not vanish. Due to locality
of the finite element basis and of the normal derivative operator, BJ has OpN d´1

d

J q
non-zero entries. Making use of this observation we can evaluate the inner part of
(24) with complexity OpN d´1

d

J q for each fixed i1, j2. Therefore, the over-all cost
amount to OpN2

JN
d´1
d

J q. �
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4.4. Newton’s method. The Riccati-IDE is a non-linear equation with quadratic
non-linearity. Thus, to find a solution, we have to apply some iterative scheme. To
this end, we use Newton’s method as suggested in e.g. [27].

We first introduce the following notation to simplify the presentation. The linear
part of the Riccati-IDE (16) is given by the Laplace operator on Ω ˆ Ω. We set

(25) RL : p ÞÑ
„
ϕ ÞÑ

ż

ΩˆΩ

∇ppx, ξq∇ϕpx, ξqdpx, ξq

.

The quadratic part is

RNL : p ÞÑ
„
ϕ ÞÑ

ż

ΩˆΩ

ż

Γ

Bp
Bνζ px, ζq Bp

Bνζ pζ, ξqdΓζ ϕpx, ξqdpx, ξq

.

Finally, the right-hand side can be written as

Q : q ÞÑ
„
ϕ ÞÑ

ż

ΩˆΩ

qpx, ξqϕpx, ξqdpx, ξq

.

With these operators at hand, we can write the Riccati-IDE as

RLppq ´ RNLppq ` Q “ 0.

Applying the Newton’s method to this equation results in

DpRL ´ RNLqrppiqs`ppi`1q ´ ppiq˘ “ ´`
RLpppiqq ´ RNLpppiqq ` Q

˘
,

where D denotes the Fréchet derivative and i the iteration index of the Newton’s
method.

The Fréchet derivative of a linear operator is the operator itself, i.e. we obtain

DRLrgsphq “ RLphq,
while the Fréchet derivative of the non-linear part is given by

DRNLrgsphq “
„
ϕ ÞÑ

ż

ΩˆΩ

ż

Γ

Bg
Bνζ px, ζq Bh

Bνζ pζ, ξq ` Bh
Bνζ px, ζq Bg

Bνζ pζ, ξqdΓζ ϕpx, ξqdpx, ξq

.

Therefore, for Newton’s method in the i-th iteration, we seek the new iterate ppi`1q

such that

(26)
`
RL ´DRNLrppiqs˘pppi`1qq “ ´`

RNLpppiqq ` Q
˘
, i “ 1, 2, . . . .

The discrete version of Newton’s method (26) is the Sylvester type equation of
the form

pEP piq
J BJ ´AJqP pi`1q

J EJ ` EJP
pi`1q
J pBJP

piq
J EJ ´AJq “ EJP

piq
J BJP

piq
J EJ `QJ .

Notice that, in accordance with Theorem 4.1, each iteration of Newton’s method can
be realized within OpN2

JN
d´1
d

J q cost if an optimal preconditioner like the multigrid
method is used. Therefore, the over-all cost are OpNiterN

2
JN

d´1
d

J q, where Niter
denotes the number of iterations used by Newton’s method.
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5. Sparse grid discretization

Sparse grids are a numerical discretization approach, which is especially of in-
terest for high dimensional problems. In this section, we intend to discretize and
evaluate the Riccati-IDE (19) in a sparse grid space. A detailed presentation and
introduction to sparse grids can be found in [1, 7, 12, 14, 36], see also [6, 18, p. 260,
19, p. 280, 20, 21, 22]. This section recalls the main ideas, where the representation
follows [40].

5.1. Discretization by sparse grids. As in Section 4, we consider Hilbert spaces
Z and V with Z b Z Ă V . Suppose we are given a nested sequence of finite
dimensional subspaces Zj of Z, that is

Z0 Ă Z1 Ă Z2 Ă ¨ ¨ ¨ Ă ZJ Ă Z.

We are going to construct a finite dimensional subspace of V , which will be our
ansatz respectively test space later, upon the spaces Zj . In accordance with [7, 14,
21], let us introduce hierarchical difference spaces Wj of dimension Nj “ dimWj

via
Wj :“ Zj a Zj´1,

where we set Z´1 :“ t0u. We shall assume that Nj behaves like an increasing
geometric sequence, which is for example the case if the sequence tZju is constructed
from dyadic subdivisions of a given coarse grid triangulation or tetrahedralization
of the underlying domain.

For the multi-index j “ pj1, j2q, let Wj “ Wj1,j2
denote the tensor product of

two spaces Wj1
and Wj2

Wj :“ Wj1
bWj2

“ `
Zj1

a Zj1´1

˘ b `
Zj2

a Zj2´1

˘
,

where it obviously holds Nj :“ dimWj “ Nj1
Nj2

. With these spaces at hand, we
can write the full tensor product space VJ,J from (17) also as a direct sum of spaces
Wj

(27) VJ,J “ à
0ďj1,j2ďJ

Wj1,j2
“ à

0ď}j}8ďJ

Wj.

The idea of a sparse grid is to consider now only those basis function in the space
VJ,J , which have a large contribution to the representation of an interpolated func-
tion f P V , cf. [7, 14]. We denote the sparse grid function space with pVJ,J and give
the following formal definition

(28) pVJ,J :“ à
0ďj1`j2ďJ

Wj1,j2
“ à

0ď}j}1ďJ

Wj.

From the representation (28) we infer that pVJ,J consists only of hierarchical differ-
ence spaces with j1 ` j2 ď J . This construction leads to the relation

pNJ,J :“ dim pVJ,J “ OpNJ logNJq.
In general, for sparse grids on m-fold tensor product spaces, there holds pNJ,J :“
dim pVJ,J “ OpNJ logNm´1

J q while essentially no approximation power is lost pro-
vided that the function to be approximated exhibits extra smoothness in terms of
bounded mixed derivatives. In other words, the exponential dependency is only in
the logNJ factor, which substantially reduces the dimension of of the sparse grid
space compared to the full grid.
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We proceed analogously to Section 4 and discretize the Riccati kernel in the
sparse grid space pVJ,J . To this end, we assume the space ZJ to be spanned by some
hierarchical basis ΦJ :“ tφiuNJ

i“1, i.e. the spaces Zj are spanned by subsets of ΦJ .
Let us denote by δpjq Ă t1, . . . , NJu the index set of the basis functions which span
the difference space Wj , i.e.

Wj “ span tφi P ΦJ : i P δpjqu .
In what follows, we will include for sake of clearness of representation the level in
the notation, i.e., we will write φj,k instead of φk for k P δpjq.

Furthermore, for Wj “ Wj1
bWj2

we set δpjq :“ δpj1q ˆ δpj2q. Thus, the ansatz
pp for the Riccati kernel reads

pppx, ξq “
ÿ

}j}1ďJ

ÿ

kPδpjq
pj,kϕj,kpx, ξq P pVJ,J ,(29)

where we abbreviated ϕj,k “ φj1,k1
b φj2,k2

P Wj. The vector ppJ,J P R
xNJ,J of

coefficients takes the form
ppJ,J :“ “

pj
‰

}j}1ďJ
,

where pj P RNj are the coefficients vectors corresponding to the spaces Wj, i.e.

pj :“
“
pj,k

‰
kPδpjq .

5.2. Linear part. First, we shall be concerned with the linear part of the Riccati-
IDE (16). It is possible to consider the application of a linear operator L on V to a
function from the sparse grid space pVJ,J in a rather abstract setting. Note that the
spaces Zj do not even need to be nested. The only additional assumption, besides
(28), is of the operator L to be a tensor product operator. This means that L must
be an extension from Z b Z to V of a tensor product of operators S1, S2 acting
on Z, i.e. L|ZbZ “ S1 b S2, see e.g. [19, p. 72] for tensor product operators. This
extension is unique if Z bZ is a dense subspace of V and S1 b S2 is continuous on
ZbZ, see [18, p. 122, 39, p. 48]. Together with the definition (28), the assumption
on L of being a tensor product operator leads to a block tensor structure of the
discretization matrix of L with respect to the space pVJ,J , compare [40]. The block
tensor structure, in turn, can be utlized for fast matrix–vector multiplication.

Provided the operators S1, S2 can be evaluated with linear complexity OpNjq
on the spaces Zj , the product operator L can be applied to an element of pVJ,J
with OpNJ logNJq operations, cf. [40]. The algorithm for the evaluation of the
matrix-vector product in the space pVJ,J is called UniDir, cf. [7, 40]. Algorithms
which employ similar techniques have been developed in [20, 21, 22].

The linear part of the Riccati-IDE (16) is given by the Laplace-operator on ΩˆΩ

∆ : H1
0 pΩ ˆ Ωq Ñ H´1pΩ ˆ Ωq, p ÞÑ

„
ϕ ÞÑ

ż

ΩˆΩ

∇ppx, ξq∇ϕpx, ξqdpx, ξq

.

Here we have
H1

0 pΩq bH1
0 pΩq Ă H1

0 pΩ ˆ Ωq,
and H1

0 pΩq b H1
0 pΩq is dense in H1

0 pΩ ˆ Ωq, cf. [19, p. 103]. This means that we
can write

∆|
H

1
0 pΩqbH

1
0 pΩq “ ∆x b Id` Idb∆ξ : H1

0 pΩq bH1
0 pΩq Ñ H´1pΩ ˆ Ωq,
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with

∆x,∆ξ : H1
0 pΩq Ñ H´1pΩq, v ÞÑ

„
w ÞÑ

ż

Ω

∇v∇w dx


,

and

(30) Id : H1
0 pΩq Ñ H´1pΩq, v ÞÑ

„
w ÞÑ

ż

Ω

vw dx


,

(see also Section 4.2), and ∆ is a sum of tensor product operators, as required by
the UniDir algorithm.

Besides the tensor product structure, we have to ensure that ∆x, ∆ξ, and Id
can be evaluated with linear complexity on the discretization spaces Zj . There
are different examples of appropriate sequences tZju and corresponding bases Φj ,
like e.g. hierachical bases ([7]), wavelets ([10]), multilevel frames ([21, 40]), or poly-
nomials of different degrees ([1, 7]). In this article, we will take Zj spanned by
the hierarchical basis of standard hat functions (cf. [7, 21]). We provide an exact
definition in Section 5.3.

Thus, albeit the discretization of the term (19) with sparse grids leads to a matrix
which is not sparse (cf. [21, 40]), the product

´
{AJ b EJ ` {EJ bAJ

¯
ppJ,J

can be computed with complexity O pNJ logNJq, i.e. linear in the number of degrees
of freedom of the sparse grid.

5.3. Nonlinear part. In general, for the evaluation of the non-linear part (21) of
the Riccati-IDE, we have to consider the evaluation of a non-linear operator

RNL : p ÞÑ
„
ϕ ÞÑ

ż

ΩˆΩ

ż

Γ

Bp
Bνζ px, ζq Bp

Bνζ pζ, ξqdΓζ ϕpx, ξqdpx, ξq

.

We can apply some quadrature rule to calculate the boundary integral, i.e. we
approximate the operator

ppx, ξq ÞÑ
ż

Γ

Bp
Bνζ px, ζq Bp

Bνζ pζ, ξqdΓζ

by

ppx, ξq ÞÑ
Sÿ

s“1

ws

Bp
Bνζ px, ζsq Bp

Bνζ pζs, ξq “:
Sÿ

s“1

rpspxqrpspξq “: rpx, ξq,(31)

where r P H1
0 pΩq bH1

0 pΩq is a finite sum of tensor products. Note that, e.g. for the
discretization of ppx, ξq by hat functions, the integral can be evaluated exactly by
an appropriate quadrature rule. However, the discrete output associated with the
function r lives on the full tensor product space.

Let us consider the evaluation of (31) for the ansatz (29)
Bpp
Bνζ px, ζsq “ B

Bνζ
ÿ

}j}1ďJ

ÿ

kPδpjq
pj,kϕj,kpx, ζsq(32)

“
ÿ

j1ďJ

ÿ

k1Pδpj1q
φj1,k1

pxq
ÿ

j2ďJ´j1

ÿ

k2Pδpj2q
pj,k

Bφj2,k2

Bνζ pζsq.
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We set

rpj1,k1
pζsq :“

ÿ

j2ďJ´j1

ÿ

k2Pδpj2q
pj,k

Bφj2,k2

Bνζ pζsq, j1 “ 1, . . . , J, k1 P δpj1q.

and
rpj1pζsq :“ “

rpj1,k1
pζsq‰

k1Pδpj1q P RNj1 .

The expressions for rpj1,k1
can be calculated by a point evaluation of the derivatives

of the ansatz functions. Due to the hierarchical sorting of the basis, this operation
is of the complexity O pJ ´ j1q. The overall complexity for the evaluation of (32)
is therefore

ÿ

j1ďJ

#δpj1q ¨ pJ ´ j1q À
ÿ

j1ďJ

2j1dJ “ O pNJ logNJq

and, hence, OpSNJ logNJq for the complete quadrature of the boundary integral
(31).

In the next step, we would compute the linear combination
Sÿ

s“1

rpspxqrpspξq,

where

rpspxq “
ÿ

j1ďJ

ÿ

k1Pδpj1q
rpj1,k1

φj1,k1
pxq,

rpspξq “
ÿ

j2ďJ

ÿ

k2Pδpj2q
rpj2,k2

φj2,k2
pξq,

are full grid functions on Ω. The evaluation of the tensor products

rpspxqrpspξq, s “ 1, . . . , S,

is of complexity OpN2
Jq each. However, we can first apply the operator Idb Id with

the test space is pVJ,J and the ansatz space VJ,J . In this case, utilizing the tensor
product structure

pIdb Idq rpspxqrpspξq “ `
Id rpspxq˘ b `

Id rpspξq˘,
we need OpNJ logNJq operations for the evaluation. This means that we obtain
the overall complexity of O pSNJ logNJq for the evaluation of the nonlinear part
RNL of the Riccati equation with sparse grids ansatz. In view of S „ N

d´1
d

J , since
we integrate only over the boundary Γ of Ω, we end up with the computational
complexity O

`
NJN

d´1
d

J logNJ

˘
for evaluating the Riccati-IDE. This means that we

save essentially one order in NJ in both, memory requirement and computation
time, compared to the traditional finite element discretization from the previous
section:

Theorem 5.1. The computational cost of evaluating the Riccati-IDE discretized
by the sparse grid method are of the order OpNJN

d´1
d

J logNJq while the memory
requirement is of the order OpNJ logNJq.
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Remark 5.2. 1. The realization of Newton’s method based on the above algorithms
is straightforward, compare Section 4.4. Especially, the over-all cost for computing
the optimal kernel function pp are OpNiterNJN

d´1
d

J logNq, where Niter denotes the
number of iterations used by Newton’s method.

2. The bottle-neck of the presented sparse grid discretization is the evaluation
of the non-linear term RNL, which does not scale linearly. A much more involved
algorithm is able to evaluate RNL in complexity O

`
NJN

d´1
2d

J

˘
. This is still not of

linear complexity but is essentially the square root of the cost the finite element
method has.

3. The discretization of the Riccati-IDE has been performed in an exact way,
meaning that we compute the exact Galerkin system. Instead, one could also eval-
uate RNL in an approximate way, reducing the over-all complexity further. This
would introduce a consistency error which, however, would not matter if it is of the
same order than the discretization error.

6. Numerical results

We shall present numerical results of the sparse grid discretization of the Riccati-
IDE (16). To this end, we assume that Ω “ p0, 1q Ă R is one-dimensional. Hence,
Ω ˆ Ω “ p0, 1q2 is the unit square.

6.1. Discretization space. The sparse grid spaces pVJ,J on p0, 1q2 are constructed
by piecewise linear hat functions (see e.g. [7]). Given a multi-index j “ pj1, j2q, we
write

hj “ phj1 , hj2q “ p2j1 , 2j2q
for the tuple of mesh parameters, which represents the spatial resolution in every
dimension. We define the following points

xj,k “ pxj1,k1
, xj2,k2

q, xjt,kt
“ kt ¨ hjt , t “ 1, 2,

and consider the mesh, i.e., a collection of spatial points, pΩJ,J Ă Ω

pΩJ,J :“
!
xj,k P R2 : }j}1 ď J, k P δpjq

)
.

The multi-index j is also referred to as level and k defines the position of the point
xj,k.

Next, we introduce a set of basis functions defined on Ω which span the discrete
spaces Zj . Let us start with the standard linear hat function

φpxq “ maxt1 ´ |x|, 0u, x P R.

For level j and index k, we define by translation and dilatetation

φj,kpxq :“ φ

ˆ
x´ k ¨ hj

hj

˙
“ φp2jx´ kq.

The basis functions on Ω ˆ Ω are the piecewise bilinear hat functions

φj,kpxq :“ φj1,k1
px1qφj2,k2

px2q,
where x “ px1, x2q P Ω ˆ Ω.
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j “ 1

j “ 2

j “ 3

Figure 1. Piecewise linear hierarchical basis for levels j “ 1, 2, 3
(solid) and nodal point basis (dashed).

Due to the homogeneous boundary conditions of the Riccati-IDE (16) for the
Dirichlet boundary control case, we omit functions which are not zero in BΩ “ t0, 1u
and consider one-dimensional discrete space

Zj :“ span
 
φj,k : k “ 1, . . . , 2j

(
.

The spaces Wj , Wj1,j2
, pVJ,J are constructed as in Section 5. Figure 1 shows the

one-dimensional linear hat functions corresponding to the hierarchical difference
spaces W1,W2 and W3 as well as a nodal point basis of level 3.

6.2. About the quadratic term of the Riccati-IDE. The evaluation of RNL

simplifies considerably for a one-dimensional domain Ω “ p0, 1q Ă R. In this case,
we obtain

ż

Γ

B
Bνζ ppx, ζq B

Bνζ ppζ, ξqdΓζ “ B
Bνζ ppx, 0q B

Bνζ pp0, ξq ` B
Bνζ ppx, 1q B

Bνζ pp1, ξq,

where the notation

B
Bνζ ppx, cq :“

ˆ B
Bνζ ppx, ζq

˙ˇ̌
ˇ̌
ζ“c

,
B

Bνζ ppc, ξq :“
ˆ B

Bνζ ppζ, ξq
˙ˇ̌
ˇ̌
ζ“c

is used with c P t0, 1u “ BΩ. In other words, the scalar product on the space of
controls U is reduced to a finite sum. This means that U is a finite dimensional
space, in particular dimU “ 2.
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The operator RNL can be represented in terms of tensor product operators, i.e.,
for an elementary tensor p “ p1 b p2, we have

(33)

RNLppq “
ż

ΩˆΩ

ˆ Bp
Bνζ px, 0q Bp

Bνζ p0, ξq ` Bp
Bνζ px, 1q Bp

Bνζ p1, ξq
˙

dpx, ξq

“
ˆBp2

Bνζ p0q
ż

Ω

p1pxq dx

˙ˆBp1
Bνζ p0q

ż

Ω

p2pξq dξ

˙

`
ˆBp2

Bνζ p1q
ż

Ω

p1pxq dx

˙ˆBp1
Bνζ p1q

ż

Ω

p2pξq dξ

˙
.

We proceed with the discretization of (33) and consider exemplary the term stem-
ming from the evaluation of the normal derivative in the point 0:

Bpp
Bνζ px, 0q “ B

Bνζ
ÿ

}j}1ďJ

ÿ

kPδpjq
pk1,k2

φk1
pxqφk2

p0q

“
ÿ

}j}1ďJ

ÿ

k1Pδpj1q
φk1

pxq
ÿ

k2Pδpj2q
pk1,k2

Bφk2

Bνζ p0q

“
ÿ

j1ďJ

ÿ

k1Pδpj1q
φk1

pxq
j1ÿ

j2“1

ÿ

k2Pδpj2q
pk1,k2

Bφk2

Bνζ p0q.

This computation will give thus regular grid functions:
Bpp
Bνζ px, 0q, Bpp

Bνζ p0, ξq P ZJ .

Likewise, we can obtain
B

Bνζ pppx, 1q, B
Bνζ ppp1, ξq P ZJ

by the evaluation of the normal derivative in the point 1.
In the second step, we have to apply the identity operator to the tensor products

Bpp
Bνζ px, 0q b Bpp

Bνζ p0, ξq, Bpp
Bνζ px, 1q b Bpp

Bνζ p1, ξq,
i.e., we compute

RNLppq “ pIdb Idq
ˆ Bpp

Bνζ px, 0q b Bpp
Bνζ p0, ξq ` Bpp

Bνζ px, 1q b Bpp
Bνζ p1, ξq

˙
,

which can be done with complexity OpNJ logNJq. Hence, the overall complexity is
of OpNJ logNJq, which is consistent to the estimate obtained in Theorem 5.1 for
d “ 1.

6.3. Computation time. First of all, we shall confirm the expected linear com-
plexity of OpNJ logNJq by measuring computation times. To this end, the algo-
rithm for the solution of the Riccati equation is implemented based on a general
sparse grids library SG++, see [36, 38]. We measure the computation times with
boost::timer as an estimation for complexity. In particular, we consider the mean
value over 20, 000 measurements of the computation time for the evaluation of the
quadratic part RNLppq from (33).

Figure 2 shows the binary logarithm of the measured time against the level J
of the sparse grid. Here, we observe a nearly linear growth of computation time
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Figure 2. Measurement of the computation time for the quadrat-
ic term of the Riccati equation.

with increasing level. A more detailed information is presented in Table 1. Therein,
besides the measured time, we calculate the complexity rates

ηiptq “ ld

ˆ
ti
ti´1

˙
“ ld

˜
2ii

2i´1pi´ 1q

¸
“ 1 ` ld

ˆ
i

i´ 1

˙
iÑ8ÝÑ 1,

where ti is the computation time on level i, and ld denotes the binary logarithm.

Table 1. Mean value over 20, 000 measurements of the computa-
tional time and corresponding complexity rates ηiptq “ ldpti{ti´1q
for the quadratic term of the Riccati-IDE.

level timerss ηiptq level timerss ηiptq level timerss ηiptq
2 2.061´5 ‹ 9 1.329´3 1.12 16 5.249´1 1.17
3 2.898´5 0.49 10 2.718´3 1.03 17 1.1120 1.08
4 4.281´5 0.56 11 5.942´3 1.13 18 2.1910 0.98
5 7.557´5 0.82 12 1.172´2 0.98 19 4.6720 1.09
6 1.433´4 0.92 13 3.081´2 1.39 20 1.0131 1.12
7 2.932´4 1.03 14 9.700´2 1.65 ‹ ‹ ‹
8 6.123´4 1.06 15 2.341´1 1.27

6.4. Experiment 1. In the first numerical experiment, we consider the following
function qpx, ξq

qpx, ξq “ p1 ´ |2x´ 1|qp1 ´ |2ξ ´ 1|q,
which is illustrated in Figure 3, besides the approximation of the corresponding
Riccati kernel.
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Figure 3. Right-hand side qpx, ξq (left) and an approximation of
the associated Riccati kernel ppx, ξq (right) for the first numerical
experiment.

The configuration of the numerical experiment is as follows. The tolerance on
the `2-norm of the residuum for the Newton method is set to 10´12. We obtain a
reference solution on a regular grid with 12, 801 ˆ 12, 801 points and measure the
error on a regular grid of 201ˆ201 points. The error is measured with the following
L2 respectively L8 estimators

ep2 :“ }pref ´ psg}2a|Xeval|
, ep8 :“ }pref ´ psg}8.

The theoretical convergence for a sparse grids approximation of functions with
bounded second mixed derivatives, i.e. elements of H2pΩq b H2pΩq, is Op2´2JJq,
whereby J denotes the level of discretization, as described in Section 5. In the first
numerical experiment, we observe nearly this rate.

In Figure 4, logarithms of both error estimators are plotted against the level.
Detailed information on error as well as convergence rates is given in Table 2.
Expected theoretical value for the convergence rates is

ρipeq “ ld

ˆ
ei´1

ei

˙
“ ld

ˆ
22

ˆ
1 ´ 1

i

˙˙
“ 2 ` ld

ˆ
1 ´ 1

i

˙
iÑ8ÝÑ 2,

where ei is the error for level i.

Table 2. Estimations ep2 of the L2pΩq and ep8 of the L8pΩq errors
and the corresponding convergence rates ρipeq “ ldpei´1{eiq for the
first numerical experiment.

level ep2 ρipe2q ep8 ρipe8q level ep2 ρipe2q ep8 ρipe8q
2 9.49´4 ‹ 2.94´3 ‹ 8 2.58´7 1.99 2.25´6 1.59
3 2.49´4 1.93 1.03´3 1.51 9 6.52´8 1.99 7.33´7 1.62
4 6.35´5 1.97 3.21´4 1.68 10 1.65´8 1.98 2.31´7 1.67
5 1.61´5 1.98 9.76´5 1.72 11 4.21´9 1.97 7.06´8 1.71
6 4.05´6 1.99 3.06´5 1.67 12 1.11´9 1.92 2.13´8 1.73
7 1.02´6 1.99 6.77´6 2.18 ‹ ‹ ‹ ‹ ‹
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Figure 4. Estimations ep2 of L2pΩ ˆ Ωq and ep8 of L8pΩ ˆ Ωq
errors for the first numerical experiment.

6.5. Experiment 2. In the second example, the right-hand side qpx, ξq is given by
qpx, ξq “ χ“

1
4 ,

3
4

‰ˆ“
1
4 ,

3
4

‰px, ξq.
Figure 5 shows the function qpx, ξq as well as the approximation of the associated
Riccati kernel.

0
0.5

1 0

0.5

1
0

0.5

1

x1
x2

q(
x 1

,x
2)

0
0.5

1 0

0.5

1

0

5

·10−2

x1
x2

p(
x 1

,x
2)

Figure 5
Right-hand side qpx, ξq (left) and an approximation of the associated Riccati

kernel ppx, ξq (right) for the second numerical experiment.

In this experiment, we use the same setting as in the first one. As the plot in
Figure 6 illustrates, we do not achieve the convergence rate of 2 in this case, which
indicates that the Riccati kernel is not a function with bounded mixed second
derivatives. Again, detailed numbers for errors and associated convergence rates ρ
are presented in Table 3.
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Figure 6. Estimations ep2 of L2pΩ ˆ Ωq and ep8 of L8pΩ ˆ Ωq
errors for the second numerical experiment.

Table 3. Estimations ep2 of the L2pΩq and ep8 of the L8pΩq errors
and the corresponding convergence rates ρipeq “ ldpei´1{eiq for the
second numerical experiment.

level ep2 ρipe2q ep8 ρipe8q level ep2 ρipe2q ep8 ρipe8q
2 1.91´3 ‹ 5.85´3 ‹ 8 3.20´6 1.49 2.43´5 0.99
3 5.06´4 1.92 1.62´3 1.85 9 1.13´6 1.5 1.11´5 1.13
4 1.86´4 1.45 5.76´4 1.49 10 4.00´7 1.5 6.04´6 0.87
5 6.83´5 1.45 2.48´4 1.22 11 1.41´7 1.51 2.70´6 1.16
6 2.50´5 1.45 1.16´4 1.1 12 4.87´8 1.53 1.49´6 0.86
7 8.97´6 1.48 4.85´5 1.26 ‹ ‹ ‹ ‹ ‹

7. Conclusion

In the present article, we considered the numerical solution of the algebraic
Riccati equation by means of sparse grids. To that end, we did not start with the
algebraic Riccati equation but with its continuous counterpart – the Riccati-IDE.
This partial differential equation has then been discretized by the Galerkin method
with sparse grid ansatz spaces. We have shown that both, memory requirements
and computation times, are reduced considerably in comparison with a tensor-
product finite element discretization. Nonetheless, future research has to be focus
on further speeding-up the computational process.
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