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WEAK SOLUTIONS OBTAINED BY THE VORTEX
METHOD FOR THE 2D EULER EQUATIONS ARE
LAGRANGIAN AND CONSERVE THE ENERGY

GENNARO CIAMPA, GIANLUCA CRIPPA, AND STEFANO SPIRITO

ABSTRACT. We discuss the Lagrangian property and the conservation of
the kinetic energy for solutions of the 2D incompressible Euler equations.
Existence of Lagrangian solutions is known when the initial vorticity is
in L with 1 < p < co. Moreover, if p > 3/2 all weak solutions are
conservative. In this work we prove that solutions obtained via the
vortex method are Lagrangian, and that they are conservative if p > 1.

1. INTRODUCTION

The two-dimensional Euler equations

v+ (v-V)v+ Vp=0,
dive =0, (1.1)
v(0, ) = vo.
model the motion of an incompressible inviscid fluid. The unknowns are the
velocity field v : [0, T] x R? — R? and the scalar pressure p : [0,7] x R? — R.
In two dimensions, a very special role is played by the vorticity, which is
defined as
w = curl v = 0y, v2 — Oz, 01. (1.2)
Note that the vorticity is a scalar quantity and that system (1.1) can be
rewritten in terms of w as
Oww +v-Vw =0,
v=Kxw, (1.3)
w(0,-) = wo,

where wg = curlvg and K is defined as
I ov 1 (—x2,1)

1L
K =" = __
@) = 5 E 2 P
The coupling between the velocity and the vorticity given by the formula
v=K=xw

is known as Biot-Savart law and it is an alternative way to express (1.2).
Existence and uniqueness of classical solutions of (1.1) is very well-known

for smooth initial data and was proved first locally in time in [15] and then

globally in time in [26]. Smooth solutions enjoy two very natural properties:
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the first one is that they are Lagrangian, namely they solve the equivalent
formulation of (1.1) given by the following system of O.D.E.

X(t,x) =v(t, X(t,z)),
v(t,z) = (K *w)(t, z),
Wty ) = (X () (1)),
X(0,z) =z,

for t € [0,T] and = € R?. (1.4)

The second property is that smooth solutions conserve the kinetic energy,
namely

lo@lzz = ]l for any t € [0,T). (L5)

When we consider solutions in weaker classes it is not clear whether they
satisfy (1.4) or (1.5). The goal of this paper is to prove these properties
for weak solutions with LP vorticity control constructed by the vortez-blob
approximation. In order to clarify how this result fits in the theory of weak
solutions of the two-dimensional Euler equations we give a brief overview on
the state of the art for this topic.

In their seminal paper [14], DiPerna and Majda prove the existence of
measure-valued solutions of (1.1) under the assumption of vortex-sheet ini-
tial vorticity, that is wg € M N ngé (R?). Precisely, they give the definition
of an approximate solution sequence of the two-dimensional incompress-
ible Euler equations and they show that this kind of approximate solutions
converge to measure-valued solutions. Moreover, they give three different
examples of approximation methods that satisfy their definition:

(ES) Approximation by exact smooth solutions of (1.1);
(VV) Vanishing viscosity from the two-dimensional Navier-Stokes equa-
tions;

(VB) Vortex blob approximation.
For initial vorticities wy € L' N LP(R?) with 1 < p < oo they proved global
existence of weak solutions of (1.1) obtained trough the methods (ES) and
(VV), while for weak solutions constructed by (VB) the same result was
obtained by Beale in [3]. Note that uniqueness of weak solutions in the class
considered in [14] is still an open problem, contrary to the case p = oo in
which uniqueness has been proved by Yudovich [27].

Concerning the Lagrangian property (1.4), in [17] it has been observed that
when wy € LP(R?), with p > 2, any weak solution of the Euler equations in
vorticity form (1.3) is renormalized in the sense of DiPerna and Lions [13]
and admits a representation formula in terms of the flow of the velocity as
n (1.4). Moreover, when wy € LP(R?) with 1 < p < 2, all solutions obtained
as limit of (ES) are Lagrangian as a consequence of the stability theorem in
[13]. The case of weak solutions produced by (ES) with Ll-initial vorticity
is considered in [5].

Regarding the vanishing viscosity limit, in [11] it has been proved that solu-
tions w € L*°((0,T); LP(R?)) obtained via (VV) are Lagrangian if 1 < p < 2,
while the case p = 1 is considered in [10]. Note that the Lagrangian property



ON WEAK SOLUTIONS OBTAINED VIA THE VORTEX METHOD 3

is non-trivial even at the linear level for the transport equation

6tu +b-Vu= 0,
u(0, ) = up.

In fact, in [21, 22, 20] the authors show via convex-integration techniques
that there exist solutions of the linear transport equation which are not La-
grangian, if the integrability of Vb and of u are much below the threshold
provided by the DiPerna-Lions’ theory [13]. In particular, for the 2D Eu-
ler equations we are in the situation described in [20] when we assume low
integrability conditions on the initial vorticity, namely wg € LP(R?) with
1<p<4/3.

Regarding solutions that preserve the kinetic energy, in [7] the authors con-
sider (1.1) on the two-dimensional flat torus T? and prove that all weak
solutions v € Cuear ([0, T]; L2(T?)) satisfy the energy conservation (1.5) if
the vorticity w € L>((0,T); LP(T?)) with p > 3/2. The proof is based on
a mollification argument and the exponent p = 3/2 is required in order to
have weak continuity of a commutator term in the energy balance. The
authors also give an example of the sharpness of the exponent p = 3/2 in
their argument. Moreover, they show that if w € L°°((0,T); LP(T?)), with
1 < p < 3/2, solutions constructed by (ES) and (VV) conserve the energy.

In this paper we consider weak solutions obtained by the vortex-blob ap-
proximation (VB). We refer to Section 3 for the precise description of the
vortex-blob method, which is the prototype of several important numerical
schemes and is based on the idea of approximating the vorticity with a finite
number of cores which evolve according to the velocity of the fluid.

We introduce the following definition.

Definition 1.1. Let v € L>((0,7); L} .(R?)) and vy € L (R?). We say
that v is a VB-solution of the 2D incompressible Euler equations with initial

datum vy if

e v is a weak solution of (1.1)
e there exists an approximate sequence v° constructed with the vortex-
blob method such that, as € — 0 along a subsequence,

v® N v in LOO((OvT)a L%OC(R2))7
UE(O, ) — Vo in LlQOC(R2)'

Our main results concern the Lagrangian property and the conservation of
the kinetic energy of VB-solutions. These results are contained respectively
in Theorem 4.3 and Theorem 5.6.

In order to prove that VB-solutions are Lagrangian we will not rely on
a duality argument, as done in [11]. We will prove a new, to the best
of our knowledge, estimate on the LP distance between the approximate
vorticity obtained by vortex-blob approximation and the solution of a linear
transport equation where the advecting term is the approximate velocity
field obtained by the vortex-blob approximation. Moreover, we will prove the
equi-integrability of the sequence of approximate vorticity constructed via
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(VB) and exploit the stability theorems for Lagrangian solutions of the linear
transport equation contained in [6, 9]. In particular, the equi-integrability of
the approximate vorticity will also allow us to improve the existence result
of Beale in [3] to the case of initial vorticity wy € L' N ngi (R2).

In the proof of the conservation of the energy (Theorem 5.6), we will use a
modified version of the Serfati identity [1, 23] in order to prove the global
convergence in L? of the approximate velocity together with a precise blow-
up estimate for the velocity. We will also prove a local balance of the energy
for VB-solutions when wy € LP(R?) with p > 6/5.

It is worth to notice that, even if the vortex-blob is a numerical scheme that
does not come from physical considerations, it provides solutions that are
Lagrangian and conservative, two important physical properties. We think
that it is an interesting problem to investigate whether in general there is
any implication between Lagrangian and conservative solutions.

Organization of the paper. The paper is divided as follows. In Sec-
tion 2 we fix the notations and we recall some results about the linear
transport equation. In Section 3 we describe the vortex-blob approxima-
tion and we prove some preliminary estimates from [3]; then we prove the
equi-integrability of the approximate vorticity and the extension of Beale’s
result to the case of wy € L' N H_'(R?). In Section 4 we prove that VB-

loc
solutions are Lagrangian and in Section 5 that they are conservative.

2. NOTATIONS AND PRELIMINARIES

This section is divided in two subsections: in the first one we fix the
notations used in the sequel, while in the second one we recall the defini-
tions of distributional, Lagrangian and renormalized solutions to the trans-
port equation. We focus our attention on the case when the vector field is
divergence-free, but all definitions and results can be extended to the case
of bounded divergence with suitable changes.

2.1. Notations. We will denote by LP(R™) the standard Lebesgue spaces
and with || - [[z» their norm. We will use the notation || - [|1»(4) When the
norm is computed on a subset A C R™. Moreover, LZ(R") denotes the
space of LP functions defined on R" with compact support. The Sobolev
space of LP functions with distributional derivatives of first order in LP
is denoted by W'P(R™). The spaces Lf (R™),W,"P(R") denote the space
of functions which are locally in LP(R"), WL1P(R") respectively. We will
denote by H'(R") the space W12(R") and by H '(R") its dual space.
Moreover, we will say that a function w is in H_(R") if pu € H~'(R")
for every function p € C°(R"™). We also denote by M(R") the space of
finite Radon measures on R"™. We denote by LP((0,7"); L1(R™)) the space of
all measurable functions u defined on [0,7] x R™ such that

1
T »
lull e (o) Loy = </0 Iu(t,')ll’ith> < 0,
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forall 1 <p < oo, and

1wl oo ((0,7); Lamny) = esssup |[u(t, -)||La < oo,
te[0,7
and analogously for the spaces LP((0,7); W14(R")). We denote by Bg the
ball of radius R > 0 and center the origin in R™, by .£" the standard

Lebesgue measure in R”, and for f : R™ — R"™ we consider the push-forward
measure of Z" defined by

fal(A) = LM(F1(A), for all Borel sets A C R".

Finally, it is useful to denote with x the following variant of the convolution

2
VxwW = Z v; * W; if v, w are vector fields in R?,
i=1
2
AxB = Z Ajj * By; it A, B are matrix-valued functions in R2.
i,j=1

With the notations above it is easy to check that if f : R? — R is a scalar
function and v : R? — R2 is a vector field, then

fxcurlv = V4 fxo,

VA fxdiviv @ v) = VVLf % (v @ ).

2.2. Linear Transport Equation. Consider the Cauchy problem for the
linear transport equation

{&u—kb-VuzO, 2.1)

u(0, ) = uy,

where the vector field b : [0, 7] xR™ — R™ and the initial datum ug : R — R
are given. The Cauchy-Lipschitz theory gives existence and uniqueness of
smooth solutions of (2.1), provided the vector field is Lipschitz in space uni-
formly in time. When the vector field is not Lipschitz, classical solutions do
not exist in general and weaker definitions of solutions must be considered.
We start with the definition of distributional solutions.

Definition 2.1. Let b € L{ _((0,T); LY (R")) be a divergence-free vec-
tor field and uwy € LI(R™), where 1/p + 1/qg < 1. The function u €
L*>((0,T); L1(R™)) is a distributional solution of (2.1) if for any ¢ € CZ°([0,T)x

R™) the following equality holds:

T
/ / u(Opp +b-Vo)dxdt + / upp),_, dz = 0.
0 n Rn

The existence of global weak solutions in the sense of the previous defini-
tion is proved in [13]. We note that the definition of distributional solution
requires that the product ub € Llloc: this is in general not true in several
applications, as in the case of the 2D Euler equations. For this reason in
[13] the authors introduce also the concept of renormalized solutions.
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Definition 2.2. Let b € LL _((0,T); LL .(R™)) be a divergence-free vector
field and ug € LI(R"™) for some g > 1. A function u € L*°((0,T); L1(R™)) is
called renormalized solution of (2.1) if for any 8 € C*(R)NL*(R), vanishing

in a neighbourhood of 0, the equality

T
/ A Bu)(Op+b- Vo) d:L'dt—i-/]R B(uo)@|,_, dr =0
0 n n
holds for any ¢ € C2°([0,T") x R™).

It is worth noticing that, when uw and b satisfy the integrability hypothesis
in Definition 2.1, renormalized solutions are distributional solutions.
Finally we give the definition of Lagrangian solutions, which encodes at a
weak level the fact that the solution of (2.1) admits a representation formula
in terms of the flow of the vector field b. We start by giving the definition
of regular Lagrangian flow introduced in [2].

Definition 2.3. Let b € L'((0,7); L] (R")) be a divergence-free vector
field. We say that X : (0,7) x R® — R" is a regular Lagrangian flow
associated to b if
(1) for a.e. z € R™ the map t — X(¢,x) is an absolutely continuous
integral solution of the ordinary differential equation

LX(t,2) = b(t, X(t,2)), (2.2)
X(0,z) ==z, .
(2) the push-forward measure X (t,-)x. 2"
X(t,)p " =" (2.3)

Now we are ready to give the definition of Lagrangian solutions of the
transport equation (2.1).

Definition 2.4. Let ug € LI(R™) be given. A function u is called a La-
grangian solution of (2.1) if u € L>°((0,T); L1(R™)) and there exists an a.e.
invertible regular Lagrangian flow X associated to b such that

u(t, ) = ug(X ' (t,")(x))

for all t € (0,7) and a.e. z € R", where X 1(¢,-) denotes the inverse map
in space at a fixed time t.

Next, we recall a stability result for Lagrangian solutions of (2.1). We
start by stating the hypothesis on the vector field b which will be often used
in the following:

(R1) The vector field b can be decomposed as
[b(t, )|
=bi(t,x) + bo(t, ),
Tt o]~ o)+ balt)

with by € L1((0,T); L*(R™)) and by € L*((0,7T); L°°(R™)).
(R2a) The vector field b satisfies
be LY((0,T); W-P(R™)) for some p > 1.

loc
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(R2b) For every i, =1,...,n we have
9;b' = Stg  in D'((0,T) x R™),
where S; are singular integral operators of fundamental type in R™
(acting as operators in R™ at fixed time) and the function g €
LY((0,T); L*(R™)). See [6] for the main definitions.
(R3) The vector field b satisfies
be LP ((0,T) x R™) for some p > 1.

loc

The stability theorem for Lagrangian solutions of the transport equation
(2.1) that we will use in the sequel is the following, see [9, 6] for the proof.

Theorem 2.5. Let b.,b be divergence-free vector fields satisfying assump-
tions (R1), (R2a) or (R2b), (R3). Assume thatb. — b in L*((0,T); L. (R™))

and that for some decomposition lbﬁ(-%l)' =b.1(t,x)+be2(t, ) as in assump-
tion (R1) we have that
102,11l L1 (0,7);1 )y + 1be,2ll L1 (0,120 (R7)) < C-

Consider a Lagrangian solution u® of (2.1) with coefficient b. and initial
datum uy € LY(R™), as well as u associated to b and ug € LI(R™). If
uy — ug in LYR™) with 1 < g < oo, then u® — w in C([0,T]; LY(R™)).

We conclude this subsection with a technical lemma which gives an esti-
mate on the measure of the superlevels of a regular Lagrangian flow X; the
proof can be found in [9]. Define the set G as

Gy :={x e R": |X(t,x)| < X for almost every t € [0,T]}.

Lemma 2.6. Let b : (0,7) x R® — R"™ be a vector field which admits a
decomposition as in (R1) and let X be a regular Lagrangian flow relative to
b with compression constant L. Then for every r, A > 0 it holds

ZL"(Br\ Gy) < g(r, A),
where the function g depends on ||b1||py (0,101 ®7)), 102/l L1 (0,115 (R )) and
L, and satisfies g(r,\) — 0 for fized r and A — oo.
3. THE VORTEX BLOB METHOD

This section is devoted to the description of the vortex blob approximation
and some of its properties.

3.1. Description of the method. Consider an initial vorticity wo € L¥(R?)
with 1 < p < oo. Let € € (0,1), we consider two small parameters in (0, 1),
which later will be chosen as functions of e, denoted by d(g) and h(e).
First of all, we consider the lattice

Ap ={a; €Z XZ: a; = h(i1,iz), where iy,iy € Z},

and define R; the square with sides of lenght A parallel to the coordinate
axis and centered at «; € Ap. Let js be a standard mollifier and define

wg =W * jg(a). (31)
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For any 6 € (0,1) the support of w is contained in a fixed compact set in
R, then it can be tiled by a finite number N(g) of squares R;. Define the
quantities

F;?_/ i) dz, fori=1,..,N(2).
R;

Let . be another mollifier, we define the approximate vorticity to be

N(e)
W (tw) =) Tipe(x — X7 (1), (3.2)
=1

where {Xf(t)}fvz(f) is a solution of the O.D.E. system

XE(4) = oS (t. X¢
F() = o (X (1), 3.3
Xzs (O) = Oy,
with v® defined as
N(e)
V(o) = K xw(tz) = > TiK.(x — X£(1)), (3.4)
=1

where K. = K * ¢.. Note that, since § and h are e-dependent, we only use
the superscript e. The ordinary differential equations (3.3) are known as the
vortex-blob approrimation.

It is not difficult to show the bound

sup ([[o° (£, )|z + [V 0 (2, )l ) <
t€[0,7) €

92, (3.5)

see [14]. From (3.5) it follows that, for every fixed ¢ > 0, there exists
a unique smooth solution {X7 (t)}fi(f ) of the O.D.E. system (3.3), which
implies that v® and w® are well-defined smooth functions. Note that v* and
w® are not exact solutions of the Euler equations because of the presence
of an error term, due to the fact that each blob is rigidly translated by the

flow. Precisely, the approximate vorticity w® satisfies the following equation

Ow® +0v° - Vw© = E., (3.6)
where by a direct computation the error term is given by
N(e)
Ee(t,x) =) [o°(t,x) — v (8, X7 ()] - Vipe( — X7 (8))T5. (3.7)
i=1

Concerning the approximate velocity v¢, consider the quantity
w® = O + (v° - V).
Since w* satisfies the system
curlw® = E,,
{div w® = divdiv (v¢ ® v°),
we derive that there exists a function p® such that
—Ap® = divdiv (v° ® v°),

and
w® = -Vp° + K * E..
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Then, the velocity given by the vortex-blob approximation verifies the fol-
lowing equations

(3.9)

dive® = 0.

{8,51)5 + (v°-V)v* +Vp* =K x E,,

Since v° is divergence-free, E. can be rewritten as F.(t,z) = div F.(t,x)
where
N(e)
Fe(t,z) =) [0°(t, @) — o (t, X7 ()] pel — X7 ()T (3.10)
i=1
3.2. A priori estimates. In this subsection we give the proof of some a
priori estimates on w®, v°, and the error term F, taken from [3]. First of
all, we introduce the following auxiliary problem. Let @® be the solution of

the linear transport equation with vector field v, that is
Oy " . Vo =0,
fw T v (3.11)
w(0,-) = w§.

Since v satisfies (3.5), there exists a unique smooth solution w®, which is
given by the formula

& (tx) = Wi (X) 7 () (@), (3.12)

where X¢ is the flow of v®, that is,

Xe(t,x) = v°(t, X°(t,2)),
{XE(O,LU) =z. 19

Moreover, since divv® = 0, we have
1% (¢, )| ze = llesllze < llwollze-

We will use @® in order to prove uniform LP-bounds on w®. Before doing
that, note that w® can be seen as a discretization of ¢, * @®, since a change
of variables gives

pr a5 (ta) = [ pula =2 (t2)dz = [ pulo = XE()ilo) du,
(3.14)
compare with (3.2). We now give a lemma which is, loosely speaking, an
estimate on the LP norms of the error we commit substituting the integral in
(3.14) with the sum in (3.2). The following estimate is new for 1 < p < oo,
while the case p = oo has been proved in [3].

Lemma 3.1. Let wy € L'(R?) and let h = h(e) be chosen as

4
€
h(e) = , 3.15
€)= oo Gl ) 319
where C1 > 0 is a positive constant. Then, the estimate
2
sup [|w® — @z % @°||p < Ce'Tr (3.16)

0<t<T

holds for all 1 < p < oo, where C > 0 is a positive constant which does not
depend on €.
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Proof. We start by proving the inequality (3.16) in the case p = 1. By using
the definitions of w® and w® we have that

. |we(t, ) — pe x @ (t,x)| dz
R

= /R2 Z [z — X7 (1) — /R2 Pe(x — 2)@°(t, 2)dz| dz

‘Aggléfaww%“‘xﬂm‘A;%@—@@WXﬁ*wowMz

—/RQ ;Liwg(y)¢5($—Xf(t))dy—Az 0e (@ — X (t,y))wi(y) dy| da

dx

= L[ ], it outo = X700 — el X0

;@g%Jﬂmwm—ﬁ@h%@—ﬁ@mmwx (317)

For (x) we have the following estimate
pe(z — X5 () — pe(x — X°(,y))

1
:AV%w—me+%me—ﬁ@D®M%w%XW»

s [Py (e = X)) + (1= ) — Xo (1))
A

3

So, for any y € R; we have that

| XE(t,y) — X£ ()] < CLip(X®(t,)) b,
where Lip(X®(t,-)) is the Lipschitz constant of the flow X¢(¢,-), which is
bounded by

Lip(X?(t,)) < exp (C= 2wl 1 T) (3.18)

as a consequence of (3.5). Then, rescaling in the = variable in (3.17) we
have

l® (2, ) = e x @°(t, )1 < he™" Lip(XE(2, ) IVl L1 lwoll 1

Choosing the function h as in (3.15) we get (3.16) for p = 1.

For p = co we can argue in a similar way; by the same computations as in
(3.17) we have that

‘wa(ta .TC) — Pe * (Da(tv .7))|
N(e)
SE:AJ%@N%@—Xﬂm—wwrnW@wDM%
=1 %)

and we can estimate (%) as before, so that

o (£, ) = e % @ (¢, )| Loe < he™® Lin(XE (2, ) [Vepll Lo [lwoll 1

dx

)wa%w—ﬁw»
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and choosing h as in (3.15) we get the result.
Finally, by interpolating we have

1

1 1-1 2
lw® — e %@l Lp < Jw® — e * @171 [lwf — e % @F|| o < Ce'T,

and this concludes the proof. ]

We are now in the position to prove the uniform LP bound on w®.
Lemma 3.2. Let wy € LE2(R?). Then, the approvimate vorticities w® defined
in (3.2) satisfy the following

1
sup lf(t ) < C <||w0\|Lp T ol zl)
0<t<T

for1 <p< oo, and

sup [[w"(t,-)|| e < Cllwol Loe-
0<t<T

Proof. First of all, the case p = 1 follows directly from the definition of w®

since
N(e)

o (8 Mo < IF?I/%@ — X (1)) dz < lwoll 1

Let consider now 1 < p < on and let A(t) and B(t) be the sets

At) = {o € R i (t,0)] > 1},

B(t) := {z € R? : [w(t,x)| < 1}.
By Chebishev inequality

L2(A(t)) < Cllwollrs,
uniformly in time. Let w® the solution of (3.11), we have that
lw® (& e awy) < lwe * @@ )lzeaw) + 105 @) — e+ @@ )l aq)
< Cllwollr +-L2(A®) 7 o - e % & 1=

1
<c (mnm T eflwol ;;1) .

On the other hand, for the set B(t) we have

/ Wt )P de < / W (t,2)] dz < Cllwollr,
B R2

since |w®(t,z)|P < |w(t,z)| on B(t). Combining the previous estimates,
since € < 1, taking the supremum in time we have the result.
Finally, the case p = oo follows from the triangle inequality and (3.16). O

We give now a convergence result for the error term F. (see [3] for the
proof).

Lemma 3.3. Let wg € LE(R?) with p > 1, then the quantity F. defined in
(3.10) satisfies

sup ||F:(t,")|[[zr = 0, ase—0. (3.19)
te[0,7T
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In particular, for 1 < p < 2 we have the following bound
_5 1
1F=(t, )1 < C8Pe5]|woll 1, (3.20)

where = 2 (11—) - %) and §(e) = €7 with 0 < o < 1/4. Moreover, choosing

h(e) = C1e%exp (—005*2) where C1,Cy are positive constants, we have that
F_ satisfies the following additional bound

g1
1F=(t, )l 2 < C6Pes|woll 1,
which goes to 0 choosing 0 as above and 0 < o < 1/7.

It is worth to note that the dependence on p of the bound in (3.20) is due
to the fact that, in order to obtain the convergence in (3.19), for 1 < p < 2
we need to regularize the initial vorticity, while is not needed for p > 2.
The uniform bound of Lemma 3.2 together with Lemma 3.3 are the core
of the proof of the theorem proved by Beale in [3], where he showed the
existence of VB-solutions when the initial vorticity is in L?, with p > 1, and
compactly supported. In detail:

Theorem 3.4. Let vy € leoc(RQ) and assume that the vorticity wy =
curlvg € LE(R?) for some p > 1. Let w® given by the vortez-blob approz-
imation with parameters chosen so that 6(¢) = €% for some 0 < o < 1/4,
and h(e) < Ce*exp(—Coe™2) for some constants Co,C. Then up to sub-
sequences, v¢ converges strongly in L*>((0,T); L? (R?)) to a classical weak

loc
solution of the Euler equations with initial velocity vg.

3.3. The L' case. In this subsection we consider the case of initial vor-
ticities wg € LL(R?). In particular, we prove the equi-integrability of the
sequence of approximate vorticities {w®} given by the vortex-blob method
and this will be crucial in the extension of Beale’s result to the case p = 1.
Moreover, the fact that w® is equi-integrable will also be fundamental for
the applications of the linear theory discussed in Section 2 to the 2D Euler
equations. We start by showing the equi-integrability of w® in the following
(up to our knowledge original) lemma.

Lemma 3.5. Let wy € LL(R") and w§ defined as (3.1). Then the approxi-
mate vorticities w® as in (3.2) are equi-integrable in L'((0,T) x R?).

Proof. We divide the proof in several steps.
Step 1 The sequence {@°}. is equi-integrable.

We start by proving the equi-integrability of the sequence w® on small sets;
we have that

[ anae = [ e = [ i)l

Since v is divergence-free we have that .Z?(X¢°(t,A)) = £%(A), so the
measure of the set X¢(¢, A) is indipendent from ¢ and € and then the equi-
integrability of wf gives the result.
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We move now to the proof of the equi-integrability at infinity; we have that

_e B WE el . L
/RQ\BJ‘" (’fv@‘dﬂf—/ Wi ((X°) " (¢, 2))| d

R2\B,

/ Wi ()] dy,
{yeBRr:| X (t,y)|>r}

where supp wi € Br. By Lemma 2.6, the measure of the set
{y € Br: |X*(t,y)| > r}

can be made arbitrary small for r big enough, indipendently from ¢ and ¢.
Then by the equi-integrability of wf the claim of the first step follows.

Step 2 The sequence {y. * @}, is equi-integrable.

We start by proving the equi-integrability of ¢. * @® on small sets. Since
the initial datum w{ has compact support (uniformly in €) and converges
strongly, therefore weakly, to wg in L', De la Vallé-Poussin’s theorem pro-
vides the existence of a function G positive, increasing and superlinear such
that
sup [ G(lwy(x)])dz < oo.

€ R2

Then, for ¢, * ©° we have that

/]R? G(|pe * @ |(t,2)) dz = /R?G <\ /%(x_y)wg(t,y) dy ‘> dr (3.21)

< [ [eto-neenia) G2

</,
< [ [eo-voleephayas G2

- [ G ) [ oo —paray

= [, 6ta ey (321)
Note that in (3.22) we have taken the modulus inside the integral and used
that G is increasing, while in (3.23) we used Jensen’s inequality since G
is convex and @.(x — -)dy is a probability measure. Multiplying (3.12) by
G'(|@®|), integrating in space and using the divergence-free condition of v%,
from the equi-integrability of wyg it follows that

sup sup G(|@w®(t,x)])dz <sup | G(Jwg(z)|) der < co. (3.25)
€ te[0,7] JR2 € R2

Then, taking the supremum in time and in € in (3.21) and estimating (3.24)
with (3.25) shows the equi-integrability on small sets. The equi-integrability
at infinity is an immediate consequence of that of @®.

Step 3 The sequence {w®}. is equi-integrable.
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We start by proving equi-integrability on small sets. We can compute
[ alar < [ o0 - e st @ oldn+ [ lor ool
A A A

< W = @e * @F|| o L2 (A) + / |pe * @°(t, x)| dz.
A

Fix > 0. The first term can be estimate using ||w® — ¢; * @ ||oc < Ce < C

and choosing v < % so that for £2(A) <y

eo® = e 6l o022(4) < O < 5.

For the second term we use the equi-integrability of ¢, *w®. There exists vo

such that
/ lpe x @°|dx < Q,
A 2

if £2(A) < 2. So taking v = min(7y,2), assuming .#?(A) < v and then
taking the supremum in time, the equi-integrability on small sets is proven.
We prove now the equi-integrability at infinity. Fix > 0 and decompose

/ |we(t,x)| do < / |w® (¢, x) —gpg*wg(t,:c)|d:c+/ | * w®(t,z)|dx.
B B B,
Since @*w® is equi-integrable there exists Ry > 0 such that for every R > R;

| lecrattalan <,

By

c c
R R

and by (3.16), if we consider ¢ < & := {/55 we obtain

/ |we(t, )| dz < Ce® + 1 <n.
B 2
For € > & we do not use estimate (3.16) but we focus our attention on the
flows X?. From the definition of w® we know

| weolae < [ ee-Ximan (320
By i By
For the flows X7 (¢) we have that for a given finite time T’
T
| X5 ()] < el +/ (7, X7 (7))[ d. (3.27)
0
Since a; € supp wj which is compact, we have |o;| < R. Decompose the

Biot-Savart Kernel as K = Kxp, + Kxp; := K1 + Ky where K; € L' and
Ky € L*°. Using Young inequality for convolutions we get

T
/0 (7, X5 (M) d7 < T (|| x| 1 [[w" [l zee + [| K2l o< [lwol 1)

and ) )
Wi (t,2) < 5 D205 < Sllwollza.
i
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Then by (3.27) we have that
X200 < Bt T (1l s + ol ) ol
Defining Ry > 0 as
R = Rt T (1l + ol ) el +2
we have that for |z| > Ry
o= X701 2 R~ R (1Kl 5 + [Fallim ) fonllzs > 1

so that in (3.26) we integrate out of the support of ¢, and the integral
therefore vanishes. Setting R = max(R;, R2) and taking the supremum in
and ¢t we have the result since £ depends only on 7. g

If we assume in addition that the initial vorticity wo € Hj,+(R?), then
the initial velocity vg is locally square integrable; this is the content of the
following proposition.

Proposition 3.6. Let wg € LN H ! (R?) and v° defined as in (3.4). Then
v® € L®((0,T); L2 (R?)) and

loc
sup [[v°(¢,-)||r2(R) < C(R).
te[0,7)

Proof. First of all, we decompose v*(t,z) = v°(t,z) + v(x) where v is a
smooth steady solution of the 2D Euler equations and o° (¢, x) is at each time
in L? with zero total circulation. To do this, consider the same mollifier ¢
as in the definition of w® in (3.2) and set

r=— /R o)z, @(x) =Tp(a),

() =Kx*xw, °=v"-0, & =w®—0n.
Then, ©° solves the following equation
00" 4+ (v° - V)0 4+ (0° - V) o+ Vp© = K = (div F7) . (3.28)
Multiplying (3.28) by ©¢ and integrating over R? we have
1d
2 dt
Since F + (K * div F') is a bounded operator in L? we get
[t e < OO, forall 0< < T,

195 (8, MZ2 < IV0llzoe 15 (2, ) |72 + 1 (div F2) [ 2 110° (2, )l 2. (3.29)

In order to conclude, it is enough to prove that ||0§||z2 is finite. Note that

N(e)
(@) = 3 TSK. (o — i) — TK  (a).
i=1
The previous sum is a discretization of the integral

|, Be@ —awpla) dar= (Kox pe) x (s + wo),
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which is by hypothesis bounded in L?. Since in the definition of ¥y the
kernel ¢ is chosen to be the same as in (3.3), the discretization error can be
pointwise bounded by hljwo| z1||VK:||L~ = Che™2, which is small by our
choice of h(e). It follows that v, and therefore ¥ is uniformly bounded in
L%(Bag) where R > 0 is such that suppw§ C Bg. For |z| > 2R, K. is just
K and then

()
(@) =) I5 (K(z — i) — K()),
=1

and it is easy to see that it is bounded by

N(e)
> Clal 05| < flwoll 2] ~2,

=1
thus it is bounded in L?(BSp). O

The equi-integrability of the vortex-blob vorticity w® guarantees the phe-
nomenon of concentration-cancellations, see [25]. This fact together with
the consistency of the method implies the existence of VB-solutions in the
case of L} initial vorticity. In particular with Lemma 3.5 we improve the
result of [3] to the case wy € LL N H; }(R?) and this is the content of the
following theorem.

Theorem 3.7. Let vo € L2 _(R?) and assume that the vorticity curlvy =
wo € LL(R?) N ngg(Rz). Let w® be given by the vortex-blob approximation
with the parameters chosen so that 6(g) = €% for some 0 < o < 1/7, and
h(g) < Cebexp(—Coe=2) for certain Cy,C. Then there exists a subsequence
of v¢ which converges strongly in L4((0,T); LL (R?)) for any 1 < q <2 and

weakly in L>=((0,T); L2 (R?)) to a classical weak solution v of the Euler

loc
equations with initial velocity vg.

Proof. We just sketch the proof since it follows the proof of [3], [12] and [25].
Step 1 Compactness.

Since wy € L N HY(R?) ¢ M N H_}(R?), by Theorem 2 in [3] we have the

loc loc

existence of v € L>°((0,T); L? (R?)) such that

loc
v v in L9((0,T); L (R2)),
and for every 1 < g < 2 we have the strong convergence
v* — v in LY(0,T); LL (R?)).

Moreover, for every test function ® € C°((0,T) x R?) with div® = 0 using
Lemma 3.3 we have that

T
lim/ / (O ® +v° ®@v° : V@) dedt = 0.
0 Jr2

e—0

Step 2 Convergence.
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In order to conclude we have to prove the convergence of the non-linear

term
T T
Iim/ / v€®vE:V<I>dxdt:/ / v@uv: VO®dxdt.
e—0 0 R2 0 R2

By the special structure of the non-linearity in two dimension, it is sufficient
to prove the following convergence, see [12, 18]

lim / /R (1, 2)e5 (1 7 (1)) dr it = / /R alt )t ) (O)p(a) de

e—0 0

for any ¢ € C2°(0,T) and ¢ € C°(R?). We rewrite the left hand side as

T
/ / o () (1 o) (8 (o) da dt
0 R2
T
_ / / B (b, ) (1, y) Hp (2, y) dar dy dt,
0 R2 JR2

where

T — 21 Y2 — 22
Hy(z,y) =c p-V-/ ¢(z)dz,
v 2 [T — 2 |y — 2|2

for some constant ¢ > 0. As shown in [12, Proposition 1.2.3], the function
H, € L=(R? x R?), is continuous outside the diagonal of R? x R? and goes
to 0 at infinity. Moreover, by Lemma 3.5 we know that

W 2w in L2((0,T); L' (R?),

and then following the proof of Theorem 1 in [25] it is not difficult to prove
that

T
lim/ /RQ - P(t)w (L, x)ws(t,y)Hy(x,y) de dy di

e—0 0

T
_ / / D)Wt 2)w(t,y)Hy (z,y) dz dy dt,
0 R2 JR2

which is enough to conclude. O

4. CONVERGENCE TO LAGRANGIAN SOLUTIONS

In this section we prove that VB-solutions satisfy the 2D Euler equations
in the Lagrangian and renormalized sense. Let us start with the following
lemma.

Lemma 4.1. Let K be the 2D Biot-Savart kernel and denote by 7,K(z) =
K(x —a). Then for any 1 <r <2 and all a € R?

[Tl — K||zr < C(r)]al” (4.1)
where o = 2/r — 1. Moreover choosing p,q such that
1 1 1
1+———-> =, 4.2
3 (4.2)

if {uf} C LP(R?) is uniformly bounded in €, then the sequence K x uf is
relatively sequentally compact in L (R?).
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Proof. We start by proving (4.1). Fix a € R? with a # 0. For |z| > 2|al, we
have for all 0 <0 < 1, |z + Oa| > |z| — 0la|] > %, thus we have that
lal
T K(x) — K(2)| <la| sup |[VK(x+0a| <|a|] sup ——= < (C—.
[l () = K ()] < o sup VK (@00 < o] sup s < €11
Then we estimate

/ K (2) — K(2)|" dz < C

|z[>2]a

la]"

de = C(r)|a*". (4.3)

|z|>2]al ‘:U’Qr

Next, for |z| < 2|a| we have

1
T K(x) — K(z)] < —— +
|a() ()|_‘£II+(Z’ ’x‘

and then
1 1

/ |TaK(ﬂf)—K(SC)|Td$S/ T T de
|z|<2|al le|<2lal |7 +al" ||
1
< 2/ ——dz = C(r)|al>". (4.4)
lz|<3lal 7]

Combining (4.3) and (4.4) we get (4.1).

To prove the compactness we want to verify the hypotesis of the Fréchet-
Kolmogorov theorem. Let u° be a bounded sequence in LP(R?). We want
to prove that

lir% | 7o (K % u®) — (K *u)||pe =0 uniformly in e.
a—r

Thanks to the properties of the convolution, we have that
170 (K % u”) = (K xu)||ze = [[(Ta K — K) % u®[| 2a
< mal = K[ pr[Ju®| e
< O(r)[a] 7!
which concludes the proof since our choice of p, g implies that 1 < r < 2. [

We summarize in the following lemma the convergence of the vortex-blob
method to VB-solutions.

Lemma 4.2. Let v be a VB-solution and let {(w®,v%)}. be the approzimate
vorticity and velocity constructed by the vortex-blob approrimation as in the
Definition 1.1. Let wy € LE(R?) N H L(R?) or wy € LE(R?) for p > 1, then
there exists
w e L=((0,T); LP(R?))
such that up to subsequences the following hold true
(i) if p > 1, then v satisfies (R2a) and
o v in LH(0,T); Lo (R?),
(ii) of p =1, then v satisfies (R2b) and for every 1 < q < 2
v = in LI((0,T); L _(R?)),
S w in L=((0,T); LP(R?)).

(iii) w®
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Proof. We divide the proof in several steps.
Step 1 Convergence of the vorticity.

By Lemma 3.2, we have that the approximate vorticity satisfies

sup sup / lw(t,z)[Pdx < C. (4.5)
€ t€[0,T] JR2
Moreover, when p = 1 we also have by Lemma 3.5 that {w®} is equi-
integrable. Then, there exists w € L>((0,T); LP(R?)) such that
w® B w in L°°((0,T); LP(R?)). (4.6)

Step 2 Convergence of the velocity.

The approximate velocity v¢ satisfies the following uniform bound
sup sup / [v¢(t,z)|* dz < C(R), (4.7)
€ t€[0,T)/Br

as a consequence of Young’s inequality in the case p > 1 and of Proposi-
tion 3.6 for p = 1. Moreover, since v is a VB-solution, we have that

o o in L9((0,T); L (R2)). (48)
In addition, for some s,r > 0 we also have the following uniform bound
{v7} C Lip([0, T]; W~ (R?)),

(see [3]). Then, thanks to Aubin-Lions’ Lemma together with Lemma 4.1,
for p > 1 we can upgrade the convergence (4.8) to

o in L2((0,7); L (RY),
while for p = 1 we have
v —v in LY(0,7); LY (R?)),
for any 1 < ¢ < 2, and this concludes the proof. O
We can now prove our first main theorem.

Theorem 4.3. Let v be a VB-solution. Then v satisfies the Fuler equations
in the sense of Lagrangian and renormalized solutions.

Proof. We divide the proof in two steps.
Step 1 Representation formula and additional regularity of v.

Let (w®,v%) be a sequence constructed via the vortex blob method which
converges to (w,v) as in Lemma 4.2. We want to prove that v = K * w a.e.
in (0,T) x R2. For n € C°((0,T) x R?) we have

0= lim//(ve—K*we)ndxdt: lin%)//ven—we(K*n)dxdt
e—

e—0

://vn—w(K*n)dxdt://(U—K*w)ndxdta
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where we have used the fact that K 7 € L4 for every 1 < ¢ < oo. By varing
n € C°((0,T) x R?) we have the result. Moreover, the gradient of v can be
written as
(Vu),; = Sjw in &'(R%), 4,j=1,2,
where each S; is a singular integral operator of fundamental type with ker-
nel the distributional derivative 6iji. Hence v satisfies hypothesis (R2b)
if wy € L' since 0z; K; define singular integral operators of fundamental
type (see Remark 2.11 in [6] for the definition of a singular integral on L!
functions). In the case p > 1, by standard Calderon-Zygmund theory on
singular integrals we have the estimate
sup [[Vo(t, )|z < sup lw(t, )llzr < Cllwol|zr

’ te ’

and then v satisfies (R2a).
Step 2 Lagrangian property of the solution.

Let (w®,v%) be chosen as in the previous step and consider the auxiliary
problem (3.11) introduced in Section 3. By Theorem 2.5 we have the exis-
tence of w € C([0,T]; LP(R?)) such that

@ =@ in C([0,T]; LP(R?))

where @(t,z) = wo(X1(¢,-)(x)) and X is the unique regular Lagrangian
flow of v. In order to conclude we want to prove that w = @ a.e.. Let
X € C((0,T) x R?) and compute

//w wxdxdt—hm/ /(wf—wf)xd:cdt
R2 e—0 R2

T
:lim/ / w —gpg*w)xdxdt—i—hm/ / (pe *x 0 — @)y dx dt.
e—0 R2 e—0 R2

By estimate (3.16) and standard properties of the convolution, it is easy
to check that the previous sum goes to 0 as € — 0, and by varying x €
C((0,T) x R?) we have that w = @ a.e. in (0,T) x R O

Remark 4.4. Note that the Step 2 of the proof of Theorem 4.3 together with
the estimate in Lemma 3.16 give that the convergence in (4.6) of the approz-
imate vorticity w® towards the Lagrangian solution w s actually strong.

5. CONSERVATION OF THE ENERGY

In this section we prove our second main result, namely the conservation of
the kinetic energy for VB-solutions. We recall the definition of conservative
weak solution of the 2D Euler equations from [7].

Definition 5.1. Let v € C([0, T]; L?(R?)) be a weak solution of (1.1) with
initial datum vy € L*(R?). We call v a conservative weak solution if

[o(t, )2 = [lvoll 2 vt € [0,T].
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First of all, note that in the previous definition we are dealing with initial
data which are globally square integrable in space, which is equivalent to
requiring that the vorticity has zero mean value. This is the content of the
following proposition, which can be found in [19, Prop. 3.3|:

Proposition 5.2. An incompressible velocity field in R? with vorticity of
compact support has finite kinetic energy if and only if the vorticity has zero
mean value, that is

/ lu(t,z)> dz < co <= w(t,z)dz = 0. (5.1)
R2 R2

Before continuing with our result on the vortex-blob approximation, we
recall a theorem proved in [7] about the conservation of the energy for weak
solutions of the 2D Euler equations. This will be useful in order to better
understand our result.

Theorem 5.3. Fiz T > 0 and let v € C([0,T); L3(T?)) be a weak solution
of the 2D Euler equations (1.1) with w € L>((0,T); LP(T?)) with p > 3/2.
Then v is conservative. Moreover, the following local energy balance law
holds in the sense of distributions

() oo (59)

Note that in the previous theorem assumption (5.1) is not needed since
T? is a bounded domain and then vy € L?(T?) even if the vorticity does not
have zero mean value. The method of the proof is based on a mollification
argument and the exponent 3/2 is sharp for the method. In particular, the
theorem is still valid if we consider weak solutions v € C([0,T]; L?(R?)),
with zero mean, such that w € L>((0,T); L' N LP(R?)) with p > 3/2.

We now prove that under hypothesis (5.1) the approximate velocity given
by the vortex-blob method is globally square integrable in space.

Lemma 5.4. Let wg € LL(R?) which verifies (5.1). Then the velocity field
ve given by (3.4) verifies the following uniform bound

sup |[[v*(¢,-)l|r2 < C,
t€[0,T

provided that §(e) = €7 with 0 < o < 1/7.

Proof. Multiply the equation (3.9) by v; integrating over the whole plane
and by using the notation * introduced in Section 2.1, we obtain

1
S ol = [ B var =~ [ B e
R2 R2

= FE'V(K*UE)dl‘:—/ (VK % F,) - v° dx
R2 R2
SVE % Fe(s,) |2l (s, )2 < [F=(s, )l p2llo™ (s, )l 2

which means that

d

o7 lee < [1Fe(s, )l e
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Integrating in time we have that

T
o7 (¢, Iz < /0 1F=(s, )2 ds + [05(0, )l 2.

Note that v®(0,-) = K * w®(0,-) verifies the hypothesis of Proposition 5.2
and, since the support of w®(0,-) is uniformly bounded in €, we have that
[0°(0, )2 < C,

where the constant C'is indipendent from €. We omit the details of the proof
of the previous inequality since it can be done with the same computations
of the bound of the L? norm of U5 in Proposition 3.6. This fact together
with Lemma 3.3 gives the result. O

With the previous lemma we can prove that the velocity field v converges
globally in L? towards v: this will be fundamental in the proof of Theorem
5.6.

Lemma 5.5. Let wy € LE(R?), with p > 1, which verifies (5.1). Let v be a
VB-solution and {v°}c as in Definition 1.1. Then, up to a subsequence not
relabelled the velocity field v¢ satisfies the following convergence

v = in C([0, T); L*(R?)). (5.2)
Proof. According to Lemma 4.2 and Remark 4.4, up to a subsequence not
relabelled, there exists w € C([0, T]; LP(R?)) such that
w® = w in C([0,T); LP(R?)).

Moreover, by Lemma 5.4 both v and v* are in L>((0,T); L?(R?)). In order
to prove the convergence stated in (5.2), we will prove that v* is a Cauchy
sequence in C([0,T]; L2(R?)). Let {e,}, be any infinitesimal sequence. We
denote v",w"” the velocity field and the vorticity given by the vortex-blob
approximation. We divide the proof in several steps.

Step 1 A Serfati identity for the vortez-blob approzimation.

In this step we derive a formula for the approximate velocity v" in the
same spirit of the Serfati identity derived in [1, 23].

Let a € C°(R?) be a smooth function such that a(z) = 1 if |x| < 1 and
a(x) = 0 for |x| > 2. Differentiating in time the Biot-Savart formula we
obtain that for ¢ = 1,2

050! (s, x) = K; % (Osw™)(s, x)
= (aKy) * (Ow") (s, 2) + [(1 — a) Ki] % (Osw") (s, ). (5.3)
Now we use the equation (3.6) for w™ obtaining
Osw" = =" - Vw" + E,,
and substituting in (5.3) we obtain
Osv)" = (aK;) * (Osw™) — [(1 — a)K;] % (v" - Vw") + [(1 — a) K] * E,. (5.4)
Since F, = div F}, and by the identity

0" - Vw" = curl(v” - Vo) = curldiv(v" @ v")
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we obtain that
[(1— a)K;] % (v" - V™) = (vvi[u - a,)Ki]> x (0" @ o), (5.5)
(1= a)Ki] * Bp = (V[(1 — a)Ki]) % Fy, (5.6)

where the notation x was already introduced. Substituting the expressions
(5.5) and (5.6) in (5.3) and integrating in time we have that v" satisfies the
following formula:

vi' (t, 2) = 0" (0, 2) + (akKi) * (W"(t,-) — w™(0,-)) (z)
—t L1 = a)K;]) * (v"(s,-) @ v"™(s,-))(z) ds
| (v - aR]) s @) @ @as o
+/ (V1 — a)K;]) * F,(s,-)) (x) ds.
0
Step 2 v" is a Cauchy sequence in C([0, T]; L?(R?)).

Using formula (5.7) we can prove that v" is a Cauchy sequence. We consider
", v with n,m € N. By linearity of the convolution we have that v™ — v
satisfies the following

rUzn(t7I) - /Ulrn(tax) = ’U?(O,[E) - U;n(07x)

()
+ (akKG) * (W"(t, ) —w™(t, ) (@) + (k) * (W™(0, ) —w"(0,))(x)

(1) (I11)
- /0 (VVL[(l - a)Ki]) * (V"(s,) @0"(s,) —v™(s,7) @v™(s,-))(x) ds
(Iv)
+ [ (V10— KD * Byl ) — Bl ) () s
’ V)

(5.8)

In order to estimate |[v™(t,-) — v™(t,-)||z2 we estimate separately the L?
norms of the terms on the right hand side of (5.8). We start by estimating
(I): given 1 > 0, since the initial datum v"(0,-) converges in L? to vy, we
have that there exists N7 such that

|0 (0, ) — 0™ (0,)||z2 <M for any n,m > Nj. (5.9)

We deal now with (IT),(I11): if wy € LE(R?) with 1 < p < 2, by Young’s
convolution inequality we have that

[(@K) * (W (t,-) —w™(t, )2 < [laK][Lal|w™(t,-) = w™(E, )| Lr,
where 1 < g < 2 is such that 1+ 1/2 = 1/p + 1/q, while for p > 2

[(af) * (W™(t, ) = w™ ()2 < llaK||pa[[w™(E, ) — w™ () 22
Notice that [|aK||re < | K| 1ep,) and K € L (R?) for any 1 < ¢ < 2.

Moreover, by the strong convergence of w™ in C((0,T); LP(R?)) and the
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bound {w"}, C L>®((0,T); L' N LP(R?)) we conclude that both in the case
1 < p <2 and in the case p > 2 there exists Ny such that
[(@ B ) (w" (¢, -) =™ (¢, )l 2 +[[ (@B )+ (w™ (0, -) =w™ (0, )| 2 < Cn, (5.10)

for any n,m > N,. We deal now with (IV): by Young’s convolution in-
equality we have that

VYV = a)K] % (0" (s, ) @ 0" (s,7) = v™(s,) @ 0" (s, )| .2
< IVVHA = a)K]|lz2 [[0"(5,-) @ 0" (s,-) = 0™ (5,-) @ 0™ (s, )| .

(IV%)

(5.11)

We add and subtract v"(s,) ® v"(s,-) in (IV*) and by Holder inequality
we have

[0"(s,) @ 0" (s,-) = v™(s,) @™ (s, )11
< (o™ ez + 0™ (@ ) lz2) [[0" (s, ) = 0™ (s, )| 2
For the first factor in (5.11) we have that
VvV - a)K;] = —(VV1ta)K; — VYaVE; — VaV1K; + (1 — a)VVLEK;,

and it is easy to see that each term on the right hand side has uniformly
bounded L? norm. Then we have that

/0 IVVH(L = a)K] % (0" (s,7) @ 0" (s,) = 0™ (s,) @ 0™ (s,-)] 12 ds

< Cllollza [ (s, ) = (5, s .
" (5.12)
Finally, we deal with (V'): again by Young’s inequality we have that
1 (VI = a)K]) * (Fu(s, ) = Fin(s, )| 12
< IVIA = a)K]|| 2l Fn(s, ) = Fm(s, )l
Arguing as for (IV), since VK is in L?*(BY), a straightforward computation
shows that V[(1 — a)K] is bounded in L?. On the other hand, F), goes to

0 in L>=((0,T); L*(R?)) so there exists N3 such that for all n,m > N3 we
have that

[(VI(1 = a)K]) * (Fu(s,-) = Fin(s, )|l < Cn. (5.13)

Then, putting together (5.9),(5.10),(5.12) and (5.13) we obtain that for all
n,m > N := max{Ny, Ny, N3}

t

[o76) ="l < € (n+ [ o) o llads) (514
and by Gronwall’s lemma

[0 (£, ) = 0™ (t, )l 2 < C(T)n. (5.15)

Taking the supremum in time in (5.15) we have the result. O

We are now in position of proving our second main theorem
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Theorem 5.6. Let v be a VB-solution and assume that the initial vorticity
wo € LE(R?), with p > 1, satisfies (5.1). Then v is a conservative weak
solution. Moreover, if p > 6/5 the following local energy balance holds

a ('”;) + div < (@ +p)> —0 inD/(R?). (5.16)

Proof. We divide the proof in two steps.
Step 1 Local balance of the energy.

Since the result for p > 3/2 is a consequence of Theorem 5.3, we give the
proof under the assumption 6/5 < p < 3/2. Let v® constructed by the
vortex-blob method as in the definition of VB-solutions. We have that

v* — v in L((0,T); LY(R?)), for every 2 < q < p*. (5.17)

For ¢ = 2 the convergence (5.17) is a consequence of Lemma 5.5, while for
2 < g < p* it follows from Sobolev inequality and the strong convergence of
the vorticity. Indeed, by the Calderon-Zygmund theorem we have that

sup [[v°(t,-) = v(t,)l[Lre < C sup [ (t,-) —wl(t,-)|zr
t€[0,T] te[0,T)

and by interpolating the spaces L? and LP" the convergence in (5.17) holds.
The pressure p® solves the following equation

—Ap® = divdiv(v® ® v%),

and by elliptic regularity we have that p° € L°((0,7T); L9(R?)), where
1 < g < p*/2, with uniform bounds. Therefore there exists a scalar

function p € L*((0,7); L' N L% (R?)) such that

P 5p in L®((0,T); LY(R%)), foralll<gq< %. (5.18)

Let ¢ € C2°((0,T) x R?) be a test function. Multiplying the equation (3.9)
by v°¢ and integrating in space and time we get

t ‘UEP t |U5‘2
/ / Ospdx ds —I—/ / v° <— +p5> Veodxds (5.19)
0 Jrz 2 0 JRr2 2

t
_ _/ (K % E-)v°¢ dz ds. (5.20)
RQ

We start by considering the error term in (5.20): we have that

/ (K x E.) - v*¢derds = — / E. (K x (v®¢))dxds
R2

]7/]1@ div F.)(K % (v°¢)) dxds—//RQF V(K * (v°¢)) dz ds.
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Then, by Holder inequality and Calderon-Zygmund theorem we have that

(K x E-)v*pdads| <T sup ([|[F(t, )2 |VE * (v°)(t, )| L2)
R2 te[0,7)

< CT sup ([[F(t, )l p2llv° (¢, )| z2)
te[0,7

< OF Fes.

which goes to 0 as ¢ — 0 choosing 4§, h in the construction of the approxi-
mation as in Lemma 3.3. We consider now (5.19). By the convergence in
(5.17) we have that

t "UE|2 t ‘U‘Q
/ / Os¢pdx — / / —0s¢dx, ase—0.
0 R2 2 0 R2 2

We deal now with the second term in (5.19). It is here that the restriction
top > g comes into play: in this range the Sobolev exponent p* > 3. Then,
the convergences in (5.17) and (5.18) imply that

t t
//pEUE-V¢dxds—>//pv-V¢dxds, as ¢ — 0,
0 JR2 0 JR2
t 5
// ve|
R2

and this concludes the proof of (5 16).

and

V¢d:cds as € — 0,

RQ

Step 2 Conservation of the kinetic energy.

We prove now that v is a conservative weak solution for any p > 1. Multi-
plying (3.9) by v and integrating in space and time we have that

¢
[o° (¢, 2) dz =/ [0°[*(0, ) da —/ (VK « F.)-v°dz.  (5.21)
R2 R2 0 JRr2
For the second term on the right hand side, by Lemma 3.3 we have that

(VK % F) - v dx
R2

SIVE x Fo(s, )2l (s, )l 2

< Fe(s, )2 Mo (s, )|l 22
< O5 5es,

which goes to 0 as ¢ — 0. Then, by the convergence (5.2) and letting ¢ — 0
n (5.21) we have that

of2(t, ) da = / ol () da
R2 R2

which gives the result. ]
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Concluding remarks. Note that the previous proof the global convergence
of the velocity field in (5.2), which depends on the strong convergence of the
vorticity, allows us to prove the conservation of the energy for p > 1. In
fact, the local balance of the energy (5.16) actually implies the conservation
of the L? norm of v for p > 6/5 by choosing properly the test functions.

For example, we can choose the test function to be ¢r(z) = ¢ (%), letting

€ — 0 and then R — oo we obtain the result. A suitable modification of our
argument allow to prove the convergence (5.2) also for solutions constructed
as limit of (ES) and (VV) and this extend the result of [7] to the case of the
full plane. This suggests that the three methods are somehow equivalent
since, under the same hypothesis, they produce weak solutions that share
the properties of being Lagrangian and conservative.
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