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ABSTRACT

This study presents the first mapping of soil erosion risk modelling based on the Revised
Universal Soil Loss Equation (RUSLE) at a sub-annual (monthly) temporal resolution and
national scale (100 m spatial resolution). The monthly maps show highest water erosion rates
on Swiss grasslands in August (1.25 t ha™ month™). In summer, the mean monthly soil loss
by water erosion is 48 times higher than the mean soil loss in winter. Considering the annual
average fraction of green vegetation cover of 54%, the predicted soil erosion rate for the

ARTICLE HISTORY
Received 13 November 2018
Accepted 19 February 2019

KEYWORDS

Soil loss; modelling; revised
universal soil loss equation;
Switzerland

Swiss national grassland area would add up to a total eroded soil mass of 5.26 Mt yr™'. The
RUSLE application with an intact 100% vegetation cover would largely reduce the soil loss to
an average annual rate of 0.14 t ha™' year . These findings clearly highlight the importance
to consider and maintain the current status of the vegetation cover for soil erosion

prediction and soil conservation, respectively.

1. Introduction

Soil erosion is a serious threat to soils worldwide. Cur-
rently, 6.1% of the global land surface is affected by
severe soil erosion that exceeds a global tolerable soil
loss threshold of 10t ha™" yr_1 (Borrelli et al., 2017).
The annual global soil loss by water is estimated to be
35.9 billion tons for the year 2012 (Borrelli et al.,
2017). The cost induced by soil erosion for the European
Union is about 1.25 billion Euros per year (Panagos
et al., 2018). Soil erosion control could not only reduce
these costs for agriculture but could also protect the
valuable soil resource (Kuhlman, Reinhard, & Gaaff,
2010; Panagos et al., 2016). Some protection measures
(e.g. fencing of risk zones) could be even more efficient
if they were implemented by spatial and temporal target-
ing of specific areas during the riskiest seasons of a year
(Troxler, Chatelain, & Schwery, 2004). So far, soil ero-
sion by water in Switzerland is modelled on an annual
basis despite known temporal variations of soil loss (Pra-
suhn et al, 2013) and rainfall erosivity(Meusburger,
Steel, Panagos, Montanarella, & Alewell, 2012; Schmidt,
Alewell, Panagos, & Meusburger, 2016). Simultaneous
identification of both, risky areas and risky seasons is
urgently needed. Recently, Borrelli et al. (2018) stated
that the lateral carbon transfer from erosion in noncrop-
lands on a global scale ‘may play a more important role
than previously assumed’ because too little is known
about erosion on grasslands and their impact on erosion
rates is thus usually underestimated. The same knowl-
edge gap also exists for Switzerland. However, soil loss

has been observed and measured in many small scale
studies by different techniques (e.g. by rainfall simu-
lation experiments, plot experiments, tracing tech-
niques, modelling; Alewell, Meusburger, Juretzko,
Mabit, & Ketterer, 2014; Konz, Prasuhn, & Alewell,
2012; Martin, Pohl, Alewell, Korner, & Rixen, 2010;
Meusburger, Konz, Schaub, & Alewell, 2010b; Schindler
Wildhaber, Banninger, Burri, & Alewell, 2012) and was
identified to be severe at disturbed hotspots (>3 t ha™"
yr'; Alewell, Egli, & Meusburger, 2015; Meusburger
et al,, 2010b). Since grassland areas are the dominant
agricultural land use unit in Switzerland (Hotz & Wei-
bel, 2005) they should be included in Swiss soil erosion
risk maps. The common assumption of nearly zero soil
loss on grasslands by the protective characteristics of the
closed vegetation cover should be reconsidered, as about
6.5% of the land surface is covered by grassland (based
on global CCI Land Cover 2015 data; Arino & Ramoino,
2017) with a high percentage of the grassland having low
and/or damaged vegetation cover (Gallo et al.,, 2001;
Meusburger, Banninger, & Alewell, 2010a).

With the recent development of geoinformation
tools and the improved quality and availability of geo-
data, a national assessment of the soil erosion risk for
Swiss grassland is now feasible.

One of the most commonly used erosion models for
modelling soil loss is the Universal Soil Loss Equation
(USLE; Wischmeier & Smith, 1978) and its revised ver-
sion (RUSLE; Renard, Foster, Weesies, & Porter, 1991).
These empirical models are based on a multiplication
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of single erosion risk factors (rainfall erosivity R, soil
erodibility K, cover and management C, slope length
and steepness LS, support practices P).

A high intra-annual variability can generally be
expected for R and C, as these factors are related mainly
to the natural temporal variability of precipitation and
plant growth (Renard, Foster, Weesies, McCool, &
Yoder, 1997). the temporal variation of the K-factor is dis-
cussed by Kinnell (2010). However, temporal changes of
the K-factor are rather expected for a multi-annual scale
(Wang, Gertner, Liu, & Anderson, 2001). The factors LS
and P are relatively static as long as no natural (e.g. land-
slides) or human-induced changes (e.g. implementation
of new protection measures) occur (Panagos, Karydas,
Gitas, & Montanarella, 2012). Thus, modelling of the vari-
able R and C factors at a sub-annual scale is essential to
increase the explanatory power of soil erosion prediction.
Wischmeier and Smith (1965) propose a monthly tem-
poral resolution to be appropriate for soil erosion model-
ling. This recommendation was affirmed four decades
later by Panagos et al. (2016) and Karydas and Panagos
(2016). Quantifying soil loss on a seasonal, monthly,
weekly or even daily time-scale helps to improve our
mechanistic understanding and allows for targeted pro-
tection measures. The recent availability of high temporal
resolution spatial datasets (Alexandridis, Sotiropoulou,
Bilas, Karapetsas, & Silleos, 2015) enables a high temporal
resolution of rainfall erosivity and of the cover and man-
agement factor. Several studies across the world use at
least daily rainfall records to calculate the R-factor (e.g.
Angulo-Martinez & Begueria, 2009; Ma, He, Xu, van
Noordwijk, & Lu, 2014) and model the R-factor on a sea-
sonal (Nunes, Lourenco, Vieira, & Bento-Gongalves,
2016) or monthly scale (Ballabio et al., 2017). The model-
ling of monthly C-factors is presented by Yang (2014) for
New South Wales, Australia with a spatial resolution of
500 m and Alexandridis et al. (2015) for Northern Greece
aggregated on a catchment scale. Soil loss by water was
modelled with monthly resolution by Evrard, Persoons,
Vandaele, and van Wesemael (2007) and Inoubli, Raclot,
Mekki, Moussa, and Le Bissonnais (2017) for selected
catchments in Belgium and Tunisia. However, so far
spatiotemporal large-scale soil erosion maps are relatively
rare. National monthly soil erosion maps can only be
found for Albania (Grazhdani & Shumka, 2007) and
Mauritius (Nigel & Rughooputh, 2010).

The objective of the present study is to (i) quantify
the monthly rates of soil loss of Swiss grasslands and
(ii) delineate the spatial and temporal patterns of soil
erosion risk.

2. Material and methods
2.1. Study area

Switzerland has high climatic contrasts owing to vari-
ations in topography (from 192 m a.s.l. to 4633 m a.s.l.)

(Figure 1). The long-term (1981-2010) mean precipi-
tation in Switzerland (measured at 418 stations; MeteoS-
wiss, 2018b) is 1299 mm following the humid continental
to oceanic climate zone with highest rainfall in summer
and lowest in winter. The typical melt-out date for alpine
elevation ranges is in the late spring (DOY 147, 27th of
May) (Jonas, Rixen, Sturm, & Stoeckli, 2008). This late
melt-out in the Alps shortens the plant growth period
in higher elevations. Soils of Switzerland are dominated
by Cambisols (King, Daroussin, & Tavernier, 1994). Swit-
zerland can be subdivided into five main geological units:
the Alps mainly dominated by granite, the Jurassic, a
young fold mountains of limestone, the partly flat, partly
hilly Swiss Midland (between Jura and Alps) and of
minor spatial extend are the Po Valley at the southern-
most tip of Ticino (Southern Alps), and the Upper
Rhine Plain around Basel.

Mapping of the seasonality of soil erosion by water
was undertaken for the national grassland area of Swit-
zerland, which covers to about 28% (11.559.800 ha) of
the Swiss national territory and accounts for 72% of the
total agricultural area (Botsch, 2004; Jeangros & Tho-
met, 2004). Grassland areas are distributed widely
with a major extent in the Alps (Hotz & Weibel,
2005). They are usually used as pastures or hayfields
for fodder production. Alpine grasslands are com-
monly covered by snow in winter. Permanent grassland
areas, which are not being part of the crop rotation for
a minimum of five successive years, have slowly but
steadily increased over the last two decades in Switzer-
land (Schmidt, Alewell, & Meusburger, 2018a).

2.2. Datasets

To depict the grassland extent of Switzerland, the
grassland class in the global Climate Change Imitative
(CCI) Land Cover dataset was used and refined with
topographic models of Switzerland (Schmidt et al.,
2018a). That grassland map serves as the mask for
modelling soil erosion by water on Swiss grasslands.

Each of the RUSLE-factors (excluding the P factor)
was calculated separately and adapted to the specific
environmental conditions of Swiss grasslands. The
generation of the RUSLE factor maps (rainfall erosivity,
Schmidt et al., 2016; soil erodibility, Schmidt, Ballabio,
Alewell, Panagos, & Meusburger, 2018c; cover and
management, Schmidt, Alewell, & Meusburger,
2018b; slope length and steepness, Schmidt, Tresch,
& Meusburger, 2019) is explained in detail in the indi-
vidual sections and in Table 1.

The high-resolution spatial datasets of the Swiss
Federal Offices (e.g. SwissAlti3D Digital Elevation
Model 2 m spatial resolution, SwissImage Orthophoto
0.25 m spatial resolution) are among the most detailed
in Europe. They allow modelling of the spatiotemporal
patterns of soil erosion for Swiss grassland in combi-
nation with temporal datasets (e.g. Rainfall
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Figure 1. Topography of Switzerland including the Swiss Alps (data source: SwissAlti3D, 2 m spatial resolution).

measurement 10 min temporal resolution, Copernicus
FCover 10 day temporal resolution).

2.3. Mapping

All (R)USLE-factors are multiplied according to the
following equation by Wischmeier and Smith (1965)
and Renard et al. (1997):

A = RxKxCxLxSxP (1)

where A is usually the soil loss in t ha™" yr~'. The
equation can be modified to a monthly soil erosion
equation by including a monthly temporal resolution
of the dynamic factors R and C (Schmidt et al,, 2016,
2018b):

Anonth = Rmonth ¥ Kk Cronth*L#SxP (2)

where A o is the quantification of soil loss in t ha™!

month™".

The R-factor was regionalized on a monthly scale by
regression-kriging with 87 automated gauging stations,
serving as dependent variable and high resolution
spatial and temporal covariates, serving as independent
variables (Table 1). Dynamics in the cover and man-
agement factor for Swiss grasslands were assessed by
a linear spectral unmixing of high spatial resolution
orthophotos and normalized by temporal variations
of the fraction of green vegetation cover. The potential
soil loss of a specific plant development stage expressed
as soil loss ratio (SLR), was then weighted by the

rainfall erosivity ratio to generate in monthly C-factor
maps (Table 2).

Soil erodibility on a national scale is a result of a cub-
ist regression and multilevel B-splines of a total of 1837
Land Use/Cover Area Survey (LUCAS) topsoil samples
(Orgiazzi, Ballabio, Panagos, Jones, & Fernandez-
Ugalde, 2018) and independent variables (Table 1).
Finally, the L and S factors were adapted to the complex
alpine topography (Table 2). Slope length were orig-
inally constrained to a maximal flow threshold of
100 m to account for the whole agricultural area in Swit-
zerland (Schmidt et al., 2019). However, flow measure-
ments in the Swiss alpine grasslands revealed short flow
length less than 2 m due to high surface roughness and
infiltration capacity. These observations lead to the
assumption that the influence of the L-factor is minimal.
In future, more empirical data is needed to support this
assumption. Therefore, an L-factor of 1 is used for pre-
dicting the soil loss of Swiss grasslands to comply with
field observations. Slope steepness was predicted by a
mean equation (S,ipine) Of a total of 12 empirical S-factor
equations. The regionalization of the support practice
factor was difficult to obtain for Swiss grasslands
because of a lack of spatial information on grazing man-
agement and its effect on soil loss. Thus, the P-factor was
set to 1 (not influential) for this study, even though the
authors are aware of the substantial variation of man-
agement and its effect on soil loss (e.g. stocking numbers
and rotation frequency of lifestock as well as watering
places, fencing, and herding).
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Table 1. Overview of RUSLE factor maps used for the soil erosion risk mapping of Swiss grasslands.

Erosion factor Dataset

Derived variable

Data source

Rainfall station data
Snow depth
CombiPrecip
EURO4M-APGD
RhiresM
SwissAlti3D

LUCAS topsoil
MODIS13Q1
EU-DEM

Rainfall erosivity R

Soil erodibility K

Location parameter
Cover and management C  Swissimage FCIR

FCover300m

MOD13Q1

CCl land cover
Slope length L SwissAlti3D
Slope steepness S SwissAlti3D

Long-term rainfall measurements at 87 stations

Monthly snow depth

Rainfall amount (measured and radar)

Daily precipitation per month

Monthly precipitation sums

Elevation, slope, aspect

199 Swiss and 1638 European topsoil samples

NDVI, Enhanced Vegetation Index EVI, Raw bands

Elevation, slope, base level of streams, altitude above channel
base level, multi-resolution index of valley bottom flatness

Latitude, longitude

Spatial distribution of the fraction of green vegetation cover

Temporal distribution of the fraction of green vegetation cover

NDVI

Dynamic long-term snow occurrence

Upslope contributing area

Slope

MeteoSwiss, 2018a
MeteoSwiss, 2018a

Sideris, Gabella,
Isotta et al., 201

& Germann, 2014
4

MeteoSwiss, 2013

Swisstopo, 2018

Orgiazzi et al., 2018

Didan, Munoz, Solano, & Huete, 2015

Farr et al., 2007

Swisstopo, 2010

Smets et al., 20

17

Didan et al,, 2015

Arino & Ramoin

0, 2017

Swisstopo, 2018
Swisstopo, 2018

Table 2. Erosion factors for the monthly soil erosion modelling of Swiss grassland.

Erosion factor Method description

Spatial resolution ~ Temporal resolution  Factor source

Rainfall erosivity R

Soil erodibility K

Cover and management C
Slope length L

Slope steepness S

Regression-kriging
Cubist regression
Linear spectral unmixing

Upslope contributing area with Maximal flow threshold
Modification of S-factor for alpine environments (S,ipine)

100 m Monthly Schmidt et al,, 2016
500 m - Schmidt et al., 2018c
100 m Monthly Schmidt et al,, 2018b
2m - Schmidt et al., 2019
2m - Schmidt et al,, 2019

The multiplication of all RUSLE factors (according
to Eq. 2) provides monthly soil erosion risk maps for
Swiss grasslands (Figure 2). Note that while the K-fac-
tor (Schmidt et al., 2018c), R-factor (Schmidt et al.,
2016), and LS-factor (Schmidt et al., 2019) are available
for the whole of Switzerland, the C-factor (Schmidt
et al., 2018b) is limited to the grassland areas of Swit-
zerland (Schmidt et al., 2018a) and thus presets the
extent of the erosion modelling.

The maps were visually interpreted regarding their
spatial and temporal patterns of soil erosion risk. In
addition, descriptive statistics for all twelve monthly
erosion maps were calculated.

The maps were evaluated by a sensitivity analysis of
the dynamic and annual soil loss rates. Such a sensi-
tivity analysis contrasts the differences between
dynamic and static erosion factors. For the non-
dynamic assessment, the mean monthly R- and C-fac-
tor maps over a year were multiplied with the annual
factors K, LS and P.

3. Results and discussion

3.1. Monthly soil erosion rates for Swiss
grasslands

Spatially, the grasslands in the Alps are more prone to
soil erosion in most of the months than those in the
Swiss lowlands, owing to the influence of topography
on the RUSLE model (please note that due to regional
snow cover, the predicted area is considerably reduced
in winter). Given an intact 100% vegetation cover the
annual sum of soil loss as cumulative sum of monthly
soil losses is 0.14 tha™' yr~'. However, considering

the actual fraction of green vegetation cover (average
annual FGVC=54% mapped for the period 2014—
2016 based on FCover300m; Smets, Jacobs, & Verger,
2017) the annual sum of soil loss as cumulative sum of
the monthly soil losses rises up to 4.55tha™" yr~'.
The latter is significant, as the mean annual value for
Europe including arable lands was calculated as 2.5 t
ha™! yr_1 (Panagos et al.,, 2015), and exemplifies the
potential vulnerability of Swiss grassland soils to soil
erosion if the vegetation cover is disturbed or removed.
Moreover, this clearly highlights the sensitivity of
RUSLE based models to the status of vegetation cover,
that should be more carefully observed in future studies.

The calculation of soil loss risk by water erosion at
monthly temporal resolution allows the identification
of summer as the main erosive season of Swiss grass-
lands. The combined effect of R- and C-factor (Meus-
burger et al., 2012; Schmidt et al, 2016; 2018b) is
amplifying the erosion risk in summer. For Swiss grass-
land, July and August have the highest monthly risk of
soil erosion by water (1.25tha™' month™, Table 3,
Figure 3). In contrast, for all winter months, a relatively
low soil erosion by water risk (winter average 0.02 t
ha™! month™) was predicted (Table 3, Figure 3,
Main Map) because of low rainfall erosivity (due to
snow fall/ snow cover). However, processes like snow
gliding and avalanches or even snow melt are not
included in the present model and need to be con-
sidered separately (Ceaglio, Meusburger, Freppaz,
Zanini, & Alewell, 2012; Meusburger et al., 2014; Stan-
chi et al,, 2014). The mean monthly soil loss due to
water erosion for summer is 48 times higher than the
mean soil loss in winter, 6 times higher than in spring
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Figure 2. Flowchart of the monthly erosion maps of Swiss grassland using the RUSLE erosion factors.

and 3 times higher than in autumn (see Schmidt et al.,
2018b).

3.2. Comparison of dynamic and annual soil loss
rates

The benefits of a higher temporal resolution are
obvious when estimated soil loss rates on a monthly
temporal resolution are compared with soil loss rates
on an annual resolution. The mean annual soil loss
rate (4.55tha™! yr_l) would indicate hypothetical
average monthly soil loss rates of 0.38 tha ' yr '
(Figure 4) which would be an overestimation of
mean monthly soil loss in winter (by 0.18 t ha™"'
month™") and an underestimation in summer (by
0.64 t ha~' month™"). Thus a higher temporal resol-
ution results in better knowledge of risky time periods
of soil erosion by water, with a significant peak of soil
loss rates on Swiss grasslands in summer and nearly
zero risk of soil erosion by water in winter.

Overall, focusing on the monthly distribution of soil
loss rates and rainfall erosivity (Figure 5), the latter
seems to be the most influential factor regarding the
intra-annual dynamics of soil loss due to water ero-
sion(Schmidt et al., 2016). However, the rainfall erosiv-
ity is considered in the model twice, as an individual
factor (Schmidt et al., 2016) and as a weighting factor

for the C-factor (Schmidt et al., 2018b). Furthermore,
our simulation does not consider soil loss induced by
snow related erosional processes. As measurements
with sediment traps or radionuclides have demon-
strated, overall sediment loss is most likely highest in
late winter and spring (Ceaglio et al., 2012; Meusburger
et al., 2014), when avalanches, snow melt and snow
ablation are triggering soil erosion on damaged and
vulnerable soil surfaces.

Table 3. Monthly (tha~" month™") and annual (t ha=" yr™") soil
erosion risk averaged for the Swiss grassland area with a
constraint of the maximal flow length to <1 m according to
observations (L-factor equals 1). Minimum soil erosion rate is
0t ha~' month™" (no soil erosion) in all month.

Mean soil Maximum soil Standard

erosion risk erosion risk deviation
Month (tha™" month™") (tha™' month™") (t ha~' month™")
January 0.01 0.43 0.02
February 0.01 2.40 0.05
March 0.02 419 0.06
April 0.02 6.23 0.10
May 0.47 3517 1.24
June 0.56 103.03 2.1
July 1.25 128.85 3.73
August 1.25 218.75 3.84
September 0.61 662.91 5.86
October 0.15 170.84 1.14
November 0.17 17.84 0.47
December 0.04 5.00 0.1
[4] 0.38 112,97 1.56
Y (tha 'y 455 1355.62 18.71
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January

March

April

October
soil loss rates
t ha! month-!

May June

September

November December

ENO-0.1Mm>0.1-05E0>0.5-1C0>1-2E0>2 -3 >3 - 5 >5

Figure 3. Spatiotemporal patterns of monthly soil erosion risk at Swiss grassland. Due to data gaps caused by snow fall in winter,
the predicted area is reduced in winter. The individual maps are displayed as a multiple mapset in the supplement material.

3.3. Soil loss rates and soil formation rates

The average annual soil loss of 4.55 t ha™" yr™! clearly
exceeds the maximum tolerable soil loss of Switzerland
(2 tha™" yr'; Schaub & Prasuhn, 1998) by a factor of
2. The average annual soil erosion rate of 4.55 t ha™"
yr~' would hypothetically equal a total eroded soil
mass of 5.26 Mt per year, related to the national grass-
land area of 1.155.980 ha.

Soil formation rates for alpine grasslands soils with
siliceous lithology were estimated by Alewell et al.
(2015) as 0.54-1.13tha™'yr~' for old soils (>10-
18 kyr) and 1.19-2.48 t ha™' yr™" for young soils (>1-
10 kyr). In both cases the predicted average soil loss
exceeds these rates. Only soil formation rates of very
young soils (<1 kyr; 4.15-8.81 tha™' yr™") can com-
pensate the annual soil loss. In conclusion, the

1.259 .
soil loss assessment
dynamic
z~ 1.004 ol
) — ATITIU
E
g 0751
IGQ
<
= 0504
w
w0
=
= 0.254
[=}
w
0.00 1
- — o — — = — — — — o
- N 2 2 5§ &8 3 &

Figure 4. Comparison of the distribution of monthly soil loss rates for Swiss grasslands (dynamic) and a mean annual soil loss rate
(annual), divided by twelve to result in a pseudo-monthly resolution.
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Figure 5. Influence of the temporal pattern of the monthly rainfall erosivity for the temporal pattern of the soil loss rates on Swiss

grasslands.

predicted soil loss rates for Swiss grasslands imply a
non-reversible loss of the valuable soil resource.

4. Conclusions

The monthly soil erosion maps presented here form
the first dynamic soil erosion approach on a national
scale with a monthly temporal resolution. They enable
the quantification of soil erosion risk, and provide
information about the spatiotemporal patterns of soil
loss due to water erosion on Swiss grasslands. These
patterns show that summer is the season with highest
soil erosion by water risk, which is 3/6/48 times higher
than in autumn/spring/winter, respectively, leaving the
soil surface damaged and vulnerable for potential snow
and frost induced processes (snow gliding, ablation,
melt, avalanches). In contrast, to a monthly temporal
resolution, annual assessments tend to overestimate
the soil erosion by water risk in winter and underesti-
mate it in summer. The analysis and integration of each
erosion factor reveals that the cover and management
factors is highly sensitive and that the actual state of
vegetation cover is crucial. Nonetheless, regarding the
intra-annual pattern the higher fraction of green veg-
etation cover in summer is incapable to compensate
the impact of high rainfall erosivity in summer. How-
ever, the strong impact of rainfall erosivity within
RUSLE, especially as a weighting factor for soil loss
ratios, needs to be discussed in future studies.

The maps are suitable to quantify the actual soil ero-
sion risk considering natural preconditions and land
use. The mapping could be further developed to moni-
tor the soil erosion risk by the use of real-time data (e.g.
satellite and radar data, land use information, and
topography data) as well as by mapping support and
management practices via the P-factor.

Such monthly erosion risk maps are of high impor-
tance for policy, soil scientist, environmentalists, and
agronomists because they serve as a knowledge base to
answer the question about where and when soil damage
might occur on Swiss grassland. RUSLE does not include

snow induced processes, so the overall soil loss might not
necessarily be greatest in the summer, but our modelling
confirms that highest damage due to grazing (low C fac-
tor) and high rainfall erosivity leaves the soils damaged
and vulnerable after the summer, leading to a high risk
of snow induced processes. As each factor is developed
individually, it uses key information from different disci-
plines and can be merged with other sources of infor-
mation to enable more targeted interventions e.g. for
soil and environmental protection, hazard mitigation,
land use change, and agricultural management.

Based on the monthly maps, a controlled spatial and
temporal soil erosion protection strategy, such as a
change in stocking rates for specific hotspots and
periods or the fencing of hotspots, is now feasible.
The approach for grasslands with a particular focus
on the Alpine conditions could serve as a prototype
for erosion mapping on grassland in other grassland
dominated regions and countries like Austria,
Germany, Italia, Slovenia, or France and would help
to protect the unique nature of these grasslands.

Software

The monthly maps of soil erosion by water for Swiss
grasslands are a product of statistical, remote sensing,
geoinformation and cartographic approaches which
are described in detail in the corresponding literature
of each erosion factor (Table 2).

The combination of the five factors of monthly soil
erosion maps was realized in ESRI ArcGIS (v 10.3.1)
likewise the layout of the map was designed in the
same commercial software. R (v 3.4.3) and RStudio (v
1.1.423) were used for statistical analysis and interpret-
ation of the erosion maps and underlying data.

Geolocation information

Country: Switzerland; scale: national scale; coordinates:
Top-Left N 47.808463° E 5.955889° and Bottom-Right
N 45.817967° E 10.492063°.
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