
Linking with uncertainty: The relationship between EU

ETS pollution permits and Kyoto offsets

Beat Hintermann∗

Marc Gronwald†

May 22, 2019

Abstract

Carbon offsets from the Kyoto Flexible Mechanisms can be used by firms in the EU Emis-

sions Trading Scheme for compliance in lieu of EU allowances, making these carbon assets in-

terchangeable. We offer an explanation of the price spread using a structural model of the price

for Certified Emissions Reductions that combines three features: A limit for the use of Kyoto

offsets within the EU ETS; a disconnect between the current price of offsets and their marginal

cost of production due to institutional reasons; and uncertainty about future supply and demand

of offsets. Our model expresses the offset price as an average of the EU allowance price and

an offset’s outside value, weighted by the probability of a binding import limit. Using monthly

series of the United Nation’s Clean Development Mechanism and Joint Implementation about

offset supply and demand, we provide empirical support for our theory of offset price formation.

Counterfactual simulations suggest that the price process is dominated by uncertainty.
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1 Introduction

In order to reduce the European Union’s cost to comply with the Kyoto Protocol, the European Com-

mission allowed firms included in the European Union Emissions Trading Scheme (EU ETS) to cover

a part of their CO2 emissions using offsets from the Kyoto flexible mechanisms. This established a

link between the EU ETS and the Kyoto markets.1 The two types of emission certificates were in-

terchangeable assets in principle, because both provide the holder with the right to emit one ton of

CO2. Not surprisingly, the price for EU allowances (EUAs) on the one hand, and Certified Emission

Reductions (CERs) and Emission Reduction Units (ERUs) on the other, have been highly correlated

during the Kyoto period and beyond. 2

However, the price for EUAs has consistently been higher than the price for CERs. Figure 1

shows the corresponding price histories.

Figure 1: Prices for EUAs, CERs (left axis) and their spread (right axis)

Source: Own illustration based on data from Thomson Reuters Datastream.

Some explanations for the price spread have been proposed in the literature: Some authors have

focused on transactions costs (Trotignon, 2012; Braun et al., 2015), whereas others argue that the

two carbon assets react differently to fundamentals such as fuel prices and economic activity (e.g.,

1This article contains a number of acronyms. To aid the reader, a table of relevant acronyms can be found in the
appendix.

2Because prices for CERs and ERUs are practically identical, but the liquidity of the former far exceeded that of the
latter before 2012, we use the CER price throughout the paper. In our empirical analysis, we focus on secondary CERs
throughout the paper, which do not contain delivery risk.
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Nazifi, 2013; Mansanet-Bataller et al., 2011). However, transactions costs would presumably drive

a (roughly) constant wedge between prices, and establishing a difference in the sensitivity to price

fundamentals neither explain the source of this difference nor why it persists. Furthermore, if the

markets were fully independent and each carbon asset driven by the (marginal) cost to generate it,

we would not expect the high degree of correlation that has been observed, given that abatement cost

curves are unlikely to be the same in Western Europe and in developing countries. Previous authors

have noted the importance of the import limit and of the expected demand and supply for offsets

for CER prices (see, e.g., Chevallier, 2011; Mansanet-Bataller et al., 2011; Nazifi, 2013). However,

these studies limit the analysis to standard time-series techniques and do not provide a structural or

economic explanation of the price spread.

In this paper, we explain the the EUA-CER price spread by proposing a specific economic mech-

anism that links these two prices, and which depends on the import limit and the expected future

supply and demand of offsets. The underlying assumption is that due to the lengthy and complicated

process underlying the generation and verification, the current expected supply of CERs is indepen-

dent of its current price. Our model is the first to (i) explicitly incorporate uncertainty about the net

position of the offset market into a CER pricing equation and (ii) include data about offset demand

and supply in our empirical analysis. We derive an pricing model that allows for a dynamic rela-

tionship between the two carbon assets, which changes as new information becomes available. We

propose uncertainty about future offset supply and demand, combined with a limitation of the num-

ber of offsets that could be used within the EU ETS, as the main price drivers for Kyoto offsets. Our

model explains a significant share of the observed price spread, and it is furthermore consistent with

the observation that the price for offsets gradually dropped to (near) zero by the end of 2012.

Without any restrictions, linking two emissions trading schemes leads to a single permit price,

equal to the cost of reducing emissions by one ton below the aggregate cap. But since the EU imposed

a limit of Kyoto offsets that could maximally be used in the EU ETS during Phase II, the prices for

EUAs and offsets need not converge.3 In general, a binding transfer limit breaks the link between

two emission permit markets. Once the allowable number of permits has been transferred from the

cheaper to the more expensive system, the situation is identical to one where two separate permit

3Throughout this paper, the term ”phase" refers to the different market phases of the EU ETS: Phase I (2005-2007),
Phase II (2008-2012), and Phase III (2012-2020). For a more extensive discussion of the design of the EU ETS, see
Hintermann and Gronwald (2015) and Ellerman et al. (2016). No explicit such phases exist in the market for CERs. A
review of the literature focusing on the drivers of EUA prices is given by Hintermann et al. (2016).
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markets coexist, but where some of the cap has been transferred from one market to the other.4

This reasoning abstracts from uncertainty. During much of Phase II, it was not clear whether the

import limit for offsets would turn out to be binding due to uncertainty on both the supply and the

demand side. Generating emission offsets either via the Clean Development Mechanism (CDM) or

by Joint Implementation (JI) is a complicated and lengthy procedure (Trotignon and Leguet, 2009).

Between the original proposal and the delivery of verified offsets, a project has to clear a number

of administrative stages, at each of which it may be rejected, delayed or its projected generation of

offsets adjusted. From market participants’ point of view, the total supply of offsets by a certain date

is therefore uncertain. The demand for offsets was uncertain as well, as it depended (besides demand

from ETS firms) on the extent to which Annex B countries of the Kyoto Protocol needed to rely on

offsets to achieve their emission reduction goals.5

We derive a model that expresses the offset price as an average of the EUA price and an offset’s

outside value, weighted by the probability that the import limit turns out to be binding. The iden-

tifying assumption of our model is that due to the lengthy process that underlies the generation of

Kyoto offsets, the current number of expected offsets is independent of the current offset price. We

calibrate the free model parameters using data about the expected supply and demand of offsets. The

calibrated model explains a significant share of the CER price variation. A supporting cointegration

and error correction analysis shows that the cointegration between EUA and CER prices broke down

at the same time as the probability of a binding import limit sharply increased. This suggests that our

model identifies the principal mechanism underlying the CER price formation.

2 Background

In the following, we present background information about the Kyoto flexible mechanisms and the

EU’s "Linking Directive" that established a link with the EU ETS, and present a short review of the

literature that is concerned with the market for Kyoto offsets.

4For a more detailed illustration of this point, see Grüll and Taschini (2012).
5Annex B countries agreed to binding emission reduction targets under the Kyoto Protocol. Countries’ emissions

during a calendar year are not made publicly available until the various sources have been checked and verified, which
often results in the publication of annual emissions not before the end of the following year. The deadline for purchasing
offsets was set by the end of the “true-up period”, which was on November 18, 2015; see the United Nations Framework
on Climate Change, “True-up period reporting and review process”, available at http://unfccc.int/kyoto_Protocol/true-
up_process/items/9023.php, last accessed on January 15, 2016.
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2.1 The Kyoto flexible mechanisms

The Kyoto Protocol’s flexible mechanisms were designed to lower the cost of achieving the emissions

reductions agreed to by the countries listed in Annex B (i.e., the countries that agreed to binding

emissions reductions), by carrying out emissions-reducing projects more cost-effectively in other

countries. The Kyoto Protocol differentiates between two types of flexible mechanisms based on

where the emissions reductions take place. Projects in developing countries are governed by the

Clean Development Mechanism (CDM) and produce one Certified Emissions Reduction (CER) per

avoided metric ton of CO2. Emissions reductions in other Annex B countries fall under the flexible

mechanism called Joint Implementation (JI), and result in the issuance of an Emissions Reduction

Unit (ERU) per metric ton of CO2. CERs and ERUs therefore only differ in terms of their origin, but

not in terms of their “content” or the way they can be used, and we therefore refer to both as "Kyoto

offsets" or simply offsets. The prices for CERs and ERUs were largely identical, although the market

for the former was much more liquid than that of the latter; a graph of the CER and ERU prices is

shown in Figure A1 in the appendix. The price convergence is consistent with our model where the

price for offsets is determined by their value of their use rather than their marginal cost of production

(see below), which likely differs between Annex B and developing countries.

CDM project activities have to comply with the requirements defined by the United Nations

Framework Convention on Climate Change (UNFCCC, 2015a). They have to follow a seven-step

process, which is illustrated in Figure 2.

The first step consists in the project participants (i.e., the entity that proposes to carry out the

actual project) preparing a project design document (PDD) in accordance with guidelines laid out in

UNFCCC (2015b), and submitting it to the Designated National Authorities (DNA) of both countries

involved (i.e., the country of the project participant, and the country where the project is to be imple-

mented). The PDD describes the proposed project and lists the expected emissions reduction per year

of operation. The preparation of the PDD can be the most time-consuming step in the entire project

cycle (UNFCCC, 2013).

If satisfied, the DNAs write a letter of approval confirming that both parties are part of the Kyoto

Protocol, and that the project contributes to the host country’s sustainable development. Based on this

national approval, the project participants then contract an independent auditor, a so-called designated
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Figure 2: CDM project cycle

Source: Own illustration based on Fig. 3.1 in UNFCCC (2013).

operational entity (DOE) for the validation of the project activity.6 The DOE verifies whether the

project proposal is consistent with the requirements of the CDM according to additionality and other

requirements defined in UNFCCC (2015b,c), and makes the PDD publicly available for a 30-day

consultation period. Based on the comments from the various stakeholders, the DOE either validates

(i.e., approves) or rejects the project. If the project has been validated, the DOE submits a request for

registration. After an additional check for completeness by the UNFCCC secretariat, the request is

made publicly available. If no review request is received within 28 days, the CDM EB registers the

proposed project; otherwise, and additional review takes place. All CDM projects must be registered

before they can be implemented.

After the implementation of the project, the project participants have to prepare a monitoring

report at regular intervals that demonstrates the emission reduction achieved, and submit it to a DOE

for verification.7 The DOE verifies whether the reported emission reduction took place, based on

the requirements for additionality defined in UNFCCC (2015c) and an on-site inspection. If the MR

has been verified, the DOE submits a request for issuance of CERs to the CDM EB. This request

is again made publicly available. If no review request is received from any party involved in the

project within 28 days, the CDM EB grants the issuance of CERs according to the number of verified

emission reductions. The last three steps are repeated for the duration of the project.

6Firms or organizations have to be registered by the UNFCCC in order to become DOEs. The Executive Board of the
Clean Development Mechanism (CDM EB) maintains a public list of approved DOEs.

7The DOE contracted for the verification of the achieved emission reductions usually differs from the DOE contracted
for validation, but the same DOE can be contracted upon request.
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At each step of the CDM project cycle, a project may be rejected, or approved subject to additional

requirements, which may cause a significant delay (Trotignon and Leguet, 2009). Furthermore, the

number of CERs produced per year may be smaller or greater than the emissions reductions specified

in the original PDD. The United Nations Environment Programme maintains a database of all CDM

projects and tracks their progress that have been approved by the DNA; this monthly database is the

source for our offset supply data (see below).

The total time between the initial project idea and the eventual delivery of CERs depends on the

nature of the project and the involved countries. The average time lag between the comment period

(during validation) and the registration of a project is shown in Figure A2 in the appendix, and Figure

A3 presents the average time lag between the end of the monitoring period and the issuance of CERs.

Figure A4 shows the number of projects at different stages of the CDM cycle. The total time it takes

to “create” a CER is the sum of the time lags shown in these figures, plus the time it takes to create the

PDD (anywhere between 6 months and several years) and to obtain the letters of recommendation,

plus the monitoring period (usually a year), which can easily add up to 5 or more years in total. This

implies that the supply of CERs cannot increased in response to an increase in the CER price, at least

not in the short to medium run.

The procedures governing Joint Implementation are very similar to those for CDM, with the main

difference being that two Annex B countries are involved. More details about the JI are provided in

the appendix.

2.2 The "Linking Directive"

In the directive that set up the EU ETS, the European Commission allowed the included firms to

cover some of their emissions using Kyoto offsets (European Union, 2003). On average, the number

of Kyoto offsets that firms in the EU ETS were allowed to use was 13.5% of their free allocation,

which amounted to around of 1.4 billion during Phase II. However, the exact number of offsets that

could be used by firms varied by country, and sometimes even by industry. There were also differing

rules regarding the use of the import quotas: Whereas some countries allowed their firms to use their

quota at any time during Phase II of the EU ETS, which coincided with the period of the Kyoto

Protocol, others stipulated that unused limits in one year could not be transferred to another year.

Because of the time delays discussed above, few offsets were available in the beginning of the
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phase, and it was not clear how many offsets would be available by the end of 2012. To accommodate

these issues, the European Commission decided in April, 2009, that firms could transfer any unused

import limits to Phase III of the market (European Union, 2009). In addition, installations that for

some reason were not given an import limit of 13.5% of free allocation in Phase II, or that entered

the market only in Phase III, were given an additional import allowance for Phase III, which roughly

amounted to another 300 million offsets. The total number of offsets that EU ETS firms are allowed

to use in Phases II and III (i.e., between 2008 and 2020) is therefore around 1.7 billion.

While offsets generated during the Kyoto period can be banked for use after 2012, the reverse

is not true: Offsets generated after 2012 could not be used for compliance in Phase II.8 However,

because of the large amount of banked EUAs and the right to use up import limits through the end

of Phase III, this no-borrowing constraint was not binding. Offsets generated after 2013 could thus

be used by EU ETS firms during Phase III, but with some restrictions regarding the activities and

locations of projects. Specifically, activities involving fluoroform (HFC-23) and nitric acid were

excluded, and projects had to be located in a “least developed" country.

2.3 Related literature

Hieronymi and Schüller (2015) investigate how the existence of different emission permit classes

affects firms’ investment decisions between fossil and renewable sources of energy production. The

authors apply a real options approach and find that having the option to use offsets increases the

likelihood that a firm invest into a natural gas plant as opposed to wind energy, due to the lower

compliance costs, and this effect increases with the import limit for offsets. Effectively, the provision

to allow EU ETS firms to cover a part of their emission using Kyoto offsets amounts to a softening of

the EU’s climate policy. Vasa (2012) discusses policy changes that would lead to a different allocation

of the rents from the EUA-CER spread, such as auctioning of the rights to use offsets.

Rahman and Kirkman (2015) focus on the CDM as such and find that the costs associated with

generating CERs decrease with the scale of a project and its duration, vary across project types, and

increase over time. Trotignon (2012) provides an overview of the regulatory conditions and analyses

the use of offsets in the EU ETS in 2008 and 2009. He finds that some ETS firms used offsets during

the first two years of Phase II, but that many firms did not, despite the price difference. Among

8This could theoretically have been the case for offsets generated between January and April of 2013, as this is the
time when firms had to surrender allowances to cover their emissions for the year 2012.
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the offset importers, few exhausted their import limits. One possible explanation is the presence

of transaction costs. Similarly, Braun et al. (2015) propose a model where multiple compliance

targets co-exist, and show how differential transactions costs lead to a price spread between otherwise

identical emission allowances.

A number of papers have looked at the EUA-CER spread from a technical perspective. For exam-

ple, Nazifi (2013) employs a time-varying parameter model to relax the assumption of a fixed struc-

tural relationship between fundamentals and carbon assets. Among the main findings of that paper is

that EUA price drivers affect CER prices in a different way and, as a result, a price spread emerges.

Noteworthy is that this empirical analysis shows that institutional news and regulatory changes re-

garding the usability of CERs significantly affects the CER market; however the empirical model is

ad-hoc and not structural. Koop and Tole (2013) employ flexible multivariate time series models to

allow for time-varying parameters to study jointly model EUA and CER prices. They find evidence

for contemporaneous causality with a dominant role of EUA futures, and that the relationship be-

tween the two types of carbon prices is changing over time due to the influence of macroeconomic

factors such as the financial crisis. Qualitatively similar findings are obtained by Chevallier (2012),

who uses a regime-switching model to show that business cycles are an important driver of the dy-

namics of the relationship. Kanamura (2016) studies the influence of carbon swap trading and energy

prices on the relationship between EUA and CER prices. He shows that the correlation between EUA

and CER prices has different drivers in different periods: while EUA-CER swap transactions explain

a high correlation during periods with high EUA prices, falling energy prices explain the correlation

between the two price series in the period of the financial crisis.

Mansanet-Bataller et al. (2011) identify a cointegration relationship between EUA and CER

prices. Using a variance decomposition analysis, they report that a significant share of the varia-

tion of CER prices is explained by EUA price variations (but not vice versa), which is consistent with

the assumptions that underlie our own model.9 Similar to Nazifi (2013), information from the CDM

pipeline is used in order to explain a share of the variation of the price spread, but without a structural

derivation. To summarize, the papers discussed above capture the CER price process in a technical

way, using different data and econometric models. Our paper builds on this literature in the sense that

we recognize the presence of a systematic dynamic relationship between the EUA and CER prices,

in which the former takes a leading role.
9In contrast, Mizrach (2012) and Nazifi (2013) find no cointegration relationship between EUA and CER prices.
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3 Model

In the following, we present the models we use in this paper: first, the structural CER price model

and, second, the supporting cointegration and error correction analysis.

3.1 CER price model

We denote EUA prices by Pt and prices for offsets from the Kyoto flexible mechanisms (either CERs

or ERUs) by Ct. Global demand and supply of offsets at time t are given by dt and st, respectively.

We assume that the probability of noncompliance (i.e., that total emissions during Phase II exceed

the total cap plus the import limit) is negligible, which was arguably the case after the decrease in

business-as-usual emissions in the wake of the economic crisis of 2009. This means that a positive

amount of allowances is transferred from Phase II to Phase III in expectation, which in turn implies

that the allowance price in these two phases is continuous. This assumption is consistent with the

empirical price data shown in Figure 1.

We further define St0 ≡
∑t

k=0 sk to be the cumulative offset supply by time t, which is observable,

and STt ≡
∑T

k=t+1 sk to be the cumulative future offset supply until the terminal period for offset use,

T . Due to the stochasticity of offset supply, STt is uncertain at time t. Likewise, Dt
0 ≡

∑t
k=0 dk refers

to cumulative offset demand observed to date, and DT
t ≡

∑t
k=0 dk to uncertain future demand.

An important assumption in our model is that the time delay between an initial project proposal

and the eventual delivery of certified offsets breaks the short-term link between the price and the

expected supply of offsets. For example, an increase in the offset price in 2010 may lead to more

projects being initiated, but we assume that this has no effect on the number of offsets that become

available by the end of 2012. Conversely, projects that have incurred most of the associated fixed

costs will continue to deliver offsets even if the offset price decreases, provided that the marginal

costs of offset production are sufficiently low.10 Because the UN pipeline data does not identify

projects that are placed on hold and thus keeps them as active projects, our measure of expected

supply does not incorporate price-induced reductions of the CER supply. This renders the expected

excess offset supply published by the UN exogenous, rather than jointly determined with the offset

10Many offset projects consist in installing new production technology, which implies a combination of high fixed costs
and low (or even negative) marginal abatement costs, compared to the situation without investment. In other words, once
a more efficient production technology has been installed, it will be used independently of the CER price. Naturally, this
assumption does not apply to CERs that are produced by means of fuel switching.
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price, such that it can be used as an explanatory variable. On the demand side, Annex B countries

typically make their purchases depending on the success of their domestic abatement efforts, which

we assume to be independent of the price of offsets.11

As long as offsets can be used in the EU ETS, the relevant opportunity cost is the price of an

EUA: Buying one offset allows firms to save one EUA to cover their emissions, which they can either

sell on the market or bank into future periods t > T . If the EU ETS import limit has been reached,

the opportunity cost for an offset depends on the willingness to pay by Annex B countries to reduce

their Kyoto compliance gap by one unit, which could in theory be different to the price for EUAs.

However, for lack of a different global reference price for CO2 emissions, and because countries

could also use EUAs in lieu of offsets to comply with their Kyoto obligations, we assume that the

willingness to pay for offsets both within and outside the EU ETS is given by the price for an EUA

as long as the total number of supplied offsets does not exceed global demand related to the Kyoto

process. If supply exceeds global demand (i.e., demand from the EU ETS plus Annex B countries),

the willingness to pay for offsets will be related to their use in the context of the Paris Agreement,

and possibly to private demand unrelated to any climate treaty.

Denoting the value for this "residual" use assigned to offsets at time t as Vt, we obtain the follow-

ing relationship between offsets and EUA prices in some terminal period T:

CT = PT if ST0 ≤ DT
0 (1)

CT = VT if ST0 > DT
0 (2)

At time t < T , firms are not sure whether offset supply will exceed global demand. The expected

payoff from holding an offset at time t, subject to the available information at this time, is

Et[CT ] =Et[PT ] · Pr(St0 + STt ≤ Dt
0 +DT

t ) + Et[VT ] · Pr(St0 + STt > Dt
0 +DT

t ) (3)

Let xt ≡ STt −DT
t refer to the future cumulative excess supply of offsets between t and T , which

is a stochastic variable distributed according to the probability density function f(xt). This allows us

11At very high offset prices, countries might prefer to institute new climate policies. However, the time lag between
the proposition of new policy and results in terms of abatement may take years as well. In any case, the prices of offsets
were below expectations throughout the Kyoto Phase, and certainly well below abatement costs e.g. by fuel switching.
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to express (3) as

Et[CT ] = Et[PT ] ·
∫ Dt

0−St
0

−∞
f(xt)dxt + Et[VT ] ·

∫ ∞
Dt

0−St
0

f(xt)dxt (4)

Using the central limit theorem and defining the expectation and standard deviation of xt as µxt

and σxt , respectively, the variable Qt ≡ (xt − µxt )/σxt has a standard normal distribution such that we

can express (4) as

Et[CT ] = Et[PT ] ·
∫ (Dt

0−St
0−µxt )/σx

t

−∞
φ(Qt)dQt + Et[VT ] ·

∫ ∞
(Dt

0−St
0−µxt )/σx

t

φ(Qt)dQt ,

or, equivalently, as

Et[CT ] = Et[PT ] · Φ
(
Dt

0 − St0 − µxt
σxt

)
+ Et[VT ]

(
1− Φ(·)

)
, (5)

where φ(·) and Φ(·) refer to the p.d.f and c.d.f. of the standard normal distribution, respectively, and

their argument is the standardized expected excess demand until period T .

Arbitrage implies that the prices of offsets and EUAs have to be equal to their discounted expected

prices in period T , where r is the risk-free rate of discount:12

Ct = Pt · Φ
(
Dt

0 − St0 − µxt
σxt

)
+ e−r(T−t)Et[VT ] ·

(
1− Φ(·)

)
(6)

Eq. (6) is our offset pricing equation and states that the spot price of an offset is equal to the spot

price of an EUA,13 times the probability that the total supply of offsets is insufficient to cover the

global demand (the sum of EU ETS firms and Annex B countries). In that case, offsets and EUAs

are fungible assets and their prices converge. If, on the other hand, the market expects an oversupply

of Kyoto offsets, then offsets should trade at a significant discount relative to EUAs, assuming that

12Our focus is on pricing CERs based on their opportunity costs, and we abstract from the risk premia of EUAs and
CERs by assuming that investors are risk-neutral. Under risk neutrality, the stochastic discount factor, which is the basis
of pricing assets under risk, reduces to the rate of time preference. Using notation from Cochrane (2009), the price of
an asset is given by p = E[mx], where m is the stochastic discount factor and x the payoff. Under risk neutrality, the
marginal utility of income is the same across all states of the world, such that the pricing equation reduces to p = m·E[x].
In our context, the discount factor becomes m = e−r(T−t), which results in eq. (6).

13Note that the pricing equation holds for future prices as well, provided that the delivery period is no later than T .
Due to the import rules, CER futures with delivery beyond T would be priced according to only the second half of the
price equation, since use in the EU ETS or Kyoto is not an option.
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Et[VT ] < Pt. If there is no use for Kyoto offsets outside Annex B countries, then VT = 0.

Our pricing equation (6) is qualitatively similar to pricing equations derived for EUAs during the

first phase of the EU ETS (Carmona et al., 2009; Chesney and Taschini, 2012; Hintermann, 2012).

These equations express the price for an EUA as a function of the penalty for noncompliance and

the probability that the first-phase cap turned out to be binding. A common feature of these price

equations is that they are based on models of discontinuous markets. In the first phase of the EU ETS,

the discontinuity was due to the no-banking provision, which made it impossible to bank unused

allowances into the second market phase. At the end of the first phase, allowances were therefore

either worth nothing or the penalty for noncompliance. In the present context, the discontinuity

stems from the fact that offsets cannot be used in the EU ETS beyond 2020. Any unused offsets are

then sold at the price of the outside option VT (which could be zero).

In our data, we do not observe Dt
0 and DT

t separately and thus cannot compute µxt directly. How-

ever, the numerator in (6) is the total expected excess demand, which we can compute based on our

data as

Dt
0 − St0 − µxt = Et

[
DT

0 − ST0
]

(7)

There is no empirical information about what σxt should be. However, if only few offsets have

been issued, the uncertainty associated with delays and attrition is arguably greater than if a significant

share of the announced offsets already exists. As t→ T , the uncertainty vanishes, at least in theory.14

To account for this, we specify the uncertainty about future excess supply as a decreasing function of

the share of the total expected offsets that have actually been issued by time t, and include σ as a free

parameter in the model:

σxt = σ · S
t
0 + E[STt ]

St0
for St0 > 0 (8)

The parameter σ represents the standard deviation of the expected excess supply if all announced

offsets have been issued; the remaining uncertainty is therefore entirely due to the demand side.

Last, (6) depends on market participants’ expectation of the outside value of offsets, VT . We

14Note that this is true only if information about offset supply is instantaneously available. In reality and as discussed
above, monitoring takes place irregularly and with a delay, such that eve at t = T , the exact number of offsets available
is not known.
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leave this as a free parameter, but allow it to be updated after the Copenhagen negotiations about a

post-Kyoto agreement failed in December 2009.15 We thus include a dummy, Dcop
t , that is equal to

zero before December 2009, and one thereafter. This leads us to the following specification:

Ct = Pt · Φ
(
Et
[
DT

0 − ST0
]

σ · E[ST0 ]/St0

)
+ e−r(T−t) [V0 + Vcop ·Dcop

t ] ·
(
1− Φ(·)

)
(9)

In our empirical section, we calibrate the free parameters σ, V0 and Vcop by estimating (9) by

nonlinear least squares.

3.2 Cointegration and error correction

To obtain a quasi-external validation of our pricing model, we employ a cointegration and error

correction analysis. This analysis does not rely on the two main assumptions made in the development

of our pricing equation: The expected supply of offsets does not respond to the current price for

offsets, and the EUA price drives the CER price but not vice versa. The idea of the theoretical model

we put forward is captured here in a different manner. If the probability that a CER can be substituted

for an EUA at the end of the relevant time period is high, the two price series would be closely related

and, thus, possibly cointegrated. In contrast, the smaller this probability is, the less related the prices

will be, which should result in a lack of cointegration. In case a cointegration relationship exists, the

estimation of an error correction model (ECM) is useful.

Rather than conducting this analysis using the entire sample, we investigate how this relationship

changes over time. To do this, we start with an initial subsample and subsequently add observations,

while holding the starting point of the sample fixed.16 For each subsample, we perform the standard

cointegration and error correction procedure described by Engle and Granger (1987). For this, we

regress the EUA price on the CER price and compute the residuals. This is commonly referred to as

estimating the long-run relationship; thus, the residual series measures the distance or the equilibrium

error between the two variables under consideration. If a cointegration relationship exists - or in other

words, an equilibrium relationship - the residual series will be stationary.

15During the Conference of Parties (COP) meeting in Copenhagen, it became clear that there would be no continuation
of the Kyoto Protocol in the sense that there was no binding multinational treaty that specified mandatory emissions
reductions. However, some countries (including all members of the EU) agreed to voluntary emissions reductions.

16This procedure is referred to as ”forward recursive" and is very common in the applied time series literature. Most
recently, Phillips and Yu (2011) employ this procedure in order to identify origin and collapse date of stock market
bubbles. This further development of so-called cointegration based tests for speculative bubbles also involves applications
of unit root tests.
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We then conduct a two-part analysis. First, we apply a Phillips-Perron unit root test of no cointe-

gration, against a null hypothesis of a stationary residuals (which implies the presence of cointegra-

tion). The forward-recursive application of this procedure yields a sequence of p-values, which can

then be used to illustrate a potential change in the cointegration relationship over time. Second, we

estimate an error correction model, which captures how the CER price responds to the equilibrium

error. If an equilibrium relationship exists between CER and EUA price, the coefficient of the equi-

librium error (which is also called the adjustment parameter) enters the error correction model in a

statistically significant manner. This procedure is applied forward recursively and allows us to track

the development of both the adjustment speed and the associated p-value over time. More technical

details about the cointegration and error correction analysis can be found in the appendix.

4 Data

We obtained a monthly series of the UN’s “CDM and JI pipeline”.17 The data contains information

about all projects that have reached at least the validation stage. For each project, the expected

number of offsets is computed by the end of 2012 and by the end of 2020. The data also contains

information about actual offset issuance, project type, location etc.

The expected number of offsets is based on the information contained in the project design doc-

ument (PDD). To correct for delays and to incorporate new information about the issuance success

(i.e., the productivity) of a project, we make the following corrections:

Credit start of projects that have not yet been registered

The PDD of each project contains an expected credit start, which is the expected time when a project

starts to actually reduce emissions and thus generates emission offsets. This credit date is only ad-

justed if a revised PDD is submitted, or if the project is registered. Due to delays in the CDM or JI

process (see above), the projected credit start is quite often before the current month of observation,

even though the project has not yet been registered (and thus the credit start cannot have happened).

Whenever this is the case, we replace the expected project date with the current date. For example,

suppose that the CDM pipeline of July 2011 lists an unregistered project with a projected credit start

17Available at www.cdmpipeline.org, last accessed in January 2016. The website only contains the current pipelines.
We thank the UN’s Jorgen Fenhann for providing us with the historic pipelines.
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in 2010. In this case, the expected project start is moved forward to July 2011.

Issuance success of registered projects

Once a project is registered, it begins to produce offsets. After each monitoring period, the number of

generated offsets during this period is listed in the (verified) monitoring report. This number may be

greater or smaller than the number expected based on the PDD due to unforeseen shocks or events;

however, the “expected offsets by 2012/2020” series in the CDM and JI pipelines do not account for

this new information, but continue to list the expected offsets based on the PDD. To correct for the

heterogeneity in issue success, we adjust the number of expected offsets using the information from

the monitoring report at time t̄ in the following way:

Corrected expected (exp.) issuance (iss.) by T =

(
Exp. iss. by T − Exp. iss. by t̄

)
·
(

Observed iss. by t̄
Exp. iss. by t̄

)
+ iss. by t̄ (10)

For example, suppose that a project started in 2009, and based on its PDD it is expected to deliver

250,000 offsets per year, or 1 million offsets by the end of 2012. However, the monitoring report

for the first year (t̄ = December 31, 2009) shows that instead of the projected 250,000, only 200,000

offsets were produced. The formula above then computes the corrected expected issuance using this

issuance success of 80%, which results in a corrected expected issuance of (750kt · 0.8 + 200 kt=)

800 kt by 2012. An equivalent correction applies to the number of expected offsets by 2020.

The original data in the CDM and JI pipelines refer to so-called “primary” offsets, which are

subject to the full delivery risk. Because the adjustment carried out in (10) removes an important part

of the delivery risk, the resulting data more closely describes actually expected offsets. This makes it

consistent with the empirical analysis, which is based on secondary CER prices, i.e, prices for CERs

that have already been issued and therefore contain no delivery risk.

Restrictions for Phase III

After the end of Phase II, offsets from projects involving the reduction of HFC-23 or nitric acid

were excluded for use in the EU ETS or the Kyoto market. This excluded a significant share of
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the expected offsets by 2020, as shown in Figure A5 in the appendix. Furthermore, only projects in

“least developed countries” were allowed for continued use (European Union, 2009), which excluded

offsets from projects e.g. in China. Issuance of CERs or ERUs from projects that did not meet these

criteria was still possible, but only for the emissions reductions that took place before 2013. We

corrected the “expected by 2020” series for the Phase III-restrictions by excluding offsets that did not

meet the inclusion criteria.

We obtained estimates for offset demand from Bloomberg, which cites the World Bank as one of

the sources. Demand estimates are split up between demand from EU ETS firms, based on the offset

import rules and Annex B countries. The data furthermore differentiate between demand by 2012,

and demand by 2020. However, expectations for the latter were not updated every month, but only

when new information became available.

Figure 3: Supply of offsets

Source: Own illustration based on data from UN CDM/JI pipelines (see footnote 17).

Figure 3 presents the the original and the corrected estimates for offset supply (sum of CERs

and ERUs) by 2012 and by 2020 over time, along with the actual issuance. The drop in the supply

estimates by 2020 is predominantly due to the restrictions imposed for Phase III. Note that although

the difference between projected and actual offset supply decreases over time, the two lines do not

actually converge. This suggests that once the CER price dropped to very low levels, some projects

either halted operation or stopped engaging in (costly) monitoring reports, but without notifying the

CDM board that the project had been abandoned.18

18Although this means that the UN data overestimates the true expected offset supply, from an empirical perspective
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Figure 4 shows the expected demand for offsets. Whereas demand and supply were of simi-

lar magnitude if computed by 2012, the surge in supply by 2020 (accompanied by a much smaller

increase in demand) resulted in a significant expected excess supply.

Figure 4: Expected excess demand for offsets (demand minus supply)

Source: Own illustration based on World Bank data as reported by Bloomberg.

We use next-December futures for EUAs from the European Energy Exchange (EEX). For the

CER price, we use the one-year future from Nordpool until February 2008, and a broker price from

Reuters thereafter (the Nordpool price series ends at some point; at the switch, the two prices are

identical). We accessed these prices via Thomson Reuters Datastream.

Summary statistics of all variables are presented in Table 1. Because the offset supply data follows

a monthly frequency, we use monthly values for our analysis. The trading volumes (aggregated to the

month) imply that both assets were traded at a sufficiently high frequency to justify the international

arbitrage underlying eq. (6).19

it is preferable to not include a price-induced response in offset supply, as we assume that the supply of offsets drives
the price, but not vice versa. In this sense, the UN supply estimates can be viewed as a quasi-exogenous (i.e., price-
insensitive) instrument for true CER supply.

19The longest price series for CERs is supplied by Thomson Reuters, which includes OCT transactions. However, this
price series does not include trading volumes. To get information about the volume of trades, we use data from EEX and
Bluenext, which covers a shorter time period.
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Table 1: Summary statistics

Variable Obs Unit Mean Std. Dev. Min Max

Exp. offset supply by 2012 103 Mt CO2 2'920 346 2'037 3'351

Exp. offset supply by 2020 103 Mt CO2 7'561 1'797 2'037 9'342

Verified offsets 103 Mt CO2 1'109 906 51 2'498

Exp. offset demand by 2012 103 Mt CO2 1'803 616 1'255 3'237

Exp. offset demand by 2020 59 Mt CO2 3'091 656 2'725 4'700

CER price 103 Euro/tCO2 7.57 6.70 0.14 21.05

CER volume 78 kt CO2 1'703 1'679 2 6'929

EUA price 103 Euro/tCO2 11.86 6.18 3.55 27.38

EUA volume 91 kt CO2 19'932 39'095 142 226'732

Sample period: June 2007 until December 2015. Sources: Offset supply from the UN’s JI and CDM
pipelines; offset demand from the Bloomberg; CER and EUA prices and volumes from Thomson Reuters
Datastream; volumes are sum of transactions at EEX and Bluenext.

5 Results

We start by presenting the calibration results and then engage in the computation of counterfactual

CER prices based on different assumptions about the distribution of demand and supply for offsets.

Finally, we compare our results with those of a cointegration analysis to provide some external sup-

port of our theory.

5.1 Calibration

The time period T marks the relevant time horizon for the demand and supply of offsets. As discussed

in section 2, the relevant time horizon is December 2012 in the beginning, but switches to December

2020 when the EU decided to allow for the transfer of any unused import limits to Phase III. Rather

than just using April 2009 as switching date, we “let the data speak” in order to learn about how

information is processed in this market. We thus estimate (9) for all switches in the relevant time

horizon’ between January 2008 and December 2012. The model fit as measured by the Bayesian

Information Criterion is highest if the relevant time horizon switched to 2020 horizon in December

of 2008, which is five months prior to the issuance of the Amended Linking Directive.20 The fact that

the revealed switch occurs before the publication of the Directive could be explained by the content

of the directive being discussed several months before it was finalized. In addition, there was a public

20Using Akaike’s Information Criterion and the average absolute error leads to the same switching month.
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controversy about the additionality regarding offsets from HFC-23 projects, which were banned by

the directive, and which likely increased its salience.

The first column in Table 2 shows the calibrated values based on switching the series in December

of 2008. The second column displays the results if the switching date is set for April 2009, the

publication date of the Amended Linking Directive. The results are qualitatively similar, indicating

that the are not overly sensitive to the exact switching month.

Table 2: Calibration results
Switch in Dec. 2008 Switch in Apr. 2009

V0 14.89 14.32
(1.30) (1.27)

Vcop -14.11 -13.55
(2.68) (2.70)

σ 2,616 2,629
(4,122) (4,168)

Note: Coefficient estimates based on nonlinear regression of specification (9) using Stata Version 15.
Standard errors given in parenthesis.

The fact that the value of the outside option decreases from around 14 Euros to a number that

is statistically not different from zero (i.e., the sum of the coefficietns on V0 and Vcop) suggests that

the failure of an agreement for a post-Kyoto treatment lead to a downward adjustment of the outside

value of offsets to zero. In the absence of a formalized mechanism that allows countries or firms to

engage in emissions reduction efforts abroad, offsets generated via the CDM and JI mechanisms can

only be used for compliance within the EU ETS or Annex B parties, and are worthless otherwise.

Figure 5 shows the predicted CER price, along with the EUA price, based on the calibrated pa-

rameter values. The base model (9) captures the main price movements. Allowing the outside value

of offsets to be updated annually by including yearly dummies in the term in brackets, rather than

only after the COP meeting in Copenhagen in December 2009, leads to a much better model fit, sug-

gesting that the pricing equation (9) does not capture the full price process. However, because we

are mainly interested in proposing a mechanism that underlies the CER price rather than producing

a price prediction per se (which could be accomplished by including he lagged CER price as an ex-

planatory variable for the current CER price, but at the cost of foregoing any attempt for an economic

explanation), we proceed the analysis with the predictions of the parsimonious base model.
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Figure 5: Prices and predictions

Source: EUA and CER prices from Thomson Reuters Datastream; predictions based on own calcu-
lations.

5.2 Counterfactual CER prices

Using our calibrated values, we can compute CER prices under counterfactual assumptions about

offset demand and supply. First, we examine the sensitivity of the resulting CER price with respect to

a change in the expected excess demand. For example, the EU could have chosen a different import

limit, or Annex B countries could have achieved different abatement amounts at home (which would

have directly affected their expected demand for offsets). For this “what if”-exercise, we hold the

EUA price constant. The left panel in Figure 6 shows the CER price prediction for counterfactual

scenarios where excess demand is larger or smaller by 4 Gt. The effect of this sizable change in

excess demand (recall that the actual import limit to the EU ETS is 1.7 Gt) on the CER price is rather

small. The reason is that in the beginning of Phase II, the most important determinant in the CER

pricing equation is the large uncertainty about future supply and demand of offsets, which is in the

denominator of Φ(·) in (9), and which dampens the effect of even substantial changes in expected

excess demand.21 However, the more information that is revealed, and as a consequence, the smaller

the uncertainty about future excess demand, the larger is the effect of a change in excess demand, as

can be seen in the figure.

The right panel in Figure 6 shows the sensitivity with respect to the standard deviation of excess

21Given the large standard deviation σt, Φ(·) ≈ 0.5 unless the shift in the expected excess demand becomes very large.
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Figure 6: Counterfactual predictions for different expected excess demand

Source: EUA price from TR Datastream; demand data from Bloomberg; predictions based on own
calculations.

offset demand. The effect of doubling or halving σt is relatively small, and even multiplying σt by

a factor of 10 does not significantly affect the CER price. However, if σt were smaller by a factor

of 10, CER price would have approached zero much sooner, namely after the COP meeting at the

end of 2009. This is the moment when it became clear that there would be no binding international

agreement after the Kyoto period, thus basically eliminating the value of offsets if they cannot be

used within the Kyoto framework (including the EU ETS). Our results imply that the CER price

did not immediately respond to this change in the future institutional background due to the large

uncertainty surrounding the demand and supply of offsets. This suggests a role for institutions that

increase the transparency on both the demand and the supply side for future offset programs or when

linking domestic cap-and-trade markets, e.g., in the context of the Paris agreement.

5.3 Cointegration and error correction results

Having presented the results of our theoretical model, we now turn to the results of the cointegration

and error correction analysis. In the context of model (6), a break in the cointegration relationship

between the two prices can be interpreted in the sense that the import limit is binding, and thus that

the probability of CERs and EUAs being fungible assets becomes small. This would imply that an

equilibrium relationship no longer exists, which would be accompanied by both a decrease in the

magnitude and the loss of significance of the adjustment speed coefficient. The left panel in Figure 7

shows this probability, Φ(·), along with the adjustment speed parameter. The probability Φ(·) drops

sharply towards the end 2012, which coincides with a similarly decline in the (absolute) value of the
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adjustment speed parameter, α. The right panel shows that the decline in Φ(·) also coincides with a

loss of significance of the adjustment speed paramerer as well as a loss of cointegration.22 The fact

that this cointegration and error correction analysis yields a qualitatively similar result in terms of

when the two prices diverged lends additional support for our model.

6 Conclusions

In this paper, we develop a theory of CER price formation. We derive a pricing equation that specifies

the CER price as a weighted average of the EUA price and the outside value of offsets, with the weight

given by the probability that the limit for using offsets in the EU ETS turns out to be binding. We

calibrate our model using monthly data about offset supply from the UN’s CDM/JI pipelines, which

is a rich data source that, to our knowledge, has not been used to investigate CER price determination

to date. Our base model, which only contains three calibrated parameters, explains a significant share

of the CER price variation. Our findings are further supported by a series of cointegration tests that

indicate that the moment when the cointegrating relationship between EUAs and CERs breaks down

coincides with a sharp increase in the probability that the offset import limit turns out to be binding.

The existing literature on the price spread either applies a-theoretical time series approaches only or

emphasises the role of transaction cost. Thus, the former does not provide a structural explanation

for the observed spread while the latter argument is not able to explain the time-varying nature of the

price spread.

Using our calibrated model, we engage in a “what if” exercise where we analyze the sensitivity

of the offset price to changes in the level of expected excess demand, and in the uncertainty sur-

rounding the supply and demand of offsets. For example, the EU could have chosen a different offset

usage limit for the EU ETS, or Annex B countries could have been asked to publish their projected

offset demand in the context of the Kyoto protocol more frequently. We find that even significant

changes in the level of expected demand and/or supply lead to only minor changes in the resulting

CER price. In contrast, (significantly) reducing the uncertainty surrounding demand and supply of

offsets increases the dependency of the CER price to variations in demand and supply, as well as to

22Note that each element in the sequences of p-values and adjustment speed parameter estimates represents the value
at the end of each subsample. The cointegration tests indicates that the cointegration collapses some time after the loss of
significance of the adjustment speed parameter. This result reflects that the cointegration test requires a certain number
of "non-cointegrated" observations before the null of no cointegration is no longer rejected.
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changes in international climate policy. In particular, if the uncertainty about excess supply had been

significantly smaller, the CER price would have dropped to zero immediately after the negotiations

for a post-Kyoto agreement collapsed in December of 2009.

Our results suggest that uncertainty plays an important role when linking two emission trading

systems, in particular if institutional and regulatory barriers disconnect prices and quantities. In

such a situation, market participants are unsure if the market will be long or short, unless there are

specifically designed mechanisms that reveal this type of information. Such mechanisms were absent

in the CER/ERU markets, and as a consequence, the price for offsets remained high even when (in

hindsight) it was clear that aggregate supply far exceeded demand. Thus, important policy lessons

emerge from this analysis.

Uncertainty about whether (and/or when) two cap-and-trade markets will be fully linked is a nat-

ural scenario in the future if political concerns exist about unlimited linking domestic markets in the

context of the Paris Agreement. Under full linking, the more stringent market “inherits” the climate

policy of the less stringent market and may furthermore import price volatility due to regulatory

changes abroad (Green, 2017). At the same time, very limited linking may not be interesting from

an economic perspective since the expected costs savings would be minor. As a consequence, an

intermediate level of linking as analyzed in this paper may be a likely outcome, such that linking

under uncertainty may become the rule rather than the exception in future climate policy.

Our model could be applied to different contexts where assets are fungible in principle, but subject

to constraints which may or may not turn out to be binding. Examples include markets for electricity

futures where spot prices converge if and only if connection constraints are nonbinding, or the con-

vergence of prices for natural gas futures in North America and the rest of the world depending on

the capacity of gas export terminals.
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A Additional tables and figures

Table A1: List of acronyms

CDM Clean Development Mechanism
CDM EB Executive Board of the Clean Development Mechanism
CER Certified emissions reduction
DOE Designated operational entity
DNA Designated national authorities
ERU Emissions reduction unit
EU European Union
EUA EU allowance
EU ETS EU Emissions Trading Scheme
HFC-23 Fluoroform
JI Joint Implementation
MR Monitoring report
PDD Project Design Document
UN United Nations
UNFCC United Nations Framework Convention on Climate Change
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B Emissions reductions via the Joint Implementation (JI) mech-

anism

The guidelines for participation in the JI mechanism are described in UNFCCC (2006). Parties may

apply to one of two different JI “tracks”. The first track consists in a simplified procedure that allows

the host party itself to verify that emissions reductions of a project are indeed “additional to any that

would otherwise occur” and issue the correspondent amounts of ERUs. Under track 2, verification

and issuance of ERUs has to follow the verification procedure under the JI supervisory Committee.

As in the CDM, the first step consists in project participants developing a project design document

(PDD), which contains all the information specified in the JI guidelines. The PDD must show that

the project has been approved by all the involved Parties, how the emission reductions are to be

achieved, and that its baseline and monitoring plan is in line with the required criteria specified in JI

guidelines. The PDD has to be submitted to an accredited independent entity (AIE), who makes the

PDD publicly available for a 30-consultation period involving all relevant stakeholders. The AIE then

determines whether the PDD provides all necessary information and makes its determination publicly

available. If no review on the part of a Party involved in the project or the JISC is requested within 45

days, the PDD is “determined” to be final, which means that the project can be implemented. After

implementation has started, project participants periodically have to submit a monitoring report about

the achieved emissions reductions to an AIE (which is typically different to the AIE involved in the

review of the PDD). The monitoring report is made publicly available, and the AIE has to verify the

emission reductions. This verification report then is again made publicly available and declared final

after 15 days, provided that no review on the part of a Party involved in the project or the JISC is

requested. The last step consists in the issuance of Emissions Reduction Units (ERUs) according to

the number of verified tons of CO2 during the monitoring period.

C Cointegration and error correction anaylsis

This section provides some technical details for the cointegration and error correction analysis. As

explained in a non-technical way in Section 3.2, initially a long-run relationship is estimated. Thus,

we estimate the following model using OLS:
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Ct = β + γPt + ut (A1)

The estimated residuals ût are used in the subsequent steps. A Phillips-Perron unit root test is

used in order to test for a unit root in the estimated residuals. This procedure is commonly referred

to as Engle-Granger single equation cointegration test. The error correction model we estimate is

specified as follows:

∆Ct = c∆Pt + αût−1 + et (A2)

Please note that data properties require modeling et as a GARCH(1,1)-process. This cointegration

and error correction analysis is conducted using daily data; the price series are in logs. The sample

period is Spring 2009 - Spring 2017. The sequences of adjustment speed parameters and p-values are

then aggregated to the monthly frequency used in the remainder of the paper.
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Figure 7: Probability of nonbinding import limit and cointegration
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Figure A1: Prices for CERs and ERUs
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Figure A2: Average delay between start of comment period and registration, by month of registration
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Figure A3: Average delay between MR and issuance, by month of issuance

 

Source: CDM pipeline from December 2015, Graph 4.

Figure A4: Cumulative number of projects at different stages of the CDM cycle
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Figure A5: Expected CERs by project type
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