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ABSTRACT The streptavidin scaffold was expanded with well-structured naturally occurring 

motifs. These chimeric scaffolds were tested as host for biotinylated catalysts as artificial 

metalloenzymes (ArM) for asymmetric transfer hydrogenation, ring closing metathesis and 
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anion-π catalysis. The additional second coordination sphere elements significantly influence 

both the activity and the selectivity of the resulting hybrid catalysts. These findings lead to 

identify propitious chimeric streptavidins for future directed evolution efforts of artificial 

metalloenzymes. 
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INTRODUCTION: Artificial metalloenzymes (ArMs hereafter), introduced by Whitesides in 

19781 are aimed at combining the best features of both enzymes and homogeneous catalysts. 

Such ArMs result from anchoring an abiotic cofactor within a host protein.2-7 This field has 

gained popularity thanks to the widespread use of molecular biology and recombinant protein 

production. Ever since our first report on ArMs based on the biotin-streptavidin technology in 

2003,8 we have systematically pursued a chemo-genetic optimization strategy to incrementally 

improve the performance of these hybrid catalysts.9-10 This versatile strategy critically relies on 

our ability of produce streptavidin (Sav) libraries and to screen these with a variety of different 

biotinylated cofactors. Having identified an active ArM, twenty to fifty single-, double- and 

triple point Sav mutants are usually screened relying on typical directed evolution schemes. 

Despite the versatility of site-directed mutagenesis and directed evolution,11-13 point mutations do 

not allow to drastically vary the topology of an active site. While such optimization efforts have 

proven successful (e.g. up to hundred fold increase in rate),14 more diverse libraries may allow to 

further optimize ArMs displaying catalytic efficiencies approaching those of natural enzymes.15-

17 Inspection of the ArM’s structures based on the biotin-streptavidin technology highlights the 
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narrow dispersion of the position of metal within the biotin-binding vestibule. With few 

exceptions however, each ArM requires a different Sav mutant for improved performance.18-19 

Inspection of the biotin-binding vestibule of Sav where the catalytic event occurs (i.e. active 

site) suggests that it is ideally suited to host both the cofactor and its substrate. However, Sav’s 

lack of plasticity (as revealed by the RMSD of all C’s observed in the X-ray structures of Sav 

and metal-loaded Sav) as well as its shallow active site, exposes the metal to the reaction 

medium (Figure 1a). We hypothesized that introduction of additional structural features may 

offer the opportunity to further tailor and confine the active site. With this goal in mind, we set 

out to engineer Sav by introducing additional structural motifs around the biotin-binding 

vestibule (Figure 1b). The chimeras presented herein were designed to enable the exploration of 

diverse topologies around the active site by the introduction of additional second coordination-

sphere elements.20 
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Figure 1. Close-up view of the X-ray structure of homotetrameric Sav S112A with one 

biotinylated cofactor [Cp*Ir(biot-p-L)Cl] bound (PDB ID 3PK2).21 The surface representation 

displays a single cofactor (stick representation; Ir, orange sphere, Cl, green) and close-lying 

amino acid residues The shallowness of the biotin-binding vestibule (i.e. the active site) suggests 

that engineering additional structural motifs may provide additional second coordination sphere 

elements around the biotinylated cofactor a). Surface display representation of the Sav tetramer. 

The Sav loops that were engineered to create chimera proteins are labeled:  loop 3/4, residues 46 

– 52;  loop 4/5, residues 63 – 70;  loop 5/6,  residues 82 - 87 and loop 7/8,  residues 113 - 117). 

The yellow star highlights the position selected for the creation of Chimera MP_Sav family, b). 

Monomer surfaces are highlighted in green, yellow, red and (translucent) grey, respectively.  

Thus, we set out to modify the ArMs genetically to introduce well-defined secondary 

structures around the “active site”. Thanks to the dimer-of-dimer nature of homotetrameric Sav, 

genetic modifications are reflected twice in each of the two active sites (Figure 2) and thus can 

be anticipated to have a significant shielding effect on the Sav-embedded cofactor.  

 

Figure 2. Cartoon representation of a homotetrameric Sav (surface representation) construct 

bearing an additional motif (entry 8 in Table 1) engineered in loop 3,4 (yellow cartoon 

representation). The model for the chimeric protein was generated from PDB ID 3PK2, using 
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homology modeling and structure refinement with Yasara. (color code: red = acidic, blue = 

basic, green = polar, white = apolar) 

RESULTS AND DISCUSSION  

Protein design. Our initial efforts focused on inserting (GGX)n repeat sequences (where X = 

S, N, G, V, I, H, R and n = 1-8) at various loop positions that make up the biotin-binding 

vestibule. We selected the following positions for the insertion: G48–N49, T66–D67, R84–N85 

and A117–N118 to introduce one or two (GGX)n repeat motifs ( Table 1). 

 

Table 1 Summary of the expressed Sav constructs bearing (GGX)n repeat motifs. 

entry Sav loop loop sequence number of 

(GGX)n 

repeats 

Expression 

levela (mg/l) 

1 - G48-N49 0 120 

2 3/4 G48-GGSGGS-N49 2 13.8  

3 4/5 T66-GGSGGS-D67 2 16.3  

4 5/6 R84-GGSGGS-N85 2 13.0  

5 7/8 A117-GGSGGS-N118 2 not purified 

6 3/4 + 4/5 G48-GGSGGS-N49 

T66-GGSGGS-D67 

4 1.5  

7 3/4 + 5/6 G48-GGSGGS-N49 

R84-GGSGGS-N85 

4 0.9  

8 3/4 + 7/8 G48-GGSGGS-N49 

A117-GGSGGS-N118 

4 not purified 

9 3/4 G48-GGNGGNGGGGGVGGS-N49 5 55.0  

10 3/4 G48-GGIGGSGGGGGHGGRGGGGGVGGS-N49 8 not purified 

11 3/4 G48-GGNGGSGGGGGGGGSGGSGGS-N49 7 not purified 

12 3/4 G48-GGRGGGGGHGGCGGVGGS-N49 6 not purified 
a Expressed as soluble and functional (i.e. binds biotin-4-fluorescein) tetrameric fraction. The 

expression conditions are detailed in the SI.  

Having identified Sav positions tolerant to (GGX)n insertions, we next sought to replace these 

GGX repeats, which we presumed would be unstructured, by naturally occurring motifs with a 
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well-defined secondary structure. We pursued the construction of two different chimera 

streptavidin families: a) streptavidin containing an extended 2D structural motif (24-60 amino 

acid residues (aa hereafter) with  helix or β sheets secondary structure, 2D_Sav, hereafter, 

Table 2) and b) streptavidin containing shorter naturally-occurring loops (5-12 amino acid 

residues, MP_Sav, hereafter, Table 3). 

The first family with additional structured elements around the biotin-binding vestibule, 

2D_Sav, was created by fusion of Sav with highly conserved- and structured peptide sequences 

(see SI) that display close-lying N- and C-termini. For this purpose, the following sequences 

were selected: SH3 (Src Homology 3 domain, 60 aa) containing antiparallel β-sheets,22 AR 

(Ankyrin, 30-34 aa),23 HP (Villin Headpiece subdomain, 35 aa),24 FPD (FoldIt Players Design, 

24 aa)25 and PPR (Penta-trico-Peptide Repeat 35 aa)26 containing an helix-turn-helix motif 

(Figure 3 and Table 2). Inspection of the X-ray structure of mature “apo”-Sav, which bears an 

Nterm-T7-solubility tag at positions 1 - 12 and extends to position 159,27 revealed that the Cterm  

occupies the biotin-binding site.28, We thus introduced at the Cterm either the SH3 or PPR 

consensus sequence to provide an additional well-structured secondary structure, potentially 

close to biotin-binding vestibule. The SH3, AR, HP and FDP motifs were introduced in four 

different loop regions of Sav, highlighted in Figure 1b, taking into consideration their Nterm – 

Cterm distance. Thus, nineteen chimeric Sav genes were constructed (Figure 3 and Table 2). 
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Figure 3. Cartoon-representation of highly conserved- and structured peptide motifs introduced 

in Sav loops (see also Figure 1b) to generate 2D_Sav family. The inserted structures with Nterm-

Cterm distances (N·······C) are displayed as grey cartoon representation. SH3 (Src Homology 3 

domain, ca. 60 aa, antiparallel β-sheets);22 AR (Ankyrin, 30-34 aa, helix-turn-helix);23 HP (Villin 

Headpiece subdomain, 35 aa, helix-turn-helix);24 FPD (FoldIt Players Design, 24 aa, helix-turn-

helix)25 and PPR (Penta-trico-Peptide Repeat 35 aa, helical hairpin).26  
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Table 2. Chimeric Proteins (2D_Sav’s family) expressed recombinantly in this study. Each 

protein is abbreviated with the acronym of the introduced motif; the number indicates the 

position of the insertion in the original Sav sequence.a 

entry abbreviation solubility 

1 PPR_159 Yes 

2 SH3_46-52 After refolding 

3 SH3_63-70 No 

4 SH3_82-87 No 

5 SH3_113-117 After refolding 

6 SH3_159 Yes 

7 AR_46-52 After refolding 

8 AR_64-70 After refolding 

9 AR_81-84 No 

10 AR_115-117 After refolding 

11 HP_46-52 Yes 

12 HP_63-70 After refolding 

13 HP_64-70 Yes 

14 HP_82-84 Yes 

15 HP_113-117 No 

16 FDP_46_52 Yes 

17 FDP_64-70 After refolding 

18 FDP_81-84 Yes 

19 FDP_115-117 After refolding 
a Expression and refolding conditions are detailed in the SI. 

The second family of chimera, MP_Sav, was generated by selecting natural loops with 

appropriate Nterm–Cterm distances for the substitution of Sav’s residues between A46 and A50 

(loop 3/4, Figure 1b). Three generations of chimeric Savs were derived from the MP variants. 

These were produced, purified and tested in catalysis (Table 3). The first generation included the 

exact sequence extracted using the ISAMBARD algorithm (Table 3, third column). Based on 

extensive experience with ArMs based on the biotin-streptavidin technology,19 we hypothesized 

that the cationic residues introduced in the immediate proximity of the cofactor may be 

detrimental to catalytic performance. Accordingly, we mutated the Lys and Arg residues in the 
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second generation of MP variants (Table 3, 4-5th columns). Finally, a third generation was 

generated for the MP3 construct that included the highly beneficial K121F mutation, combined 

with the lysine residue in the engineered loop. 

To generate initial models of the chimeric proteins, a database of loop regions from X-ray 

protein crystal structures from the Protein Data Bank29 was created using ISAMBARD.30 Loops 

were defined as any continuous region of backbone containing any mixture of random coil, 

hydrogen-bonded turn isolated beta-bridge or bend, as identified by DSSP.31-32 Tools within the 

AMPAL module of ISAMBARD were then used to extract the backbone structure of the loop, 

which was stored in a database along with the PDB ID, chain and residue labels, surrounding 

regions of secondary structure, sequence, end-to-end distance (i.e. the distance between the C of 

the residue preceding the loop and the C of the residue immediately after the loop) and 

resolution of the X-ray structure. Redundant sequences were not removed from the database to 

allow any conformational diversity of the loops to be captured, with the rationale that different 

structures of the same, or homologous proteins, might contain very different loop conformations 

due to their highly flexible nature. Candidate loop designs were identified to span between 

residue A46 and A50 of Sav (loop 3/4), based on an X-ray protein crystal structure (PDB ID 

3PK2).21 Initially, these were initially filtered purely based on the end-to-end distance of the 

loop, requiring it to be within 0.5 Å of the A46 - A50 distance in 3PK2. Loops satisfying this 

criterion were fitted by aligning the backbone atoms of the residues immediately before and after 

the loop with those of residues A46 and A50 respectively. The root-mean square deviation 

(RDMS) of the distances between complementary backbone atom pairs was calculated to 

evaluate the quality of the fit (detailed in the SI). Models were sorted based on this quality and 

the candidate loops were evaluated manually considering the diversity of number and nature of 

amino acids, symmetry of the host and proximity to the metal center. On this basis, twelve loops 
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were selected for insertion into Sav replacing the wild type sequence between A46 and A50 

(Table 3 and Figure 4). Subsequently, the family members of MP_Sav’s were subjected to a first 

round of mutagenesis, in which cationic arginine and/or lysine residues in the loop sequences, 

which are known to be detrimental to catalysis,33 were mutated to either alanine or 

phenylalanine. Finally, a K121F mutation was introduced in the first and second generation of 

MP 3 constructs in view of its improved catalytic performance with various ArMs based on the 

biotin-streptavidin technology.34 

Table 3. Selected chimera of MP_Sav family containing natural loops with commensurate Nterm–

Cterm topologies inserted between A46 and A50 of Sav. ISAMBARD was used to create a 

database of loops regions from known X-ray crystal structures.a  

entry abbreviation inserted sequencea abbreviation second generation MP_Sava 

1 WT AVGNAb   

2 MP 1 GKTKG MP 1 K-Fd GATFG 

3 MP 2 GRSRG  – 

4 MP 3 GNLKYGc MP 3 K-Ad 

MP 3 K-Fd 

GNLAYGc 

GNLFYG 

5 MP 4 GIDRNG  – 

6 MP 5 GDMKPRG  – 

7 MP 6 GHEKRDG MP 6 K-A_R-Fd GHEAFDG 

8 MP 7 GKHNKPDDCG  – 

9 MP 8 GRRQIGTRSG  – 

10 MP 9 GEPFGGEKING MP 9 K-Fd GEPFGGEFING 

11 MP 10 GGRVIPVKLGG  – 

12 MP 11 GYLSSQNGQPG  – 

13 MP 12 GTERPSKNSHPG MP 12 R-A_K-Fd GTEAPSFNSHPG 
a The expression and refolding conditions are detailed in the SI. b This sequence was deleted from 

the WT in all MP constructs. c The third generation of MP constructs was generated combining 

this loop sequence and the K121F mutation. d Corresponds to the point mutation(s) introduced in 

the corresponding first generation MP construct to remove cationic residues. 
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Figure 4. Model of MP_Sav member (MP_11 depicted), containing the loop GYLSSQNGQPG 

insert (dark grey) between positions A46 and A50 generated from PDB ID 3PK2. The insert 

partially shields the biotin-binding vestibule, a). For comparison, the surface representation of 

PDB ID 3PK2 is displayed in the same orientation, b). Monomer surfaces are highlighted in 

green, yellow, red and light grey, respectively. The residues K121 are highlighted in blue. 

Protein overexpression. E. coli BL21(DE3) containing the pET24 (+) plasmid was used for 

the overexpression of all chimera streptavidins using an autoinduction medium.35 After cell lysis, 

SDS gel analysis of the supernatant was used to confirm the overexpression and the biotin-

binding capacity of the fusion proteins. For this purpose, biotin-4-fluorescein (B4F) was added to 

the Sav chimera. The presence of fluorescent bands in the corresponding SDS PAGE confirmed 

the proper folding and functionality of the Sav constructs. While the majority of constructs 

containing the shorter loops resulted in soluble and properly-folded proteins (75%, see Table 

S3), the 2D_Sav family members displayed different folding behaviors (only 40% were soluble 

after overexpression, see Table 2 and Table S3) depending on: i) the type of motif used and ii) 
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the site of insertion. Proteins containing PPR and SH3 at the C-terminus were usually well folded 

as well as Sav containing either HP and FDP motifs engineered in either loop 3/4 or 5/6. As 

summarized in Table 2, some Sav constructs were produced as inclusion bodies however.  

Screening various refolding buffers revealed that the majority of insoluble chimeras could be 

refolded using a highly dilute MES buffer (see SI, Table S3 entries 1-19). When required, this 

step allowed to isolate soluble and biotin-binding chimeric Sav. Eight of twelve insoluble 

2D_Sav constructs (Table 2) could be purified using a biotin-sepharose affinity column  (yields 

and purification methods detailed in Table S3). After purification, all the constructs were 

characterized by SDS PAGE and mass-spectroscopy (See SI).  

The introduction of extended loops around the active site of the ArMs does not significantly 

affect the stability or the aggregation state of the engineered proteins. Indeed, none of chimeric 

proteins are denatured under the "denaturing" SDS PAGE conditions: the chimeric proteins 

migrate as tetramers and maintain their biotin-4-fluorescein binding capacity. 

 

 

 

Catalytic performance. Next, chimeric Sav were combined with various biotinylated 

cofactors and tested as artificial metalloenzymes in the following catalytic reactions: 

Asymmetric Transfer Hydrogenation (ATH), Ring Closing Metathesis (RCM), and anion π-

catalysis (ANPI). The corresponding biotinylated catalysts are displayed in Figure 5. 
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Figure 5. Biotinylated cofactors used to complete the Sav for: i) asymmetric transfer 

hydrogenation reaction using [Cp*Ir(biot-L)Cl] 1, ii) ring closing metathesis using a biotinylated 

Hoveyda–Grubbs second-generation catalyst (biot-Ru 2 hereafter) and iii) anion-π catalysis on a 

biotinylated naphthalenediimide surface (biot-NDI 3 hereafter).  

Previous work revealed that the Ir-d6 piano-stool [Cp*Ir(biot-L)Cl] 1 was the most active ATH 

catalysts for the reduction of prochiral imines in the presence of Sav.36-37 Two different prochiral 

cyclic imines 4 and 6 were selected and the results of the asymmetric transfer hydrogenation 

using [Cp*Ir(biot-L)Cl] 1, are collected in Table 4. Compared to the free cofactor [Cp*Ir(biot-

L)Cl] 1 (Table 4 entries 1 and 2) and the corresponding benchmark ATHase [Cp*Ir(biot-L)Cl] · 

WT Sav (Table 4 entries 3 and 4), some of the engineered Sav constructs performed better, both 

in terms of TON (turnover number) and enantioselectivity. While the improvement of 

enantioselectivity was modest at best, the TON number could be improved by up to a factor two 

for substrate 4 (Table 4 entries 5 and 6) and up to a factor seven for substrate 6 (Table 4 entries 7 

and 8). Importantly, the position of the insertions plays a critical role in the activity of the 

corresponding ATHase. Insertion in loop 3/4 (i.e. positions 46 - 52) affords the most active 

ATHases, for both HP_46-52 and FDP_46-52 constructs, Table 4. For comparison, introduction 

of the HP in the loop 4/5 (i.e. positions 64 - 70) had a negative impact on the ATHase activity 
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(Table 4 entry 9). We hypothesize that the insertion between positions 46 - 52 projects the loop 

in the proximity of the Ir-center and thus has the highest (positive) impact on the ATHase's 

performance. While the improvement in selectivity remains modest, the activity is significantly 

affected, resulting in up to a sevenfold increase in turnovers after sixteen hours. 

Table 4. Selected ATHase results obtained with the 2D_Sav combined with [Cp*Ir(biot-L)Cl] 

1.a Error margins in square brackets [+/-]. 

 

entry 2D_Sav substrate ee (R) 

 

TON 

 

catalytic 

improvement vs 

WT Sav 

1 No protein 4 0   [nd] 197 [0.1] - 

2 No protein 6 0   [nd] 0     [nd] - 

3 WT Sav 4 45 [0.5] 170 [2.0] - 

4 WT Sav 6 76 [1.2] 22   [0.7] - 

5 HP_46-52 4 59 [0.6] 223 [2.2] 1.7b 

6 FDP_46-52 4 51 [1.0] 340 [5.1] 2.6b 

7 HP_46-52 6 80 [1.8] 162 [2.3] 7.3c 

8 FDP_46-52 6 82 [2.7] 158 [2.5] 7.2c 

9 HP_64-70 4 22 [2.0] 14   [1.2] 0.01c 
a reaction conditions: substrate 10 mM, 16 h, 37 °C, [Cp*Ir(biot-L)Cl] 1 10 µM, Sav’s FBS 20 

µM, MOPS 0,6 M, pH = 7,5, formate 3 M, Vtot = 200 µL. b Catalytic improvement based on 

initial rates (after 1 h reaction) calculated by the ratio between TON 2D_Sav and TON of WT 

Sav. c Catalytic improvement calculated from the ratio between TON 2D_Sav and TON of WT 

Sav (after 16 h). 
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Considering the MP_Sav constructs, a general trend is observed for the reduction of substrate 

4: While the first-round Lys/Arg-containing loop sequences had dramatically lower activities but 

comparable selectivities to the benchmark ATHase [Cp*Ir(biot-L)Cl] 1 · WT Sav (Table 5 

entries 3 vs entries 6 – 10), substitution of of Lys to Ala or Phe within the engineered loops 

resulted in second-generation hybrid catalysts that rivaled or outperformed the WT ATHase 

(Table 5, entries 11 – 12). The [Cp*Ir(biot-L)Cl] 1 · Sav K121F ATHase displayed significantly 

improved TON although this was at the cost of ee (13% ee (S)-5, 970 TON and 45% ee (R)-5, 

170 TON  for Sav K121F and WT, respectively). Combining the beneficial K121F mutation and 

loops, with or without a Lys residue, in all cases affords ATHase with lower TONs compared to 

Sav K121F (Table 5, entries 13 – 14). For substrate 6, all second-generation MP_Sav performed 

better than the corresponding ATHase [Cp*Ir(biot-L)Cl] 1 · WT Sav (Table 5 entry 4 vs Table 5 

entries 15 – 17). However [Cp*Ir(biot-L)Cl] 1 · Sav K121F followed by the chimera 

[Cp*Ir(biot-L)Cl] 1 · Sav HP_46-52 and [Cp*Ir(biot-L)Cl] 1 · Sav FDP_46-52 were the most 

active ATHases (Table 5 entry 5 and Table 4 entries 7 and 8). A summary of all ATHase 

experiments is presented in SI Tables S4 and S5. 
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 Table 5. Selected ATHase results obtained for the MP_Sav introduced between position A46 

and A50 combined with [Cp*Ir(biot-L)Cl] 1.a Error margins in square brackets [+/-]. 

entry MP_Savb,c substrate ee (R) 

 

TON 

 

catalytic 

improvement 

vs WT Sav 
1 No protein 4 0 197[0.2] - 

2 No protein 6 0 0 - 

3 WT Sav 4 45 [0.5] 170 [2.0] - 

4 WT Sav 6 76 [1.2] 22   [0.7] - 

5 Sav K121F 4 -13 (S) [0.1] 970 [8.7] 10d 

6 MP 3 4 53 [2.3] 6     [0.2] 0.04e 

7 MP 4 4 42 [0.1] 67   [2.5] 0.4e 

8 MP 9 4 53 [0.5] 82   [3.4] 0.48e 

9 MP 11 4 45 [0.4] 61   [5.5] 0.36e 

10 MP 12 4 62 [0.2] 15 [1.6] 0.08e 

11 MP 3_K-A 4 46 [0.9] 192 [3.0] 1.75d 

12 MP 9_K-F 4 49 [0.4] 198 [2.1] 1.65d 

13 MP 3_K121F 4 15 [0.6] 568 [9.3] 3.7d 

14 MP 3_K-A-K121F 4 14 [0.1] 462 [4.3] 3d 

15 MP 3_K-A 6 79 [1.6] 57   [2.5] 2.5e 

16 MP 6_K-A_R-F 6 77 [1.5] 100 [1.9] 4.5e 

17 MP 9_K-F 6 80 [2.0] 71   [1.0] 3.2e 
a reaction conditions: substrate 10 mM, 16 h, 37°C, [Cp*Ir(biot-L)Cl] 1 10 µM, Sav’s Free 

Binding Site (FBS) 20 µM, MOPS 0,6 M, pH = 7,5, formate 3 M, Vtot = 200 µL. b The 

numbering of the residues of Sav was kept identical to the WT numbering, even though the 

insertion may be placed before the position of the mutation. c Italicized one letter aminoacid 

abbreviations designate cationic aminoacids within the inserted loops that were mutated to either 

A or F to probe the effect of the charge on the catalytic performance (See Table 3 for details). d  

Catalytic improvement based on initial rates (after 1 h reaction) calculated by the ratio between 

TON MP_Sav and TON of WT Sav. e Catalytic improvement calculated by the ratio between 

TON 2D_Sav and TON of WT Sav (after 16 h). 

Qualitative kinetic data for substrate 4, reveal that the turnover frequency (TOF) is 

significantly affected by the introduction of loops. After one hour, the TOF for FDP_46-52 

approaches 50 hour-1, whereas the TOF barely reaches 20 hour-1 for WT. Similar trends are 

observed after 16 hours, see SI Fig. S4. We speculate that this effect reflects the interaction of 

the loops with the catalyst, rather than merely stabilizing the Sav host. Unfortunately, all 



 17 

attempts to crystallize the chimeric ArMs revealed that the expanded loops were disordered, the 

rest of the protein being well-ordered. 

Building on our previous work on olefin metathesis in aqueous phase,38 we investigated the 

catalytic behavior of 2D_Sav and MP_Sav scaffolds in the presence of biot-Ru 2. The resulting 

artificial metathases were tested for the RCM of substrate 8. Both the biot-Ru 2 · Sav HP 64-70 

and biot-Ru 2 · Sav PPR 159 outperform the bare catalyst (Table 6, entries 1 vs 4 and 5). As for 

the ATHases, introduction of a Phe residue at position K121 improved catalytic performance 

resulting in 105 TONs (Table 6, entry 3). The second and the third generation MP_Sav variants 

originating from the Sav MP3 sequence displayed improved activity. (Table 6 entries 6-8). 

However, compared to biot-Ru 2 ·Sav K121F, none of the newly designed chimeric Sav 

outperformed this single point mutant (Table 6 entries 4-8). A complete list of chimeric 

metathases is collected in SI Table S6. 
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Table 6. Selected results for RCM of diallyl substrate 8 using 2D_Sav and MP_Sav.a  

 

entry Sav b,c TON 

1 No protein 38   [1.5] 

2 WT Sav 87   [1.1] 

3 K121F 105 [0.1] 

4 HP_64-70 56   [0.5] 

5 PPR_159 64   [0.7] 

6 MP 3_K-A 61   [0.1] 

7 MP 3_K121F 88   [1.6] 

8 MP 3_K-A-K121F 98   [3.0] 
a reaction conditions: substrate 8 10 mM, biot-Ru 2 10 µM, 16 h, 37°C, Chim_Sav and 

MP_Sav 20 µM Free Binding Site, acetate buffer 100 mM, 0.5 M MgCl2 pH = 4.0, Vtot = 200 

µL. b The numbering of the residues of Sav were kept as the WT numbering, even though the 

insertion may be placed before the position of the mutation. c Italicized one letter aminoacid 

abbreviations designate cationic aminoacids within the inserted loops that were mutated to either 

A or F to probe the effect of the charge on the catalytic performance (See Table 3 for details). 

The Michael addition of malonic acid half thioester 10 (MAHT) was investigated next. 

Importantly, anion-π interactions were shown to have a significant impact on the 

chemoselectivty of this reaction by selectively producing the disfavored addition product 12 A. 

Without an electron-deficient π-system as the catalyst, the decarboxylation product 13 D is 

generated almost exclusively.39-40 By linking a biotin to an NDI π-surface and incorporation 

within Sav anion-π enzymes result. These artificial enzymes produce the addition product 12 A 

with an exquisite chemoselectivity (A/D ratio > 30) and enantioselectivity (ee = 95% for biot-

NDI 3· Sav S112Y)41 through synergism between NDIs and Sav mutants. However, due the 

inhibition by anions, the use of a more confined cavity may be of interest. With this goal in 
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mind, the catalysis was tested with the previously established conditions.41  Most of the chimeric 

Sav’s produced the addition product 12 A with excellent chemoselectivity (12 A/ 13 D > 30) and 

moderate yields (up to 61 Yield%, Table 7 entry 2). Three of the chimeric Sav’s were inactive. 

We posit that the lack of reaction may be attributed to an important shielding above the NDI 

surface embedded in either MP 12 Sav, Sav FDP_46-52 and Sav HP_46-52. Only biot-NDI 3 · 

Sav PPR_159, containing the helical hairpin domain at the Cterm afforded 12 A with an 

enantioselectivity (Table 7, entry 3), thus competing with the most efficient anion-π 

organocatalysts achieved to date.40, 42 A summary of all anion-π catalytic experiments is 

presented in SI, Table S7. 
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 Table 7. Selected results obtained for anion-π catalysis using biot-NDI 3 · 2D_Sav or  biot-

NDI 3 · MP_Sav.a  

 

entry Savb,c yield % 12 A/13 D ee (%) 

1 WT Sav 60 >30 41 

2 MP 12_R-A_K-F 61 >30 0 

3 PPR_159 57 >30 22 

4 MP 3_K-A_K121F 55 >30 0 

5 MP 3_K121F 51 >30 0 

6 MP 9 23 >30 0 

7 MP 9_K-F 45 >30 0 

8 MP 12 traces nd 0 

9 FDP_46-52 0 nd nd 

10 HP_46-52 0 nd nd 
a reaction conditions: biot NDI 3 10 mol%, Sav’s FBS 20 mol %, CD3CN/Glycine buffer pH = 

3, substrate 10 5 mM, substrate 11 50 mM. b The numbering of the residues of Sav were kept as 

that of WT Sav, even though the insertion may be placed before the position of the mutation. c 

Italicized one letter aminoacid abbreviations designate cationic aminoacids within the inserted 

loops that were mutated to either A or F to probe the effect of the charge on the catalytic 

performance (See Table 3 for details). 
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OUTLOOK 

In summary, this work highlights that the loop 3/4 and the C-terminus are the most promising 

regions to engineer the next generation of Sav-based ArMs using directed evolution protocols. 

The introduction of additional motifs generates soluble chimeric Sav without significantly 

affecting their biotin binding capability. The additional structured elements around the biotin-

binding vestibule were created by fusion of Sav with highly conserved- and structured peptide 

sequences displaying close-lying N- and C-termini or applying rational loop mutagenesis 

techniques using ISAMBARD. In particular, this study revealed that FDP_46-52, HP 46-52, 

PPR_159 and MP3 members are promising candidates thanks to their good expression yields of 

and their impact on ATH, RCM and anion π catalysis. 

The catalytic performance of ArMs derived from the chimeric Savs described herein suggest 

that these straightforward modifications of the Sav host has a significant impact on the catalytic 

activity. Thanks to the remarkable stability of the Sav scaffold, introduction of additional 

structural motifs leads, in the vast majority of cases, to soluble and functional chimeric Sav. For 

the ATHase, the resulting activity was up to sevenfold higher than the parent WT Sav. Thus, this 

strategy of embellishing loops proximal to the active site offers a versatile means to complement 

directed evolution efforts to optimize the performance of the ArMs based on the biotin-

streptavidin technology. The newly introduced structural motifs might be further engineered to 

form a protective lid over the active site, resulting in ArMs able to perform catalytic reactions in 

cell free extracts or in the cytoplasm. 

EXPERIMENTAL SECTION 

General procedure for the asymmetric transfer hydrogenation. 10 µl of proteins stock 

solution in Milli-Q H2O (200 µM free binding site), was added to 185 µl of reaction buffer 

followed by the addition of 5 µl of the biotinylated metal complex [Cp*Ir(biot-L)Cl] 1 from a 
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stock solution (0.4 mM in DMSO). The solution was mixed for 20 min at 37 °C and 800 rpm in a 

thermo-mixer for precomplexation. Finally, 5 µl of substrate 4 or 6 stock solution (400 mM in 

DMSO) was added and the mixture was stirred at 37 °C for 16 h. Subsequently, 20 % NaOH 

solution was added to the reaction mixture, followed by the addition of CH2Cl2. After mixing, 

the organic phase was separated and dried with anhydrous Na2SO4. Solids were separated 

through centrifugation and the supernatant was analyzed by using HPLC or GC. 

General procedure for ring closing metathesis. In a 1.2 mL glass vial, 10 µl of protein stock 

solution (400 µM) and 5 µl biot Ru 2 (400 µM) were added to 85 µl of reaction buffer and 

incubated at 37°C for 20 min. After incubation, 100 µl of substrate 20 mM were added to the 

reaction mixture and the reaction was stirred at 37°C for 16 hours at 1000 rpm. After reaction, 

methanol and the internal standard were added to the reaction mixture and the whole volume 

transferred to Eppendorf tubes for centrifugation. The supernatant was then transferred into 

HPLC vials containing MQ water and the sample analysed by UPLC-MS for the quantification 

of product 9. 

General procedure for anion-π catalysis. Stock solutions of substrates 10 (40 mM), 11 (400 

mM) and biot NDI 3 (2 mM) were prepared in CD3CN. Solutions of substrates 10 should be 

freshly prepared as decarboxylation to afford 13 D builds-up on aging. Solutions were prepared 

by mixing successively Sav WT or mutants, biotinylated ligand 3, substrates 10, 11 and stirred at 

20 °C. After 24 h, the mixture was extracted with CDCl3 , dried over Na2SO4, filtered and 

analyzed by 1H-NMR spectroscopy. 
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