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SMOOTH APPROXIMATION IS NOT A SELECTION
PRINCIPLE FOR THE TRANSPORT EQUATION WITH
ROUGH VECTOR FIELD

GENNARO CIAMPA, GIANLUCA CRIPPA, AND STEFANO SPIRITO

ABSTRACT. In this paper we analyse the selection problem for weak
solutions of the transport equation with rough vector field. We answer
in the negative the question whether solutions of the equation with a
regularized vector field converge to a unique limit, which would be the
selected solution of the limit problem. To this aim, we give a new
example of a vector field which admits infinitely many flows. Then we
construct a smooth approximating sequence of the vector field for which
the corresponding solutions have subsequences converging to different
solutions of the limit equation.

1. INTRODUCTION

Consider the Cauchy problem for the transport equation

{6tu(t,x) +0(t,x) - Vu(t,z) =0, (1.1)

uli=0 = uo,

where (t,2) € (0,T) x R? are the independent variables, with T < oo,
b:(0,T) x R? = R is a given divergence-free vector field and ug : R — R
is a given initial datum. The equation (1.1) is connected with the system of
ordinary differential equations

d
X (o) = b(t, X (t,2)),

X(0,z) ==,

(1.2)

where the unknown X : (0,7) x RY — R? is referred to as the flow of the
vector field b. The aim of this paper is to study possible selection criteria
for the uniqueness of solutions of (1.1) in a setting of low regularity.

The transport equation (1.1) is classically well-posed when the vector field
and the initial datum are smooth. Specifically, assume that the vector field b
is globally Lipschitz, then existence and uniqueness of smooth solutions with
Lipschitz initial data can be proved by exploiting the connection between
(1.1) and (1.2) and the fact that (1.2) is well-posed. However, mainly due
to the applications to fluid dynamics and conservation laws, the setting
of smooth vector fields is too restrictive and a theory in weaker regularity
settings has been developed in the last decades. In this paper we give a new
example of nonuniqueness and we provide a counterexample to a possible
selection principle of a unique solution of (1.1) and (1.2) with rough vector
fields. In order to set the problem and to explain exactly our result we
provide a brief overview of relevant previous results on the analysis of (1.1).
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A short review of some previous results. The theory of existence and
uniqueness of solutions of (1.1) and (1.2) in a smooth setting is based on the
method of characteristics. Loosely speaking, suppose b is a globally Lipschitz
and divergence-free vector field, then the Cauchy-Lipschitz theorem ensures
the existence of a unique measure-preserving flow X solution of (1.2). Then,
u(t,z) = up((X(t,-)) "' (x)) is a smooth solution of (1.1). Finally, a simple
estimate of the difference of two possible solutions of (1.1) starting with the
same initial datum implies that such u is also the unique solution of (1.1). In
a nonsmooth setting the situation is much more complex. The existence of
bounded distributional solutions can be obtained by a simple approximation
procedure requiring only integrability hypotesis on b. While the existence is
obtained by standard arguments, the uniqueness of distributional solutions
is much more difficult and require additional assumptions on the vector field.
The first result in this direction is due to DiPerna and Lions [17], where the
uniqueness of distributional solutions of (1.1) is proved under the hypothesis
that b has Sobolev regularity and bounded divergence. The result in [17] has
been extended in the highly non trivial case of BV vector fields with bounded
divergence by Ambrosio in [3]. Furthermore, Bianchini and Bonicatto in [5]
have recently shown uniqueness in the case of a nearly incompressible BV
vector field, without assumptions on the divergence, giving a positive answer
to the Bressan’s compactness conjecture, see [8]. In all these uniqueness
results the key point is to assume a control on one full derivative of the
vector field in some weak sense. Several counterexamples to the uniqueness
are available in the case of less regular vector fields. In particular, based on
a counterexample of Aizemann [1], Depauw in [16] showed an example of a
divergence-free vector field b € L!((g, T); BV (R?)) for any ¢ > 0, but not in
LY((0,T); BV(R?)), for which the Cauchy problem (1.1) with ug = 0 admits
a nontrivial bounded solution. In [2] the authors give an example of an
autonomous divergence-free vector field which belongs to C%%(R?) for every
a < 1, for which uniqueness of bounded solutions fails. Exploiting convex
integrations techniques, examples of nonuniqueness of bounded solutions
of (1.1) are provided also in [13] for bounded and divergence-free vector
fields. Nonuniqueness of weak solutions with integrability lower than the
one considered in [17] is shown in [18] and [19]. Finally, a very important
counterexample for the purpose of this paper is the one of DiPerna and
Lions, [17], where they consider a divergence-free vector field b € W' (R2)

loc
for every s < 1 which admits two different measure preserving flows.

The problem of selection. In order to state and motivate the counterex-
ample presented in this paper, we illustrate in some more detail the proof
of existence of bounded distributional solutions of the problem (1.1). We
assume that the datum ug is smooth since this assumption does not affect the
analysis. Suppose that b is a divergence-free vector field in LP((0, T'); LP(R?)).
A very common and natural approximation of the transport equation is ob-
tained by considering a sequence of smooth vector fields {b.}. converging
strongly in LP((0,T); LP(R%)) to b. Then, since for each fixed ¢ the vector
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field b, is smooth, there exists a unique solution u. of the Cauchy problem

€ . €
{atu + b - Vu* =0, (1.3)

Ue|t=0 = Up.

Using the explicit formula for smooth solutions and by standard compactness
arguments, up to a subsequence, there exists at least a weak-star limit u €
L>=((0,T); L>(R%)), which is a distributional solution of (1.1). Of course,
as for all compactness arguments, the previous proof gives no information on
the uniqueness since there is a passage to subsequences. A natural question
is therefore the following:

(Q1) Does the approzimation procedure obtained by smoothing the vector
field select a unique solution of (1.1)7

In this paper we give a negative answer to the above question in the three
dimensional case. Our main theorem is the following;:

Theorem 1.1. There exist an autonomous divergence-free vector field b €
LY (R3) with p € [1,3] and a sequence of divergence-free vector fields by, €
C>(R3) converging to b strongly in LfOC(R?’) such that the following happens.
For a large class of initial data ug € C°°(R3) N L>®(R3) there exist subse-
quences ny and ny, such that the sequences uy,, and uy,, solutions of (1.3),
converge in L°°((0,T); L°(R?) —w*) N L>°((0,T); LL (R3)) to two different

loc
limits, which are bounded distributional solutions of (1.1).

The above theorem is a consequence of the following analogous result for
the flow:

Theorem 1.2. There exists a divergence-free vector field b € Lfoc(]R?’) with
p € [1, %] and a sequence of divergence-free vector fields b, € C*(R3) such
that b, — b strongly in Lfoc(R3) and the uniquely defined sequence X™ of

flows of b, does not converge, but has at least two different subsequences
converging in L=((0,T); Li, .(R?)) to two different flows of b.

For several PDEs, selection principles or admissibility criteria are needed
when the regularity of weak solutions is not enough to guarantee uniqueness.
For example, this is the case for scalar conservation laws: if we consider weak
solutions satisfying in addition the entropy inequality it is possible to prove
uniqueness. In the context of the incompressible Euler equations general
admissibility criteria, that can be satisfied by only one weak solution, are
not known when the initial datum uy € L?. Contrary to the case of scalar
conservation laws, criteria based on an energy inequality are known not to
select a unique solution, as proved in [15]. Another natural approach would
be to consider weak solutions of Euler equations obtained as limit of Navier-
Stokes equations. In this regard, in [4] the authors prove that for shear-flow
solutions of the Euler equations, the vanishing viscosity limit of Leray weak
solutions of the Navier-Stokes equations selects a unique solution. On the
other hand, the recent result in [9] shows that the limit of weak solutions of
Navier-Stokes, which are not Leray weak solutions, does not select a unique
solution. Therefore it is fair to say that there is not a clear picture of
selection principles in fluid dynamics. Our result shows that, already for
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the linear transport equation, the very natural approximation procedure of
smoothing the vector field does not select a unique solution.

It is worth pointing out that, differently from the nonuniqueness exam-
ples obtained via convex integration, the approximation constructed here is
explicit and consists of functions u* which are the unique exact solutions of
(1.3).

In this spirit, the problem of selection for bounded solutions can also be
posed for other types of approximations which guarantee uniqueness at the
approximate level, such as

(Q2) Does the approzimation procedure obtained by smoothing the vector
field via a convolution with a suitably chosen mollifier select a unique
solution of (1.1)7

(Q3) Does the approximation procedure obtained by vanishing viscosity
limit of
O +b-Vu® = cAuf, (1.4)
select a unique solution of (1.1)7
Unfortunately we are not able to provide an answer to the two questions
above with the techniques of this work. Nevertheless if one looks to a slightly
different version of (Q3), considering u° as the solution of

Ot + be - Vu© = eAu®, (1.5)

in which we also regularize the vector field, an easy corollary of our main
theorem exploiting a diagonal argument shows that there exists a vector
field b and a smooth approximation b. for which the selection of a unique
solution as limit of solutions of (1.5) does not hold.

Organization of the paper. The paper is organized as follows. In Sec-
tion 2 we recall some of the main notions and results that will be exploited
in the sequel. In Section 3 we define the limit vector field, we introduce
the regularizing sequence of vector fields, and we prove some of their main
properties. Finally in Section 4 we prove our main results.

2. PRELIMINARIES AND BACKGROUND

We start by recalling some basic definitions.

Definition 2.1 (Distributional solutions). Let b € LL ((0,7); LL .(R%R%))
be divergence-free and ug € L (R?) be given. A function u is called a

distributional solution of (1.1) if u € L>((0,T); LS. (R?)) and

loc

//u(@tgp +b-Vy)dzdt + /u0g0|t0d:n =0,
for any ¢ € C°([0,T) x R%).

A very general existence theorem for weak solutions can be proved along
the lines sketched in the introduction; we refer to [17] for a detailed proof.

Theorem 2.2. Let b € L ((0,T); L. (R%RY) be divergence-free and ug €

loc loc

L>®(RY). There exists a weak solution u € L>([0,T]; L°(R%)) of (1.1).
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Next, we recall some results regarding the uniqueness of solutions of the
transport equation (1.1) and the associated ordinary differential equations
(1.2). We start with the notion of regular Lagrangian flow, introduced by
Ambrosio in [3],

Definition 2.3. Let b € L'((0,7); L{ (R% R%)) be given. We say that

loc

X :(0,T) x RY — R? is a regular Lagrangian flow associated to b if

(1) for a.e. = € R? the map t + X(t,z) is an absolutely continuous
integral solution of the ordinary differential equation

d
—X =0b(t, X
S X(t,) = blt, X(1,)), o)
X(0,z) ==,
(2) there exists a constant L indipendent of ¢ such that
X(t,)#2¢ < L2 (2.2)

In the case of a divergence-free vector field, L can be taken to be 1 and
(2.2) is an equality. As already stressed in the introduction, in order to
prove uniqueness of solutions more information on the regularity and on the
growth of the vector field is needed. We recall the following theorem, proved
in [3]:

Theorem 2.4. Let b € L'((0,T); BVioc(R%RY)) be a vector field satisfying
divb € L'((0,7); L*(R%)) and the growth condition
|b(t, )|
1+ |z
Then there exist:

e L((0,7); L'(R)) + L*((0,T); L*(R?)).

e a unique bounded distributional solution of (1.1);
e q unique regular Lagrangian flow X of b.

For an alternative approach, based only on a priori estimates on the flow,
we refer to [12] for WP (RY) vector fields with p > 1 and to [7],[14] for the
case p = 1 and vector fields the gradient of which is a singular integral of
a function in L'(RY). This latter is a class of interest in the context of the
2D Euler equations. More recently, these results were improved in [20] to
vector fields which can be represented as singular integral of a function in
BV (R?). We conclude this section recalling the following stability theorem
from [20].

Theorem 2.5. Let b, be a sequence of smooth vector fields converging
in LY((0,7); LL (RY)) to a vector field b € L'((0,T); BVioe(RGRY)), with
divb € LY((0,T); L>(R%)) and satisfying the growth condition
|b(t, )|
1+ |z
Assume that for some decomposition
1+ |z

€ L'((0,T); L'(RY) + L'((0,T); L>(RY)).

= by 1 (t, ) + by o(t, )

we have B ~
101l L1 0,7);1 meyy + 0,2l L1 (0,15 000 () < C
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for all n € N and for some constant C'. Then the following statements hold
true.

o Let X, and X be the reqular Lagrangian flows associated respectively
to b, and b, denote with L, and L the compressibility constants of
the flows and assume that the sequence L, is bounded uniformly in
n. Then, X, — X locally in measure uniformly in time; that is, for
every compact set K C R?

sup/ 1IN X, (L) — X(t,z)|[de -0  asn — +oo.
01/K

o Let ug € L¥(R?) and let u, be the weak solution of the Cauchy
problem (1.1) with initial datum ug and vector field by,. Then,

Uy — w in L2((0,T); L®(RY) — wx) N L=((0,T); L, . (RY)

where u is the unique solution of (1.1) with initial datum wy and
vector field b.

3. THE VECTOR FIELD

In this section we introduce the vector field b, which will be the limit of
our approximation as stated in the Theorems 1.1 and 1.2. More precisely,
we look for a vector field for which the uniqueness of the flow fails.

3.1. A 2D example of DiPerna and Lions. It is worth recalling the
following example due to DiPerna and Lions [17].

Example 3.1. Define the two dimensional vector field b = (by,b2) as

X
bi(z,y) = —sgn(y) <W><{|zsw|} + sgn X{x|>y|}> ;
(3.1)

1
ba(7,y) = — mX{|z\§|y|}+X{\x|>\y|} :

The vector field b € VV&}(R%RQ) for all s € [0,1), divb = 0 in the sense
of distributions, b € LP + L™ for all p € [1,2). We can define two different
reqular Lagrangian flows of b that preserve the Lebesgue measure. In partic-
ular, they are different on the set {(x,y) € R?:0 < z <y} and are defined

as follows
=z 2 _
{X]_(t,ﬂf,y) oy ’y 2t’7

XQ(t7y) =0y ‘y2 - 2t‘7

Xl(twrvy) :U% ‘y2_2t‘7
XQ(tay) =0y |y2 - 2t|7
where 0 =1 ift <y?/2 and o0 = —1 if t > y?/2.
The nonuniqueness of the flows has the following geometric interpetration:

consider the trapezium T in the half plane {y > 0} as in Figure 2, then there
exists a time t* such that

and

e the region filled with diagonal lines is X (t*,T) and it is symmetric
to T with respect to {y = 0};
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b= (775 7%/>

b=(1,-1) b= (-1,-1)

b=(-1,-1) b=(1,-1)

b:(;,

=
& =
~

FIGURE 1. The blue line is a characteristic of ~the flow X
while the red line is a characteristic of the flow X.

N
53

7

X1 | xeem

FIGURE 2. Action of the flows on the trapezium 7.

o the grey region is X(t*,T) and it is symmetric to T with respect to
0,0).

We would like to use this example to give a negative answer to (Q1). It is
not a problem to construct a smooth approximation of (3.1) which gives X
in the limit. Instead, it is not clear to us how to get X in the limit: we are
not able to construct an approximation b, of (3.1) avoiding intersections of
trajectories for fixed . In order to avoid this topological problem, we rather
work in three space dimensions.
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3.2. The limit vector field. We now introduce the vector field

x Y 2 .
—sgn(z)—5, —sgn(z) —, —— if x € P,
bz, y,2) = ( B rzr>

(0,0,0) otherwise,

(3.2)

where P C R3 denotes the set
P=PrupP” = {(I’,y, Z) S Rg : x2+y2 < z}U{ (x7y> Z) S Rg : 1‘2+y2 < _Z}a
(R3)

being the union of two symmetric paraboloids. The vector field b € Lfoc

FIGURE 3. An example of flow X©

for all p € [1, %] and it can be directly checked that divb = 0 in the sense
of distributions on the whole R3, in particular b is tangent to 9P. Moreover
the vector field b satisfies the growth conditions of Theorem 2.4. Observe
that this vector field does not belong to any Sobolev space WP (R?) or to
BV (R3).

We can easily define infinitely many different regular Lagrangian flows of b.
Since we are considering flows defined almost everywhere, we need to define
them only on R3\ {0}. We start for x € R®\ P: in this region the vector
field is identically 0 so that we define a flow X simply as

X(t,x) =x vt > 0.
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If x = (x,y,2) € P~ we define
x
Xi(t,z,2) = V22 4 4t

V22+4t  Vit>0. (3.3)

2

XZ(ta Y, Z) =

X3(t,2) \/22—1—475

Finally, when x = (2,9, z) € P define the flow as

X1(t,z, 2) i — 4t

ﬁ

g

2
Xo(t,y, 2 y — 4t fort € [0, 4] . (3.4)

Tx

X3tZ

At time t = ZZ the trajectories reach the origin. A formal computation
shows that the quantity

X2(t,x) + X2(t,x) B z2 + 2
| X3(t, x)| ||
is conserved by solutions of (3.2). This suggest to define the flow as

X1(t,x,Z):%\4/415—,220059—i\4/4t—z2sin@
z
2
z
Xo(t,y,2) = = \/4t—2281n®+ V4t — 22 cos © t>—. (3.5)

NE 4
Xs(t,z) = =4t — 22

where © € (0, 27] is arbitrary. An easy computation shows that X, defined
as above, is a regular Lagrangian flow of b for every © € (0,2x]. We call
those kind of solutions X®, where © represents a rotation in the zy plane.
Heuristically, we can define this kind of flows as a consequence of the fact
that the trajectories, once they reach the origin, can come out arbitrarily.
The lack of uniqueness is a consequence of the fact that all the solutions
can be extended in infinitely many ways once they reach the origin. This
reproduces the same mechanism of Example 3.1, although in this case there
are infinitely many flows, owing to the additional dimension. Actually there
are other possible ways to define regular Lagrangian flows of b; as this is not
important for the purpose of this work, we refer to [10] for a more in-depth
discussion on that.

g

3.3. The approximation of the limit vector field. In this section we
provide an approximation b. of the vector field b such that, for a fixed
O € (0,27], the sequence X of flows of b. converges to X©. Our strategy is
to approximate the vector field b close to the origin forcing the trajectories
to rotate very fast along a given helix. In order to do this, we first smooth
the union of the two paraboloids in the origin, see Figure 4. Then, we choose
the rotation velocity in the cylinder C; to be proportional to the height of
C.. Precisely, the smaller the height of the cylinder, the faster the velocity
of rotation of the characteristics. In order to get a smooth transition for the

vector field between the truncated paraboloids P, P= and the cylinder, we
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then consider two transitions zones 7.7, T (see again Figure 4). Finally, we

- &€
define the region P¢ as
Pf=PrUTrUC.UT- UP.

The main properties of the sequence of approximating vector fields {b.}.
that we will construct are described in the following proposition.

Proposition 3.2. Let b be the vector field in (3.2). Given © € (0, 27| there
exists a sequence of vector fields b. such that

(1) be converges to b in Li (R3);

(2) divb. = 0 in the sense of distributions, in particular be is tangent to
8P~€;

(3) the flow X* of be converges uniformly to ~X@;

(4) be € Lip(P?), b, is identically 0 on R3\ P%, and b- € BVi,.(R?);

(5) 157 = bie +bae, with b € L'(R?) and by € L™(R?).

Proof. We divide the proof in the following steps.
Step 1

For any € > 0 we define:

(- 1) in P2,
(bi(2,y,2),b2(x,y, 2),b3(2)) in T,
__y x 27 ) O
be(z,y,2) = <, Bty premr 168e) e (3.6)
(b1(z,y,2),ba(w,y, 2),b3(z)) inT.,
2 oo
<ZL\2’#’_H) in P,
(0,0,0) otherwise.

In the above formula (b (z,y, 2), ba(x,y, 2), b3(2)) and (b (z,y, 2), ba(z, y, 2), b3(2))
will be defined in the following, while a, 5,7v,n € R4+ and

P = {(z,y,2) e R3:2? + > < 2, 2> ae},

E“Z{@wxﬂﬂw:&+ﬂwkn§££?;§weSmzGW&%@,

32
Cs = {(ﬂﬂ,y,z) €R3 : -T2+y2 S 2775572 € [’y&,ﬁ@]},

27(22 + y2) — 32
17 = {(w,y,Z)€R3:—’r€—76\/ @° +v") — 3e < -z z€ [—776,—76]},

27(22 + y2)
Pa_ = {(:‘Uaya Z) € R?) : IL‘2 +y2 < —Z, 2 < _7]6}'
In the regions T and 7., here referred to as transition zones, we combine
the effects of rotation and dilation for the first two components, while the

third component and the geometry of the regions are defined in order to
have divb. = 0. For (x,y,2) € T, the vector field b, is defined as:

z — Be x z— Qe Y

e a22(B-a) e [2(B-a)

bl(x7y7 2) =
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_z—ae x z— e Y
b2(x7y72) - c ,8282(,8_a) + IS a2€2(,8—04)’

ba(z) = m (m - z;) .

e Be

FiGURE 4. The flow X¢ is represented by different colors
according to the region in which it is located. In the limit, it
converges to the one of Figure 3.

Instead, for (z,y,z) € T, the vector field b, is defined as:
= z+ e x zZ+ne
gl i n Y

b =
1(z,y,2) e n2e2(y—n) e prAHy—mn)
~ z+ne T z+ e Yy
b ==
2(2, Y, 2) e BE(y—nm) & Py -n)
_ 2 i
3(2) n2e3(y—n) \ 2
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Moreover, in order to connect the various regions, the parameters are chosen
so that:

48 = 3a, 4y =3n, B =1.
We remark that g is the only free parameter, representing the half height
of the cylinder, and it will be chosen later in the proof. The vector fields
be and b differ only in the set A, := 7" UC. UT. . Since .Z3(A.) = C&3,
[b:]loc < € and b € LL (R?), by the trivial estimate

/ |b: — b| dxﬁ/ |b5]dx+/ |b|dx
Ac A Ae

we get the L convergence of b, to b.

loc
Step 2

We now compute the characteristics of the vector field b, for x € P, as it is
the region of interest for the nonuniqueness. Similar computations allow to
compute the characteristics in the whole R? and so we omit them. Consider
the following system of ordinary differential equations

Xe(t,x) = bo(X(t
(8, %) = b (X* (£, ) x € P, (3.7)
X¢(0,x) =x
Since b. is smooth on P, (3.7) has a unique solution given by:
. 4 € .
X5(t,z) = V22— 4t

At t =15, we have X5(t5, z) = ae and the equations change. Specifically we
have for the third component

. XE)2
X5(t,2) = g (8= - B4,
X5(15, 2) = ae.

The solution is
4
X5 = pe , (3.8)

2 4 exp (8/32T7a2(t — tg))
up to the time t§ := 5+ 8’6;2752 In(2), when X3(¢5, z) = Be. Sustitutiong (3.8)
in the first two equations, we can rewrite them in the form
X§ = a(t)XF - b{t) X5,
X = b( VX5 + a(t) X5,
1 ( ) % V Qe
X5(t.y,2) = Lz,
where the coefficients a(t), b(t) are defined as

27T X5 — e
a(t) = 16 /3363 Y
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oy — 3K —4pe
O=""pa

Multiplying the first equation by X{ and the second one by X5, adding the
two equations and setting . = (X%)? + (X5)2, we obtain that

{‘P'a = 2a(t)90€a

2 2
pe(t]) = = iy ag,

yielding
2

24 .2 a7 . 2+exp( 2272(t—t§)>
@ (t) = T Y pee w2 t78) 8535 . (3.10)
2z

Because X| = /. cos and X5 = /. sin 0, substituting these expressions
in the equations (3.9) we get

0(t) = —b(?),
and then
2+ exp g2z (t — 85)

where 6y = 2 arctan (y) During the passage in the first transition

T4/ 22 +y?
zone, the trajectory rotates by an angle
~ 16 16 3
0=0(t5) —b6p=—=In(2) + —In{ - |.
()~ b0 = o + g (})
At time t5 the flow enters the cylinder and the system becomes
Xs=-%,
Xs =%
e _ 2T
X§ — T 16Be-

Then, the solution can be extended as
t—t5 . (t—t§
X5 (1) = X5(15) cos (52 ) — X5(15)sin (512 |
X5(t) = X5(15) sin (t;;@) X5 (15) cos (122, (3.12)
7

X5(t) = Be — 2L-(t— ),
up to the time t§ := 5+ %5252 when X5(t¢5) = —fe. Then during the time
t5 — t5 the trajectory rotates with respect to Xf(t5), X5(t5) of an angle

g2 277

Following the same steps as before, the solution of the system in the second
transition zone is

Xt = \/peosd,
X% = \/ﬁSiH o, (3.13)
X — — 28e

£ =

)
1+exp(—8527752(t—t§,)>
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where
2
1+exp (-2 (t —t5)
27 (t—ts) ( 8,3262 3
1) = o(t5)esp2=2 3
(1) = p(t5)e ’ ,

1+ exp (—%(t — t€)>
16 832%¢ 3 2
6(t) = do — 5 In : -t =)

up to the time t§ := t5 + 8’822752 In(2), where ¢g = 0y + 0 + %52. Then, note

that ¢(t7) = —0(t5) = —0 and the new initial datum for the ODE system is

[22 4+ y? [4 32 [22+y? [4 . 32 , 4
( . g,Bacos (90+27B> , . g,@é‘SlH <90—|—275> , —§B€ )

For time larger than ¢, the flow continues as

X5 = /2 a - 15) + 18 5%2 cos (60 + 267)
Xs = \/7@“2?2 At —t5) + 18 822sin (6 + 2287, (3.14)
X5 = —\JA(t - 15) + W22,

In conclusion, to find the solution X© in the limit, we have to choose the

parameter 3 as
27
B=1/339

In this step we prove the convergence of the flows.
First we know that

Step 3

X°(t,x) = XO(t,x) Vxe P U <R3 \ 156) .Vt e [0,7].

We prove only the convergence for x € P, since the same argument works
in 7" UC: UT, . First of all, we have that

Xe(t,x) = XO(t,x) vt € [0,£5], Vx € P

Then the trajectories X¢ and X© enter the approximated region and exit
from it after a different amount of time, namely

1
At. = (2+1n 2)??5282, Atg = 25252.

Since for ¢ € [t5,15 + Atg] both X¢(¢,x) and X®©(¢,x) are in T U C. UT.,
we have

| X5(t,x) — XO(t,x)| < CVE, Vt € [t5,15 + Ate], Vx € P
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For t € [t§ + Ate,t5 + At.] the flow X¢ is still in C. while X® lies in P-.

Since
4 5+4In2
X9(t5,2) = —=Bey| ———"
3 ( 472) Sﬁg 3 y
we have that

|X5(t,x) — XO(t,x)| < OV, vt € [t5,t5), Vx € P

Then, for ¢t > t7, the flow X*¢ exit the approximated region at the same point
as the flow X© and it can be written as

Xe(t,x) = XO(t — A, x),
where A, = o(¢?) is such that t§ = % + A.. So for t > t3, we estimate the

difference X¢ — X© component by component:
e for the third component we have

| X5(t,%) — X3 (t,%)| = [X5 (¢ — Ao, 2) — XP(¢,2)|
= V4t — 22 — \/A(t — AD) — 22|
4N,
VAt — 22 + \/4(t — A;) — 22|

4N,
< —— < 2¢/A, < Ck,
T VAt — 22 T

e for i € {1,2} we have
X5 (1) — XP (%) = [X2(t = A x) — XP(¢,%)]

2 2
<Y =2 - YA — A — 2
z
VAt—22—/4(t— A )—22

Vat—22+ %/4(t7A5)7z2
< 44, < CYA.<CVE
T VAL — 224t — 22 T
Note that in the previous estimate we have used the condition 22 4 y? < 2.
In conclusion, we have

sup sup ‘Xs(t7x) - X@(tvx)| < C\/gv
te[0,T] xeR3

<

which gives the desired convergence.

Step 4

In this step we check the regularity of b.. It is easy to verify that b. is

locally bounded and

C
1Vbeloe < 5

inside P. up to the boundary, so b. is Lipschitz inside P. for fixed e. Fur-
thermore b. = 0 in R?\ P¢ and the jump across the surface 9P¢ is controlled
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by g implying b. € BW,.(R3?). We can easily prove that divb. = 0 inside

]55 and that b. is tangent to 8]55, hence it is divergence-free in the sense of
distributions in the whole space. The growth condition follows easily from
the fact that the limit vector field b verifies it. O

4. PROOF OF THE MAIN THEOREMS

In this section we give the proofs of the main theorems stated in the
introduction, which we restate here for the reader’s convenience.

Theorem 1.2. There exists a divergence free vector field b € Lfoc(]R3) with
pEll, %], and a sequence of divergence-free vector fields b, € C*®(R3) such
that b, — b strongly in L{’OC(RE‘) and the uniquely defined sequence X" of
flows of b, does not converge, but has at least two different subsequences
along converging in L°((0,T); Li (R3)) to two different flows.

loc

Proof. Let b be the vector field defined in (3.2) and let ©,® € (0, 27| with
© # ®. From Proposition 3.2 there exist b2, b® € BVjoo(R?) and X©, X® ¢

g 17¢€
C([0,T7; L .(R3)) with the following properties. First, it holds that
b — bin Li (R?), ase — 0, (41)
b — bin Ll _(R?), as ¢ — 0. ‘

Moreover, by denoting with X&, X2 the unique regular Lagrangian flows of
b2,b2, it holds that

e Ve
X© — X% in L1((0,T); LL.(R?), as € — 0,
X® — X% in LY(0,7); LL . (R?), as e — 0.

Let bgl,bik € C®(R?) be regularizations of b9,b®. Since b9,b> are in

(4.2)

g7e g 7€

BViee(R3) for fixed e, by using Theorem 2.5 it follows that, for ¢ > 0 fixed
X9 — X8 in LY((0,T); LL .(R?), as | — oo,

g,l

4.3
X2, — X2 in L((0,7); L (R®), as k — oc. (4.3)

where X a(?l’ X ;I? .. denote the smooth flows of bgl, b‘;k respectively. By using

(4.2), (4.3) and a simple diagonal argument there exist €, ey such that
X%, — X®in LY((0,7); LL .(R?), as | — oo,

elyl

X2, — X% in LY((0,7); L. (R?), as k — oo.

k>
Finally, since both b?,lv b?,k strongly converge in Llloc(RS) to b, by merging
ba@,,la bfk,k and appropriately renaming the indexes we can infer that there
exists {by}n as claimed in the statement of the theorem. O

We now move to the proof of Theorem 1.1.

Theorem 1.1. There exist an autonomous divergence-free vector field b €
Lfoc(R?’) with p € [1,%}, and a sequence of divergence-free vector fields
b, € C®(R3) converging to b strongly in LfOC(R?’) such that the following
happens. For a large class of initial data ug € C®(R3) N L®(R3) there exist

subsequences n; and ny, such that the sequences uy,, and uy,, solutions of
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(1.3), conwverge in L>((0,T); L°(R3) — wx) N L*((0,T); L (R3)) to two

loc
different limits, which are bounded distributional solutions of (1.1).

Proof. Let b be the vector field defined in (3.2) and let ©,® € (0, 27| with
© # ®. From Proposition 3.2 there exist b9, 0> € BVjo.(R?) such that

g YE

b — bin L (R?), as e — 0,

4.4
b? — bin L (R3), as e — 0. 44
Let ug € C*(R3) N L>=(R3) and consider the Cauchy problems
3,;1% + b9 - Vug =0, (4.5)
ug =0 = uo,
&;ufp + 02 - Vug, =0, (4.6)
u¢|t:0 = Ug.

Since b9, b® verify the hypotesis of Theorem 2.4 for every fixed &, the so-
lutions of 4.5 and 4.6 are unique and they are given respectively by the

formulas
up(t,w) = uo((X2(t, )~ (2)),
ugp(t,w) = uo(X2 (¢, )" (2)),
(S}

where Xae ,Xf are the unique Regular Lagrangian Flows of bS ,bf. Then
ug, converge uniformly on compact sets to ug = uo((X®)~1), since

(4.7)

sup_sup |ub (1, 2) — ue (t, )|

t€[0,T] Br
= sup sup|uo((X2(t,-) " (2)) — uo((XO(t,) " (2))]
te[0,T] Br
. C) —1 (C] —1
< |IVuoll Lo gy sup sup [ XZ(¢,) " (z) — X7 (¢, ) (2)]
t€[0,7] R3
< COy/e.

Here Bpg is a closed ball of radius R > 0, ug € C®(R3) so it is Lipschitz
on compact sets and the backward flow X?(t, )1 converges uniformly to
XO(t,-)~! with the same rate of convergence of the forward flows. The
convergence of XO(t,-)7! towards X®©(t,-)~! is an easy consequence of (3)
in Proposition 3.2 and so we omit the details. The same convergence holds
for ug, towards ug := uo((X®)71).

Let bgl,bg”k € C®(R?) be regularizations of b9,b®. Since b9,b2 are in

BVioe(R3) for fixed € > 0, using Theorem 2.5 it follows that
ug — ug in L([0,T); L®(R?) — wx) N L¥([0,T7; L, (R®)), as I — oo,
ug' — ug in L((0, T]; L% (R?) — wx) N L([0, T); Ljpe(R*)), as k — oo.

Arguing as in the proof of Theorem 1.2, by a diagonal argument we can infer
that there exist 7, e such that

ug! — ue in L([0, T); L (R?) — wx) N L¥([0, T); Lo (R?)), as I — oo,
U — g in L0, 7] LX(RY) — ws) 1 L2([0, T Lo (BY), as k - ox.
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Since both bgl, bgk strongly converge in L{ .(R?) to b, by merging bg’l, bg’k’k
and appropriately renaming the indexes we can infer that there exists {by },
as claimed in the statement of the theorem. Indeed, considering an initial
datum wug that does not have rotational symmetries, it holds that ug # ug.
Thus, they are actually two different solutions of (1.1). O
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