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Abstract

A good hydrogen storage material should adsorb hydrogen in high concentra-

tions and with optimal binding energies. Exohedrally metal decorated carbon

fullerene structures were proposed as a promising material in this context. We

present a fully ab-initio, unbiased structure search of the configurational space of

decorated C60 fullerenes and find that many of the hitherto postulated ground

state structures are not ground states. We determine the energetically low-

est configurations for decorations with a varying number of decorating atoms

(2 6 n 6 32) for alkali metals, alkaline-earth metals as well as some other

important elements and find that the dense uniform distribution of the deco-

rating atoms over the surface of the C60, desired for hydrogen storage, can be

obtained only for a few elements. An understanding of the behavior of the dec-

orating atoms can be obtained by analyzing their bonding characteristics via

the electron localization function.

Keywords: C60, Periodic Table, Exohedral, Wetting, Patching, ELF,

Fullerenes

1. Introduction

Hydrogen-based technologies are a promising zero-carbon alternative to tech-

nologies using fossil fuels. However, the advancement of these technologies cru-

cially depends on the availability of efficient hydrogen storage media [1, 2]. The
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mechanical approach relies on compressed gas storage, using advanced pressure

vessels capable of sustaining high pressure at cryo-temperatures. The other ap-

proach searches for novel material-based hydrogen storage technologies. The

materials in the later approach have to meet certain hydrogen storage target

properties to be able to replace fossil fuels in practice [3, 1, 4].

Certain decorated C60 fullerene structures have been assessed for its po-

tential to meet these targets [5, 2, 6, 7, 8]. In particular, decorated fullerenes

with alkali metals (AM) or alkaline-earth metals (AEM) enhances the hydro-

gen adsorption capacity [2, 7]. The efficiency of a hydrogen storage material

is measured by its gravimetric density (GD). For alkali metals the amount of

hydrogen adsorbed on C60 increases with its coverage [9, 10]. A maximum the-

oretical GD is 13 wt % [9] for a Li12C60 cluster. The mechanism to stabilize

hydrogen adsorption on fullerenes is the charge transfer from the metal atom to

the fullerene cage, leaving the metal atom in a cationic state, which can bind H2

molecules due to polarization forces [11]. Experimentally, hydrogen storage for

LixC60 systems range between 5.0 to 5.9 wt % for bulk materials [12, 13, 14, 15].

It is clear that the geometry and type of coverage of the decorating atoms

play a key role in determining the H2 adsorption mechanism. Pioneering work

on this topic has been done by Martin and Zimmermann et al. [16, 17]. They

characterized the mechanism of atom decoration on C60 in the gas phase. In

these early works, they found for lithium certain "magic numbers" which can

only arise from an homogeneous distribution of twelve Li atoms on the top of the

pentagonal faces of fullerene. Some other elements were found to form clusters

above a certain concentration, or to form other non-homogeneous distributions

on the surface [18, 19, 20, 21, 22, 23]. This behavior is detrimental for hydrogen

adsorption, because the clustering of the metal atoms on the surface of C60

reduces the active adsorption sites for H2 [24].

Because of the technical challenges of theoretical structure predictions, metal

decorated C60 fullerenes were mainly studied experimentally. Also on the exper-

imental level only a few decorating elements were studied due to the complexity

of the experiments. Previous simulations were frequently performed using semi-
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empirical methods and hand-made geometries [25, 26]. Only a few attempts

were made at the density-functional theory (DFT) level, but without fully ex-

ploring the potential energy landscape of decorated fullerenes [27, 28, 29, 30, 31,

32, 33, 34, 7, 6, 35, 36, 37, 38]. A comprehensive and unbiased exploration of

the potential energy surface at the ab initio level requires special computational

tools and methods that allow to calculate energies and ionic forces extremely

rapidly [39]. Typically a simulation comprises between 60 to 100 atoms and the

study of all possible configurations (hand made geometries) is not possible.

In this work we investigate exohedrally decorated atoms on C60 by employ-

ing for the first time a structure prediction method, namely minima hopping

method (MHM) [40] at ab initio level. The energetically lowest configurations

for exohedrally metal decorated C60Mn with (2 6 n 6 32) is thus found for

alkali metals, alkaline-earth metals and some other elements. Furthermore, we

can predict the behavior of a larger number of decorating atoms by analyzing

the bonding characteristics (type and topology) of a single atom via the ELF

(electron localization function).

2. Methods

The unbiased structure prediction of decorated fullerenes, fully at ab ini-

tio level was conducted with the minima hopping method [40, 41, 42] . Given

only the chemical composition of a system, the MHM aims at finding the global

minimum on the potential energy surface while gradually exploring low-lying

structures. The efficiency of the MHM method extensively depends on the ex-

ploitation of the Bell-Evans-Polanyi principle for molecular dynamics [43]. This

method has been successfully used for global geometry optimization in a large

variety of applications [44, 45, 46, 47, 48, 49, 50, 51, 52, 53]. All the energy and

force calculations were evaluated at the level of density-functional theory (DFT)

using the Perdew-Burke-Ernzerhof exchange-correlation functional [54] as im-

plemented in the wavelet basis based BigDFT code [39]. The Libxc [55] library

was used for the calculation of the functionals. We have employed soft dual-

space Gaussian pseudopotentials with non-linear core correction [56, 57, 58, 59]
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and grid spacing of 0.4Bohr along with tight electronic parameters such that the

total energy difference are converged below 10−4 eV for all stable configurations

and geometry relaxation until forces on atoms are below 1meV/Å. The electron

localization function (ELF) [60] was calculated on geometry relaxed structures

using a plane wave basis-set with cutoff energy of 820 eV within the projector

augmented wave (PAW) method as implemented in the Vienna Ab Initio Sim-

ulation Package vasp [61] and in uniform boxes with size of 20× 20× 20Å for

all the systems studies in this work. The adsorption energy is defined as:

Eads = EC60
+ n× Eatoms − ETotal

Where EC60 is the energy of C60, Eatoms is the energy of an atom, n is the

number of atom and ETotal is the total energy of the system. Here, the charge

transfer is defined as the difference between the amount of electron present on

an isolated atom and the total amount of charge present on the atom after the

adsorption. This we obtained from the Bader charge analysis [62, 63, 64].

The ELF one-dimensional axis represents,

η(r) = 1/(1 + (DP /Dh)
2) (1)

where DP is the difference between the positive local kinetic energy of non-

interacting electrons, having same density as the real system, and the von

Weizsaecker kinetic energy functional and Dh is the local kinetic energy of a ho-

mogeneous electron gas. This function takes the values between 0 and 1. η(r)=

1/2 for instance represents a typical free-electron pairing. On the contrary, val-

ues close to 1 are typical of fully localized electron pairing. The important term

DP represents the excess local kinetic energy density due to the Pauli repulsion.

Though the ELF has density-functional dependence, in this work we aim to

capture first general trends over the periodic table treated within the same level

of theory (GGA-PBE).
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Figure 1: Maximum number of decorating atoms of the same species that can be homoge-
neously distributed on the C60 surface. For alkali metals a maximum of 12 atom is found for
Li, while for Na, K and Rb, it is reduced to 6. For alkaline earth metals a maximum coverage
of 32 atoms forming an outer-shell is achievable by Ca, Sr and Ba. The elements Al, Si. Ti
and Ge in contrast do not form homogeneous decoration patterns. Sc (shown) and La (not
shown) can form homogeneous distribution with up to 32 atoms.

3. Results and discussion

3.1. Maximum exohedral decoration on C60

In the following we present the predicted stable configurations of the decorat-

ing atoms of different type on the surface of the fullerene. Three main scenarios

have to be distinguished:

• The decorating atoms are uniformly distributed over the entire surface of

the fullerene, maximizing their mutual distances. This behavior is know

as wetting.
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Table 1: Summary of absorption energies (Eads), tendency for lone pair formation, ELF type
and charge transfer for selected single atom-decorated C60s. The ELF type is determined
through Fig. 5. n is the maximum number of decorating atoms that can homogenously
be distributed on a C60 as shown in Fig. 1. Non-homogeneous (NH) distributions are also
indicated. The ELF type for d)* systems is given in the supplementary information.

Atom Eads Lone ELF n Charge
(eV) pair type transfer(e−)

Li 1.79 8 b) 12 1.00
Na 1.53 8 b) 6 1.00
K 1.88 8 b) 6 1.00
Rb 1.59 8 b) 6 1.00
Cs 1.70 8 b) 6 1.00
Be 0.29 4 d)* 2 (NH) 1.50
Mg 0.07 4 d)* 2 (NH) 0.12
Ca 1.37 8 c) 32 1.42
Sr 1.03 8 c) 32 1.48
Ba 1.85 8 c) 32 1.40
Sc 2.67 8 c) 32 1.48
Y 2.38 8 c) 32 1.59
La 3.37 8 c) 32 1.50
Zr 3.46 8 c) 32 1.51
Ti 3.26 4 d)* 2 (NH) 1.62
Si 2.77 4 d) 2 2.20
Ge 2.28 4 d) 2 1.80
Al 1.95 4 d)* 2 (NH) 1.68

• The decorating atoms strongly attract each other and form clusters, i.e.

decorating atoms are clumped at a particular site on the surface with

other atoms of the same species aggregated on top it. This will be called

clustering.

• The decorating atoms form patches, i.e. a compact mono-layer covers

a part of the surface of the fullerene. The atoms of same species never

accommodate themselves on top of each other. This phenomenon is know

as patching.

Fig. 1 summarizes the maximum number of atoms for all the elements con-

sidered that the surface of C60 can host before the system starts to show "clus-

tering" or "patching". During the simulation of each system, several hundred

configurations were visited. The MH runs are terminated when we observed
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that the energy of the system is significantly reduced, when the system starts

to form clusters or when the basic structure of the fullerene is destroyed. Sys-

tems with a preference for homogeneously distributed configurations and highly

symmetric patterns rapidly show an energy that is much lower than the energy

of competing configurations.

First we studied the C60Mn structures for an increasing number n of Li, Na

and K atoms and observed that they wet C60 up to a limit of 12 atoms for Li

and 6 for Na or K (Fig. 1). Rb/Cs atoms also wet C60 up to 6 atoms (Fig. 1)

and for more number of atoms they start to form clusters. This is in agreement

with previous experimental results [18]. 12 Sc atoms do not wet as observed in

previous theoretical results [35], but they form a patch. We scanned the PES

using MHM and found out that the patched configuration is 10.66 eV lower in

energy then the homogeneously distributed configuration. As we increase the

number of atoms, Ca and Sc also prefer to form patches. Ca and Sc can adsorb

the largest number of atoms on the C60. They can homogeneously cover C60

with up to 32 atoms and form a core-shell type structure (Fig. 1). These findings

are also in good agreement with the experimental evidences [18]. La also forms

a homogeneous distribution, accommodating up to 32 atoms, making these new

configurations interesting candidates for its synthesis.

If more than two atoms are present, Si and Ge starts to form cluster on the

C60 surface. It is not surprising that silicon, germanium and carbon behave in

a similar way and most other elements which form covalent bonds with carbon,

show indeed a similar behavior. Our findings for Si and Ge are supported by

experiment [22].

3.2. Single atom on the fullerene surface

To obtain further insights into the stability of decorated fullerenes, we searched

the energetically lowest binding site for a single atom on the surface of the

fullerene. We explored this for 64 elements. Fig. 2 shows the geometry opti-

mized structures obtained with a single atom of AM, AEM and Al, Si, Sc, Ti,

and Ge. We found that the alkali metals (with the exception of Li) adopt the
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Figure 2: Different elements considered in this work: top row shows alkali metals, middle
row alkaline-earth metals and bottom row other elements. The symbols next to the element
symbol indicate the character of the energetically lowest adsorption site: (i) center of the
hexagon (hexagon), (ii) center of the pentagon (pentagon) and (iii) On the C-C bond known
as the "bridge site" (triangle). The calculated ELF at 0.9 for all the structures is shown for
comparison (see text). For each structure the adsorption energy (Eads) is also given.

center of the hexagonal face as the lowest energy binding site. Lithium is the

only element of this row with two degenerate sites. The calculated adsorption

energy of a Li atom on the center of a pentagon or a hexagon site differs only

by a few meV. A previous study reported very similar structures but a differ-

ent energetic ranking. This is presumably due to different exchange-correlation

functionals [27].
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For the AEM family, only Be and Mg prefer to sit on the C-C bond ("bridge"

site), whereas Ca, Sr and Ba are most stable on the hexagonal face. Other ele-

ments considered in this study, which take the "bridge" site as the most stable

site, are Si and Ge. Moreover, we found that a single Al atom prefers the pen-

tagon site whereas a single Sc and Ti prefers the hexagonal site. The calculated

electron localization function (ELF) at a value of 0.9 for all the systems is also

shown Fig. 2.

Table 1 shows important properties for selected single atom-decorated C60.

One can see some trends when comparing the adsorption site and the corre-

sponding ELF (see adsorption values for each system). For instance, Be and

Mg atom shows a lone pair electron and do not follow the behavior of the rest of

their AEM family. Al, Si and Ge also display lone pair structures in their corre-

sponding ELF. Our results for absorption energies (Eads) are in agreement with

previous literature values. Especially for Na and K atoms the calculated adsorp-

tion energy is comparable to hybrid-functional (B3LYP) results [65, 66]. Single

Be and Mg atoms occupy bridge-sites and are weakly adsorbed. The binding

is weak due to the high ionization potentials of Be and Mg that hinders the

donation of metal valence s electrons to the fullerene. The adsorption energies

for single atoms also correlate well with the ELF shown in Fig. 2. Higher ad-

sorption energies imply higher stability and therefore lower total energy. Hence

they are more likely to be accessible experimentally.

Fig. 3 shows the distance (y-axis) between a single atom of a certain type

and the nearest carbon atom of C60 (green circles). The average C-C distance

obtained after full geometry relaxation is also shown. It is interesting to observe

some trends in the evolution of atom-carbon distance as function of the elements

tested. The linear increase in distance between Li, Ca, Sr and Ba-C can be

explained by the increasing ionic radii for these elements. For other elements

(Ti, Si, Ge, etc), which are strongly bound to the fullerene, the distance of

interaction shrinks to 2.1Å. The distance of Sc, Y and La, also correlates well

with the increase of their ionic radii. Be and Mg have a relatively large metal-

carbon distance. This is simply due to their weak bonding energies as described
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Figure 3: Trends in bond lengths for single atom decorating fullerenes. The green-circles
represent the distance between the probe atom and the nearest carbon atom of the C60 for 64
elements sorted by atomic number. The respective average C-C distance in C60 is shown for
selected elements in blue-triangles. C-C distances do not deviate by more than 5 % and remain
thus close to 1.5 Å, the typical C-C distance in a isolated fullerene. Two major trends are: a
linear increase in the bond lengths between the decorating atom and the closest carbon for Li,
Ca, Sr and Ba and a constant length for Be, Si, and Ge. Note that these same elements also
form lone electron pairs (see ELF). The typical covalent bond between C and different metals
in metallo-organic molecules lies in the range of 1.5Å to 2.2Å [67]. Here it is represented by
the shaded area in between the black dotted line at 1.5Å to blue line line at 2.2Å. Hence the
elements which are homogeneously distributed over C60 have longer bond length than typical
metallo-organic molecules.

before. The elements, with a interaction distance greater than 2.5Å (Na, Mg,

Al, K, and Rb) have one unpaired electron and behave differently form the rest

of the elements of the periodic table. It is noticeable that most of the d-block

elements are found around the typical covalent distance lying between 2.0 to

2.4Å.

3.3. ELF analysis for decorated fullerene

In the previous section, we have already given indication of the charac-

teristic emerging for the different elements. More detailed information can be
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Figure 4: Periodic chart summarizing elements that are likely to form homogeneous decorated
distributions and have a maximum coverage on the surface. 2 main types of electronic behav-
iors (ELF) are marked apart from the rest of the elements and those are depicted in orange
and green, corresponding respectively to b) and c) in Fig. 5. For each atom, the energetically
lowest site is indicated together with the difference in energy for other sites.

obtained by an ELF analysis. In particular the ELF analysis will allow us to pre-

dict whether the decorating atoms form a homogeneous distribution or undergo

clustering or patching. (see methods for further details on ELF calculations).

Fig. 5 shows the different ELF volumes obtained for single atoms of different

type on the surface of C60. ELF values (η) vary from of 0.5 for free electrons to

1 for fully localized electrons. Values between 0.7–0.8 indicate a covalent bond

character. The analysis of the topology of the electronic structure by bifurca-

tion hierarchies has been successfully used in many other systems [68, 69, 70].

Accordingly to their nature core and valence domains of bonding can be dis-

tinguished: core domain denoted as C(C) and C(M) for carbon and considered

atom, respectively. Valence domains V(m) for atom on the surface or V(C)

for carbon fullerene. A valence overlap composed of both the carbon and the

considered atom domains, is denoted as V(C,M).

The periodic chart of Fig.4 summarizes the results of the ELF analysis car-

ried out for 64 different elements decorating the surface of C60. Despite the
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Figure 5: Electron localization function (ELF) analysis for different atoms: a) isolated C60, b)
AM, c) AEM and d) for covalently bonded atoms. In these plots, black lines depicts the single
basin (volume) and when it bifurcated, it is represented by blue lines. Yellow lines show the
corresponding ELF of the atom considered. Clearly different levels of bifurcation (bonding)
are distinguishable via the ELF. Other atoms that follow these patterns are indicated.

completely different nature of the 64 elements, a large number of atoms share

a quite similar behavior and fall therefore in three classes that we will define.

These classes are marked by different colors in Fig.4. For each atom, the ener-

getically lowest site is indicated together with the difference in energy to other

sites. The vast majority of elements will seat on "bridge" (indicated with solid

triangles) sites forming covalent interactions. Only the orange and green color

coded elements are predicted to form homogeneous decorated distributions that

have a maximum coverage on the surface.

Both the ELF and Bader (not shown) analysis for single atoms on C60 re-

veal two distinct and general behaviors: (i) atoms with either covalent or ionic
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bonding do not show any lone pair electron and (ii) atoms that do form lone

pairs electrons, weakly interact with the C60. From Fig. 2i, we observe that the

elements which have a lone pair (i.e. Be, Mg, Al) also prefer to form clusters.

Let’s analyze in more detail what is different for AM and AEM from the rest

of elements. In all panels in Fig. 5 black solid line represents the main domain

(continuous volume) and the blue lines are drawn only after a volume has bi-

furcated (discontinuous). Different bifurcations (blue lines) can be tracked and

do correspond to the valence contributions (V1, V2 and V3). Yellow lines repre-

sent the atom probe on the surface of the fullerene. To further understand the

bifurcation diagram, we should mention that the variation of η is simply a mea-

sure of the number of the pairing electrons participating in the bonding (here

depicted as the ELF volume). The variation of η and consequently the volume

variation, i.e. topology of the bonding, leading to either continuous or discon-

tinuous volumes depending on the elf values, represent an reliable indicator for

the behavior of a given decorating atom type. In this way ELF can be used

to classify the different elements into two classes that share similar behavior as

decorating atoms and remainder.

The first class comprises the alkali atoms Li, Na, K, Rb and Cs, (panel

b. of Fig. 5 ). An elf analysis of the alkali elements suggests that they form

strong ionic bonds with C60 [71]. The orange part in the periodic table (Fig. 4)

represents this class of atoms. The ELF volume splits at 0.72, 0.73, and 0.74

values of η, representing three different valence electron contribution for C-C

bonds, respectively for (V1(C,C)), (V2(C,C)), and (V3(C,C)). The first volume

arises from the C-C bonds which are far from the alkali atom. The second

bifurcation is (V2(C,C)) which represents bonding between next nearest carbon

atom and nearest carbon atom to the alkali atom. The valence basin (V3(C,C))

is induced by nearest carbon atoms and the alkali atom.

The second class comprises Ca, Sc, Sr, Ba, Sc, Y, La and Zr and is repre-

sented by green in the periodic table (Fig. 4). The ELF for these elements is

characterized by three volume discontinuities at η = 0.71, 0.76 and 0.77. This

implies a similar bonding pattern as in the case of alkali atoms, except that for
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these metals, the third discontinuity is localized in space only for small η-values.

This feature is visible in panel c) of Fig. 5 for a value of 0.77 (small volumes are

indicated by a circle on the top of the fullerene).

The remaining elements shown in white in the periodic chart of Fig. 4 exhibit

different ELF behavior but share the property of not homogeneously distributing

over the C60 surface .

Most of the p-block elements have similar ELF behavior and up to two

elements can be accommodated on the C60 surface before they start to form

cluster.

We also include as reference the diagram for carbon, panel (a) in Fig. 5).

The ELF analysis shows only one main discontinuity in the volume, occurring

at 0.71, which arises due to the purely covalent C-C bonding in the isolated

fullerene.

4. Conclusions

Fullerenes, exohedrally decorated with the alkali metals, alkaline-earth met-

als and other elements, were studied in a systematic, unbiased fashion with a

structure search algorithm at the density-functional level. Our exploration of

the potential energy surface resulted in new putative ground states and low en-

ergy configurations for a large number of elements and for a varying number of

decorating atoms. We determined in particular the maximum number of atoms

that can homogeneously be distributed on the fullerene surface. The ELF anal-

ysis helped to understand the behavior of AM and AEM and other elements

when decorating fullerenes.

By scanning the ELF of 64 elements, we were able to determine: Li, Na, K,

Rb, Cs, Ca, Sr, Ba, Sc, Y and La as the sole elements that will favor homo-

geneous distributions. This picture explains the previous experimental findings

for the elements Li, Na, K, Rb, Cs, Ca, Sr and Ba. And for elements on which

experimental results are absent, we predict that Y, Sc and La should also ho-

mogeneously cover C60.
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