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Abstract

Starting from a high-order local nonreflecting boundary condition (NBC) for
single scattering [25], we derive a local NBC for time-dependent multiple
scattering problems, which is completely local both in space and time. To do
so, we first develop an exterior evaluation formula for a purely outgoing wave
field, given its values and those of certain auxiliary functions needed for the
local NBC at the artificial boundary. By combining that evaluation formula
with the decomposition of the total scattered field into purely outgoing con-
tributions, we obtain a completely local NBC for time-dependent multiple
scattering problems. The accuracy and stability of this new local NBC are
evaluated by coupling it to a standard finite difference method.

Key words: nonreflecting boundary conditions, absorbing boundary
conditions, multiple scattering, time dependent waves, exterior evaluation,
far-field evaluation

1. Introduction

Scattering problems in unbounded domains occur in a wide variety of
applications such as radar or sonar technology, wireless communications, or
seismic imaging. For computation, a well-known approach is to enclose all
obstacles, inhomogeneities and nonlinearities with an artificial boundary B.
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A boundary condition is then imposed on B, which leads to a numerically
solvable boundary value problem in the finite computational domain Ω. The
boundary condition should be chosen such that the solution of the problem in
Ω coincides with the restriction to Ω of the solution in the original unbounded
region. Otherwise it will induce spurious reflections at B, which will travel
back into Ω and distort the numerical solution everywhere.

When Ω is convex, all waves leaving the computational domain are purely
outgoing and never return. Many approaches are then available to effectively
truncate the infinite exterior, such as the popular perfectly matched layer
(PML) approach [7, 8, 10, 22], but also nonlocal nonreflecting boundary con-
ditions (NBC) [17, 18, 30], or infinite elements [4] – see [33, 24] for a review.
In particular, Hagstrom and Hariharan [25] derived a new formulation of the
classical Bayliss and Turkel [6] conditions of arbitrarily high order, yet with-
out high order derivatives. It holds for B a sphere and is local both in space
and time, while its high accuracy and efficiency in computations was shown
in [28]. Similarly, Givoli and Neta [15] and Hagstrom and Warburton [26]
each proposed a reformulation of the Higdon [27] conditions without high
order derivatives for rectangular B – see [14] for a recent review.

However, when the scatterer consists of several obstacles which are well
separated from each other, the use of a single artificial boundary to enclose
the entire (convex) scattering region becomes too expensive. Instead it is
preferable to enclose every sub-scatterer by a separate artificial boundary
Bj. Then we seek an exact boundary condition on B =

⋃

Bj , where each
Bj surrounds a single computational sub-domain Ωj . Then Ω =

⋃

Ωj is no
longer convex and any NBC at B must not only let outgoing waves leave
Ωj without spurious reflection from Bj , but also propagate the outgoing
wave from Ωj to all other sub-domains, which it may reenter subsequently.
Hence to derive an exact nonreflecting boundary condition for such multiple
scattering problems, an analytic representation of the solution everywhere in
the exterior region is needed to propagate the outgoing waves to the other
sub-domains. Perfectly matched layers, in particular, do not provide such an
expression and thus cannot be used.

Boundary conditions based on boundary integral equations [32, 23, 31]
can be used regardless of the shape of Ω, and hence also in situations of
multiple scattering. The update of the solution at any particular point on
the artificial boundary then requires a space-time integral over past values on
B. Thus, they are nonlocal both in space and time, while any straightforward
implementation will result in a boundary condition one order of magnitude
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more expensive than the numerical method used inside Ω. Much current
research in integral equation based formulations is devoted to reducing that
computational cost [9, 12, 5]. Alternatively, Grote and Kirsch [21] recently
derived a NBC for time dependent multiple scattering problems, which is
local in time but nonlocal over B. It is the time dependent counterpart of
the Dirichlet-to-Neumann condition for exterior Helmholtz problems [19, 13],
which was extended to time-harmonic multiple scattering problems in [20]
and used for scattering from multiple complexly shaped obstacles in [1].

In this work we shall show how to derive a NBC for time-dependent mul-
tiple scattering problems, which is completely local both in space and time.
Following [21], we first recall in Section 2 how to decompose the scattered
field into multiple purely outgoing waves. The scattered field at any partic-
ular boundary Bj then consists of an outgoing part and an incoming part,
where the latter is determined by its past values on the other boundaries.
The use of this decomposition to derive an exact NBC is first illustrated in
the simple situation of multiple scattering in one space dimension, where ex-
terior evaluation simply consists in information transfer along characteristics.
Next in Section 3, we derive an exterior evaluation formula for an outgoing
time dependent three-dimensional wave field, when the high-order NBC by
Hagstrom and Hariharan [25] for single scattering is used at B. By combining
that exterior evaluation formula with the decomposition from Section 2 and
the high-order NBC, we thus obtain a local NBC for time-dependent multiple
scattering problems in three space dimensions. In Section 4, we show how to
couple it with a standard finite difference scheme and efficiently evaluate the
exterior field on B. Finally, in Section 5, we demonstrate the accuracy and
usefulness of our local NBC through numerical experiments.

2. Nonreflecting boundary conditions for multiple scattering

2.1. General formulation

We consider acoustic wave scattering from two bounded disjoint scatterers
in unbounded three-dimensional space. Each scatterer may contain one or
several obstacles, inhomogeneities, and nonlinearity. We let Γ denote the
piecewise smooth boundary of all obstacles and impose on Γ a Dirichlet-type
boundary condition, for simplicity. In Ω∞, the unbounded region outside Γ,
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the scattered field u then solves the following initial-boundary value problem:

∂2u

∂t2
−∇ ·

(

c2∇u
)

= f in Ω∞, t > 0, (1)

u = u0,
∂u

∂t
= v0 in Ω∞, t = 0, (2)

u = g on Γ, t > 0. (3)

The wave speed c > 0 may vary in space, while both f and g may vary in
space and time; f may also be nonlinear.

Γ1

Γ1

Γ2

Ω1

Ω2
B1

B2

D

c(x)

f(x, t)

Figure 1: A typical configuration with two scatterers is shown. Each scatterer consists
of possibly several obstacles bounded by Γ1 and Γ2, but may also contain inhomogeneity,
anisotropy, nonlinearity and sources. The computational domain Ω = Ω1∪Ω2 is externally
bounded by the artificial boundary B = B1 ∪ B2; the unbounded region outside Ω is
denoted by D.

Next, we assume that both scatterers are well separated, that is we assume
that we can surround them by two non-intersecting spheres B1, B2 with radii
R1, R2, respectively. In the unbounded region, D, outside the two spheres,
we assume that the medium is homogeneous and isotropic; moreover, we
assume that the source f and the initial values u0, v0 vanish in D. In the
exterior region, the scattered wave u therefore satisfies the homogeneous wave
equation with constant wave speed c and homogeneous initial conditions,

∂2u

∂t2
− c2∆u = 0 in D, t > 0, (4)

u = 0,
∂u

∂t
= 0 in D, t = 0. (5)
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Hence in D, the wave field u is entirely driven by its boundary values at B
and purely radiating at large distance.

We wish to compute the scattered field, u, in the computational domain
Ω = Ω∞\D, which consists of the two disjoint components Ω1 and Ω2. Hence
Ω is internally bounded by Γ = Γ1 ∪ Γ2, and externally by B = ∂D, which
consists of the two spheres B1 and B2 – see Fig. 1. To solve the scattering
problem (1)–(3) inside Ω, a boundary condition is needed at the exterior
artificial boundary B = B1 ∪B2. This boundary condition must ensure that
the solution in Ω, with that boundary condition imposed on B, coincides
with the restriction to Ω of the solution in the original unbounded region
Ω∞.

In contrast to a situation of single scattering [25, 30, 17], we cannot simply
expand u outside B either in Fourier series or as a superposition of purely
outgoing radial multipole fields. Indeed, since part of the scattered field
leaving Ω1 will reenter Ω2 at later times, and vice versa, u is not outgoing in
D. Hence, the boundary condition we seek at B must not only let outgoing
waves leave Ω1, say, without spurious reflection from B1, but also propagate
those waves to Ω2, and so forth, without introducing any spurious reflection.

Now let D1 denote the unbounded region outside B1 and D2 the un-
bounded region outside B2. Then the total scattered field u admits the
unique decomposition

u = u1 + u2 in D = D1 ∩ D2, t ≥ 0, (6)

where u1 and u2 solve the following two homogeneous wave equations [21]:

∂2u1

∂t2
− c2∆u1 = 0 in D1, t > 0, (7)

u1 = 0,
∂u1

∂t
= 0 in D1, t = 0, (8)

and

∂2u2

∂t2
− c2∆u2 = 0 in D2, t > 0, (9)

u2 = 0,
∂u2

∂t
= 0 in D2, t = 0. (10)

Since u1 and ∂tu1 vanish at t = 0, u1 is a purely outgoing wave as seen from
B1, propagating with finite speed c into D1, and similarly for u2. Note that
u1 and u2 are entirely determined by their values on B1 and B2, respectively.
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The above decomposition (6) of the scattered field u into purely outgoing
wave fields is crucial for the derivation of a NBC in a situation of multiple
scattering. Indeed when applying a differential operator to u at B, we can
thus distinguish the two separate contributions from the incoming and out-
going wave fields, which need to be treated differently. At B1, for instance,
we shall determine the outgoing contribution by applying a local NBC for
single scattering [25] to u1. In contrast, the contribution from u2 will be de-
termined from its past values at B2 through an exterior evaluation formula.
Before we proceed in Section 3 with the derivation of the NBC in the general
three-dimensional setting, we shall illustrate the basic principle underlying
the derivation of a NBC for multiple scattering problems in the much simpler
one-dimensional case.

2.2. One-dimensional multiple scattering

Here we consider the following one-dimensional Cauchy problem:

∂2u

∂t2
−

∂2u

∂x2
= f(x, t), −∞ < x < ∞, t > 0,

u(x, 0) = u0(x), ut(x, 0) = v0(x).
(11)

We assume that the initial disturbance and the forcing are supported inside
the region Ω = Ω1 ∩ Ω2, with Ω1 = [0, B1] and Ω2 = [B2, L], 0 < B1 <
B2 < L, that is supp{u0, v0, f(·, t)} ⊂ Ω, as illustrated in Fig. 2. We now
wish to restrict the computation to the sub-region Ω; therefore we need to
impose appropriate boundary conditions at x = 0, B1, B2, and L to ensure
that the solution in Ω coincides with the solution u of the original Cauchy
problem for all time.

Since u is purely outgoing for x < 0 and x > L, the exact NBC at x = 0 or
x = L corresponds to the standard absorbing boundary condition for single
scattering, that is

(

∂

∂x
−

∂

∂t

)

u = 0, x = 0,

(

∂

∂x
+

∂

∂t

)

u = 0, x = L.

(12)

We now focus on the two remaining artificial boundary points at x = B1

and x = B2, where u is not purely outgoing. Since u satisfies the homoge-
neous wave equation in [B1, B2], it is the superposition of a left and right
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u1
u2
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1

=
u

u
2

=
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1

=
u
−

u
2 u
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u
−

u
1

L

utt − uxx = 0

Figure 2: Multiple scattering in one space dimension. The computational domain Ω
consists of the two disjoint intervals Ω1

⋃

Ω2.

moving wave there, that is

u(x, t) = u1(x, t) + u2(x, t), (13)

with
u1(x, t) = f(x − t), u2(x, t) = g(x + t). (14)

Moreover, if we require that supp{u1} ⊂ Ω1 and supp{u2} ⊂ Ω2 at t = 0,
u1 and u2 are uniquely defined for all time [21]. From (13) and (14) we thus
immediately find the exact NBC at x = B1,

(

∂

∂x
+

∂

∂t

)

u =

(

∂

∂x
+

∂

∂t

)

u1 +

(

∂

∂x
+

∂

∂t

)

u2

=

(

∂

∂x
+

∂

∂t

)

u2,

(15)
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since u1 is outgoing here.
Thus to impose the exact NBC at x = B1, we must be able to evaluate u2

there. In doing so, we need to distinguish initial times up to t = B2 − B1

from later times t ≥ B2 − B1:

• 0 ≤ t < B2 −B1: due to the finite propagation speed (here set to one),
u2 hat not reached Ω1 yet; hence, u2 is still zero at x = B1 and (15)
reduces to the standard NBC for purely outgoing solutions.

• B2 − B1 ≤ t: u2 no longer vanishes at x = B1; however, u2 is fully
determined by its past values at x = B2 as

u2(B1, t) = u2(B2, t − (B2 − B1)). (16)

Yet how do we determine u2 at x = B2? Recall that we are only comput-
ing u inside Ω. Again during initial times t < B2 − B1, we have u2 = u at
x = B2. At later times, we determine u2 at x = B2 from (13) by subtracting
from u the value of u1 there, which itself is now determined through (14) by
its past values on B1, that is

u2(B2, t) = u(B2, t) − u1(B2, t)

= u(B2, t) − u1(B1, t − (B2 − B1)).
(17)

Hence at every time step of the numerical scheme, we concurrently update
the new values of u1 and u2 at x = B1, B2, respectively. This requires the
additional storage of past values of ui at x = Bi, i = 1, 2, for the finite time
window [t − (B2 − B1), t], which corresponds to the travel time between Ω1

and Ω2. By keeping track of u and ui at Bi during that finite time window,
we can evaluate them at Bi for all time.

3. Local NBC in three space dimensions

The derivation of a NBC for multiple scattering problems requires three
main ingredients: a decomposition of the scattered field into purely outgoing
wave fields, a NBC for outgoing waves, and an exterior evaluation formula.
Starting from a high-order NBC for single scattering, we shall derive an ex-
terior evaluation formula for the scattered field, which uses only past values
of the solution and certain auxiliary functions at B needed for the boundary
condition. Similarly to the one-dimensional case described in the previous
section, we finally obtain a NBC for time-dependent multiple scattering prob-
lems in three space dimensions.
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3.1. Local NBC for single scattering

Let B be the sphere of radius R and assume that u satisfies the homoge-
neous wave equation,

∂2u

∂t2
− c2∆u = 0, r > R, t > 0 (18)

with zero initial condition outside B,

u = 0,
∂u

∂t
= 0, r > R, t = 0. (19)

Starting from the convergent series [34]

u(r, θ, φ, t) =
∞
∑

j=1

fj(ct − r, θ, φ)

rj
, r > R, (20)

where r, θ, φ are spherical coordinates, Hagstrom and Hariharan [25] derived
the following exact local NBC in three space dimensions:

(1

c

∂

∂t
+

∂

∂r
+

1

r

)

u = w1, (21)

(1

c

∂

∂t
+

k

r

)

wk =
1

4R2

(

k(k − 1) + ∆S

)

wk−1 + wk+1

for k = 1, 2, . . ., and w0 = 2u. Here, ∆S denotes the Laplace-Beltrami
operator in spherical coordinates (r, θ, φ),

∆S =
1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂2

∂φ2
. (22)

In fact Bayliss and Turkel [6] used the same infinite series representation
to derive their hierarchy of local absorbing boundary conditions in spherical
coordinates. Similar to the boundary conditions of Engquist and Majda [11],
it also requires increasingly higher order derivatives for improved accuracy.

In contrast, the boundary condition (21) is local in space and time and
does not involve high-order derivatives, but instead an infinite sequence of
auxiliary variables wk defined on B. In practice, only a finite number of
auxiliary functions wk, k = 1, . . . , P is used setting wP+1 = 0. Then, in
general the boundary condition is no longer exact, but it remains exact for
solutions which consist of a finite combination of spherical harmonics up
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to order P . Imposition of the boundary condition at any fixed radius R
thus yields at least spectral accuracy for smooth wave fields with increasing
P . Therefore (21) is exact in the same sense as the NBC proposed in [17,
18], namely that P can always be chosen sufficiently large so that the error
introduced at B is smaller than the discretization error inside Ω, without
moving B farther away from the scatterer. However, this new boundary
condition does not require any spherical harmonics or inner products with
them; hence, it is somewhat easier and cheaper to implement. The usefulness
and accuracy of the NBC (21) was illustrated via numerical experiments in
[28]. It was also recently extended to Maxwell’s equations in three space
dimensions [16].

3.2. Exterior evaluation

Given the values of u and the auxiliary functions w1, . . . , wP in (21) at B,
the sphere of radius R, we shall now derive an explicit formula to evaluate u
everywhere in the exterior of B. For r ≥ R, the general solution to (18) is
given by the Fourier series representation,

u(r, θ, φ, t) =

∞
∑

n=0

n
∑

m=−n

unm(r, t) Ynm(θ, φ), (23)

where the spherical harmonics Ynm are defined by

Ynm(θ, φ) =

√

2n + 1

4π

(n − |m|)!

(n + |m|)!
P |m|

n (cos θ)eimφ (24)

and the Fourier coefficients unm satisfy

unm(r, t) =

∞
∑

k=0

r−k−1 fk
nm(ct − r). (25)

The spherical harmonics Ynm form a complete L2-orthogonal system on B.
Moreover, they are eigenfunctions of the Laplace-Beltrami operator:

∆S Ynm = −n(n + 1) Ynm. (26)

By introducing the series representation (23), (25) into (18), we obtain
the recursion

(

fk+1
nm

)′

= −
k(k + 1) − n(n + 1)

2(k + 1)
fk

nm. (27)
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Hence for k > n, we may choose fk
nm = 0 so that

unm(r, t) =
n
∑

k=0

r−k−1 fk
nm(ct − r)

= r−1 f 0
nm(ct − r) +

n
∑

k=1

r−k−1 fk
nm(ct − r).

(28)

Next, we multiply (28) by r to obtain at r = R:

f 0
nm(ct − R) = Runm(R, t) −

n
∑

k=1

R−kfk
nm(ct − R). (29)

By using (29) at time t − (r − R)/c instead of t, we can rewrite (28) as

unm(r, t) = r−1 f 0
nm

(

c(t − (r − R)/c) − R
)

+

n
∑

k=1

r−k−1 fk
nm(ct − r)

= r−1Runm(R, t − (r − R)/c) − r−1
n
∑

k=1

R−k fk
nm(ct − r)

+
n
∑

k=1

r−k−1 fk
nm(ct − r).

(30)

We now assume that the solution u consists of a finite number of spherical
harmonics up to order P and use (30) to replace unm in (23). This yields

u(r, θ, φ, t) = Rr−1

P
∑

n=0

n
∑

m=−n

unm(R, t − (r − R)/c) Ynm

+ r−1
P
∑

n=1

n
∑

m=−n

n
∑

k=1

(

r−k − R−k
)

fk
nm(ct − r) Ynm.

(31)

By using the identity

P
∑

n=1

n
∑

k=1

an,k =
P−1
∑

ℓ=0

P
∑

n=p−ℓ

an,P−ℓ (32)

with an,k =
∑n

m=−n(r−k − R−k) fk
nm(ct − r) Ynm(θ, φ), we rewrite the last

term on the right of (31). Then we evaluate the resulting expression at the
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future time t + (r − R)/c and recall that w0 = 2u. This yields the following
exterior evaluation formula at r > R:

u(r, θ, φ, t + (r − R)/c) =
R

2r
w0(R, θ, φ, t)

+
1

r

P−1
∑

ℓ=0

(rℓ−P − Rℓ−P ) ηP,ℓ(R, θ, φ, t),
(33)

where ηP,ℓ is defined as

ηP,ℓ(r, θ, φ, t) =

P
∑

n=P−ℓ

n
∑

m=−n

fP−ℓ
nm (ct − r) Ynm(θ, φ). (34)

We emphasize that we do not need the (unknown) functions ηP,ℓ to evaluate
the solution outside B. Instead, we shall now express them in terms of the
auxiliary functions wj to obtain a useful evaluation formula for u.

First, we recall from [[25], p. 408, equations (38), (39)] that

wj(r, θ, φ, t) =

P
∑

n=j

n
∑

k=j

γk,jr
−k−j−1

n
∑

m=−n

fk
nm(ct − r)Ynm(θ, φ), (35)

where

γk,j = (−1)j21−j k!

(k − j)!
. (36)

For fixed j, we now let s = P − k and use that fP−s
n,m = 0 for s < P − n to

obtain

wj =

P−j
∑

s=0

γP−s,j r−P+s−j−1
P
∑

n=j

n
∑

m=−n

fP−s
nm Ynm. (37)

Again since fP−s
n,m = 0 for n < P − s, we can rewrite (37) as

wj =

P−j
∑

s=0

γP−s,j r−P+s−j−1

P
∑

n=P−s

n
∑

m=−n

fP−s
nm Ynm (38)

and then use (34) to obtain

wj =

P−j
∑

s=0

γP−s,j r−P+s−j−1 ηP,s. (39)
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Next, we separate the term s = P − j from the sum to rewrite (39) as

wj = γj,j r−2j−1 ηP,P−j +

P−j−1
∑

s=0

γP−s,j r−P+s−j−1 ηP,s. (40)

We now let k = P − j and solve (40) for ηP,k, which yields

ηP,k = (γP−k,P−k)
−1 r2(P−k)+1 wP−k −

k−1
∑

s=0

(γP−k,P−k)
−1 γP−s,P−k rs−k ηP,s

= αP−k r2(P−k)+1 wP−k −

k−1
∑

s=0

(

P − s

k − s

)

rs−k ηP,s ,

(41)

where αj is defined as
αj = (−1)j2j−1/j! . (42)

Next, we evaluate (41) at r = R and rewrite it as

k
∑

s=0

(

P − s

k − s

)

Rs−k ηP,s = αP−k R2(P−k)+1 wP−k, k = 0, 1, . . . , P. (43)

By multiplying (43) by Rk and defining

η̃s = RsηP,s, bk = αP−k R2P−k+1 wP−k, (44)

we can rewrite the resulting equation as

k
∑

s=0

(

P − s

k − s

)

η̃s = bk, k = 0, 1, . . . , P. (45)

Equation (45) is a (P + 1) × (P + 1) lower triangular system for η̃s, s =
0, . . . , P . Its solution is

η̃k =
k
∑

j=0

(−1)k−j

(

P − j

k − j

)

bj , (46)

as shown in the Appendix.
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In (46) we now replace η̃k and bj by their definitions in (44) and the index
j by k − j, which leads to the following expression for ηP,k in terms of the
auxiliary functions wk:

ηP,k =
k
∑

j=0

(−1)j

(

P − k + j

j

)

αP−k+j R2(P−k)+j+1wP−k+j. (47)

To derive an exterior evaluation for u in terms of the auxiliary functions
wk only, we now use (47) to replace ηP,ℓ in (33). If we denote by t̂ = t− (r−
R)/c the time retarded value that corresponds to the travel time from R to
r, r > R, we thus obtain

u(r, θ, φ, t ) =
R

2r
w0(R, θ, φ, t̂ )

+ r−1

P−1
∑

k=0

k
∑

j=0

(−1)j

(

P − k + j

j

)

αP−k+j wP−k+j

(

R, θ, φ, t̂
) (

rk−PR2(P−k)+j+1 − RP−k+j+1
)

.

We now reorder the double sum above according to the identity

P−1
∑

k=0

k
∑

j=0

ak,j =

P−1
∑

k=0

P−k−1
∑

j=0

ak+j,j , (48)

which yields

u(r, θ, φ, t ) =
R

2r
w0(R, θ, φ, t̂ )

+
R

r

P−1
∑

k=0

αP−kwP−k(R, θ, φ, t̂ )RP−k
P−k−1
∑

j=0

(−1)j

(

P − k

j

)

(

(

R

r

)P−k−j

− 1

)

.

(49)

Next, we use the identity

ℓ−1
∑

j=0

(−1)j

(

ℓ

j

)

= (−1)ℓ−1 (50)

with ℓ = P − k to rewrite (49) as

u(r, θ, φ, t) =
R

2r
w0(R, θ, φ, t̂ ) (51)

+
R

r

P−1
∑

k=0

αP−kwP−k(R, θ, φ, t̂ )RP−k

[

P−k−1
∑

j=0

(

P − k

j

)(

R

r

)P−k−j

(−1)j − (−1)P−k−1

]

.
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In (51), the last term inside the square brackets simply corresponds to the
term in the sum with j = P − k. Moreover, from the binomial formula we
have that

P−k
∑

j=0

(

P − k

j

)(

R

r

)P−k−j

(−1)j =

(

R

r
− 1

)P−k

. (52)

Hence, the square bracketed term in (51) simplifies to the expression on
the right of (52). After replacing αP−k by its definition in (42) and further
simplifications, we obtain the exterior evaluation formula:

u(r, θ, φ, t) =
R

r

P
∑

k=0

2k−1

k!

(

R

(

1 −
R

r

))k

wk(R, θ, φ, t̂). (53)

We summarize this result as a theorem.

Theorem 1. Let u(r, θ, φ, t) be a solution of (18), (19) that consists of a
finite number of spherical harmonics Ynm up to order n ≤ P and the auxiliary
functions wj, 0 ≤ j ≤ P , satisfy (21) at r = R. Then for r > R, u satisfies

u(r, θ, φ, t) =
R

r

P
∑

k=0

2k−1

k!

(

R

(

1 −
R

r

))k

wk

(

R, θ, φ, t −
r − R

c

)

. (54)

When the solution consists of a finite number of spherical harmonics Ynm

up to order n ≤ P , both the boundary condition (21) and the exterior eval-
uation formula (54) are exact. For smooth wave fields, the Fourier represen-
tation of u in the exterior converges uniformly, absolutely and exponentially
fast. Hence we expect spectral accuracy with increasing P . Remarkably,
the time retarded values of the auxiliary functions at (R, θ, φ) suffice to de-
termine the solution everywhere in the exterior along the straight line with
constant θ and φ.

3.3. Local NBC for multiple scattering

For simplicity, we first consider scattering from only two bounded disjoint
scatterers, each surrounded by a sphere Bi of radius, Ri, i = 1, 2. Following
the general formulation of Section 2.1, we let D1 denote the unbounded
region outside B1 and D2 denote the unbounded region outside B2. Then
the total scattered field u admits the unique decomposition u = u1 + u2 in

15



D = D1 ∩ D2, where u1 and u2 are purely outgoing wave fields that satisfy
(7)–(8) and (9)–(10), respectively.

Outside each sphere Bj, we now introduce local spherical coordinates
(rj, θj , φj), j = 1, 2. At B1, for instance, the decomposition of u into an out-
going part u1 and an incoming part u2 then immediately yields the identity

(

1

c

∂

∂t
+

∂

∂r1
+

1

R1

)

u =

(

1

c

∂

∂t
+

∂

∂r1
+

1

R1

)

u1 +

(

1

c

∂

∂t
+

∂

∂r1
+

1

R1

)

u2.

(55)
To turn (55) into a practical boundary condition, we need to determine the
outgoing and the incoming contributions on the right-hand side. For the
outgoing part, we shall use (21) applied to u1, whereas for the incoming
contribution we shall use the explicit evaluation formula (54) applied to u2.
This immediately yields the exact NBC at B1:

(

1

c

∂

∂t
+

∂

∂r1
+

1

R1

)

u = w
(1)
1 +

(

1

c

∂

∂t
+

∂

∂r1
+

1

R1

)

u2, (56)

where
(1

c

∂

∂t
+

k

r1

)

w
(1)
k =

1

4R2
1

(

k(k − 1) + ∆S1

)

w
(1)
k−1 + w

(1)
k+1 (57)

for k = 1, 2, . . ., and w
(1)
0 = 2u1. Here the functions w

(1)
k correspond to

the auxiliary functions associated with u1 at B1, whereas ∆S1
denotes the

Laplace-Beltrami operator (22) at B1. Note that the functions w
(1)
k are en-

tirely determined by the values of u1 (not u) at B1 through their recursive

definition (57), initialized by w
(1)
0 = 2u1.

In (56), the incoming part is determined through the evaluation formula
(54) applied to u2, that is

u2(r2, θ2, φ2, t) =
R2

r2

P
∑

k=0

2k−1

k!

(

R2

(

1 −
R2

r2

))k

w
(2)
k

(

R2, θ2, φ2, t −
r2 − R2

c

)

.

(58)

Here the auxiliary functions w
(2)
k , associated with u2 at B2, satisfy

(1

c

∂

∂t
+

k

r2

)

w
(2)
k =

1

4R2
2

(

k(k − 1) + ∆S2

)

w
(2)
k−1 + w

(2)
k+1 (59)

for k = 1, 2, . . ., and w
(2)
0 = 2u2.

16



The above derivation immediately generalizes to an arbitrary number of
scatterers. Consider a situation with J ≥ 2 scatterers and surround each
scatterer by a sphere Bj of radius Rj , j = 1, . . . , J . Again, we denote by

B =
⋃J

j=1 Bj the entire artificial boundary and by Dj the unbounded region

outside Bj . Hence the computational domain Ω =
⋃J

j=1 Ωj , where Ωj denotes
the finite computational region inside Bj . In the unbounded exterior region

D =
⋂J

j=1 Dj , we again split u into J purely outgoing waves, u = u1+· · ·+uJ ,
where each uj solves a homogeneous wave equation similar to (7)–(8) in Dj .

When applied to J scatterers, the previous argument immediately yields
at any Bj the exact local NBC:

(

1

c

∂

∂t
+

∂

∂rj
+

1

Rj

)

u = w
(j)
1 +

∑

i6=j

(

1

c

∂

∂t
+

∂

∂rj
+

1

Rj

)

ui, (60)

where (rj, θj , φj) denote local spherical coordinates at Bj . The auxiliary

functions w
(j)
k , k = 1, . . . , are associated with uj at Bj . They satisfy

(1

c

∂

∂t
+

k

Rj

)

w
(j)
k =

1

4R2
j

(

k(k − 1) + ∆Sj

)

w
(j)
k−1 + w

(j)
k+1 (61)

with w
(j)
0 = 2uj. Now in (60), the incoming part is determined by adding

the individual contributions from the other computational domains through
the evaluation formula (54) applied to ui at Bj :

ui(ri, θi, φi, t) =
Ri

ri

P
∑

k=0

2k−1

k!

(

Ri

(

1 −
Ri

ri

))k

w
(i)
k

(

Ri, θi, φi, t −
ri − Ri

c

)

.

(62)
In fact the evaluation formula (54) is not only used in (60) but also needed
to evaluate

w
(j)
0 = 2uj = 2

(

u −
∑

i6=j

ui

)

at Bj . (63)

The NBC (60)–(62) is completely local in the sense that it involves only

derivatives and no integrals in space or time. Because the values of w
(i)
k

required in (62) are time-retarded, they are already known, so that the entire
scheme remains explicit in time.

For solutions that consist of a superposition of spherical harmonics of
order n ≤ P , the boundary condition is exact. For smooth solutions the
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Figure 3: Local coordinates (r1, θ1) and (r2, θ2)

error due to truncation at P decreases exponentially fast with P . Hence it
can be made arbitrarily small in a systematic fashion without moving the
artifical boundaries any farther. In particular, the error due to truncation
can easily be reduced below the discretization error due to the numerical
scheme inside Ω. Hence the NBC is exact in the same sense as the boundary
conditions in [17, 18, 25]. In practice we have found that small values of P
often yield ample accuracy. Clearly the number of auxiliary functions used
at different Bj do not need to be identical but can be judiciously chosen
depending on the problem or the desired accuracy.

4. Implementation and finite difference discretization

First, we shall show how to efficiently evaluate the wave field ui, outgoing
from Bi, at any other artificial boundary component Bj, j 6= i, as in (60).
Next, we shall present a typical finite difference discretization of the local
NBC (60)–(62) and exhibit the full algorithm.

4.1. Exterior evaluation and local spline interpolation

Here for simplicity, we restrict the discussion to the situation with two
scatterers only. In (56), the normal derivative of u2 with respect to r1 is
obtained through a change of coordinates chosen such that the two z-axes
and the two planes φ1 = 0 and φ2 = 0 coincide – see Fig. 3. Let ℓ12 denote
the distance between the two origins. Then the coordinates of any point on
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Figure 4: Evaluation of u1 at B2. Given the auxiliary functions, w
(1)
k

, k = 0, . . . , P at B1

defined in (57), we evaluate u1 in the vicinity of B2 at equispaced locations in (r1, θ1, φ1)
coordinates. From those values both u1 and its partial derivatives with respect to t, r1, θ1

are approximated by finite differences and evaluated through local spline interpolation
(69) at B2.

B1 in the (r2, θ2, φ2)-coordinate system are given by

r2 =
√

R2
1 − 2R1 ℓ12 cos θ1 + ℓ2

12 , (64)

θ2 = arcsin
(

R1
sin θ1

r2

)

, θ2 ∈ [−π/2, π/2], (65)

φ2 = φ1. (66)

Thus we can express the normal derivative at B1 in terms of the radial
and angular derivatives in (r2, θ2, φ2)-coordinates as

∂

∂r1

∣

∣

∣

∣

∣

r1=R1

= α12

∣

∣

r1=R1

(θ1)
∂

∂r2
+ β12(θ1)

∣

∣

r1=R1

∂

∂θ2
, (67)

with

α12

∣

∣

r1=R1

=
R1 − ℓ12 cos θ1

r2
, β12

∣

∣

r1=R1

= −
ℓ12 sin θ1

r2
2

, (68)

where r2 and θ2 are given by (64), (65).

Given the auxiliary functions, w
(1)
k , k = 0, . . . , P at B1 defined in (57),

we evaluate u1 in the vicinity of B2 at equispaced locations in (r1, θ1, φ1)
coordinates, as shown in Fig. 4. From those values both u1 and its partial
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derivatives with respect to t, r1, θ1 are computed by finite differences and then
interpolated at B2. To interpolate the values of u1 or its partial derivatives
at B2, we use local spline interpolation, which we briefly recall in the one-
dimensional case for the sake of completeness.

For given data points sj at equispaced locations in one space dimension

s(xj) = sj, j = 0, . . . , n − 1,

the cubic spline interpolant in the sense of Akima [2] is defined as

s(x) = aj + bj(x− xj) + cj(x− xj)
2 + dj(x− xj)

3, xj ≤ x ≤ xj+1. (69)

Here the coefficients of the interpolating polynomial (69) are

aj = sj(xj),

bj = s′j(xj),

cj =
1

xj+1 − xj

(

3
sj(xj+1) − sj(xj)

xj+1 − xj
− 2s′j(xj) − s′j(xj+1)

)

,

dj =
1

(xj+1 − xj)2

(

s′j(xj) + s′j(xj+1) − 2
s′j(xj+1) − s′j(xj)

xj+1 − xj

)

,

(70)

where the slopes s′j(xj) are appropriately chosen finite difference approxima-
tions. The coefficients are calculated locally and do not require the solution
of any large linear systems of equations – see [2] for further details.

4.2. Finite difference discretization

We shall now show how to discretize the local NBC for multiple scattering
in (60)–(62) with a standard second order finite difference scheme. Again we
consider J disjoint sub-domains Ωj , j = 1, . . . , J , and choose an equidistant
grid in local spherical coordinates (rj, θj , φj) along each artificial boundary,
Bj, of radius Rj . We denote by Nj the corresponding radial index of those
grid points located at rj = Rj . Time is discretized at equidistant points
tm = m∆t, m = 0, 1, . . . .

Next, we denote by Um,Nj
the values of the numerical solution at rj = Rj

and time t = tm. Moreover we denote by W
(j)
k,m and U

(j)
m the numerical

approximations of w
(j)
k and u(j) at rj = Rj − ∆r/2 and t = tm, respectively.

Note that both W
(j)
k,m and U

(j)
m are only stored along Bj, and not inside Ωj .

20



The standard second order finite difference discretization of the wave
equation cannot be used to advance Um,Nj

in time, as it involves the values
Um,Nj+1, which lie outside the computational domain Ωj . Instead, we shall
therefore apply the boundary condition (60) at t = tm + ∆t/2 and rj =
Rj − (∆r/2), that is between the last two rows of grid points, Um,Nj−1 and
Um,Nj

:

(Um+1,Nj
+ Um+1,Nj−1) − (Um,Nj

+ Um,Nj−1)

2c∆t

+
(Um+1,Nj

+ Um,Nj
) − (Um+1,Nj−1 + Uk

m,Nj−1)

2∆r
(71)

+
Um+1,Nj

+ Um+1,Nj−1 + Um,Nj
+ Um,Nj−1

4R
=

3

2
W

(j)
1,m −

1

2
W

(j)
1,m−1.

Here, the value of W
(j)
1,m+1/2 at t = tm + ∆t/2 is extrapolated in time from

W
(j)
1,m−1 and W

(j)
1,m, as in [25].

To advance the auxiliary functions W
(j)
k,m, we discretize (61) at t = tm +

∆t/2 and rj = Rj − (∆r/2), which yields

W
(j)
k,m+1 − W

(j)
k,m

∆t
+

k

2(Rj − ∆r/2)
(W

(j)
k,m+1 + W

(j)
k,m)

=
1

8(Rj − ∆r/2)2

(

∆h
s + k(k − 1)

)

(W
(j)
k−1,m+1 + W

(j)
k−1,m) +

3

2
W

(j)
k+1,m −

1

2
W

(j)
k+1,m−1,

with W
(j)
0,m+1 = 2U

(j)
m+1.

In summary, the entire algorithm reads as follows:

Algorithm

• Initialize U0 and U1 in Ω.

• Set the auxiliary functions W
(j)
k,0 , W

(j)
k,1 k = 1, 2, . . . , P and U

(j)
0 , U

(j)
1 , j =

1, . . . , J to zero.

• At each time step tm and for every sub-domain Ωj , j = 1, . . . , J , given

Um, Um−1, U
(j)
m , U

(j)
m−1, W

(j)
k,m, and W

(j)
k,m, k = 0, 1, . . . , P :

– advance Um+1,ℓ, ℓ ≤ Nj − 1 inside Ωj ;

– advance Um+1,Nj
at Bj using (71);
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– compute the outgoing part U
(j)
m+1 at rj = Rj − ∆r/2 from (62),

(63) by using local spline interpolation, and set W
(j)
0,m+1 = 2U

(j)
m+1;

– advance W
(j)
k,m+1, k = 1, . . . , P , using (72).

The above algorithm is fully explicit and does not requires the solution of
any large linear systems. Moreover, the interior and boundary unknowns in
different subdomains Ωj can be advanced in time independently of each other,

except for the information transfer needed to compute U
(j)
m+1 through (63) in

each time step. Remarkably, the information transfer of time retarded values
between sub-domains occurs only across those parts of the artificial bound-
ary, where outgoing rays intersect neighboring sub-domains, typically only
across a fraction of the artificial boundary. Hence the information exchange
between sub-domains is kept to a minimum. Further reduction of storage
could probably be achieved by compression techniques [3, 29] applied to the
past values of the auxiliary functions at B.

5. Numerical results

To assess the accuracy of the nonreflecting boundary condition for multi-
ple scattering (60)–(62), we shall combine it with a finite difference method,
as described in Section 4, and apply it to two test problems. First, we shall
compute the radiating wave field of a transient off-centered point source in
a homogeneous medium. Since the exact solution is known, we can study
the accuracy both of the local NBC and the exterior evaluation formula, as
the number of auxiliary functions P varies or the grid is refined. Second, we
shall present computations for scattering of a plane wave from two sound-soft
spheres. Both test problems are axisymmetric about the z-axis, so that the
scattered field u is independent of φ.

5.1. Accuracy and convergence study

To verify the accuracy of the local NBC (21) and the exterior evalua-
tion formula (54), we first consider an outgoing spherical wave propagating
outward into a homogeneous medium with constant speed c = 1, which orig-
inates from a point source located at distance d = 0.4 from the origin. Its
time dependence is determined by

g(t) = e−(t−α)2/σ2

, α = 0.3, σ =
α

7 log 10
(72)
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Figure 5: Contour lines of u obtained either from the numerical solution for 0.5 ≤ r ≤ 1
or from the evaluation formula (54) for 1 < r ≤ 1.5. The point source is located at x = 0,
y = 0, z = 0.4 .

and vanishes outside the time window [0, 0.6]. This exact solution is used to
initialize the numerical solution at t = 0 inside the computational domain
Ω = {(r, θ) | 0.5 ≤ r ≤ 1, 0 ≤ θ ≤ π}. At the artificial boundary B, located
at R = 1, we impose (21) for varying P . Outside Ω, in the annular region
1 ≤ r ≤ 1.5 directly adjacent to it, the solution is simply evaluated using
(33) with R = 1. As shown in Fig. 5, the contour lines across B are smooth.
In Fig. 6, we compare the numerical solution along the ray θ = π/2 at time
t = 1 for varying P with the exact solution. We observe how the solution
significantly changes at low values of P , but rapidly converges with increasing
P .

Next, the total L2-error inside Ω vs. the mesh size h is shown in Fig. 7
for different values of P . For P = 4 we observe the expected global second-
order convergence up to the finest mesh chosen here. We also observe the
subtle interplay between the approximation error in the boundary condition,
controlled by P , and that due to discretization in the interior of Ω. For small
values of P , the error due to truncation tends to dominate, so that further
mesh refinement does not improve the accuracy. In contrast, if we keep the
mesh size h fixed, we observe no further improvement in the accuracy from
increasing P . In general, convergence can only be achieved by systematically
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Figure 6: Evaluation of the scattered field u at θ = π

2 and t = 1 for varying P .

reducing h while increasing P , simultaneously.

5.2. Plane wave scattering from two spheres

Next, we consider an incident plane wave packet,

uinc(x, y, z, t) = e−125(z−0.3−t)2 ,

impinging upon two sound-soft spheres centered about the z-axis and em-
bedded in a homogenous medium with c = 1. Hence the scattered field u
satisfies the time-dependent Dirichlet-type boundary condition, u = −uinc,
on the surface of the two obstacles. It is computed inside the two disjoint
regions, Ω1 and Ω2, each surrounding an inner sound-soft spherical obstacle,
by using the local NBC for multiple scattering (60)–(62). The left compu-
tational domain, Ω1, corresponds to the region 0.5 < r1 < 1, in (r1, θ1, φ1)
local spherical coordinates centered about x = 0, y = 0, z = −1, and the
right computational domain, Ω2, corresponds to the region 0.5 < r2 < 1, in
(r2, θ2, φ2) local spherical coordinates centered about x = 0, y = 0, z = 1.1.
Hence the distance between the two disjoint computational domains is 0.1 .
Because the solution is axisymmetric, we can restrict the computations in
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Figure 7: The total L2-error is shown vs. the mesh size h for varying P .

each Ωi to the two-dimensional region 0.5 < ri < 1, 0 ≤ θi ≤ π, i = 1, 2,
where we use a 70 × 420 equidistant finite difference grid.

In Fig. 8, the total wave field u+uinc is shown at selected instants in time.
At time t = 0, the right-moving incident plane wave has penetrated Ω2. By
the time t = 0.5, the incident plane wave has impinged upon the right sphere
and generated a left-moving scattered wave. Then, the incident plane wave
proceeds around the obstacle until it leaves Ω2 at time t ≃ 2. Meanwhile the
scattered wave has entered Ω1 and impinged upon the left sphere at t = 1.5,
creating yet another right-moving scattered wave. At t = 2.3 that secondary
reflected wave has reached Ω2 but still partly extends into Ω1. The scattered
waves bounce back and forth between the two obstacles while continuously
radiating energy into the surrounding unbounded medium.

In Fig. 9 and Fig. 10, we illustrate the effect of truncating the NBC
(60)–(62) at different values of P on the accuracy. To do so, we compare
three numerical solutions, obtained with P = 0, P = 1 or P = 4 at two
selected points inside the left computational domain Ω1. At both locations
we observe how small values of P , here P = 0 and P = 1, induce spurious
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Figure 8: Plane wave scattering from two sound-soft spheres. The total wave field is shown
at selected instants in time inside the computational domain, which consists of the two
disjoint regions Ω1 and Ω2.

reflections at later times, which distort the total wave field once the initial
plane wave packet has passed the observation site. Indeed setting P = 0 in
the NBC corresponds to approximating the decomposition of u in the two
purely outgoing wave fields u1, u2 outside Ω by two spherically symmetric
wave fields, u(x, y, z, t) ≃ u1(r1, t) + u2(r2, t). In that case the boundary
condition for single scattering (21) reduces to the first order Bayliss-Turkel
condition [6], whereas the exterior evaluation formula (54) simply propagates
a spherically symmetric wave field into the unbounded exterior. Hence when
P = 0, the effect of either obstacle onto the other is (crudely) replaced by
that of a simple point source. At higher values of P , P ≥ 4, the spurious
reflections have vanished (at this scale).

Finally, to verify the overall stability of our numerical scheme, we show in
Fig. 11 the long-time evolution of the L2-norm of u in Ω for different values
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Figure 9: Plane wave scattering from two sound-soft spheres. The total wave field is
shown vs. time at x = 0, y = 0.75, z = −1 inside the left computational domain Ω1 for
P = 0, 1, 4.

of P . For all values of P , we observe no growth or numerical instability even
at very long times. At small values of P , spuriously reflected and propagated
waves induce trapped wave energy inside Ω. At higher values of P , the energy
more rapidly decays to vanishingly small values, as expected, while the wave
energy is continuously radiated into the unbounded exterior.

6. Conclusion

We have derived a nonreflecting boundary condition (NBC) for time-
dependent multiple scattering problems in three space dimensions, which
holds when the artificial boundary B consists of a union of disjoint spheres
Bj. It is given by (60)–(62) and avoids spurious reflection from B. The NBC
is completely local both in space and time as it does not involve any integrals
over B or the past of the solution. In fact, since the NBC involves only first-
order normal and time derivatives, together with second-order tangential
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Figure 10: Plane wave scattering from two sound-soft spheres. The total wave field is
shown vs. time at x = 0, y = 0, z = −0.25 inside the left computational domain Ω1 for
P = 0, 1, 4.

derivatives, at B, it is easily coupled with standard finite difference or finite
element methods.

The derivation of our local NBC rests on the decomposition of the scat-
tered field into purely outgoing wave fields, each evaluated at all other bound-
ary components through the exterior evaluation formula (54). In fact, the
exterior evaluation formula stands in its own right, even in situations of single
scattering, as it permits to calculate the scattered field everywhere outside
the computational domain. Remarkably, the information transfer of time
retarded values between sub-domains occurs only across those parts of the
artificial boundary, where outgoing rays intersect neighboring sub-domains,
typically only across a fraction of the artificial boundary.

Since the artificial boundary no longer needs to be convex, the size of
the computational domain can be chosen much smaller than with classical
absorbing boundary conditions or perfectly matched layers (PML); moreover,
the size of the computational domain no longer increases with the relative
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Figure 11: Plane wave scattering from two sound-soft spheres: the L2-norm of the total
wave field is shown vs. time for P = 0, 1, 4.

distance between the various sub-scatterers. Although the artificial boundary
must be of simple geometric shape, here a union of disjoint spheres, the NBC
is not tied to any particular coordinate system inside Bj, where the scatterer
itself is arbitrary.

Because the NBC is local and yields spectral accuracy with an increasing
number of auxiliary functions P , the computational work scales linearly with
the number of unknowns at the artificial boundary. In practice, small val-
ues of P often yield ample accuracy. The storage required for the auxiliary
functions is comparable to that required by any PML or NBC approach in
situations of single scattering. Although the storage required for the auxiliary
functions does increase linearly with the travel time between the sub-domains
Bj, the computational effort is independent of the relative distances between
scatterers. Hence, the full numerical scheme retains the global rate of con-
vergence of the interior scheme, while the computational work and storage
due to the NBC only involves a fraction of the computational effort inside
B. Further reduction of storage could probably be achieved by compression
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techniques [3, 29] applied to the past values of the auxiliary functions at B.
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Appendix

In Lemma 1 and Lemma 2, we first derive two technical results. Then in
Lemma 3, we prove that the solution of the linear system of equations (45)
is explicitly given by (46).

Lemma 1.

k
∑

j=1

(−1)j+1

(k − j + 1)!j!
=

{ 2
(k+1)!

: k = 2n − 1, n = 1, 2, · · ·

0 : k = 2n, n = 1, 2, · · · .
(73)

Proof: From the binomial theorem we immediately find

0 = (1 − 1)k+1 =
k+1
∑

j=0

(−1)j

(

k + 1

j

)

=
k
∑

j=1

(−1)j

(

k + 1

j

)

+ 1 + (−1)k+1.

Thus we have

−1 + (−1)k =

k
∑

j=1

(−1)j

(

k + 1

j

)

=

k
∑

j=1

(−1)j (k + 1)!

(k + 1 − j)!j!
.

Dividing each side by −(k + 1)!, we finally obtain

k
∑

j=1

(−1)j+1

(k − j + 1)!j!
=

1 + (−1)k+1

(k + 1)!
,

which concludes the proof. �

Lemma 2. For k ≥ 0 we have

k
∑

j=0

(−1)j

(

P − j

k − j + 1

)(

P

j

)

= (−1)k

(

P

k + 1

)

. (74)

Proof:

31



We first prove the following formula:

k
∑

j=1

(−1)j+1

(

P − j

k − j + 1

)(

P

j

)

=

{

2
(

P
k+1

)

: k = 2n − 1, n = 1, 2, · · ·

0 : k = 2n, n = 1, 2, · · · .

(75)
Since

k
∑

j=1

(−1)j+1

(

P − j

k − j + 1

)(

P

j

)

=
k
∑

j=1

(−1)j+1 (P − j)!

(k − j + 1)!(P − k − 1)!

P !

(P − j)!j!

=
P !

(P − (k + 1))!

k
∑

j=1

(−1)j+1)

(k − j + 1)!j!
,

we obtain by using Lemma 1 that

k
∑

j=1

(−1)j+1

(

P − j

k − j + 1

)(

P

j

)

=
P !

(P − (k + 1))!

{ 2
(k+1)!

: k = 2n − 1, n = 1, 2, · · ·

0 : k = 2n, n = 1, 2, · · ·

which corresponds to (75).
Next, we rewrite the left side of (74) as

(

P

k + 1

)

−
k
∑

j=1

(−1)j+1

(

P − j

k − j + 1

)(

P

j

)

(76)

and apply (75) to the second term in (76). The resulting expression equals
the right side of (74), which concludes the proof of Lemma 2. �

Lemma 3. The solution of the linear system of equations (45) is explicitly
given by

η̃ℓ =
ℓ
∑

j=0

(−1)ℓ−j

(

P − j

ℓ − j

)

bj . (77)

Proof: The proof is by induction on ℓ.
For ℓ = 0, we obviously have η̃0 = b0 and hence (77) holds.
For ℓ ≥ 1, we now assume that (77) holds for k = 1, 2, . . . , ℓ− 1, and rewrite
it as

η̃ℓ = bℓ −
ℓ−1
∑

k=0

(

P − k

ℓ − k

)

η̃k. (78)
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We now use (77) to replace η̃k in (78), which yields

η̃ℓ = bℓ −

ℓ−1
∑

k=0

k
∑

j=0

(

P − k

ℓ − k

)(

P − j

k − j

)

(−1)k−j bj . (79)

By reordering the terms in the double sum according to the identity,

P−1
∑

k=0

k
∑

j=0

ak,j =
P−1
∑

j=0

P−1
∑

k=j

ak,j, (80)

we then rewrite (79) as

η̃ℓ = bℓ −

ℓ−1
∑

j=0

ℓ−1
∑

i=j

(

P − i

ℓ − i

)(

P − j

i − j

)

(−1)i−j bj . (81)

With m = i − j, this yields

η̃ℓ = bℓ −
ℓ−1
∑

j=0

ℓ−j−1
∑

m=0

(

P − j − m

ℓ − j − m

)(

P − j

m

)

(−1)m bj . (82)

By applying Lemma 2 to the inner sum over m in (82), we find that (82)
reduces to (77), which completes the proof. �
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