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Explicit local time-stepping methods for
time-dependent wave propagation

Marcus J. Grote and Teodora Mitkova

Abstract. Semi-discrete Galerkin formulations of transient wave equations, eittlercan-
forming or discontinuous Galerkin finite element discretizations, typicaliy le large sys-
tems of ordinary differential equations. When explicit time integration isl ue time-step is
constrained by the smallest elements in the mesh for numerical stabdggibly a high price
to pay. To overcome that overly restrictive stability constraint loe time-step, yet without
resorting to implicit methods, explicit local time-stepping schemes )lar8 presented here
for transient wave equations either with or without damping. In the undamped casdrdg
based LTS methods lead to high-order explicit LTS schemes, which conserveettyy.eln
the damped case, when energy is no longer conserved, Adams-Bashforth basedthd&sm
also lead to explicit LTS schemes of arbitrarily high accuracy. Whenboosd with a finite
element discretization in space with an essentially diagonal massntae resulting time-
marching schemes are fully explicit and thus inherently parallel. Numenxgeeriments with
continuous and discontinuous Galerkin finite element discretizations validatkebey tand
illustrate the usefulness of these local time-stepping methods.

Keywords. Time dependent waves, damped waves, finite element methods, mass lumping,
discontinuous Galerkin methods, explicit time integration, adaptive refinenuaal, time-

stepping.
AMS classification.65N30.

1 Introduction

The efficient numerical simulation of transient wave pheananis of fundamental im-
portance in a wide range of applications from acousticsteleagnetics or elasticity.
Although classical finite difference methods remain a \@adbproach in rectangu-
lar geometry on Cartesian meshes, their usefulness islijuited in the presence of
complex geometry, such as cracks, sharp corners or irreqaterial interfaces. In
contrast, finite element methods (FEMs) easily handle uctstred meshes and local
refinement. Moreover, their extension to high order is shifdgward, a key feature to
keep numerical dispersion minimal.

Semi-discrete finite element Galerkin approximationsdslhy lead to a system of
ordinary differential equations. However, if explicit tavstepping is subsequently em-
ployed, the mass matrix arising from the spatial discrétmeby standard conforming
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finite elements must be inverted at each time-step: a magoviziack in terms of effi-
ciency. To overcome that difficulty, various “mass lumpinrechniques have been pro-
posed, which effectively replace the mass matrix by a diagapproximation. While
straightforward for piecewise linear elements [6, 32], snasping techniques require
special quadrature rules and additional degrees of freeddrgher order to preserve
the accuracy and guarantee numerical stability [10, 20].

Discontinuous Galerkin (DG) methods offer an attractivd artreasingly popular
alternative for the spatial discretization of time-depemichyperbolic problems [1, 7,
21, 22, 30, 37]. Not only do they accommodate elements obuariypes and shapes,
irregular non-matching grids, and even locally varyingypamial order, and hence
offer greater flexibility in the mesh design. They also lead tblock-diagonal mass
matrix, with block size equal to the number of degrees ofdoee per element; in
fact, for a judicious choice of (locally orthogonal) shapedtions, the mass matrix is
truly diagonal. Thus, when a spatial DG discretization imbmed with explicit time
integration, the resulting time-marching scheme will héytrexplicit and inherently
parallel.

In the presence of complex geometry, adaptivity and meshemient are certainly
key for the efficient numerical simulation of wave phenomeHRawever, locally re-
fined meshes impose severe stability constraints on ekphog-marching schemes,
where the maximal time-step allowed by the CFL conditionitsaded by the small-
est elements in the mesh. When mesh refinement is restrictedmall region, the
use of implicit methods, or a very small time-step in therentomputational domain,
are very high a price to pay. To overcome this overly resgcstability constraint,
various local time-stepping (LTS) schemes [12, 13, 17] vadeneeloped, which use ei-
ther implicit time-stepping or explicit smaller time-sggfut only where the smallest
elements in the mesh are located.

Since DG methods are inherently local, they are particpladll-suited for the de-
velopment of explicit local time-stepping schemes [30]. @ynbining the sympletic
Stormer-Verlet method with a DG discretization, Pipernowe a symplectic LTS
scheme for Maxwell’s equations in a non-conducting mediufj, [&hich is explicit
and second-order accurate. In [34], Montseny et al. comb@neohilar recursive
integrator with discontinuous hexahedral elements. i&taftom the so-called arbi-
trary high-order derivatives (ADER) DG approach, altereexplicit LTS methods
for Maxwell’'s equations [39] and for elastic wave equatioh8][were proposed. In
[19], the LTS approach from Collino et al. [12, 13] was condarnwith a DG-FE
discretization for the numerical solution of symmetrictfiosder hyperbolic systems.
Based on energy conservation, that LTS approach is seawied-and explicit inside
the coarse and the fine mesh; at the interface, however, étheless requires at every
time-step the solution of a linear system. More recently, stamtinescu and Sandu
devised multirate explicit methods for hyperbolic conséion laws, which are based
on both Runge-Kutta and Adams-Bashforth schemes combiitbdaviinite volume
discretization [14, 15]. Again these multirate schemesliangéed to second-order
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accuracy.

Starting from the standard leap-frog method, Diaz and Quodposed energy con-
serving fully explicit LTS integrators of arbitrarily highccuracy for the classical
wave equation [16]; that approach was extended to Maxwaeifisagons in [25] for
non-conductive media. By blending the leap-frog and thenicidicolson methods, a
second-order LTS scheme was also derived there for (danapextjomagnetic waves
in conducting media, yet this approach cannot be readilgraldéd beyond order two.
To achieve arbitrarily high accuracy in the presence ofiplig®on, while remaining
fully explicit, explicit LTS methods for damped wave eqeais based on Adams-
Bashforth (AB) multi-step schemes were proposed in [26]e-adso [27]. They can
also be interpreted as particular approximations of exptimleAdams multistep meth-
ods [31].

The rest of the paper is organized as follows. In Section Zirgterecall the standard
continuous, the symmetric interior penalty (IP) DG and tbhdal DG formulations.
Next in Section 3, we consider leap-frog based LTS methoat, for the undamped
and the damped wave equation. In the undamped case, we shotw derive explicit
LTS methods of arbitrarily high order; these methods alstseove a discrete version
of the energy. In the damped case, we present a second-drienéthod by blending
the leap-frog and the Crank-Nicolson scheme; however,apigoach does not eas-
ily extend to higher order. To achieve arbitrarily high a@ay even in the presence
of dissipation, we then consider LTS methods based on Adzassforth multi-step
schemes in Section 4. Finally in Section 5, we present nwalegkperiments in one
and two space dimensions, which validate the theory andrpimdboth the stability
properties and the usefulness of these high-order expli@tschemes.

2 Finite element discretizations for the wave equation
We consider the damped wave equation
ug +oug — V- (2Vu) = f in Qx (0,7T),
u(+,t) =0 on 9Q x (0,7), (2.1)
u(-,0) = ug, w(-,0)=vy INQ,

whereQ is a bounded domain iR?, d = 1,2, 3. Here,f € L?(0,T;L%Q)) is a
(known) source term, whileg € H}(Q) andvg € L?(Q) are prescribed initial condi-
tions. At the boundan®Q, we impose a homogeneous Dirichlet boundary condition,
for simplicity. The damping coefficient; = o(z), is assumed non-negative ¢ 0)
whereas the speed of propagation; ¢(x), is piecewise smooth and strictly positive
(c(x) > o > 0).

We shall now discretize (2.1) in space by using any one ofdheviing three dis-
tinct FE discretizations: continuou&/¢-conforming) finite elements with mass lump-
ing, a symmetric IP-DG discretization, or a nodal DG methddhus, we consider
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shape-regular meshé&g that partition the domaif into disjoint elementds, such
thatQ = Uker;, K. The elements are triangles or quadrilaterals in two spanerd
sions, and tetrahedra or hexahedra in three dimensiomeatdgely. The diameter of
elementk is denoted by: x and the mesh size, is given byh = maxgcr, hi.

2.1 Continuous Galerkin formulation

The continuous K 1-conforming) Galerkin formulation of (2.1) starts from itseak
formulation: findu € [0, 7] — Hg(Q) such that

(ust, @) + (ous, ) + (cVu,cVo) = (f,0) Ve H5(Q), te(0,T),
(2.2)
u(+,0) = uo, w(+,0) = vo,

where(-, -) denotes the standaid® inner product ovef. It is well-known that (2.2)
is well-posed and has a unique solution [33].

For a given patrtitiory;, of Q, assumed polygonal for simplicity, and an approxima-
tion order? > 1, we shall approximate the solutiaf-, ¢) of (2.2) in the finite element
space

V= {apeH&(Q) L olk € SYK) VKGE} )

whereS*(K) ist the spac@’(K) (for triangles or tetrahedra) @"(K) (for quadrilat-
erals or hexahedra). Here, we consider the following sesurete Galerkin approxi-
mation of (2.2): findu” : [0, 7] — V" such that

(u?t,cp) + (auf,cp) + (cVuh',cho) =(f,p) Vpe€ vh, te (0,7,

; . (2.3)
U (70) - nhUO, ut (70) = I_IhUO'
Here,M;, denotes thd.2-projection onto/".
The semi-discrete formulation (2.3) is equivalent to theosel-order system of or-
dinary differential equations

d?U dU

W(t) + M, E(t) +KU(t) =F(t), te(0,7T), 2

dU
MU(0) = ub, ME(O) =of.

M

Here, U denotes the vector whose components are the coefficienfswith respect
to the finite element basis 6f,, M the mass matrixK the stiffness matrix, whereas
M, denotes the mass matrix with weight The matrixM is sparse, symmetric
and positive definite, whereas the matrig€sand M, are sparse, symmetric and, in
general, only positive semi-definite.

Usually, the mass matri¥1 is not diagonal, yet needs to be inverted at every time-
step of any explicit time integration scheme. To overconediifculty, various mass
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lumping techniques have been developed [10, 11, 8, 9], wésskentially replacd1
with a diagonal approximation by computing the requireégnals over each element
K with judicious quadrature rules that do not effect the spaitcuracy [4].

2.2 Interior penalty discontinuous Galerkin formulation

Following [21] we briefly recall the symmetric interior pdtya(IP) DG formulation
of (2.1). For simplicity, we assume in this section that thements are triangles or
parallelograms in two space dimensions and tetrahedraraliglapipeds in three di-
mensions, respectively. Generally, we allow for irregyfeirregular) meshes with
hanging nodes [5]. We denote By the set of all interior edges df,, by £F the set
of all boundary edges dfj,, and set), = £ U £P. Here, we generically refer to any
element off;, as an “edge”, both in two and three space dimensions.

For a piecewise smooth functign we introduce the following trace operators. Let
e € S}{ be an interior edge shared by two elemehts and K~ with unit outward
normal vectorm®, respectively. Denoting by* the trace ofv on 9K+ taken from
within K+, we define the jump and the averageedny

[el =¢'n"+o 0,  fe}i=("+¢7)/2.

On every boundary edgec &7, we set[y] := yn and{¢} := ¢. Here,n is the
outward unit normal to the domain bound&i.

For a piecewise smooth vector-valued functigrwe analogously define the average
across interior faces by} := (/" 4+ 7)/2, and on boundary faces we get }} :=
1. The jump of a vector-valued function will not be used. Foeater-valued function
1) with continuous normal components across a faceg),, the trace identity

e (nt ) o (07 y7) =[¢] - {¥} one,

immediately follows from the above definitions.
For a given partitiory;, of Q and an approximation ordér> 1, we wish to approx-
imate the solutionu(t, -) of (2.1) in the finite element space

vhi={p e T2(Q): ¢lx € SUK) VK € Ti}

whereS‘(K) is the spacé’(K) of polynomials of total degree at mosbn K if K
is a triangle or a tetrahedra, or the sp@‘¢ ) of polynomials of degree at moéin
each variable ol if K is a parallelogram or a parallelepiped. Thus, we consider th
following (semidiscrete) DG approximation of (2.1): find : [0, 7] — V" such that

(uly, @) + (ouf', ) + an(u, ) = (f,0)  VYoeV", te(0,T),

(2.5)
uh(',O) = Myug, u?(o,O) =Myvg.
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Here, M, again denotes thé&?2-projection ontoV” whereas the DG bilinear form
an(-,-), defined or* x V", is given by

ap(u, ) = Z /KCZVU -Vedr — Z [u] - {? V) dA

KeT, ec&y v € (2 6)
—Z/[[ap]]~{{cZVu}dA+Z au] - [] dA.
ec&y € ec&y v °

The last three terms in (2.6) correspond to jump and flux tetnetement boundaries;

they vanish wheny, o, € H}(Q) N H¥™(Q) for m > 1. Hence, the above semi-

discrete DG formulation (2.5) is consistent with the oraicontinuous problem (2.2).
In (2.6) the functiora penalizes the jumps aef andv over the faces of},. To define

it, we first introduce the functiorisandc by

| min{hg+,hg-}, e€&F, | max{c|r+ (2),c|x-(z)}, e€&F,
hi. = Cle(x) =
hi, e€ &P, ek (z), ee€&P.
Then, on each € &), we set
ale :==ac’ht, 2.7)

whereq is a positive parameter independent of the local mesh simbthe coefficient

c. There exists a threshold valug,;,, > 0, which depends only on the shape regularity
of the mesh and the approximation ordesuch that forae > 4, the DG bilinear
form ay, is coercive and, hence, the discretization stable [2, 3folghout the rest of
the paper we shall assume that> «,,;, so that the semi-discrete problem (2.5) has
a unique solution which converges with optimal order [21, 22, 24]. In [21, 24],

a detailed convergence analysis and numerical study ofRHeG method for (2.6)
with ¢ = 0 was presented. In particular, optimal a-priori estimates DG-energy
norm and thel.2-norm were derived. This theory immediately generalizethéocase

o > 0. For sufficiently smooth solutions, the IP-DG method (2t8)s yields the
optimal L2-error estimate of orde®(h**1).

The semi-discrete IP-DG formulation (2.5) is equivalertti® second-order system
of ordinary differential equations (2.4). Again, the masgmix M is sparse, symmetric
and positive definite. Yet because individual elements deleoM (andM,,) is block-
diagonal with block size equal to the number of degrees efdoen per element. Thus,
M can be inverted at very low computational cost. In fact, fgudicious choice of
(locally orthogonal) shape functions] is truly diagonal.

2.3 Nodal discontinuous Galerkin formulation

Finally, we briefly recall the nodal discontinuous Galerfoanmulation from [30] for
the spatial discretization of (2.1) rewritten as a firstesrslystem. To do so, we first let
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v = us, w .= —Vu, and thus we rewrite (2.1) as the first-order hyperboliceyst
vi+ov+ V- (Pw) = f in Qx(0,7),
w;+Vu=0 in Qx (0,7),
(2.8)
v(,t) =0, w(,t) =0 on 9Q x (0,7,

v(-,0) =vo, w(-,0) = —-Vug inQ,
or in more compact notation as
a+X2q+V-F(q) =8, (2.9)

with q = (v, w)T. Following [30], we now consider the following nodal DG foum
lation of (2.9): findg” : [0, 7] — V" such that

(@, ¢) + (Zd" ¥) +an(d" ¢) = (S,) VY eV', te(0T). (2.10)

Here V" denotes the finite element space
vh = {w e L2(Q)M: gl € SYK) T VK € n}

for a given partitiori/;, of Q and an approximation ordér> 1. The nodal-DG bilinear
formay,(-, ) is defined orV" x V" as

aaw) = 3 [ (V-F@) vdo= Y [ meFa) - e F@)) vda,

KeTy, ecéy, V¢

where(n - F(q))* is a suitably chosen numerical flux in the unit normal dir@tia.
The semi-discrete problem (2.10) has a unique solutiorghvtnverges with optimal
order in theL?-norm [30].

The semi-discrete nodal DG formulation (2.10) is equivaterthe first-order sys-
tem of ordinary differential equations

M%(t) + M, Q(t) + CQ(t) = F(t), te(0,7T). (2.11)

HereQ denotes the vector whose components are the coefficieqtswith respect to
the finite element basis &f” andC the DG stiffness matrix. Because the individual
elements decouple, the mass matriséandM,, are sparse, symmetric, positive semi-
definite and block-diagonal; moreové¥] is positive definite and can be inverted at
very low computational cost.
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3 Leap-frog based LTS methods

Starting from the well-known second-order “leap-frog” sote, we now derive an ex-
plicit second-order LTS scheme for undamped waves. By ubimgnodified equation
approach, we then derive an explicit fourth-order LTS mdtfay undamped waves.
Finally, by blending the leap-frog and the Crank-Nicolsoetihods, we also present a
second-order LTS scheme for damped waves.

We consider the semi-discrete model equation

2

%(t) +M"%J(t)+KU:F(t)’ (3.1)
whereM andM,, are symmetric positive definite matrices ddds a symmetric pos-
itive semi-definite matrix; moreover, we assume that thesnmaatrix M is (block-)
diagonal, as in (2.4). We remark, however, that the timegiatiion techniques pre-
sented below are also applicable to other spatial disetétizs of the damped wave
equation that lead to the same semi-discrete form (3.1).

BecauseM is assumed essentially diagonM% can be explicitly computed and
inverted at low cost. Thus, we multiply (3.1) M_% to obtain

M

d?z dz
w(t) +D E(t) +Az(t) =R(t), 3.2)

with z = M2U, D = M :M,M 2, A = M—2KM 2 andR = M~ 2F. Note
that A is also sparse and symmetric positive semidefinite. For mpeéd wavesD
vanishes and hence energy is conserved, whereas for undamapesD is nonzero
and energy is dissipated. We shall distinguish these twatiins in the derivation of
local time-stepping schemes below.

3.1 Second-order method for undamped waves

For undamped waves, (3.2) reduces to

d2
d—;+Az:R. (3.3)

Since for anyf € C?, we have
1
ft+Dt) —2f(t) + f(t — At) = At? / (1—10)f"(t+0nt)do, (3.4)
-1
the exact solutiom(¢) of (3.3) satisfies

z(t + At) — 2z(t) + z(t — Ot) = At? /1 (1—10]) (R(t +60At) — Az(t + 0 At)) db .
-1
(3.5)
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The integral on the right side of (3.5) represents a weightetlage oR(s) — A z(s)
over the intervalt — At, t + At], which needs to be approximated in any numerical
algorithm. If we approximate in (3.5 z(t + 0 At) andR(¢ + 0 At) by A z(t) and
R(t), respectively, and evaluate the remainthgependent integral, we obtain the
well-known second-order leap-frog scheme with time-gtgp

Zpi1 — 22n + Zn_1 = Dt (R, — Az,), R,~Rlt,), z,~zt,), (3.6)

which, however, would requir&t to be comparable in size to the smallest elements in
the mesh for numerical stability.
Following [16, 28], we instead split the vectar&) andR(t) as

z(t) = (I — P)z(t) 4+ Pz(t) = 2S¢t + zline(z) |
R(t) = (I - P)R(t) + PR(t) = R0¢(t) 4 RN (7)

where the projection matri¥ is diagonal. Its diagonal entries, equal to zero or
one, identify the unknowns associated with the locally efinegion, where smaller
time-steps are needed. To circumvent the severe CFL rstrion At in the leap-
frog scheme, we need to treat"®(¢) and Rl (z) differently from z[°°@'¢(¢) and
R[coarsé(t) in

z(t + At) — 2z(t) + z(t — At)

(3.7)

1 '
— A2 / l(1 —16)) {R[Coafsé(t + 0 At) + RIMe (¢ 4 0 A (3.8)

_A <z[°°af5¢(t +OAL) + 2™ (¢ + 0At)) } df.
Since we wish to use the standard leap-frog scheme in theepart of the mesh, we

approximate the terms in (3.8) that involw&°2s¢(¢ + § At) andRI°¥"S¢(¢ 4+ 9 At) by
their values at, which yields

z(t + At) — 2z(t) + z(t — At) ~ A2 {(I— P)R(t) — A(I—P)z(t)}

1 (3.9
Y. / (1—10)) {PR(t + OAL) — APa(t + 6A)} df .
-1
Note thatA andP do not commute.
Next for fixedt, letz(7) solve the differential equation

d°z .

P(T) =(I-P)R(t) - AI-P)z(t) + PR(t+ 1) — APz(7), (3.10)
z(0) = z(t), Z'(0) = v,
wherev will be specified below. Again from (3.4), we deduce that
Z(Dt) — 2Z(0) + Z(—At) = A? {(I - P)R(t) — A(I - P)z(t)}

(3.11)

+ A2 /l (1= 0]) {PR(t + 64t) — APF(9AL)} db.
1
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From the comparison of (3.9) with (3.11), we infer that
z(t + At) — 2z(t) + z(t — At) ~ z(At) — 2z(0) + z(—At) ,

or equivalently
z(t + Ot) + z(t — At) ~ z(At) + z(—At) . (3.12)

In fact from Taylor expansion and (3.3), we obtain
Z(At) + Z(—At) = 22(0) + 2" (0)At% + O(At?)
=2z(t) + (R(t) — Az(t))At2 + O(AtY) = z(t + At) + z(t — At) + O(AtY) .

Thus to advance(t) from ¢ to ¢ + At, we shall evaluate(At) + z(—At) by solving
(3.10) numerically.

To take advantage of the inherent symmetry in time and tlyenextuce the compu-
tational effort even further, we now let

a(t) =z(r) +z(—71).

Then,q(7) solves the differential equation

2
%(7) =2{1-P)R(t) - A(I-P)z(t)} + P{R(t +7) + R(t — 7)}
 APq(r). (3.13)
q(0) = 2z(t), q'(0) =0,
with
z(t + Ot) + z(t — At) = q(Ot) + O(AY) . (3.14)

Note thaig(At) does not depend on the valuecofNow, we shall approximate the right
side of (3.5) by solving (3.13) ofD, At], and then use (3.14) to computé& + At).
Thus, we need the numerical valueggfr) only atAt.

In summary, the second-order LTS algorithm for the solutér{3.3) computes
Zn+1 =~ z(t + At), givenz,, andz,,_1, as follows:

LTS-LF2(p) Algorithm
() Setw:=(I-P)R,, — A(I-P)z, andqo := 2z,.

) 1 /A2
(i) Computeqy,, := qo + > (p) (2w + 2PR,, o — APqp) .

(i) Form=1,...,p— 1, compute

At ?
A(m+1)/p = qu/p —q(m-1)/p + (;) (ZW + P(Rn,m + Rn,—m) - Aqu/p) .
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(iv) Computez,, 1 := —2zn_1+ q1.

Here, we have used the notatidRs ., ~ R(t,, + 7)) andR,, _, ~ R(t,, — 7).
wheret,, = nAt andr,,, = mAr; note thalR,, o0 ~ R(t,, + 70) = R(t,) ~ R,,. Steps
1-3 correspond to the numerical solution of (3.13) unti= At with the leap-frog
scheme, using the local time-st&p = At/p. ForP = 0, that is without any local
time-stepping, we recover the standard leap-frog schemihe lfraction of honzero
entries inP is small, the overall cost is dominated by the computatiomvpfvhich
requires one multiplication b (I — P) per time-stept. All further matrix-vector
multiplications by AP only affect those unknowns that lie inside the refined region
or immediately next to it.

Proposition 3.1.For R(t) € C?(]0,7]), the local time-stepping method LTS-LBR(
is second-order accurate.

Proof. See [25]. O

To establish the stability of the LTS-LF2(scheme we consider the homogeneous
caseR,, = 0. Then, the standard leap-frog scheme (3.6) conservesdbieth energy

11 At? Zpil — Zpy Zpil — Z Zpi1l+ Zp Zpnil+Z
En+7 _ = I—-—A n+ n n+ n A n+ n n+ n )
T2 K( 4 ) A A >+< 2 2
(3.15)

Here "3 ~ E(t, 1) and the angular brackets denote the standard Euclidean inne
product. SinceA is s?ymmetric, the quadratic form in (3.15) is also symmetFor
sufficiently smallAt it is also positive semidefinite and hence yields a true gnerg

To derive a necessary and sufficient condition for the nuraéstability of the LTS-
LF2(p) scheme, we exhibit a conserved discrete energy for thellHXp) algorithm
with R,, = 0. Following [16], we first rewrite the LTS-LF2§ scheme in “leap-frog
manner”.

Proposition 3.2.The local time-stepping scheme LTS-Lk2(ith R,, ,,, = 0 is equiv-
alentto

2
Znyl = 2Zp — Zp—1 — Ot Apzn )

whereA,, is defined by

2 P21 A\ % )
Ay=A-5 () ol (AP) A (3.16)
P\ p
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and the constant&? are given by

a?2=1 a}=6 o3=-1,

+1 1
Ji =m? —|—2al—al ,
oPtt = aP 1 P -
o 2a o oy, ji=2,...,p—2,
ot P P
o, 1—2a 170
p+1l _ . p
o=y g

Furthermore, the matri , is symmetric.
Proof. See [16] and [25]. O

Proposition 3.3.The local time-stepping scheme LTS-LF2¢ith R,, = 0 conserves
the energy

ntdl } o Aitz Zn4l — Zpn Znyl — Zp Zpi1l+ Zp Zpilt Zn
E2*2[<(I ) v VA AR N '

(3.17)

Proof. By symmetry ofA,, this standard argument is similar the proof of (3.15); see
also [16] for details. O

3.2 Fourth-order method for undamped waves

In the absence of damping, the wave equation correspondsgpaaiable Hamiltonian
system. This fact explains the success of symplectic iategs, such as the Stérmer-
Verlet or the leap-frog method, when combined with a symimetiscretization in
space. Indeed the fully discrete numerical scheme will t@rserve (a discrete ver-
sion of) the energy, too. Clearly, standard symplectidfi@nted Runge-Kutta (Lobatto
IIIA-IIIB pairs) or composition methods [28] can be used thigve higher accuracy
[36]. Because the Hamiltonian here is separable, thoseshimider versions will also
remain explicit in time, like the Stormer-Verlet methodn& damped wave equations
are linear, we instead opt for the even more efficient moddopaation (ME) approach
[38] in this section, which leads to explicit LTS of arbititgrhigh (even) order.
Following the ME approach, we repladez(t+6 At) in (3.5) by its Taylor expansion

3 A+3
o7 At z“’(t)> + O(AtY).

) (N
Az(t+0At) = A | z(t)+ 00tz (t) + 5 2 (t)+ 6
Then, the integrals involving odd powers @fvanish. Next, by using that”(t) =
R(¢) — Az(t) and the Simpson quadrature rule for the term that invaRégs+ 6 At),
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we obtain the fourth-order modified equation scheme.

m -2 m m— A 2 A 2
Zm+1 Zm + Zp—1 :Rm—AZm+iA2Zm—iARm
At? 12 12 (3.18)

1
+3 (Ry-1/2 — 2R + Ryp1/2) + O(OY)

wherez,, ~ z(ty), Rim =~ R(tn) andR,, 11/ ~ R(t,, £ At/2). Clearly, integration
schemes of arbitrary (even) order can be obtained by usidij@ual terms in the Tay-
lor expansion. Since the maximal time-step allowed by thetfeorder ME method

is about 70% timetarger than that of the leap-frog scheme [10], the additional work
needed for the improved accuracy is quite small; hence, therdthod is extremely
efficient.

We now derive a fourth-order LTS method for (3.3). Similaidythe derivation in
Section 3.1, we split the vectoggt) andR(¢) in (3.8) into a fine and a coarse part,
and shall treax[ (¢) andR["¥l(¢) differently from z/°°2"s¢(¢) and RI02"s¢(¢). We
expandz[©°as¢(¢ + g At) in Taylor series as

dzglcoarsé 92 N\t2 (J2glcoarsé
(t) + (1)
dt 2 dt
93 A3 ([B3zlcoarse
+ 6 dt3

Z[coarsé(t + GAt) — Z[coars$(t) +ONAt

(t) + O(At?)

and insert it into (3.8). In (3.8), the integrals involvingdbpowers off vanish. By
using

dzz[coars¢ dzz
()= (I-P)_5(t) = (I~ P)R() - (I - P)Ax(t)

and the Simpson quadrature rule for the term in (3.8) thathis R[°02"S¢(¢ 4+ 9AL),
we find that

z(t + At) — 2z(t) + z(t — At)

= M2 {(I1-P)R(t) — A(I-P)z(t)} + Alt;A(I — P)Az(t) (3.19)
4 2

—%A(I _P)R(1) + %(1 _p) {R (t - A;) _2R(1) + R (t + A;) }

1 ) ]
A2 / 1-19)) {R[f"“ﬂ (t+ 0At) — Azt ¢ eAt)} do.
-1

Hence, ifP = 0 we recover the standard ME scheme (3.18).
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Similarly to Section 3.1, we now approximate the right-hamtk of (3.19) by solv-
ing the following differential equation fa(r)

~P)R(t) - A(I-P)z(t)

(
+;(I—P){R<t—A2t> —2R(t)+R<t+A2t>}

2A(I —P)Az(t) — 7:A(I —P)R(t) + PR(t +7) — APZ(7),

wherer will be specified below. Again, using Taylor expansions, nfeii that
z(t + At) + z(t — At) = Z(At) + Z2(—At) + O(AtE) .

Again, the quantityz(At) + z(—At) does not depend on the valueigfwhich we set
to zero. As in Section 3.1, we sgtr) := z(7) + z(—7), which solves the differential
equation

d2q

72(1) =2{(I=P)R(t) - A(I-P)z(1)}

+§(I—P){R<t—A2t> —2R(t)+R<t+A2t>}

+72A(1 - P)Az(t) — 72A(I — P)R(t) (3.20)
+P{R(Et+7)+R(t—1)}
- APq(T) )

q(0) = 2z(t),, q'(0) = 0.

Thus, we have

z(t + Ot) + z(t — At) = q(At) + O(AL®) . (3.21)
Now, we approximate the right side of (3.5) by solving (3.26th the fourth-order
ME method on|0, At] with a smaller time stef\r = At/p, and then use (3.21) to
computez(t + At).

In summary, the fourth-order LTS algorithm for the solutioh(3.3) computes
Zni1 =~ z(t + At), givenz,, andz,,_1, as follows:

LTS-LFME4( p) Algorithm
() Setqo:=2z,,w1:=I-P)R, — A(I-P)z,,
wy = A(I-P)Az, - A(I-P)R, andr :=R,,_1/2 — 2Ry + R, 11/0.
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(i) Compute

2
u = 2wi + é(l — P)Tl + ZRn,o — APqp

1 /A2 1 /60\?
= (= — (=) (2 2Pr; — APu):
d1/p qo+2(p> u+24<p> (2wy + 2P w);

(i) Form=1,...,p— 1, compute

2 A\ ?
Uy = 2w1 + é(I — P)T]_ —+ <m7) wo + P (Rn,m + Rn,—m) — Aqu/p ,

ri =Ry m_12 = 2Rnm + Ry myr2 + Ry 12
- ZRn,—m + Rn,7m+l/27
up = 2wy + Pr — APuq,

_ A ? 1/ne\*
A(m+1)/p - = 2(31m/p — A(m-1)/p + ; u1 + E ; uz .

(iv) Computez,, 1 := —2z,-1+ q1.

Here, Steps 1-3 correspond to the numerical solution oDjutil = = At with
the ME approach using the local time-stap = At/p. The LTS-LFME4() algo-
rithm requires three — two, without sources — multiplicatidoy A (I — P) and 2
further multiplications byAP. ForP = 0, that is without any local time-stepping, the
algorithm reduces to the modified equation scheme (3.18)eabo

3.3 Second-order leap-frog/Crank-Nicolson based method for damped
waves

We shall now derive a second-order LTS method for (3.2) in megd form with
D =£ 0. In contrast to the time-stepping scheme presented ind@e8tl for the case
D = 0, we are now faced with several difficulties due to the addaldz’(¢) term.
First, we shall treat that term implicitly to avoid any adiiital CFL restriction; else,
the stability condition will be more restrictive than thaitiwthe LTS-LF2f) scheme,
depending on the magnitude @f Note that very large values oefwill affect the CFL
stability condition of any explicit method regardless c thse of local time-stepping.
Nevertheless, the resulting scheme will be explicit, sifces essentially a diagonal
matrix. Second, we can no longer take advantage of any inhgyenmetry in time of
the solution. Third, to avoid any loss of accuracy, we mugtftdly initialize the LTS
scheme, which again is based on the highly efficient (twp)deap-frog method.
The exact solutiom(t) of (3.2) satisfies

z(t +At) — 2z(t) + z(t — At) + %D (z(t + At) — z(t — At))
1 (3.22)
= At? / (1—10]) (R(t + 0 At) — Az(t + O AL)) db + O(AY) .
-1
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To derive a second-order LTS method for (3.2), we now spdittctorsz(¢) andR(¢)
as in (3.7) and approximate the integrands in (3.22) asvistlo

RISt 1 0 At) + RIME (¢ 4 0 At) ~ RI3S8(1) + PR(t + 0AL),
A (z[“’afs?(t + 00t + 2 (¢ 4 9At)> ~ AZe(1) 1 APZ(0AL).
We thus have
z(t+At) — 2z(t) + z(t — At) + %D (z(t + Ot) — z(t — At))
~ M {(I-P)R(t) - A1~ P)z(t)} (3.23)
+ A2 /11(1 —|0]) {PR(t + 0At) — APz(0AL)} df .
Next for fixedt, letz(7) solve the differential equation
@(7) + D@(r) =(I-P)R(t)—A(I-P)z(t)+ PR(t+ 1)

dr? dr
_ AP#(r), (3-24)
7(0) = (1), 7(0) = v,

wherev will be specified below. Since the exact solutig) of (3.24) satisfies
(O¢) — 27(0) + F(—0¢) + %D (#(AL) — 5(—A8))
=0 {(I-P)R() - A1 - P)z(t)} (3.25)

+ At? /1 (1—10]) {PR(t + 0At) — APZ(0AL)} db
-1

from the comparison of (3.23) and (3.25), we infer that

A

2(t + D) + 2(t — A) + 20D (a(t + AF) — 2(t — A))
2

A (3.26)
~ z(At) + z(—At) + 7D (z(At) —z(—At)) .
In our local time-stepping scheme, we shall use the righ efd3.26) to approxi-
mate the left side. In doing so, we must carefully choo$e (3.24) to minimize that

approximation error. By using Taylor expansions and thetfeatz andz solve (3.2)
and (3.24), respectively, we obtain

z(t + Ot) + z(t — At) = 2z(t) + 2" (1) A2 + O(At?)

I
N
N
+

=z

|
>
=

|
-/

7 (1)) 0% + O(AtY)

+
+ (R(t) — Az(t) — Dv)At? + O(AY),
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together with
z(t 4+ Ot) — z(t — At) = 22 (t) AL + O(BL3) | Z(At) — Z(—At) = 20 At + O(ALS)

Hence for arbitrary, the right side of (3.26) is not sufficiently accurate to apmate
the left side while preserving overall second-order aagurelowever, if we choose

v=2((t)

in (3.24), theO(At?) terms in (3.26) cancel each other and overall second-ooier a
racy of the scheme can be achieved. Since the term on thesidghbf (3.26) is not
symmetric in time, unlike in the previous section (see (Bdrid (3.14)), we need to
compute the value of(7) both atr = At and atr = —At.

For the numerical solution of (3.24), we shall use the leag-scheme with the
local time-stegAr = At/p. Since the leap-frog scheme is a two-step method, we need
a second-order approximation f0) = z'(¢) during every initial local time-step.
Since the value of,,.  is still unknown at time¢ = ¢,,, we now derive a second-order
approximationz], ~ z'(t) that uses only,, andz,,_;. First, we approximate

!/ !
%12 T Znsay

! .27
. . (3.27)

Z
where bothz;_l/2 ~ 7/(t — At/2) and ZZ+1/2 ~ 7'(t + At/2) are second-order
approximations. By using second-order central differerfoez;_l/z,

2 1= % +0O(0t?), (3.28)

and the differential equation (3.2) fatwl/z,
Z;Hl/z - Z/nfl/Z

m + Dz, =R, — Az, + O(At?),

we obtain

, At -1 At Zp — Zp—1 2
Zy 12 = (I + 2D> { <I - 2D> A + AtR,, — AtAzn} + O(At7) .
(3.29)
Then, we insert (3.28), (3.29) into (3.27), which yields exs®l-order approximation
of z/(t).
In summary, the second-order LTS algorithm for the solutér{3.2) computes
Zn41 =~ z(t + At), for givenz,, andz,,_1, as follows:
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LTS-LFCN2(p) Algorithm
() Setw:=(I-P)R,, — AI-P)z,, 7o := z, and

At

At -1 At Zp, — Zp—1
I+-—-—D I-—D|—+AtR,, — AtAz, .
+(+2){( 2) oty R t}]

, l{zn—zn_l
7 = |

(i) Compute

At , 1 [/At
2\ p

2
Zl/p =z0+ —z,+ = ) (W + PR, 0— APzg — ngﬂb) and
p

_ .Y 1/0\? _
Z_1/p =70 — ;z% + > (p) (w +PR, 0 — APz — Dz’n) .

(i) Form=1,...,p— 1, compute

N _ AN\ (L At
Z(m+1)/p = <I + ZpD> {ZZm/p - <I - 2pD> Z(m-1)/p
At\? -
- <p> (W + PRy, — Asz/p)}
and

_ At N\t At N
Z(m+1)/p = (I - 2pD> {Zi—m/p - <I + 2pD> Z—(m—1)/p

At 2 ~
+ n (Ww+PR, —m—APzZ_,, ) ¢ .

(iv) Compute

_ A\t At _
Zpyl =121+ <I + 2D> (I - 2D> (~2Zpn-1+2z1) .

If e ando are piecewise constant in each elem@itand M, can be diagonalized
simultaneously and hence the mafiiis diagonal. If: ando vary in elementsD is a
block-diagonal matrix and botfI + (At/2p)D) and(I £+ (At/2)D) can be explicitly
inverted at low cost. In that sense, the LTS-LFCP)Zcheme is truly explicit. Again,
if the fraction of nonzero entries iR is small, the overall cost is dominated by the
computation ofw in step 1.
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Proposition 3.4.For R(t) € C?([0, T), the local time-stepping method LTS-LFCN2
is second-order accurate.

Proof. See [25]. O

Remark 3.5.Foroc = 0 (D = 0), the LTS-LFCN2f) algorithm coincides with the
LTS-LF2(p) algorithm and thus also conserves the discrete energy)(3Fbro # 0
andp = 1, i.e. no local mesh refinement, one can easily show thatribege is
no longer conserved but decays with time (independently)afnder the same CFL
condition as in the case with = 0.

4 Adams-Bashforth based LTS methods for damped waves

Starting from the standard leap-frog method, we propos&eaation 3 energy conserv-
ing fully explicit LTS integrators of arbitrarily high accacy for undamped waves. By
blending the leap-frog and the Crank-Nicolson methodscars#order LTS scheme
was also derived there for damped waves, yet this approaxtothe readily extended
beyond order two. To achieve arbitrarily high accuracy ia pinesence of damping,
while remaining fully explicit, we shall derive here explitTS methods for damped
wave equations based on Adams-Bashforth (AB) multi-stéprees.

The H-conforming and the IP-DG finite element discretization§ot) presented
in Section 2 lead to the second-order system of differeetjalations (2.4), whereas
the nodal DG discretization leads to the first-order systémiferential equations
(2.11). In both (2.4) and (2.11) the mass malvikis symmetric, positive definite and
essentially diagonal; thu®\i—* or M~2 can be computed explicitly at a negligible
cost; for simplicity, we restrict ourselves here to the hgemeous case, i.€(t) = 0.

If we multiply (2.4) byM‘%, we obtain (3.2). Thus, we can rewrite (3.2) as a
first-order problem of the form

dy
dt

T
() = (a0, 520) B‘<_£ _DI>

Similarly, we can also rewrite (2.11) as in the form (4.1)hwit(t) = Q(¢) andB =
M~!(—M, — C). Hence all three distinct finite element discretizatiomsrfrSection
2 lead to a semi-discrete system as in (4.1). Starting fropli@x multi-step AB
methods, we shall now derive explicit LTS schemes of aniligraigh accuracy for a
general problem of the form (4.1).

First, we briefly recall the construction of the classikadtep ¢th-order) Adams-
Bashforth method for the numerical solution of (4.1) [29]etl; = iAt andy,,

(t) =By(1), (4.1)

with
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Yn—1. Yn—k+1 the numerical approximations to the exact solutipft,), ...,
v (tn—k+1). The solution of (4.1) satisfies

tn+EAE
¥(tn + €08) = y(t,) + / By(dt, 0<t<1l.  (42)

We now replace the unknown solutigri¢) under the integral in (4.2) by the interpo-
lation polynomialp(t) through the point$t;,y;), i = n—k+1,...,n. Itis explicitly
given in terms of backward differences

VOYn =¥Yn, vj+1Yn = ijn - vjyn—l
by
k-1 s _
p(t) = pltn + 5Bt) = 3 (-1 ( | ) Ty,
o Jj

J
Integration of (4.2) withy (¢) replaced by(¢) then yields the approximatiogp, ¢ of
y(tn 4+ EAE), 0< € < 1,

k-1

Ynie = Yo + OB 7 (6)Viy, (4.3)
=0

where the polynomials; () are defined as

e s
w(@—(—l)f/o ( . )ds.

They are given in Table 1 fof < 3. After expressing the backward differences in
terms ofy,,_; and settingt = 1 in (4.3), we recover the common form of thestep
Adams-Bashforth scheme [29]

k-1

Yni1=yn OB ajyn (4.4)
j=0

where the coefficients;, j = 0,...,k — 1 for the second, third- and fourth-order
(k = 2,3,4) Adams-Bashforth schemes are given in Table 2. For higaleleg ofk
we refer to [29].

Starting from the classical AB methods, we shall now deriV& lschemes of arbi-
trarily high accuracy for (4.1), which allow arbitrarily stthtime-steps precisely where
small elements in the spatial mesh are located. To do so, stesfilit the unknown
vectory(t) in two parts

y(t) = (I-P)y(t) + Py(t) = y©¥¥¢) + y™Me(1)
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i o 1 2 3

B0 | € 3¢ 1010 Ae 108

Table 1. Coefficients; (£) for the explicit Adams-Bashforth methods.

ap a1 @z Qg
_ol 3 _1

k=23 -1 0o o
_3|z _18 s

k=3 12 12 12 0

— 55 _ 59 3 _ 9
k=43 24 24 24

Table 2. Coefficients for the-th order Adams-Bashforth methods.

where the matrixP is diagonal. Its diagonal entries, equal to zero or one,tifjen
the unknowns associated with the locally refined region,re/senaller time-steps are
needed.

The exact solution of (4.1) again satisfies

tn+EAL .
tn
(4.5)
Since we wish to use the standdréstep Adams-Bashforth method in the coarse re-
gion, we approximate the term in (4.5) that invop€°'s¢(¢) as in (4.2), which yields

k=1 _ tn+EOL
y(tn, +E0t) =y, + AtB(I-P) ij EVVyn, + / BPy(t)dt. (4.6)
j=0 tn

To circumvent the severe stability constraint due to thellestaelements associated
with y[™Mel(#), we shall now treayi"(¢) differently from y(°©@'s¢(¢). Hence, we
instead approximate the integrand in (4.6) as

tn+EOL At
/ BPy(t)dt ~ / BPy(r)dr,
tn 0

wherey (1) solves the differential equation

k-1

(1) =BI-P)Y 7 (5) Vyu + BPF(1),
j=0

dy

dr 4.7)

?(0) =¥Yn,
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i o 1 2 3
@ |1 ¢ L2+3¢ 13 +32+5¢

Table 3. The polynomial coefficients (¢)

with coefficients

O = () = 3 ((—w‘ / 5 (‘j) ds) - (—1>j(_f) . @9

The polynomialsy; () are given in Table 3 foj < 3. Replacingy (¢) by y(t) in (4.6),
we obtain
k—1 _ ENt
y(t, + &0 =y, + At B(I - P) Z’Yj(g)v]yn + / BPy(r)dr. (4.9)
j=0 0
By considering (4.7) in integrated form, we find that

k-1

(€0 =5(0) +BI-P) Y (/;At o7 (Alt) dT) Viy, + /Ow BP ¥(r) dr

j=0
k—1

' €t
=yn+AtB(I—P)Z’yj(§)VJyn+/ BPy(r)dr.
— 0

<

(4.10)
From the comparison of (4.9) and (4.10) we infer that
y(tn +§0t) ~ y(EAL).

Thus to advancsg(t,,) from¢,, to ¢,, + At, we shall evaluatg (At) by solving (4.7) on
[0, At] numerically. We solve (4.7) untit = At again with ak-step Adams-Bashforth
scheme, using a smaller time-stAp = At/p, wherep denotes the ratio of local
refinement. Forn = 0,...,p — 1 we then have

k-1 k—1 m— ¢ ‘
Ymi1)/p = Ym/p TATBI-P) » ap )y 7; < 5 ) Viyn

(=0 7=0
4.11
- (4.11)
+ At BP Z aﬁ(m,wl, 5
=0

whereay, £ = 0,..., k — 1 denote the coefficients of the classikadtep AB scheme
(see Table 2). Finally, after expressing the backward idiffees in terms of,,_,, we
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find
k-1 k-1
y(erl)/p = ym/p +Ar B(I - P) Z ﬁm,é Yn—t+ AT BP Z Qy y(m—l)/p ’ (412)
(=0 (=0

where the constant coefficients, ,, m =0,...,p—1,/=0,...,k — 1, satisfy

k—1 k—1 . m—i
Bne =Y iy (-1 ( ‘2 ) i ( ) : (4.13)

p

with 7, defined in (4.8).
In summary, the LTS-AB(p) algorithm computey,, .1 ~ y(t, + At), giveny,,

Yn—1sYn—k+1, B(I — P)yn,]_, cey B(I - P)yn_k+1 andPyn,l/p, Pyn,z/p, cey
Py, _(k—1)/p as follows:

LTS-AB Ek(p) Algorithm
() Setyo:'=yn, Y—t/p =Pyn_yp, {=1,.... k=1
(i) Setw, _:=BI—-P)y,_nl=1,... k-1
(i) Computew,, := B(I — P)y,,.
(v) Form =0,...,p— 1, compute

At k—1 At k—1
?(m#»l)/p = ym/p + — Z /Bm,f w,_¢+ —BP Z ay y(m—l)/p .
p (=0 p (=0

(V) Setyni1:=yi.

Steps 1-4 correspond to the numerical solution of (4.7)l unt= At with the k-
step AB scheme, using the local time-st&p = At/p. ForP = 0 orp = 1, that is
without any local time-stepping, we thus recover the steshélastep Adams-Bashforth
scheme. If the fraction of nonzero entriesinis small, the overall cost is dominated
by the computation ofv,, in Step 3, which requires one multiplications ByI — P)
per time-stepAt. All further matrix-vector multiplications byBP only affect those
unknowns that lie inside the refined region, or immediatedxtrto it; hence, their
computational cost remains negligible as long as the lpeafined region contains a
small part ofQ.

We have shown above how to derive LTS-BAEB) schemes of arbitrarily high ac-
curacy. Since the third- and fourth-order LTS-RAB) schemes are probably the most
relevant for applications, we now describe the LTS#B schemes fok = 3, 4 and
p = 2. Other examples of LTS Adams-Bashforth schemes are list@b].
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Fork = 3 andp = 2, the LTS-AB3(2) method reads:

~ At 17 7 2
= —BI-P) | —=yn — —=Vn_ — VY
Yi2=Yn+ 2 ( ) |:12y ) 12)’n 1+ 12Yn 2:|
At 23 16 5
+ 2 —BP |:12}’n - y 1/2 + Zyn l:| )

29 25

58
Yn—1 lZYn—Z

- - At
Yni1 =Y1=Y12+ EB(I -P) Lzyn 1

At 23 16 5_

?BP [12}’1/2 9t 12}’ 1/2] :

For the case withk = 4 andp = 2, we find the LTS-AB4(2) scheme:

- At 297 187 107 25

Y12 =Y¥Yn+ ?B(I - P) [192}% 1971 + 1972~ m}’n—s]
ﬁBP 55 59_ n 37 9 _
2 24Yn 24)’—1/2 24yn 1— 24}’—3/2 )

e Sy [, TS, s 119
Yn+1 = Y1 =Y1/2 192}’n 192)’7171 192)%72 192}@173

55_ 59 37 9

A pp .
+3 {24“/2 249" T Y12 Y- 1]

2
Proposition 4.1.The local time-stepping method LTS#B) is consistent of ordek.
Proof. See [26]. O

5 Numerical results

Here we present numerical experiments that validate theagd order of conver-
gence of the above LTS methods and demonstrate their ussfuin the presence of
complex geometry. First, we consider a simple one-dimeasitest problem illus-
trate the stability properties of the different LTS schemessented above and to show
that they yield the expected overall rate of convergencewdoenbined with a spatial
finite element discretization of comparable accuracy, pedelently of the number of
local time-step used in the fine region. Then, we illustrate the versatilftguwr LTS
schemes by simulating the propagation of a circular wave square cavity with a
small sigma-shaped hole.

5.1 Stability

We consider the one-dimensional homogeneous damped wastgat(2.1) with con-
stant wave speed = 1 and damping coefficient = 0 on the intervaQ = [0, 6].
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Next, we divideQ into three equal parts. The left and right intervélls, 2] and[4, 6],
respectively, are discretized with an equidistant meshzef/5°°3'¢ whereas the in-
terval Q; = [2, 4] is discretized with an equidistant mesh of siZ8® = L3¢,
Hence, the two outer intervals correspond to the coarsenmeghereas the inner inter-
val [2, 4] to the refined region. In [16], we have studied numericalgystability of the
LTS-LF2(p) and the LTS-LFME4{) methods. To determine the range of valdés$or
which the LTS-LF2g) scheme is stable, the eigenvaluesf /4)A, (A, is defined
by (3.16)) for varyingAt/Atrr are computed, wher&t; » denotes the largest time-
step allowed by the standard leap-frog method. The LTS-bF&theme is stable for
any particulad\t if all corresponding eigenvalues lie between zero and oiherwise,

it is unstable. We have observed that the largest time steped by the LTS-LF2()
scheme is only about 60% &f ;. A slight extension (overlap) of the region where
local time steps are used into that part of the mesh immeyiatgacent to the refined
region typically improves the stability of the LTS-LE®(scheme. Moreover, the nu-
merical results suggested that an overlap by one elemem wdm@bined with aP?!
continuous FE discretization (with mass lumping), or by elements when combined
with a IP-DG discretization, permits the use of the maxinogkimal) time ste@\t, 5.
The numerical results also suggested that an overlap by lengeet for the IP-DG
discretization is needed for the optimal CFL stability cibied of the LTS-LFME4()
independently op. Remarkably, no overlap is needed for the LTS-LFMB4cheme
to remain stable with the optimal time-step when combineith wie continuoug”®
elements.

In [26], we have considered the above one-dimensional probwith o = 0.1.
We have written the LTS-AB(p) scheme as a one-step method and than studied nu-
merically it stability when combined with a spatial finiteeeient discretization of
comparable accuracy. For a spatial discretization withdsted continuous, IP-DG or
nodal DG finite elements, we have obtained that the maxinrad-s8tepAt, allowed
by the LTS-AB 20) scheme is about 80 % of the optimal time-sfép 5> (the largest
time-step allowed by the standard two-step AB method) ieddpntly ofh, p ando;
moreover, the CFL stability condition of the LTS-AB3(and LTS-AB 4f{) schemes
is optimal for allh, p ando.

5.2 Convergence

We consider the one-dimensional homogeneous model prei{2rh) and (2.9) with
constant wave speed = 1 and damping coefficient = 0.1 on the intervaQ =
[0, 6]. The initial conditions are chosen to yield the exact sohuti

at

u(z,t) = oz sin(mz) sin E\/47r2 - 02> ,
42 — o2 2
v(x,t) = %(m,t), w(z,t) = —Vu(x,t).
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error

10°
h h

(a) continuous FEK = 0.2, 0.1, 0.05, 0.025) (b) IP-DG 0.2, 0.1, 0.05, 0.025)

h

(c) nodal DG { = 0.02, 0.01, 0.005, 0.0025)

Figure 1. LTS-AB4f) error vs.h = h&Sefor P3 finite elements withy = 2,5, 7.

Again, we divideQ into three equal parts. The left and right intervdl$,2] and
[4, 6], respectively, are discretized with an equidistant meshzef.°2's¢ whereas the
interval [2, 4] is discretized with an equidistant mesh of siZ8® = 103, Hence,
the two outer intervals correspond to the coarse regiontahher interval2, 4| to
the refined region.

First, we consider &2 continuous FE discretization with mass lumping and a se-
guence of increasingly finer meshes. For every time-Atepre shall takep > 2 local
steps of sizeAr = At/p in the refined region, with the fourth-order time-stepping
scheme LTS-AB4{). The first three time-steps of each LTS-ABY6cheme are ini-
tialized by using the exact solution. According to our réswn stability, we set
At = At apa, the corresponding largest possible time-step allowedhbyAB ap-
proach of order four on an equidistant mesh with= 1°°2'S¢ As we systematically
reduce the global mesh siz€°2¢ while simultaneously reducinyt, we monitor the
L? space-time error in the numerical solutin(-, ) — u"(-, T)| 12(q) at the final
time T = 10. In frame (a) of Fig. 1, the numerical error is shown vs.riesh size
h = h®s¢ regardless of the number of local time-steps 2, 5 or 7, the numerical
method converges with order four.

We now repeat the same experiment with the IP-G=20 in (2.7)) and the nodal
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o =20.1
(z0, vo)
1 | ferererrmennn et E ..........
o = 10

1

Figure 2. Two-dimensional example: the computational dor@ain

DG discretizations withP3-elements. As shown in frames (b) and (c) of Fig. 1, the
LTS-AB4(p) method again yields overall fourth-order convergencepmhdently of

p.

Remark 5.1.We have obtained similar convergence results for otheegatdp ando.

In summary, we observe the optimal rates convergence of érfite the LTS-ABk(p)
schemes as well as for the LTS-LB2(LTS-LSME4() and LTS-LFCN2p) schemes,
regardless of the spatial FE discretization and indepahdehthe number of local
time-stepg and the damping coefficieat For more details, we refer to [16, 25, 26].

5.3 Two-dimensional example

To illustrate the usefulness of the LTS method presentedeghee consider (2.1) in a
square cavityQ = (0, 1)2, with a small sigma-shaped hole - see Figure 2. We set the
constant wave speed= 1 and the damping coefficient

10, x2,< 05
o(x) = -
0.1, otherwise

We impose homogeneous Neumann conditions on the bound&yaofd choose as
initial conditions

exp([[x —xol[/r?) . [Ix — xo <,
up(x) = vo(x) =0,
0 otherwise

wherexg = (0.45,0.55) andr = 0.012.

For the spatial discretization we opt for tB& continuous finite elements with mass
lumping. First,Q is discretized with triangles of minimal siZ&°?'s¢ = 0.03. How-
ever, such triangles do not resolve the small geometrizfeatof the sigma-shaped
hole, which requirey® ~ hc°s¢/7  as shown in Figure 3. Then, we successively
refine the entire mesh three times, each time splitting etreaggle into four. Since
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Figure 3. The triangular initial mesh at various magnification rates: theed&ikngles
belong to the “fine” mesh.

M £
G (

Figure 4. Gaussian pulse penetrating a cavity with a small sigma-shaped Tote.
solution is shown at times= 0.1, 0.2, 0.3, 0.4, 0.44 and 05.

the initial mesh inQ is unstructured, the boundary between the fine and coarde mes
is not well-defined. Given°@'s¢ here the fine mesh corresponds to all triangles with
h < 0.75h°°%5€in size, that is the darker triangles in Figure 3. The comwesng
degrees of freedom in the finite element solution are thesttsd merely by setting to
one the corresponding diagonal entries of the marix

For the time discretization, we choose the third-order IAE3(7) time-stepping
scheme withp = 7, which for every time-stefAt takes seven local time-steps inside
the refined region. Thus, the numerical method is third4oedeurate in both space
and time under the CFL conditiot = 0.07 k@S¢ determined experimentally. If
instead the same (global) time-si&spwas used everywhere insidk it would have to
be about seven times smaller than necessary in md@st Ak a starting procedure, we
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employ a standard fourth-order Runge-Kutta scheme.

In Fig. 4, snapshots of the numerical solution are shown fégrdnt times. The
circular wave, initiated by the Gaussian pulse, propagatéward until it impinges
first on the sigma-shaped hole and later on the upper anddefidaries oQ. The
reflected waves move back infbwhile multiple reflections occur both at the obstacle
and along the interface ab = 0.5. As the waves cross that interface and penetrate
the lower part of, they are strongly damped.

6 Concluding remarks

Starting from the classical leap-frog (LF) or Adams-Bastif¢AB) methods, we have
presented explicit local time-stepping (LTS) schemes favevequations, either with
or without damping. By allowing arbitrarily small time-gi® precisely where the
smallest elements in the mesh are located, these LTS sch@roesvent the crip-
pling effect of locally refined meshes on explicit time intagpn.

When combined with a spatial finite element discretizatidthan essentially diag-
onal mass matrix, the resulting LTS schemes remain fulljieixpHere three such fi-
nite element discretizations were considered: stan#rdonforming finite elements
with mass-lumping, an IP-DG formulation, and nodal DG figitements. In all cases,
our numerical results demonstrate that the resulting filikgrete numerical schemes
yield the expected space-time optimal convergence ratesedwer, the LTS-ABE)
schemes of ordet > 3 have optimal CFL stability properties regardless of thesime
sizeh, the global to local step-size ratjg or the dissipationr. Otherwise, the CFL
condition of the LTS scheme may be sub-optimal; then, byuiticlg a small overlap
of the fine and the coarse region, the CFL condition of theltieguL. TS scheme can
be significantly enhanced.

Since the LTS methods presented here are truly explicit; gzgallel implemen-
tation is straightforward. LeAt denote the time-step imposed by the CFL condition
in the coarser part of the mesh. Then, during every (glolag-stepAt, each local
time-step of sizé\t/p inside the fine region of the mesh simply corresponds to epars
matrix-vector multiplications that only involve degredsreedom associated with the
fine region of the mesh. Those “fine” degrees of freedom careleeted individually
and without any restriction by setting the correspondingies in the diagonal pro-
jection matrix P to one; in particular, no adjacency or coherence in the nuimgpef
the degrees of freedom is assumed. Hence the implementaistraightforward and
requires no special data structures.

In the presence of multi-level mesh refinement, each looa-step in the fine re-
gion can itself include further local time-steps inside aben subregion with an even
higher degree of local mesh refinement. The explicit locaétstepping schemes de-
veloped here for the scalar damped wave equation immeyegely to other damped
wave equations, such as in electromagnetics or elastioifgct, they can be used for
general linear first-order hyperbolic systems.
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