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Abstract

The aim of this article is to develop improved trial methods for the solution of a generalized exterior Bernoulli free
boundary problem. At the free boundary, we prescribe the Neumann boundary condition and update the free boundary
with the help of the remaining Dirichlet boundary condition. Appropriate update rules are obtained by expanding the
Dirichlet data at the actual boundary via a Taylor expansion of first and second order. The resulting trial methods
converge linearly for both cases, although the trial method based on the second order Taylor expansion is much more
robust. Nevertheless, via results of shape sensitivity analysis, we are able to modify the update rules such that their
convergence is improved. The feasibility of the proposed trial methods and their performance is demonstrated by
numerical results.
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1. Introduction

In this article, we consider a generalized version of Bernoulli’s exterior free boundary problem which involves
Poisson’s equation and non-constant boundary data. To mathematically describe the problem under consideration, let
T ⊂ R2 be a bounded domain with free boundary ∂T = Γ. Inside the domain T , we assume the existence of a simply
connected subdomain S ⊂ T with fixed boundary ∂S = Σ. The resulting annular domain T \ S is denoted by Ω; see
Figure 1.1 for a sketch of the geometry.

Figure 1.1: The domain Ω and its boundaries Γ and Σ.
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The generalized Bernoulli free boundary problem reads as follows: Seek the domain Ω and the function v which
satisfy the overdetermined boundary value problem

−∆v = f in Ω

v = g on Σ

v = 0,
∂v
∂n

= h on Γ.

(1.1)

Here, n stands for the unit normal vector on Γ and ∂v/∂n denotes the normal derivative of v. Moreover, f , g, and h
are supposed to be sufficiently smooth functions which satisfy f ≥ 0, g > 0 and h < 0 such that the solution v is well
defined and positive in Ω.

The free boundary problem under consideration can be viewed as the prototype of a large class of stationary
free boundary problems involved in many applications such as fluid dynamics, optimal design, electromagnetics and
various other engineering fields. We refer to [3, 4, 10] for a review of theoretical results concerning the existence of
the solution to a free boundary problem. Results on the geometric form of the boundary Γ can be found in [1] and the
references therein.

For the solution of the above free boundary problem, we choose a fixed point type method, the so-called trial
method. The trial method is an iterative scheme, described by the following steps:

1. Choose an initial guess Γ0 of the free boundary.

2. a) Solve the boundary value problem with Neumann condition on the free boundary Γk.

b) Update the free boundary Γk such that the Dirichlet boundary condition is approximately satisfied on the
new boundary Γk+1.

3. Repeat step 2 until the process becomes stationary up to a specified accuracy.

Usually, the update is derived through a Taylor expansion and moves the boundary such that the Dirichlet condition
is satisfied. The use of a first order Taylor expansion has been proposed in [10, 20]. In this article, we will even use
a second order Taylor expansion which, as numerical results show, is more robust. However, the trial method still
convergences only linearly.

In order to obtain higher order convergence, the Neumann boundary condition at the free boundary has been
substituted by a Robin boundary condition in [10, 20]. Instead, we intend to improve the convergence of the trial
method without changing the boundary condition at the free boundary Γ. This is achieved by modifying the update
rule appropriately.

To the several numerical schemes for the solution of free boundary problems belong parametric trial methods as
proposed in [2, 10, 19, 20]. The level set method for Bernoulli’s problem has been used in [5, 6, 14], enjoying the
property of allowing topology changes. In all these papers, however, only the Laplace equation and constant Dirichlet
and Neumann data have been considered which corresponds to the original Bernoulli free boundary problem. In [17],
for a related time-harmonic inverse acoustic scattering problem, an iterative method based on the idea of the analytic
continuation of the field has been used. Shape optimization provides another powerful tool to solve free boundary
problems, see e.g. [8, 9, 11, 12] and the references therein.

The remainder of this article is organized as follows. Section 2 is dedicated to the derivation of the trial methods
based on first and second order Taylor expansions of the Dirichlet data at the actual boundary. In Section 3, we
reformulate the boundary value problem by boundary integral equations and propose their numerical solution by the
boundary element method. Some first numerical tests are presented in Subsection 3.4. They give the motivation to
get involved with the convergence theory of trial methods in Section 4. It especially enables to appropriately modify
the update rule such that the convergence is improved. In addition, the Newton method becomes performable. The
practicability of the resulting trial methods is shown by some numerical results in Section 4.5. Finally, in Section 5,
the article’s conclusion is drawn.
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2. Derivation of the update rules

2.1. Background and motivation

Throughout this article, we assume that the domain T is starlike. We can then represent the free boundary Γ by a
parametrization γ : [0, 2π]→ R2 in polar coordinates, that is

Γ :=
{
γ(s) = r(s)er(s) : s ∈ [0, 2π]

}
,

where er(s) =
(

cos(s), sin(s)
)T denotes the unit vector in the radial direction. The radial function r(s) is supposed to

be a positive function in C2
per([0, 2π]), where

C2
per([0, 2π]) =

{
r ∈ C2([0, 2π]) : r(i)(0) = r(i)(2π), i = 0, 1, 2

}
,

such that dist(Σ,Γ) > 0.
The trial method for the solution of the free boundary problem (1.1) requires an update rule. Suppose that the

actual boundary is Γk. Then, the corresponding state vk satisfies

−∆vk = f in Ωk

vk = g on Σ

∂vk

∂n
= h on Γk.

(2.1)

The new boundary Γk+1 is now determined by moving the old boundary into the radial direction, which is expressed
by the update rule

γk+1 = γk + δrker. (2.2)

The update function δrk ∈ C2
per([0, 2π]) is chosen such that the desired homogeneous Dirichlet boundary condition is

satisfied at the new boundary Γk+1, i.e.,
vk ◦ γk+1

!
= 0 on [0, 2π]. (2.3)

The main tool to find the update function δrk is Taylor’s expansion of the first and second order.

2.2. First order update rule

The first order update rule is obtained by linearizing vk ◦ (γk + δrer) with respect to the update function δr. This
yields the equation

vk ◦ γk+1 ≈ vk ◦ γk +

(
∂vk

∂er
◦ γk

)
δrk. (2.4)

We decompose the derivative of vk in the direction er into its normal and tangential components:

∂vk

∂er
=
∂vk

∂n
〈er,n〉 +

∂vk

∂t
〈er, t〉 on Γk. (2.5)

Inserting the Neumann boundary condition ∂vk/∂n = h, we arrive at the first order update equation

F1(δrk) := vk ◦ γk +

[
(h ◦ γk)〈er,n〉 +

(
∂vk

∂t
◦ γk

)
〈er, t〉

]
δrk

!
= 0. (2.6)

This leads to the most common update rule and has, for example, been used in [10, 14, 20]. However, there the
update is performed in the normal direction rather than the radial direction which might lead to a degeneration of the
domain. Notice finally that the update equation (2.6) is solvable at least in a neighbourhood of Γ? since there it holds
∂v?/∂er = h〈er,n〉 < 0 due to h < 0 and 〈er,n〉 > 0 for starlike domains.
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2.3. Second order update rule

The second order update rule is derived from a second order Taylor expansion of vk ◦ (γk + δrer) with respect to
δr, that is

vk ◦ γk+1 ≈ vk ◦ γk +

(
∂vk

∂er
◦ γk

)
δrk +

1
2

(
∂2vk

∂e2
r
◦ γk

)
δr2

k . (2.7)

Because of our regularity assumptions on the boundary Γk, we are able to compute the derivatives of the twice contin-
uously differentiable function vk. Notice that, assuming more regularity of Γk, even a higher order Taylor expansion
can be exploited here.

The directional derivative ∂vk/∂er included in (2.7) is computed by (2.5). Whereas, for the second order directional
derivative ∂2vk/∂e2

r , we refer to the following lemma.

Lemma 2.1. The second order derivative of vk in the direction er is given by

∂2vk

∂e2
r

=
∂2vk

∂t2

{
〈er, t〉2 − 〈er,n〉2

}
− f 〈er,n〉2 + 2

[
∂h
∂t
− κ

∂vk

∂t

]
〈er,n〉〈er, t〉 on Γk, (2.8)

where κ = −〈γ′′k ,n〉/‖γ
′
k‖

2 denotes the curvature of the boundary Γk.

Proof. We split the second derivative of vk in the direction er into its normal and tangential components

∂2vk

∂e2
r

=
∂2vk

∂n2 〈er,n〉2 + 2
∂2vk

∂n∂t
〈er,n〉〈er, t〉 +

∂2vk

∂t2 〈er, t〉2 on Γk. (2.9)

The derivative of vk’s Neumann data with respect to s is given by

∂

∂s

(
∂vk

∂n
◦ γk

)
= ‖γ′k‖

(
∂2vk

∂n∂t
◦ γk

)
+

〈
∇vk ◦ γk,

∂n
∂s

〉
.

Due to ∂n/∂s = κ‖γ′k‖t and the Neumann boundary condition at Γk, this equation can be rewritten as

∂2vk

∂n∂t
=
∂h
∂t
− κ

∂vk

∂t
on Γk. (2.10)

The derivatives ∂2vk/∂n2 and ∂2vk/∂t2 are coupled via the Poisson equation which implies

∂2vk

∂n2 = −
∂2vk

∂t2 − f on Γk. (2.11)

By inserting (2.10) and (2.11) into (2.9), the latter becomes (2.8). This concludes the proof.

Having all the terms of the second order approximation (2.7) of the left hand side of (2.3) at hand, we find the
update function δrk from the numerical solution of the following equation:

F2(δrk) := F1(δrk)+
1
2

{(
∂2vk

∂t2 ◦γk

){
〈er, t〉2−〈er,n〉2

}
−( f ◦γk)〈er,n〉2+2

[(
∂h
∂t
−κ
∂vk

∂t

)
◦γk

]
〈er,n〉〈er, t〉

}
δr2

k
!
= 0. (2.12)

It is especially seen from this representation that the update which is computed from this second order update equation
coincides with the update computed by (2.6) except for a higher order term.

2.4. Discretization of the free boundary problem

For the numerical computations, we discretize the radial function rn
k associated with the boundary Γk by a finite

Fourier series according to

rn
k (s) = a0 +

n−1∑
i=1

{
ai cos(is) + bi sin(is)

}
+ an cos(ns). (2.13)
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This obviously ensures that rn
k is always an element of C2

per([0, 2π]). To determine the update function δrn
k , represented

likewise by a finite Fourier series, we insert the m ≥ 2n equidistantly distributed points si = 2πi/m into the update
equations (2.6) and (2.12), respectively:

F(δrn
k ) !

= 0 in all the points s1, . . . , sm.

This is a discrete least-squares problem which can simply be solved by the normal equations in case of the first order
update equation (2.6). In case of the second order update equation (2.12) the least-squares problem is nonlinear.
Hence, we have to apply the Gauss-Newton method for its solution.

3. Solving the boundary value problem

3.1. Newton potential
Since the solution vk of the state equation is required only on the boundary Γk of the domain Ωk, the boundary

element method is more efficient than other methods. For sake of notational convenience, we drop the index k in the
rest of the section. Despite Poisson’s equation, the boundary element method can be applied by making the ansatz

v = u + N f (3.1)

for a suitable Newton potential N f which satisfies the equation −∆N f = f and a harmonic function u which satisfies
the boundary value problem

∆u = 0 in Ω

u = g − N f on Σ

∂u
∂n

= h −
∂N f

∂n
on Γ.

(3.2)

The Newton potential has to be given analytically or computed in a sufficiently large domain Ω̂. Nevertheless, since
this domain can be chosen fairly simple, efficient solution techniques can easily be applied.

3.2. Boundary element method
Our approach to get the system of integral equations is the direct formulation based on Green’s fundamental

solution. In this case, the solution u of (3.2) is given by Green’s representation formula

u(x) =

∫
Γ∪Σ

{
G(x, y)

∂u
∂n

(y) −
∂G(x, y)
∂ny

u(y)
}

dσy, x ∈ Ω. (3.3)

Using the jump properties of the layer potentials, we obtain the direct boundary integral formulation of the problem

u(x) =

∫
Γ∪Σ

G(x, y)
∂u
∂n

(y) dσy +
1
2

u(x) −
∫

Γ∪Σ

∂G(x, y)
∂ny

u(y) dσy, x ∈ Γ ∪ Σ. (3.4)

Writing the boundaries as A, B ∈ {Γ,Σ}, then (3.4) includes the single layer operator

V : C(A)→ C(B),
(
VABρ

)
(x) = −

1
2π

∫
A

log ‖x − y‖ ρ(y) dσy (3.5)

and the double layer operator

K : C(A)→ C(B),
(
KABρ

)
(x) =

1
2π

∫
A

〈x − y,ny〉

‖x − y‖2
ρ(y) dσy (3.6)

with the densities ρ being the Cauchy data on A. The equation (3.4) in combination with (3.5) and (3.6) indicates the
Neumann-to-Dirichlet map, which for problem (3.2) induces the following system of integral equations1

2
I +KΓΓ −VΣΓ

KΓΣ −VΣΣ


 u|Γ
∂u
∂n

∣∣∣∣
Σ

 =

VΓΓ −KΣΓ

VΓΣ −

(1
2

I +KΣΣ

)

(
h −

∂N f

∂n

)∣∣∣∣
Γ

(g − N f )|Σ

 . (3.7)
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The next step to the solution of the boundary value problem is the numerical approximation of the integral oper-
ators included in (3.4) which first requires the parametrization of the integral equations. We use the parametrization
of the boundaries as it was described in the beginning of Section 2.1. For the approximation of unknown Cauchy
data, we use the collocation method based on trigonometric polynomials. Using the trapezoidal rule for the numerical
quadrature and applying the regularization technique along the lines of [13] to deal with the singular integrals, we
arrive at an exponentially convergent boundary element method provided that the data and the boundaries and thus
the solution are arbitrary smooth.

3.3. Numerical realization of the update rules
We briefly present the equations we solve to determine the updates in case of Poisson’s equation. The tangential

derivative of u is computed from the identity

∂u
∂t
◦ γ =

〈
∇u ◦ γ,

γ′

‖γ′‖

〉
=

1
‖γ′‖

∂(u ◦ γ)
∂s

.

In view of (3.1), the first order update results thus from the solution of

F1(δr) = (u + N f ) ◦ γ +

[
(h ◦ γ)〈er,n〉 +

( 1
‖γ′‖

∂(u ◦ γ)
∂s

+
∂N f

∂t
◦ γ

)
〈er, t〉

]
δr = 0,

cf. (2.6). Likewise, to compute the second order tangential derivative of u, we use

∂2(u ◦ γ)
∂s2 = ‖γ′‖2

(
∂2u
∂t2 ◦ γ

)
+ 〈γ′′, t〉

(
∂u
∂t
◦ γ

)
+ 〈γ′′,n〉

(
∂u
∂n
◦ γ

)
.

This yields the relation

∂2u
∂t2 ◦ γ =

1
‖γ′‖2

∂2(u ◦ γ)
∂s2 −

〈γ′′, t〉
‖γ′‖3

∂(u ◦ γ)
∂s

+ κ
(
h ◦ γ −

∂N f

∂n
◦ γ

)
, (3.8)

where we substituted the Neumann data of u according to the desired boundary condition at Γ, cf. (3.2). The combi-
nation of (2.12), (3.1), and (3.8) finally yields

F2(δr) = F1(δr) +
1
2

{[ 1
‖γ′‖2

∂2(u ◦ γ)
∂s2 −

〈γ′′, t〉
‖γ′‖3

∂(u ◦ γ)
∂s

+ κ
(
h ◦ γ −

∂N f

∂n
◦ γ

)
+
∂2N f

∂t2 ◦ γ
]{
〈er, t〉2 − 〈er,n〉2

}
− ( f ◦ γ)〈er,n〉2 + 2

[
∂h
∂t
◦ γ −

κ

‖γ′‖

∂(u ◦ γ)
∂s

− κ
∂N f

∂t
◦ γ

]
〈er,n〉〈er, t〉

}
δr2.

The quantities ∂(u ◦ γ)/∂s and ∂2(u ◦ γ)/∂s2 which show up in the above expressions are computed by differentiating
the trigonometric representation of the approximation to u ◦ γ.

3.4. Numerical results
In this section, we perform numerical tests in order to compare the trial methods based on the first and the second

order update rule. We choose the fixed boundary Σ kite-shaped, parameterized via

γΣ(s) =

[
−0.1 cos(s) + 0.065 cos(2s)

0.15 sin(s)

]
.

As initial guess Γ0 to the free boundary Γ, a slightly perturbed ellipse is used:

γΓ0
(s) =

√
0.04 cos2(2s) + 0.06 sin2(2s)

[
cos(s)
sin(s)

]
.

We intend to solve the free boundary problem with respect to the data

f (x, y) = 60, g(x, y) = x2 + y2 + 1, and h(x, y) = −λ(x2 + y2 + 1),
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Figure 3.1: Solutions of the generalized Bernoulli free boundary problem in case of a kite-shaped interior boundary.

where λ a positive constant. An appropriate Newton potential can be analytically determined, namely N f (x, y) =

−15(x2 + y2). Figure 3.1 shows the boundary Σ and the optimum boundary Γ? of the free boundary problem for
different values of the parameter λ.

In Table 3.1, we present the number of boundary updates which the trial methods requires in order to reach the
optimum free boundary Γ?. The numerical setting was as follows. We used 80 degrees of freedom to represent the
unknown boundary Γk (i.e., n = 40) and 600 boundary elements per boundary. The trial method was stopped if the
update function satisfied ‖δr‖ < 10−8. As one figures out of the table, the trial method based on the first order update
converges only if the parameter λ is small enough (row entitled “1st order update”). Whereas, the trial method based
on the second order update converges for all choices of the parameter λ (row entitled “2nd order update”) .

parameter λ 20 25 30 35 40
1st order update 23 31 – – –

1st order update with damping (α = 0.8) 23 22 21 20 19
1st order update with damping (α = 0.5) 42 41 39 37 36

2nd order update 27 28 29 29 31

Table 3.1: Number of iterations of the trial method.

The following modification helps to enforce convergence in case of the first order update also for large values of
λ. Namely, we introduce an appropriate damping parameter α > 0 in the update of the radial function: rk+1 = rk +αδr.
Then, as it is seen in Table 3.1, convergence for all values of λ is achieved for the particular choices α = 0.5 and
α = 0.8 (rows entitled “1st order update with damping”). Nevertheless, we emphasize that there is no systematic rule
of choosing the damping parameter; see Remark 4.3.

It turns out that both, the trial method based on the first update and the trial method based on the second order
update, converge linearly. However, the trial method based on the second order update is much more robust unless we
use a suitable damping for the trial method based on the first order update. The last annotation we are going to make
is that, for the trial method based on the second order update, we are able to compute with more degrees of freedom
for the representation of rk than for the trial method based on the first order update.

4. Convergence analysis

4.1. Shape sensitivity analysis
We shall investigate the convergence of the trial method. Following the lines of [20], we explore under which

conditions we gain convergence and which is the attained rate of the convergence. To that end, some results from
shape sensitivity analysis are required.
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Figure 3.2: Convergence history of the trial method based on the first and second order update equation.

Given a sufficiently smooth domain perturbation field V : Ω→ R2 such that V|Σ = 0, we can define the perturbed
domain Ωε[V] by

Ωε :=
{(

I + εV
)
(x) : x ∈ Ω

}
.

Let v and vε denote the solution of (2.1) with respect to the domains Ω and Ωε. Then, the local shape derivative
δv = δv[V] of v at Ω in the direction V is formally (see [15, 18] for a rigorous derivation) obtained by the pointwise
limit

δv(x) = lim
ε→0

vε(x) − v(x)
ε

, x ∈ Ω.

The local shape derivative measures the sensitivity of the solution to (2.1) when changing the domain Ω in the direction
V. According to [7, 18], the local shape derivative can be characterized by a boundary value problem.

Lemma 4.1. Given a sufficiently smooth domain perturbation field V : Ω → R2 such that V|Σ = 0. Then, the local
shape derivative δv = δv[V] of the boundary value problem (2.1) is given as the solution of the problem

∆δv = 0 in Ω

δv = 0 on Σ

∂δv
∂n

=

[
κh +

∂h
∂n

+ f
]
〈V,n〉 on Γ.

(4.1)

For more details concerning shape sensitivity analysis, we address the reader to [7, 15, 16, 18].

4.2. Banach’s fixed point theorem

The procedure of proving higher order convergence is based on Banach’s fixed point theorem. The update rule
(2.2) defines a self-mapping

Φ : X → X, r 7→ Φ(r) = r + δr(r)

in a Banach space X. For the present theory, the space X = C2
per([0, 2π]) will be appropriate. By construction, the

update δr vanishes at the sought free boundary Γ? = {x ∈ R2 : x = r?er}. Hence, the radial function r? which
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describes the boundary Γ? is obviously a fixed point r? = Φ(r?) of the mapping Φ. In particular, the trial method
corresponds to the fixed point iteration

rk+1 = rk + δr(rk), k = 0, 1, 2, . . . .

According to Banach’s fixed point theorem, there exists a unique solution of this fixed point iteration if the mapping
Φ is contractive. The convergence rate

lim
k→∞

‖rk+1 − r?‖X
‖rk − r?‖X

= lim
k→∞

‖Φ(rk) − Φ(r?)‖X
‖rk − r?‖X

= lim
k→∞

‖δΦ[rk − r?](r?)‖X
‖rk − r?‖X

can be estimated by

lim
k→∞

‖rk+1 − r?‖X
‖rk − r?‖X

≤ sup
‖q‖X=1

lim
ε→0

‖Φ(r? + q) − Φ(r?)‖X
ε

= sup
‖q‖X=1

‖δΦ[q](r?)‖X . (4.2)

As firstly stated in [20], we can thus deduce a sufficient condition for the convergence of the trial method. Namely, if
sup‖q‖X=1 ‖(δΦ[q](r?)‖X < 1, then the trial method converges. If it holds in addition inf‖q‖X=1 ‖(δΦ[q](r?)‖X > 0, then
the convergence rate is linear.

Theorem 4.2. Consider the trial method based on the first order update equation (2.6). Then, for a given perturbation
q ∈ X, it holds

δΦ[q](r?) = −
δv?[q] ◦ γ?

(h ◦ γ?)〈er,n〉
, (4.3)

where γ? = r?er and δv?[q] denotes the local shape derivative (4.3) of v? into the direction V ◦ γ? = qer.

Proof. Define γ?ε = (r? + εq)er and let v? and v?ε denote the solutions to the underlying boundary value problems
(2.1) relative to the domains Ω? and Ω?

ε , i.e.,

−∆v? = f in Ω?, −∆v?ε = f in Ω?
ε

v? = g on Σ, v?ε = g on Σ

∂v?

∂n
= h on Γ?,

∂v?ε
∂n

= h on Γ?ε .

Then, in view of the first order update equation (2.6), it holds

δr(r?) = −
v? ◦ γ?
∂v?
∂er
◦ γ?

= 0 and δr(r? + εq) = −
v?ε ◦ γ

?
ε

∂v?ε
∂er
◦ γ?ε

.

Hence, we obtain

δΦ[q](r?) = lim
ε→0

Φ(r? + εq) − Φ(r?)
ε

= lim
ε→0

r? + εq + δr(r? + εq) − r? − δr(r?)
ε

= q − lim
ε→0

1
ε

v?ε ◦ γ
?
ε

∂v?ε
∂er
◦ γ?ε

.

On the optimum boundary Γ?, the following identities are valid:

v? ◦ γ? = 0 and
∂v?

∂n
◦ γ? = h ◦ γ?.

So, we conclude

v?ε ◦ γ
?
ε

ε
=

v?ε ◦ γ
?
ε − v? ◦ γ?

ε
+

(v?ε − v?) ◦ γ?

ε

ε→0
−→ q

(
∂v?

∂er
◦ γ?

)
+ δv?[q] ◦ γ?
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and
∂v?ε
∂er
◦ γ?ε

ε→0
−→

∂v?

∂er
◦ γ? = (h ◦ γ?)〈er,n〉. (4.4)

Consequently, the derivative of the mapping Φ with respect to q can be simplified according to

δΦ[q](r?) = q −
q(h ◦ γ?)〈er,n〉
(h ◦ γ?)〈er,n〉

−
δv?[q] ◦ γ?

(h ◦ γ?)〈er,n〉
= −

δv?[q] ◦ γ?

(h ◦ γ?)〈er,n〉
.

From this result, it is obvious that the question whether the trial method based on the first order update equation is
(locally) converging or not, i.e., whether the norm

∥∥∥(δv?[q] ◦ γ?)/
(
(h ◦ γ?)〈er,n〉

)∥∥∥
X is smaller than 1 or not, can be

answered by inspecting the local shape derivative. Since it holds in general[
κh +

∂h
∂n

+ f
]
, 0 almost everywhere on Γ?,

the Neumann data in (4.1) and thus the local shape derivative δv?[q] is nonzero for all directions 0 , q ∈ X.3

Therefore, we generally expect only linear convergence of the trial method, as already observed in the numerical
experiments of Subsection 3.4.

Remark 4.3. In case of a damping, the self-mapping Φ is modified according to

Φ : X → X, r 7→ Φ(r) = r + αδr(r).

Therefore, the derivative becomes

δΦ[q](r?) = (1 − α)q − α
δv?[q] ◦ γ?

(h ◦ γ?)〈er,n〉
.

From this expression, it is not obvious how to choose the damping parameter α to ensure that ‖δΦ[q](r?)‖X < 1.

The update δr2 = δr2(r) computed from the second order update equation (2.12) coincides with the update δr1 =

δr1(r) computed from the first order update equation (2.6) except for a higher order term, i.e., δr2(r) = δr1(r) + ε(r)
with ‖ε(r)‖X = O

(
‖δr1(r)‖2X

)
. Hence, all the results about the convergence remain essentially valid also in the case of

the trial method based on the second order update equation (2.12).

4.3. Speeding up the convergence

As we have seen before, the computation of the shape derivative δv?[q] enables the evaluation of the convergence
rate of the method. Hence, a question of great importance arises. What happens if

∥∥∥(δv?[q]◦γ?)/
(
(h◦γ?)〈er,n〉

)
‖X ≥

1? Can we then enforce convergence of the trial method or is it possible to obtain even superlinear convergence?
A superlinearly convergent trial method for Bernoulli’s free boundary problem has been proposed in [10], called the
implicit Neumann method. Results on a quadratically convergent trial method can be found in [19, 20], where the
solution of a Robin boundary value problem was suggested. Unfortunately, this Robin boundary value problem is
only well-posed if the free boundary is convex. In contrast, our objective is to avoid the solution of a boundary value
problem other than (2.1) since this would require the change of the boundary element method.

As a consequence of the observations in the previous subsection, we shall modify the self-mapping Φ according
to

Φ : X → X, r 7→ Φ(r) = r + α(r)δr(r). (4.5)

3Since δv?[q] satisfies the Laplace equation with homogenous boundary condition on Σ, the Dirichlet data δv?[q] ◦ γ? can only vanish if it
holds δv?[q] = 0 in Ω?.
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Notice that r? is still a fixed point of Φ. We shall now determine the function α(r) : [0, 2π]→ R such that superlinear
convergence of the method is ensured. In other words, we seek a function α(r) such that

lim
k→∞

‖rk+1 − r?‖X
‖rk − r?‖X

= lim
k→∞

‖Φ(rk) − Φ(r?)‖X
‖rk − r?‖X

= lim
k→∞

‖δΦ[rk − r?](r?)‖X
‖rk − r?‖X

= 0. (4.6)

Following the same procedure as in the proof of Theorem 4.2, the derivative of the mapping Φ with respect to a given
direction q is computed by

δΦ[q](r?) = lim
ε→0

Φ(r? + εq) − Φ(r?)
ε

= q − lim
ε→0

α(r? + εq)
ε

v?ε ◦ γ
?
ε

∂v?ε
∂er
◦ γ?ε

.

Recall that v?ε ◦ γ
?
ε → v? ◦ γ? = 0 as ε→ 0. Thus, similar as in the proof of Theorem 4.2, we conclude

α(r? + εq)
ε

(v?ε ◦ γ
?
ε ) =

α(r? + εq) − α(r?)
ε

(v?ε ◦ γ
?
ε ) + α(r?)

v?ε ◦ γ
?
ε

ε

ε→0
−→ α(r?)

[
q
(
∂v?

∂er
◦ γ?

)
+ δv?[q] ◦ γ?

]
.

In view of (4.4), we finally arrive at

δΦ[q](r?) = q − α(r?)
(
δv?[q] ◦ γ?
∂v?
∂er
◦ γ?

+ q
)
.

A superlinearly convergent scheme is derived if we define the function α(r) such that (4.6) is satisfied for the direction
q := limk→∞(rk − r?)/‖rk − r?‖X provided that this limit exists. Nevertheless, since r? is unknown, q would not be
accessible even in the case of existence. Hence, we choose just q = 1 which corresponds to the radial direction er.
This leads to

α(r) =

∂v
∂er
◦ γ

δv[er] ◦ γ + ∂v
∂er
◦ γ

. (4.7)

This expression depends on the actual state v and on its local shape derivative. The local shape derivative δv[er] can
be evaluated in complete analogy to the solution of the mixed boundary value problem (4.1) by using the Neumann-
to-Dirichlet map (3.7) as it was described in Section 3. Hence, one additional solve of the Neumann-to-Dirichlet map
(3.7) is necessary per iteration step.

Remark 4.4. The condition [
κh +

∂h
∂n

+ f
]
≤ 0 on Γ? (4.8)

is very often required in connection with the convergence theory of free boundary problems, see e.g. [8, 9, 21, 22].
Since it holds also 〈er,n〉 > 0 in case of a starlike domain, the prescribed Neumann data of the local shape derivative
δv[er] are negative at Γ?, cf. (4.1). Hence, under the condition (4.8), there holds δv[er] < 0 in Ω? and thus δv[er] < 0
at Γ?. As a consequence, the denominator of

(
α(r?)

)
(s) is negative for all s ∈ [0, 2π]. We finally conclude that α(r) is

well defined at least in a neighbourhood of r? if (4.8) holds.

4.4. Newton’s method
A quadratically convergent trial method is derived in case of Newton’s method. It is obtained by demanding that

the update function δr(r) becomes zero:
Ψ(r) = δr(r) !

= 0.

Linearizing the update function around the actual boundary rk gives

Ψ(rk+1) ≈ Ψ(rk) + δΨ[rk+1 − rk](rk) !
= 0.

In complete analogy to the proof of Theorem 4.2, the derivative of the mapping Ψ with respect to a given direction q
is given by

δΨ[q](r) = lim
ε→0

Ψ(r + εq) − Ψ(r)
ε

= − lim
ε→0

1
ε

[
vε ◦ γε
∂vε
∂er
◦ γε

−
v ◦ γ
∂v
∂er
◦ γ

]
= −

(
q +

δv[q] ◦ γ
∂v
∂er
◦ γ

)
.
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Hence, the Newton update q is determined as the solution of the nonlinear equation

δΨ[q](rk) !
= −Ψ(rk).

To solve this nonlinear equation, we perform the fixed-point iteration

q`+1 = δr(rk) −
δv[q`] ◦ γ

∂v
∂er
◦ γ

, ` = 0, 1, 2, . . . .

A good initial guess is given by q0 = δr(rk) which would be the first iterate when starting with q−1 = 0. Nevertheless,
several of these inner iterations will be performed, each of which requires one solve of the Neumann-to-Dirichlet map
(3.7) to calculate the local shape derivative δv[q`]. To our experience, we need about 10–20 iterations to compute the
Newton update sufficiently accurate.

4.5. Numerical results
In the last part of this article, we show practically the improvement in the results by two numerical examples. We

consider Poisson’s equation (1.1) with

f (x, y) = 5, g(x, y) = 1, h(x, y) = −λ.

The fixed boundary Σ is chosen to be peanut-shaped with parametrization

γΣ : [0, 2π]→ Σ, s 7→ γΣ(s) =

[
0.03 sin(s)

(
1.25 + cos(2s)

)
0.045 cos(s)

]
.

The solutions of the free boundary problem are depicted in Figure 4.1.
The numerical setting is as follows. We use 40 degrees of freedom to represent the unknown boundary Γk (i.e.,

n = 20), 600 boundary elements per boundary, and stop the trial method if the update function satisfies ‖δr‖ < 10−8.
The random boundary seen in Figure 4.1 is the initial approximation Γ0.

Figure 4.1: The solutions of Bernoulli’s free boundary problem for different choices of the parameter λ.

It is seen in Table 4.1 that the trial method based on the first order update equation does never converge for the
parameters λ under consideration (row entitled “1st order update”). Whereas, the trial method based on the order
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parameter λ 40 45 50 55 60 65 70
1st order update – – – – – – –

1st order update with damping (α = 0.7) 19 20 21 22 23 23 22
improved 1st order update 15 17 19 22 23 28 22

Newton method & improved 1st order update 11 13 15 19 18 22 15
2nd order update 31 31 29 30 28 27 27

improved 2nd order update 14 16 20 16 15 18 19
Newton method & improved second order update 10 18 17 12 11 12 13

Table 4.1: Number of iteration required for convergence.

Figure 4.2: Convergence history in case of a peanut-shaped interior boundary and h ≡ −55.

second update equation converges always (row entitled “2nd order update”). Notice that a damping of the first order
update by α = 0.7 enforces convergence of the trial method based on the first order update equation (row entitled “1st
order update with damping”). Nevertheless, as long as we add the update δr with the suggested parameter α(r) from
(4.7), then we see that the trial method is converging for both cases (rows entitled “improved 1st order update” and
“improved 2nd order update”). Indeed, according to Figure 4.2, we obtain a nicely improved (linear) convergence rate
after some burn-in where the solution is too far away from the optimum boundary Γ?. The Newton method does not
converge for our initial guess. Hence, we apply one of the improved update rules first until the update function δr is
small, that is ‖δr‖ < 10−3. Then, we start the Newton method. The number of iterations is shown in Table 4.1 in the
rows entitled “Newton method & improved 1st order update” and “Newton method & improved 2nd order update”.
The associated green and blue graphs in Figure 4.2 validate the quadratic convergence.

The trial methods we have constructed are also applicable for free boundary problems with several inner bound-
aries. This is demonstrated by an example where the boundary Σ is composed of the union of four circles as can be
seen in Figure 4.3. We consider the original Bernoulli free boundary problem, that is

f (x, y) = 0, g(x, y) = 1, h(x, y) = −λ

in (1.1). The extension of the boundary element method introduced in Subsection 3.2 to the new topological config-
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Figure 4.3: Solutions of the free boundary problem in case of several interior boundaries.

parameter λ 10 12 14 16 18 20
1st order update 18 22 27 32 39 48

improved 1st order update 14 18 21 28 35 38
Newton method 7 8 8 9 10 11
2nd order update 18 22 26 32 38 47

improved 2nd order update 12 16 22 28 26 44

Table 4.2: Number of iterations of the trial methods in case of several interior boundaries.

uration is straightforward and left to the reader. On each boundary, we apply 400 boundary elements which leads to
2000 boundary elements in all. The free boundary is discretized by 80 degrees of freedom, that is n = 40 in (2.13).
For the initial approximation of the free boundary, we have chosen a circle. The trial method is again stopped if the
update function satisfies ‖δr‖ < 10−8.

In Table 4.2, the number of iterations of the different trial methods are listed. Now, the standard trial method
converges for all chosen parameters λ (row entitled “1st order update”). The improved 1st order update converges
slightly faster (row entitled “improved 1st order update”). The same is observed for the related trial methods based on
the second order equation (rows entitled “2nd order update” and “improved 2nd order update”). The fastest method is
again the Newton method which converges immediately for the present initial guess (row entitled “Newton method”).

5. Conclusions

We considered the numerical solution of generalized Bernoulli free boundary problems. On the actual domain, we
approximated the solution to the boundary value problem which complies the desired Neumann boundary condition
at the free boundary. This approximation is computed by a boundary element method which converges exponentially
in case of smooth data. We then analyzed and applied trial methods which are based on update rules arising from
first and second order Taylor series of the violated Dirichlet boundary condition at the free boundary. It turns out that
an update computation based on a second order Taylor expansion of the Dirichlet data at the actual interface leads
to a much more stable scheme. Moreover, by computing the local shape derivative to the boundary value problem
under consideration, we were able to modify the trial method such that the convergence is improved considerably. In
particular, the Newton method yields quadratical convergence rates.
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