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Key parameters may be used to turn a bad design into
a good design with comparatively little effort. The proposed
method identifies key parameters in high-dimensional non-
linear systems that are subject to uncertainty. A numerical
optimization algorithm seeks a solution space on which all
designs are good, that is, they satisfy a specified design cri-
terion. The solution space is box-shaped and provides target
intervals for each parameter. A bad design may be turned
into a good design by moving its key parameters into their
target intervals. The solution space is computed so as to
minimize the effort for design work: its shape is controlled by
particular constraints such that it can be reached by chang-
ing only a small number of key parameters. Wide target in-
tervals provide tolerance against uncertainty, which is nat-
urally present in a design process, when design parameters
are unknown or cannot be controlled exactly. In a simple
two-dimensional example problem, the accuracy of the algo-
rithm is demonstrated. In a high-dimensional vehicle crash
design problem, an under-performing vehicle front structure
is improved by identifying and appropriately changing a rel-
evant key parameter.

1 Introduction
Designs that fail to meet their design goals may be im-

proved by appropriately changing relevant design parame-
ters. When design parameters are subject to uncertainty, this
can be very difficult. The deviation between desired and
realized parameter settings may lead to catastrophic design
failure, in particular when the design problem is non-linear
and the system response abruptly changes under parameter
variation. Uncertainty is present when parameters or compo-
nent properties cannot be controlled exactly. As an example,
the force-deformation characteristic of a structural member
is difficult to adjust by detail parameters like the metal sheet
thickness. This paper is concerned with, first, identifying the
key parameters that can be used to improve a design with
least effort, and, second, providing information on how these
key parameters need to be modified in order to turn a bad
into a good design in the presence of uncertainty.

Classical approaches to identify relevant parameters are
sensitivity analysis, classical optimization and robust design
optimization. Sensitivity analysis quantifies the importance
of input parameters for the variability of the output [1, 2].
Local sensitivity analysis investigates the local influence of
each input parameter on the output. This kind of analysis
is well suited for problems that can be well approximated



by linear functions. Local sensitivity measures are obtained
by computing partial derivatives of the output function with
respect to the input parameters. Global sensitivity analy-
sis takes the entire design space into account to apportion
the variability of the output parameter to the variability in
each input parameter. There are several measures used in
global sensitivity analysis: The regression coefficient quanti-
fies the slope of a linear approximation, the Pearson correla-
tion coefficient measures to what degree an input parameter
determines the output in a linear relationship. The Spearman
correlation coefficient quantifies the monotony in the rela-
tionship between one input parameter and the output. Sobol
indices are particularly tailored for multidimensional func-
tions, see [3]. The first order Sobol index is a measure for the
direct effect of an input parameter on the output. The higher
order indices quantify the influence of the interactions be-
tween the input parameters. The fraction of the output vari-
ation that is related to each input parameter is measured by
the total order index, see [1, 4].

Every sensitivity measure measures the importance of
an input parameter in one particular sense. As all the in-
formation on how input and output parameters are related is
reduced to one measure, other information is lost. Therefore,
in the sensitivity measures mentioned before, no information
is included on how the parameters have to be changed in or-
der to obtain a particular result.

Contrary to sensitivity measures, classical optimization
provides this information by seeking an optimum in the de-
sign space. Unfortunately, however, classical optimization
does not take uncertainty into account. Optimal designs may
be non-robust and quite sensitive to parameter variabilities.
Due to the underlying uncertainty, realizing an optimum in a
practical design may be impossible.

Both, sensitivity analysis and classical optimization are
not concerned with uncertainty and therefore of limited use
for the purpose of this paper. Robust design optimization
does take uncertainty into account by seeking a design point
in a particular neighborhood with little output variation or
sufficient performance (see [5]). The size of that neighbor-
hood is specified in advance and represents parameter vari-
ability associated with an measured or assumed underlying
uncertainty. Robust design optimization prescribes the per-
missible variability and cannot optimize the tolerance to vari-
ations.

The approach presented in [6, 7, 8, 9] is similar to robust
design optimization in that it also computes a permissible re-
gion rather than one design point. The solution space, how-
ever, is constructed to be as large as possible to make it easier
to reach the target. Robust design optimization does not seek
a large solution space, it rather looks for a neighborhood with
good output performance and fixed size. For a robust design
optimization problem with a performance threshold value,
this implies that, either, there is no solution if the neighbor-
hood was chosen too large, or, there is a solution with an
associated neighborhood which may not be as large as pos-
sible. Maximizing the solution space, however, provides a
target space which is as large as possible and therefore easier
to reach.

In this paper, the work of [7, 8] is extended with a fo-
cus on reducing the effort to turn a bad design in a good de-
sign. A large solution space is sought that already includes
as many parameters from the bad design as possible by for-
mulating appropriate constraints. Parameters without con-
straints may lie outside of the solution space and will have to
be changed to fulfill the design goal.

The paper is organized as follows. In Section 2, a sim-
ple example problem is considered, and the new approach
is motivated. A mathematical problem statement for the so-
lution space optimization with constraints is given in Sec-
tion 3. Section 4 reviews the algorithm to identify solution
spaces and presents the extensions for the particular purpose
of this paper. The numerical accuracy of the algorithm is
validated with the simple example problem. Section 5 ex-
plains the particular challenges of front crash design. In Sec-
tion 6, the proposed method is applied to a non-linear and
high-dimensional engineering crash problem.

2 A simple example problem
A simple example problem from crash analysis is con-

sidered as presented in [7]. The load case is similar to a
USNCAP front crash, where the vehicle hits a rigid barrier
at a speed of v0 = 56 km/h with full overlap, see Figure 1.

Fig. 1. USNCAP front crash.

A model of the vehicle structure is used that consists of
two structural components, see Figure 2(a). The structural
components 1 and 2 are the only deformable parts and have
the deformation measures u1 and u2, respectively. The rest of
the vehicle model is rigid. The deformable components have
no mass, all mass is located on the rigid part. The forces nec-
essary to deform components 1 and 2 are F1 and F2, respec-
tively, see Figure 2(b). F1 and F2 are assumed to be constant
while deforming. If the maximum deformations u1c and u2c
are reached, the forces may become arbitrarily large in order
to avoid further deformation. The crash performance is mea-
sured by the acceleration of the passenger cell and the order
of structural deformation, that is, whether component 1 or
component 2 deform first. The design goals for the simple
example problem are:

• The maximum deceleration should not exceed the criti-
cal threshold value ac, that is, a≤ ac.
• Component 1 should deform before component 2 de-

forms.



Fig. 2. (a) Vehicle structure of example problem consisting of two
deformable components. (b) Force-deformation characteristics of the
structural components 1 and 2.

This translates to the requirements on F1 and F2 that F1 ≤ F2,
that the deformation force of component 2 is F2 ≤ mac and
that entire kinetic energy is absorbed, that is 1

2 mv2
0 ≤ F1u1c+

F2u2c.
With the performance function

f (F1,F2) =


1, if 1

2 mv2
0 > F1u1c +F2u2c

1, if F1 > F2

F2/m−ac
ac

, otherwise,

(1)

the design goal is met, when

f (F1,F2)≤ 0. (2)

The solution space defined by expression (2) is shown for
m= 2000 kg, ac = 32 g, v0 = 15.6 m/s and u1c = u2c = 0.3 m
in Figure 3(a).

Now consider a design with F1 = 275 kN and F2 =
450 kN. It violates (2). In order to identify what parame-
ter may be changed and by how much in order to improve
the design with least effort, three scenarios are compared:

(a) A classical solution box with maximum volume is
shown in Figure 3(a). Both components 1 and 2 have to be
modified in order to meet the design goal.

(b) A solution box that includes F2 = 450 kN is shown
in 3(b). In order to meet the design goal, only component 1,
that is, F1, will have to be changed. Note that F2 is included
in the solution box with a safety margin of ±25 kN. This is
necessary, since F2 cannot be controlled exactly.

(c) Finally, a solution box that includes F1 = 275 kN is
shown in Figure 3(c). In order to meet the design goal, only
component 2, that is, F2 will have to be changed. The same
safety margin as in scenario (b) is provided.

The solution boxes of scenarios (b) and (c) are smaller
than the one of scenario (a). In this sense, designs from these
boxes are less robust and more difficult to realize. However,
scenario (a) requires redesigning two components, while sce-
narios (b) and (c) only require redesigning one component.
A designer, knowing that component 1 is easier to redesign
than component 2, would therefore prefer scenario (b). The

deformation force F1 would be the key parameter to meet the
design goal.

This procedure can be generalized by seeking solution
boxes under the constraint that certain parameters be in-
cluded with a specified safety margin. The associated math-
ematical problem statement is provided in the following sec-
tion.

3 General problem statement
Let Ω be an axis-parallel hyperbox, which is defined as

the Cartesian product of intervals Ii = [xlow
i ,xup

i ]

Ω = I1×·· ·× Id ⊆Ωds, (3)

with xlow
i and xup

i being the lower and the upper boundary for
dimension i, respectively. The axis-parallel hyperbox Ωds is
the design space that includes all possible designs under con-
sideration. The measure µ(Ω) quantifies the size of a solution
space. Typically, the size is the volume given by

µ(Ω) =
d

∏
i=1

(xup
i − xlow

i ). (4)

Every design x∈Ωds is assigned a performance value z given
by the performance function

z = f (x). (5)

In many engineering problems, z is computed numerically,
therefore analytical properties of f (x) are unknown and it
has to be treated like a black box. A design x that satisfies
the performance criterion

f (x)≤ fc (6)

is called a good design, a design that does not is called a bad
design.

The optimization problem to maximize the size of the
solution space as introduced in [7] reads

seek Ω⊆Ωds,

such that µ(Ω)→max

subject to f (x)≤ fc for all x ∈Ω.

 (P1)

As motivated in the previous section, the classical prob-
lem statement is now enriched by constraints ensuring that
parameters values are included in the resulting solution box.
More specifically,

seek Ω⊆Ωds,

such that µ(Ω)→max

subject to f (x)≤ fc for all x ∈Ω

and xlow
k ≤ xlow

c,k , xup
l ≥ xup

c,l

 (P2)



F1

F2

0
0

800

800

classical optimum

bad design
good design

(a)

F1

F2

0
0

800

800

bad design
good design

(b)

F1

F2

0
0

800

800

bad design
good design

(c)

Fig. 3. Changes necessary to meet the design goal: (a) F1 and F2, (b) only F1, (c) only F2.

with xlow
c,k and xup

c,l being the constraint for the upper and lower
boundary of the solution box, respectively.

4 Computing solution spaces with constraints
4.1 Review of the underlying algorithm

A solution algorithm for (P1) was introduced in [7] and
analyzed in [8], and is briefly described here. Starting from
a box that includes at least one good design, the algorithm
computes new candidate boxes by iterative modification and
evaluation, as shown in Figure 4. The iteration can be subdi-
vided into the exploration phase and the consolidation phase.

The purpose of the exploration phase is to identify a
good location of the solution box in the design space where
the boundary intervals for every parameter can be extended
as much as possible. The exploration phase consists of four
steps: In step one, a Monte Carlo sample is computed within
the candidate box (for literature on Monte Carlo Sampling
see [10]). In step two, the sample is evaluated by Bayesian
statistics, that is, estimating the fraction of good designs and
computing a confidence level for the estimate [6]. In the
third step, a new candidate box is identified that includes
only good designs of the current sample. This is done by
the trimming algorithm that removes bad space by relocating
boundaries. Finally, in step four, the candidate box is ex-
tended tentatively to allow for growth into good space. Ex-
tending the boundaries that are close to bad space may de-
crease the fraction of good design space which will be cor-
rected by step three. Extending the boundaries that are not
close to bad space, however, will increase the size and make
the candidate box evolve towards the maximum solution box.

The purpose of the consolidation phase is to ensure that
the fraction of good design space in the final solution box
is sufficiently large. This is accomplished by applying the
trimming algorithm only.

4.2 Extension for constraints
The algorithm is extended to account for constraints and

solve problem (P2). The extension is done by modifying the
trimming algorithm, where candidate boxes without bad de-
signs are computed in three nested loops. In the original al-

Candidate box sampled
by Monte Carlo sampling

Statistical evaluation

Remove the bad sample points

Grow in all parameter
directions

Does the box still move?

yes

no

Candidate box sampled
by Monte Carlo sampling

Statistical evaluation

Remove the bad sample points

Is Ng/N = 1?

yes

no

Candidate box is
the solution box 

STOP

Candidate box created
around a good sample point

    PHASE 1
(exploration)

      PHASE 2
(consolidation)

Fig. 4. Underlying algorithm to compute solution boxes.

gorithm [6], the largest box is chosen as new candidate box
for the next iteration step. In the extended algorithm with
constraints, an error measure is introduced that quantifies to
what degree constraints are violated. The constraint viola-
tion error ε is defined as

ε
2 = ∑

k
ωkε

2
k +∑

l
ωlε

2
l , (7)



with k and l being the indices of the upper and lower con-
strained parameter boundaries and with

εk =

{
0, if xlow

k ≤ xlow
c,k ,

xlow
k − xlow

c,k , otherwise
(8)

and

εl =

{
0, if xup

l ≥ xup
c,l ,

xup
l − xup

c,l , otherwise.
(9)

ωk and ωl are weights of the constraints. If there are several
boxes satisfying all constraints, that is, ε = 0, the box with
the largest number of good sample points is chosen. The
extended trimming algorithm is shown in Algorithm 1.

Data: a candidate hyperbox Ωcand and a set
S = {x j ∈Ωcand : f (x1)≥ ·· · ≥ f (xN)} of sample points

Result: hyperbox ⊆Ωcand which includes only good sample points
forall the good sample points {xgood ∈ S : f (xgood)≤ fc} do

forall the bad sample points {xbad ∈ S : f (xbad)> fc} do
for i = 1,2, . . . ,d do

if xbad
i < xgood

i then
count the good sample points x with xbad

i ≥ xi ≥ xlow
i ;

else
count the good sample points x with xbad

i ≤ xi ≤ xup
i ;

end
end
choose the direction i? where the fewest good sample points are
removed;
if xbad

i? < xgood
i? then

move boundary i? to xlow
i? ;

else
move boundary i? to xup

i? ;
end
forall the directions i where a bad sample point is removed do

if xbad
i? < xgood

i then
xlow

i := min j xi, j for all remaining good sample points
x j ;

else
xup

i := max j xi, j for all remaining good sample points
x j ;

end
end
calculate ε2;
remember the hyperbox [xlow,xup]⊆Ωcand with smallest ε2;
if ε2=0 then

remember the hyperbox with most good sample points;
end

end
end

Algorithm 1: Extended trimming algorithm.

4.3 Numerical results for the simple example problem
The extended algorithm is applied to the simple example

problem from Section 2. All three scenarios are computed
with N = 100 designs per Monte Carlo sample. The first
candidate box includes the classical optimum at the lower
tip of the solution space triangle. The exploration phase and
the consolidation phase are run for 20 and 10 iteration steps,
respectively.

Figure 5 shows how the extended algorithm drives the
evolution of the candidate box for scenario (b). The con-
straints are chosen such that only F1 has to be modified,
that is, constraints F low

2 ≤ F low
c,2 = 425 kN and Fup

2 ≥ Fup
c,2 =

475 kN. The first row illustrates the exploration phase: the al-
gorithm enlarges the volume of the candidate box by extend-
ing the box boundaries. It cannot extend the box boundaries
in the direction of F1, as this would violate the constraints.
In the consolidation phase, shown in the second row, bad de-
signs are removed, until the final solution box is obtained
that satisfies the constraints.

The numerical results for all three scenarios are given in
Table 1 and in Figure 6. The deviations between the upper
box boundaries computed numerically Fup

i and the analytical
solutions Fup

0,i is given by ∆Fup
i = Fup

i −Fup
0,i . The relative er-

ror is given by ϕ
up
i = ∆Fup

i /Fup
0,i . The expressions for lower

box boundaries are defined in a similar way. The numerical
approximation and the analytical solution agree within an er-
ror of less than 2%.

5 Crash design for the USNCAP front crash
5.1 Problem description

In the test scenario of a USNCAP front crash, a vehicle
hits a quasi-rigid barrier at the speed of 56 km/h. The vehicle
structure and the restraint systems are to be designed such
that the loads on crash test dummy and the deformation of the
passenger cell stay below critical threshold values. Design
work is done on three levels, the vehicle level, the component
level and the detail level 1:

Design goals on the vehicle level. The primary focus
of structural development in an early design phase lies on
satisfying the following design goals [9, 12, 13]:

• The maximum deceleration of the passenger cell mea-
sured at the bottom of the B-pillar should not exceed the
critical threshold value ac, that is, a≤ ac.

• Structural elements in the front should deform first. The
deformation continues from front to rear. Structural ele-
ments attached to the firewall deform last.

• The deformation of the passenger cell should stay below
a critical threshold value.

Note that these criteria are only sufficient for the preliminary
design. In final tests, the vehicle performance will be evalu-
tated with respect to dummy loads.

Component properties on the component level. The
structural behavior in a USNCAP-type front crash depends
primarily on the distributed vehicle mass and the resistance
force of structural elements against deformation, expressed
as force-deformation characteristics

F = F̂(u), (10)

see [12, 13]. F is a longitudinal force exerted by the struc-
tural component under the relative longitudinal displacement

1This is similar to target cascading [11].



F1

F2

0
0

800

800

F1

F2

0
0

800

800

F1

F2

0
0

800

800

F1

F2

0
0

800

800

F2

0
0

800

800

F1

F2

0
0

800

800

F1

iteration step 1 iteration step 2 iteration step 15

iteration step 21 iteration step 22 iteration step 30

Fig. 5. Evolution of the candidate box in the exploration phase (top row) and consolidation phase (bottom row) for constraints of scenario
(b) ensuring that only F1 needs to be changed, that is, F low

2 ≤ F low
c,2 = 425 kN and Fup

2 ≥ Fup
c,2 = 475 kN.

F1

F2

0
0

800

800

(a)

F1

F2

0
0

800

800

(b)

F1

F2

0
0

800

800

(c)

Fig. 6. Computed solution boxes (a) without constraints, (b) constraints ensuring that only F1 needs to be changed (F low
2 ≤ F low

c,2 =

425 kN, Fup
2 ≥ Fup

c,2 = 475 kN), and (c) constraints ensuring that only F2 needs to be changed (F low
1 ≤ F low

c,1 = 250 kN and Fup
1 ≥

Fup
c,1 = 300 kN).

(a) F1 and F2 to be changed (b) only F1 to be changed (c) only F2 to be changed

F low
2 ≤ F low

c,2 = 425 kN F low
1 ≤ F low

c,1 = 250 kN

Fup
2 ≥ Fup

c,2 = 475 kN Fup
1 ≥ Fup

c,1 = 300 kN

analytical numerical error rel. error analytical numerical error rel. error analytical numerical error rel. error

F0,i in kN Fi in kN ∆Fi in kN ϕi in % F0,i in kN Fi in kN ∆Fi in kN ϕi in % F0,i in kN Fi in kN ∆Fi in kN ϕi in %

F low
1 290.96 290.74 0.22 0.08 381.50 384.30 2.80 0.73 250.00 249.14 0.86 0.34

Fup
1 515.55 516.31 0.76 0.15 425.00 422.47 2.53 0.59 556.50 556.32 0.18 0.03

F low
2 515.55 515.81 0.26 0.05 425.00 422.06 2.94 0.69 556.50 563.67 7.17 1.29

Fup
2 627.84 622.59 5.25 0.84 627.84 623.69 4.15 0.66 627.84 627.48 0.36 0.06

Table 1. Analytical solutions and numerical results for the simple example problem, scenarios (a), (b) and (c).



u = uB−uA, with uA and uB being the x-displacements of the
component boundaries, see Figure 7. Expression (10) is cor-
rect only for loading, that is, when u̇≥ 0. For a fixed vehicle
mass, the maximum deceleration is given by

a = f (F̂1(u1), F̂2(u2), . . . , F̂n(un)) (11)

where F̂k(u) denotes the force-deformation characteristic of
the k-th out of n components. Other quantities from the ve-
hicle level, like an indicator variable of the order of defor-
mation, or the deformation of the passenger cell can be ex-
pressed in a similar way.

Fig. 7. (a) Force-deformation characteristics of a component of the
vehicle structure: exact and discretized. (b) Detail vehicle model. (c)
Simplified model.

Detail level. The force-deformation characteristics de-
pend again on geometrical and material detail parameters p j,
that is

F̂k(u) = F̄k(u; p1, p2, ..., pm), (12)

with j being a parameter index, and m being the number
of detail parameters. Detail parameters may be sheet metal
thicknesses, profile geometries, yield strengths or hardening
curves. They will determine the force-deformation charac-
teristics of each structural member and, thus, also determine
the overall structural behavior.

In classical vehicle design, detail parameters are varied,
until the design goals on the vehicle level are satisfied. In
a new design approach, the component level was introduced
to enable the design of component properties such as force-
deformation characteristics without specifying the underly-
ing detail parameters [13]. This is useful, for example in an
early design phase, when detail parameters are difficult to be
specified or simply unknown. For flexible and robust design,
requirements on component properties are to be identified as
permissible intervals [7]. In a subsequent development step,

detail parameters are then specified such that all component
requirements are satisfied.

In the example considered here, a bad vehicle design
is given, and all detail parameters are known. Rather than
varying detail parameters according to the classical design
approach, however, the relevant component to be modified is
identified by computing appropriate solution spaces on the
component level.

5.2 Crash simulation models
In a detailed Finite Element model, all detail parameters

are specified. For crash simulations, this is typically a model
of the entire vehicle. From this, all quantities on the vehicle
level, such as the vehicle deceleration, and on the component
level, such as force-deformation characteristics, can be com-
puted. Force-deformation characteristics are derived from
section forces F(t) and deformations u(t) for u̇(t) ≥ 0. A
detailed Finite Element model maps the detail level onto the
vehicle and the component level.

By contrast, a simplified model as described in [12,
13], computes the vehicle behavior directly from force-
deformation characteristics, as in expression (11). It maps
the component level onto the vehicle level.

Force-deformation characteristics contain more infor-
mation than necessary. The mechanical behavior of a struc-
tural member that is relevant for a USNCAP-type front crash
can be sufficiently well approximated by 4-10 discrete force
values at specified support points. Therefore, F̂k(u) is dis-
cretized as shown in Figure 7(a). The maximum vehicle de-
celeration is then given by

a = f (F1,F2, . . . ,Fd) (13)

with Fi being the force values at specified support points of
the force-displacement characteristics, and d being the total
number of discrete force values. Expression (13) may be
computed with the simplified crash model.

5.3 Why vehicle crash design is difficult
Improving bad designs is difficult because of nonlinear-

ity. All mappings between the detail, component and ve-
hicle level are typically highly nonlinear. Nonlinearity be-
tween the component and the vehicle level can be observed
in Figure 8. For a bad design with maximum deceleration
a > ac, the force-deformation characteristics of the crash
box and the front rail are modified. When making only
the crash box stronger, a becomes worse. Strengthening
the front rail, improves a, however it remains supercritical.
Combining the modification with worsening effect with the
modification with insufficient effect, produces a good design
with a < ac. The influence of the design parameter ”force-
deformation characteristic of crash box” is changed by mod-
ifying the other parameter ”force-deformation characteristic
of front rail”. This effect will be called parameter interac-
tion.
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Fig. 8. Force-deformation characteristics and their nonlinear influ-
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modifications yielding bad designs each. (4) Combined modification
yielding a good design.

The parameter interaction between the force-
deformation characteristics of the crash box and the
front rail can be explained physically: while deforming,
structural members exert a decelerating force on the vehicle
that reduces the kinetic energy. When all structural members
completed their deformation, the remaining kinetic energy is
absorbed in an abrupt collision of the passenger cell with the
engine block that is already in contact with the barrier wall.
This final collision is associated with a deceleration signal,
that increases with increasing remaining kinetic energy.
One may assume that increasing the force of the crash box
should increase the initial force that decelerates the vehicle,
and therefore reduce the remaining kinetic energy and the
maximum deceleration. However, this is not the case for
variant (2) in Figure 8: the front rail behind the crash is not
strong enough to support the load of the crash box, resulting
in a premature collapse of the front rail. This leads to an
even lower force to decelerate the vehicle in the beginning,
and, consequently, to a higher maximum deceleration. In
variant (4), the front rail is sufficiently strong, the influence
of the parameter ”force-deformation characteristic of crash

box” is reversed, and the system exhibits the desired overall
behavior.

In addition to parameter interaction, other nonlinear
phenomena are present in crash design, such as abrupt
changes of vehicle responses or non-monotonous dependen-
cies on design variables. Nonlinearities make it difficult to
assess the influence of each parameter, and therefore obstruct
the identification of the key parameters and their setting nec-
essary to turn a bad into a good design.

6 Application in crash design
6.1 Identification of a key component

A vehicle structure as shown in Figure 7(b) is consid-
ered. It consists of nine structural members with force-
deformation characteristics shown in Figures 9(a). The
force-deformation characteristics are measured in a detail
model. The performance in the USNCAP front crash is in-
sufficient, because a = a1 > ac. In order to identify the
relevant components and the necessary modifications, so-
lution spaces for the force-deformation characteristics are
computed.

The solution space for a force-deformation character-
istic is represented by an upper and a lower boundary line
in a force-deformation diagram, see solid bold lines in Fig-
ure 9(a). The region bounded by these two lines is called a
corridor. Corridors are approximated by linear interpolation
between two support points.

A simplified crash model provides the mapping (13) for
a total of d = 55 parameters Fi. For each component k, a solu-
tion space Ωk is computed under the constraint, that all force-
deformation characteristics are included, except the one of
component k. This procedure is similar to the one that was
applied in Section 2. Unfortunately, no corridor is obtained
that strictly satisfied the constraints. Ω5 however, see Fig-
ure 9, violates the constraints only to a negligible degree2 for
components 4, 6 and 9. Noting that the force deformation-
characteristic of component 5 lies below the associated cor-
ridor, it can be concluded that

• component 5 is a key component, that is, its force-
deformation characteristic is a key parameter, and

• it needs to be reinforced to lie within its corridor and to
turn the bad into a good design.

6.2 Design improvement
A straightforward reinforcement, for example by in-

creasing the sheet metal thickness, is unfortunately not a
good design measure: the force-deformation characteristic
of component 5 is already at the upper limit for deforma-
tions close to 0. By analyzing the deformation of compo-
nent 5 during the crash, however, an appropriate design mea-
sure can be identified. The detailed finite element simulation

2For component 4, the force-deformation characteristic lies outside the
corridor at very large deformations where the force measurement is assumed
to be inaccurate. For components 6 and 9, the force-deformation character-
istic lies outside the corridor for deformation intervals that are much smaller
than the total deformation.



Fig. 9. (a) Measured force-deformation characteristics of design 1 with a> ac and corridors Ω5. (b) The front rail undeformed and deformed.

Fig. 10. (a) Measured force-deformation characteristics of design 2 with a < ac and corridors Ω5. (b) The reinforced front rail undeformed
and deformed.

shows that at the deformation u? the deformation force drops
below the corridor. This happens exactly when the profile of
component 5 collapses by forming a distinct fold as shown
in Figure 9(b).

The fold forms at a location that does not deform before
the profile collapses. Therefore, a local reinforcement of this

location has no effect on the force-deformation characteristic
for u < u?, and the force-deformation characteristic does not
cross the upper boundary line for deformations close to 0. It
does nevertheless increase the deformation force at u ≈ u?,
as intended.

The corridor provides a target region for the required



force-deformation characteristic. A target region rather than
a target point is necessary, as the component properties
cannot be controlled exactly, that is, force deformation-
characteristics can assume only particular shapes that are not
known in advance. In this sense, the component properties
are uncertain. Wide corridors are necessary for successful
design work under uncertainty.

The reinforcement is realized by increasing the sheet
thickness locally. The resulting deformation and the force-
deformation characteristics are shown in Figure 10. All
force-deformation characteristics lie within their corridors3,
and the maximum deceleration dropped below the critical
value, see Figure 11.
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Fig. 11. Deceleration of the good and bad design.

Note that the force-deformation characteristic of com-
ponent 4 also changed, although this was not intended. The
local reinforcement in component 5 has a stiffening effect
on component 4, because they both share parts of the same
structural member. This may also be regarded as uncertainty.
As the corridor for component 4 is wide enough, there is
enough tolerance for the unintended variation: the force-
deformation characteristic still lies within the corridor, and
the design remains a good design.

The physical explanation for the improvement is simi-
lar to the one in Section 5.3: The reinforcement of the front
rail, that is active at the deformation level u?, decelerates the
vehicle more in the beginning of the crash. The remaining
kinetic energy and, thus, the maximum deceleration become
smaller. If component 5 were reinforced such that the force
is increased for deformation levels close to 0 (which would
result in a force-deformation characteristic outside the corri-
dor), a different component may collapse, causing the initial
deceleration to decrease and the maximum deceleration to
increase.

Note that the local thickness at the reinforcement was
identified as relevant detail parameter by the physical infor-
mation that was extracted from the force-deformation char-
acteristics and the associated target corridors. Identifying
relevant detail parameters by variation instead could be pro-
hibitively expensive, because the local thicknesses of many

3The forces measured in components 5,6,8 and 9 cross the corridor lines
only when unloading, that is, when u̇ < 0.

possible locations would have to be considered.
Using corridors for force-deformation characteristics as

design goals helped identifying a key component, a key pa-
rameter and an appropriate design measure. In the example
considered here, the design measure is small and modifies
accurately the mechanical behavior of the nonlinearly inter-
acting structural members.

7 Conclusion
A method was presented that provides precise informa-

tion on how to turn a bad into a good design. The pro-
posed method is applicable to arbitrary non-linear and high-
dimensional design problems with uncertainty. It is based on
an algorithm that seeks box-shaped solution spaces with a
sufficiently large fraction of good designs. A solution space
provides target intervals for parameters. The target regions
are independent of each other and therefore decoupled. A
solution space provides the information on how parameters
have to be changed in order to reach the design goal. The al-
gorithm was extended so as to optimize solution spaces under
constraints. In order to reduce the number of key parameters
that need to be changed, solution spaces are computed under
the constraint that some parameter values of the bad design
are already included.

An example problem with two input parameters was
considered to validate the accuracy of the algorithm. The
applicability to engineering problems was demonstrated by
considering a front crash design problem. Starting from a
bad design, the corresponding target regions were calculated
and the key component was identified. By appropriate modi-
fication of the structural member, the design was changed to
reach the design goal.
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