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POLARIZATION ESTIMATES FOR ABELIAN
VARIETIES

D. W. MASSER AND G. WÜSTHOLZ

Abstract. In an earlier paper we showed that an abelian variety
over a number field of fixed degree has a polarization whose degree
is bounded by a power of its logarithmic Faltings height, provided
there are only trivial endomorphisms. Here we greatly relax the
endomorphism hypothesis, and we even eliminate it completely
when the dimension is at most seven. Our methods ultimately
go back to transcendence theory, with the asymmetric geometry
of numbers as a new ingredient, together with what we call the
Severi-Néron group, a variant of the Néron-Severi group.

1. Introduction

In this paper we address the following question: is the polarization
of an abelian variety determined by arithmetical data? More precisely,
if A is an abelian variety of fixed dimension defined over a fixed number
field, is there necessarily a polarization on A whose degree is bounded
in terms of the Faltings height of A?

So formulated, the question has the easy answer “yes”. For a funda-
mental finiteness result states that, up to isomorphism, there are only
finitely many such abelian varieties with a bounded height, and then
we can choose a polarization on each of them. However, this argu-
ment fails to give any kind of explicit estimate for the degrees of the
polarizations.

Taking into account the applications of transcendence theory to
abelian varieties in recent years, in particular our papers [?],[?], [?],[?],[?],[?],
one may conjecture that these degrees are bounded by an expression
of the form C max{1, h(A)}π where h(A) is the absolute logarithmic
semistable Faltings height of A (see for example [?] or [?]), π depends
only on the dimension of A, and C depends only on this dimension
together with the degree of the field of definition of A.

The object of the present paper is to establish this conjecture in
almost all the cases of interest to algebraists or arithmetic geometers. It
was already proved as the Corollary (p.6) of [?] when the endomorphism
ring of A is trivial. In general suppose that A is defined over a number
field k, and write EndA for the ring of endomorphisms defined over
the algebraic closure k of k; this is an order in the algebra Q⊗ EndA
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over the rational field Q. If A is simple, this algebra is a division
algebra whose centre is a number field. Our main result can be stated
as follows.

Theorem 1.1. For positive integers n and d there is a constant π
depending only on n and a constant C depending only on n and d with
the following property. Let A be an abelian variety of dimension n
defined over a number field k of degree d. Suppose that A is simple
over k and that Q⊗EndA is commutative or its centre is totally real.
Then A has a polarization over k of degree at most C max{1, h(A)}π.

In fact the above hypotheses on the endomorphism algebra corre-
spond precisely to the types I, II and III in Albert’s famous classifi-
cation, together with type IV in the commutative case. This remark
is already enough to establish the above conjecture for simple abelian
varieties in infinitely many dimensions and all abelian varieties, not
necessarily simple, in small dimensions. For example, we will deduce
the following consequences.

Corollary 1.2. For a positive squarefree integer n and a positive in-
teger d there is a constant π depending only on n and a constant C
depending only on n and d with the following property. Let A be an
abelian variety of dimension n defined over a number field k of degree
d. Suppose that A is simple over k. Then A has a polarization over k
of degree at most C max{1, h(A)}π.

Corollary 1.3. For a positive integer d there is a constant C depending
only on d with the following property. Let A be an abelian variety of
dimension at most 7 defined over a number field k of degree d. Then
A has a polarization over k of degree at most C max{1, h(A)}π, where
π is an absolute constant.

In all of the above results the quantity C max{1, h(A)}π can readily
be replaced by C0 max{d, h(A)}π with C0 independent of d; see the
remarks in [?] (p.23). A more interesting problem is to prove that
A has a polarization over k itself of small degree in the above sense,
but this seems not to follow from our methods. At any rate we may
note that all polarizations of an abelian variety of dimension n defined
over a field k of characteristic zero are automatically defined over an
extension of k of relative degree at most 316n4

; see Lemma 2.3 (p.415)
of [?].

Our original motivation for estimating polarizations was to extend
the isogeny estimates of [?], for polarized abelian varieties, to unpo-
larized abelian varieties simply by providing the latter with explicit
polarizations. In fact we solved this isogeny problem in a completely
different way in our paper [?]. Nevertheless we feel that our conjec-
ture has enough independent interest to justify the present paper. And
similar problems over finite fields have been studied by Howe in [?].
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Actually the proof of our Theorem relies heavily on the methods and
results of [?]; in particular we need discriminant estimates and factor-
ization estimates. This paper [?] is based ultimately on the work of [?],
which involves techniques from the theory of transcendental numbers.
By contrast, the deduction of our present results from those of [?] is
by purely algebraic methods, together with the geometry of numbers.
More precisely, the necessary positive definiteness properties of our po-
larizations are established using tools from the so-called asymmetric
geometry of numbers. For endomorphism algebras of types I, III and
IV it suffices to use a theorem of Chalk, but for type II we have to
develop what seems to be a new generalization to number fields of a
theorem of Blaney. All these results are recorded in section 2.

In section 3 we prove some elementary properties of discriminants
in quaternion algebras and CM-fields, and in section 4 we give some
analogous results for the cross-discriminants introduced in [?]. Only

instead of considering the full set Hom(A, Â) of homomorphisms from

A into its dual Â, we have to restrict to its subset the Néron-Severi
group NS(A), as well as to a certain complement, which for want of
a better name we call the Severi-Néron group SN(A). Also in this
section we record the necessary facts about Albert’s classification and
the representations of the corresponding endomorphism algebras. Some
of this material is borrowed from an article of Shimura [?].

Then in sections 5 and 6 we obtain our purely algebraic estimates for
polarizations on complex abelian varieties; this enables us to postpone
the appeal to [?] until section 7, where we establish our Theorem and
its Corollaries.

Of course our results are not quite complete; in fact to prove the
full conjecture it remains only to treat simple abelian varieties in the
non-commutative case of type IV. We hope to return to this problem
in a later paper. For the moment it is perhaps amusing to speculate
on whether our conjecture holds with π = 0; for example, does every
abelian variety of dimension 2 defined over Q have a polarization whose
degree is bounded by an absolute constant, say 1010?

And finally we should say something about effectivity. As usual the
exponents π in our results are not only effective but also explicitly com-
putable, as already in [?], [?] and [?]. The effectivity of the coefficients
C is known for some time since the work of Bost in [?]. At any rate
the algebraic estimates of our own sections 2, 3, 4, 5 and 6 are all
completely explicit and it is not until section 7 that we appeal to [?].

Some of this work was written up while the first author was visit-
ing Göttingen and Erlangen in 1991 (sic), and he would like to thank
S. Patterson and H. Lange for hospitality. Since then the work has been
mentioned by Bost in his 1994-95 Séminaire Bourbaki talk [?] (p.126),
as well as in [?] and [?] (p.164).
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Recently É. Gaudron and G. Rémond sent us a manuscript [?] in
which they complete our results. They use the general strategy and
methods laid down in our papers [?],[?], [?],[?],[?] and [?], but their
details appear to differ from ours. Thus our work is of independent
value, not least in our use of the asymmetric geometry of numbers.
This topic is relevant to class number problems for quadratic forms
over number fields and in our context throws up some interesting side
questions.

2. Asymmetric geometry of numbers

For a positive integer ` let Ξ be a lattice in the real Euclidean space
R` with determinant d(Ξ). If d1, . . . , d` are positive real numbers with
d1 · · · d` = d(Ξ), Minkowski’s Theorem in the geometry of numbers
(see for example [?] Theorem 3 p.43) provides non-zero (ξ1, . . . , ξ`) in
Ξ with

(2.1) |ξ1| ≤ d1, . . . , |ξ`| ≤ d`.

An asymmetric version of this was established by Chalk; it provides
instead (ξ1, . . . , ξ`) in Ξ with

(2.2) ξ1 > 0, . . . , ξ` > 0, |ξ1 · · · ξ`| ≤ d(Ξ)

(see for example [?] Corollary p.598 for a proof of Chalk’s original
Theorem for grids). Note that it is not possible to localize further as
in (??).

Our first application of these results is as follows. Let K be a to-
tally real number field of degree m, and denote by φ1, . . . , φm the
different embeddings of K into the real field R. For ξ in K write
N(ξ) = ξφ1 · · · ξφm and T (ξ) = ξφ1 + · · · + ξφm for the norm and trace
respectively from K to Q. If O is an order in K we define in the usual
way its discriminant d(O) as the determinant of the matrix with entries
detT (ξi, ξj), (1 ≤ i, j ≤ m), where ξ1, . . . , ξm are elements of any basis
of O over the rational integers Z. Since K is totally real, it is easy to
see (for example as in the proof just below) that d(O) is positive.

Lemma 2.1. For any non-zero σ in K there exists ξ in O such that
σξ is totally positive and |N(ξ)| ≤ d(O)

1
2 .

Proof. Let u1, . . . , um be the signs of σφ1 , . . . , σφm . As ξ runs over O,
the vectors (u1ξ

φ1 , . . . , umξ
φm) describe a lattice Ξ in Rm, and it is

straightforward to check that its determinant d(Ξ) satisfies (d(Ξ))2 =
d(O). The desired result now follows at once from (??). �

Next let n be a positive integer (soon to disappear, so that there is
no danger of confusion with n = dimA in section 1). Let F be a field
(also soon to disappear), and let Q be a quadratic form on F n over F .
This has a discriminant d(Q) in F defined as the determinant of the
matrix with entries Q(ei, ej) (1 ≤ i, j ≤ n), where Q also denotes the
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associated bilinear form, and e1, . . . , en are elements of the standard
basis of F n over F .

Suppose for the moment that K = Q and F = R. If Q is non-
degenerate and not negative definite a theorem of Blaney ([?] Theorem
4 p.471) shows how to find small positive values of Q on Zn. Namely,
there exists (ξ1, . . . , ξn) ∈ Zn such that

0 < Q(ξ1, . . . , ξn) ≤ 2n−1|d(Q)|1/n.

Our purpose in the rest of this section is to obtain generalizations of
this result to arbitrary totally real fields K, with totally positive values
of Q onOn for some orderO of K. For applications it suffices to restrict
ourselves to n ≤ 3 and forms Q defined over K (the latter is not in fact
a genuine restriction). In that case the real conjugates Qφ1 , . . . , Qφm

each have a certain signature, and it seems necessary to assume that
these are all the same. If this common signature is u, we say that Q
has total signature u.

We start with totally positive definite binary forms.

Lemma 2.2. Let Q(x, y) be a binary quadratic form over K with total
signature (++). Then there are ξ, η in O such that q = Q(ξ, η) is
totally positive and

N(q) ≤ 2md(O)|N(d(Q))|
1
2 .

Proof. Completing the square on each of the positive definite conju-
gates of Q, we find real numbers ai, bi, ci such that

(2.3) Qφi(x, y) = ai((x− biy)2 + (ciy)2) (1 ≤ i ≤ m).

In particular

(2.4) d(Qφi) = a2i c
2
i > 0, ai > 0 (1 ≤ i ≤ m),

and we can also suppose ci > 0 (1 ≤ i ≤ m). Now as ξ, η run over O,
the vectors

(ξφ1 − b1ηφ1 , ηφ1 , . . . , ξφm − bmηφm , ηφm)

describe a lattice Ξ in R2m, and it is easy to see that

d(Ξ) = (d(O)
1
2 )2 = d(O).

Define C by

(2.5) C2m = c1 · · · cmd(O);

then it follows from (??) that we can find ξ, η in O, not both zero, with

|ξφi − biηφi | ≤ C, |ηφi| ≤ C/ci (1 ≤ i ≤ m).

So (??) gives

0 < Qφi(ξφi , ηφi) ≤ 2C2ai (1 ≤ i ≤ m).
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Hence q = Q(ξ, η) is totally positive and

N(q) ≤ 2mC2ma1 · · · am = 2md(O)|N(d(Q))|
1
2

by (??) and (??). This completes the proof. �

The analogue for totally indefinite forms seems to lie a little deeper.

Lemma 2.3. Let Q(x, y) be a binary quadratic form over K with total
signature (+−). Then there are ξ, η in O such that q = Q(ξ, η) is
totally positive and

N(q) ≤ 2md(O)|N(d(Q))|
1
2 .

Proof. This time we factorize each indefinite conjugate as

Qφi(x, y) = ai(x− biy)(x− ciy) (1 ≤ i ≤ m),

for real ai, bi, ci; in particular

d(Qφi) = −1

4
a2i (bi − ci)2 < 0 (1 ≤ i ≤ m).

Now as ξ, η run over O, the vectors

(ξφ1 − b1ηφ1 , a1(ξφ1 − c1ηφ1), . . . , ξφm − bmηφm , am(ξφm − cmηφm))

describe a lattice Ξ in R2m with

d(Ξ) = |a1 · · · am||b1 − c1| · · · |bm − cm|d(O).

So Chalk’s Theorem (2.2) applied to Ξ gives us in a similar way the
desired estimate. This completes the proof. �

To extend these results to ternary forms we need a couple of elemen-
tary observations. For an order O in K recall from [?] (p.8) the class
index i(O) = i1(O) which is the smallest positive integer I such that
every O-module of rank 1 in O contains a principal O-module of index
at most I.

Lemma 2.4. Given elements ξ, η in O there are µ, ν in O with

0 < |N(ν)| ≤ i(O)3

such that
νM ⊆ Oµ ⊆M

for M = Oξ +Oη.

Proof. Of course µ plays the role of a highest common factor of ξ and
η. If ξ and η are both zero then the result is trivial with µ = 0, ν = 1.
Otherwise M has rank 1 and so there is µ 6= 0 in M with

(2.6) [M : Oµ] = I ≤ i(O).

Let L be the O-module of all λ in O such that λM ⊆ Oµ. Again there
is ν 6= 0 in L with

(2.7) [L : Oν] = I ′ ≤ i(O).
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Now L = Lξ ∩ Lη, where Lζ is the set of all λ in O such that λζ is in
Oµ. So

(2.8) [O : L] = [O : Lξ][Lξ : Lξ ∩ Lη] ≤ [O : Lξ][O : Lη].

Also for any ζ in M we have

[O : Lζ ] = [Oζ : Oζ ∩ Oµ] ≤ [M : Oµ] = I,

so (??) gives [O : L] ≤ I2. Finally this together with (??) and (??)
leads to

[O : Oν] = [O : L][L : Oν] ≤ I2I ′ ≤ i(O)3,

and since the left-hand side is |N(ν)| (see for example Ex.3 of [?] p.231)
the proof is complete. �

Next we say that a row vector v inO3 isO-primitive if every non-zero
λ in K with λv in O3 satifisfies |N(λ)| ≥ 1.

Lemma 2.5. Suppose that v0 in O3 is O-primitive. Then there are
v1, v2 in O3 such that v0, v1, v2 form a matrix V with

0 < |N(detV )| ≤ i(O)9.

Proof. Let v0 = (ξ0, η0, ζ0). By Lemma ?? there are µ, ν in O with

(2.9) 0 < |N(ν)| ≤ i(O)3

such that

(2.10) νM ⊆ Oµ ⊆M

for M = Oξ0 + Oη0. In particular there exist ξ1, η1 in O with µ =
η1ξ0 − ξ1η0, and we define v1 = (ξ1, η1, 0) in O3. Again by Lemma ??
there are µ′, ν ′ in O with

(2.11) 0 < |N(ν ′)| ≤ i(O)3

such that

(2.12) ν ′M ′ ⊆ Oµ′ ⊆M ′

for M ′ = Oµ + Oζ0. In particular there exist σ, τ in O with µ′ =
σµ+ τζ0. By (??) the numbers ξ2 = −ντξ0/µ, η2 = −ντη0/µ are in O,
and so v2 = (ξ2, η2, σν) is in O3. Now we can quickly check that the
rows v0, v1, v2 form a matrix V with detV = νµ′; and this is non-zero
since µ′ = 0 would imply v0 = 0 contradicting primitivity.

It remains to verify the upper bound for |N(detV )|. But (??)
and (??) show that λv0 is in O3 for λ = νν ′/µ′, so primitivity gives
|N(µ′)| ≤ |N(νν ′)|. Therefore

|N(detV )| ≤ |N(ν2ν ′)| ≤ i(O)9

by (??) and (??); and this completes the proof. �
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If O happens to be a maximal order, a more natural proof of Lemma
?? might be obtained using the projectivity of torsion-free O-modules.
But this does not seem quite straightforward, since our definition of
primitivity does not quite imply that O3/Ov0 is torsion-free. Further
the extension to non-maximal orders appears to involve exponents of
i(O) depending on m = [K : Q].

In practice we shall estimate i(O) by d(O)
1
2 , as in the Class Index

Lemma of [?] (p.8) for e = 1.
At last we can extend the earlier results of this section to ternary

forms.

Lemma 2.6. Let Q(x, y, z) be a ternary quadratic form over K with
total signature (+ − −). Then there are ξ, η, ζ in O such that q =
Q(ξ, η, ζ) is totally positive and

N(q) ≤ 22md(O)5|N(d(Q))|
1
3 .

Proof. We follow closely the method in [?] p.471. Since K is dense in
R⊗K it is easy to see that Q takes totally positive values on K3 and
so also on O3. The norms of these latter values are rational numbers
with bounded denominator and so form a discrete set. Thus we can
find v0 = (ξ0, η0, ζ0) in O3 at which the value q0 = Q(ξ0, η0, ζ0) is
totally positive with minimal norm, say N0 = N(q0). Then v0 must
be O-primitive, otherwise we could find a value with strictly smaller
norm. We express the variables x, y, z in terms of new variables x′, y′, z′

using the matrix V of Lemma ??. So if the new form Q′ is defined by
Q′(x′, y′, z′) = Q(x, y, z) we now have q0 = Q′(1, 0, 0). Completing the
square on q−10 Q′ gives

q−10 Q′(x′, y′, z′) = (x′ + αy′ + βz′)2 +Q1(y
′, z′)

for α, β in K and a binary form Q1 over K. Since q0 is totally positive
and Q′ has total signature (+−−), it follows that Q1 has total signature
(−−). Lemma ?? applied to −Q1 gives η′, ζ ′ in O with q1 = Q1(η

′, ζ ′)
totally negative and

|N(q1)| ≤ 2md(O)|N(d(Q1))|
1
2 .

Now

d(Q1) = q−30 d(Q′), d(Q′) = (detV )2d(Q)

and so the estimate of Lemma ?? and the Class Index Lemma lead to

(2.13) |N(q1)| ≤ 2mN
− 3

2
0 d(O)

11
2 |N(d(Q1))|

1
2 .

Next define a third form over K by

Q′′(x′′, y′′) = q−10 Q′(x′′, η′y′′, ζ ′y′′) = (x′′ + γy′′)2 + q1(y
′′)2

for some γ in K. This has total signature (+−). So Lemma ??
gives ξ′′, η′′ in O with q′′ = Q′′(ξ′′, η′′) totally positive and N(q′′) ≤
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2md(O)|N(d(Q′′))| 12 . Using the estimate (??) for d(Q′′) = q1 we find
that

(2.14) N(q′′) ≤ 23m/2N
−3/4
0 d(O)15/4|N(d(Q1))|

1
4 .

Finally q = Q′(ξ′′, η′η′′, ζ ′η′′) = q0q
′′ is a totally positive value of Q′

on O3 and so a totally positive value of Q on O3. Therefore minimality
implies N0 ≤ N(q), or N(q′′) ≥ 1. Now (??) leads at once to the
required upper bound for N0, and this completes the proof. �

Lemmas ??, ??, and ?? above are all partial generalizations of
Blaney’s Theorem from the rationals to totally real number fields.
There is no difficulty in extending the induction argument, as in [?]
(p.471), to any number of variables, provided one assumes that Q has
a total signature which is not negative definite. But it does not seem
straightforward to prove the analogous results under the weaker and
more natural hypothesis that no conjugate of Q is negative definite.

3. Quaternion algebras and CM-fields

As in the preceding section, let K be a totally real number field
of degree m. Let D be a quaternion algebra over K; that is, a non-
commutative algebra over K of dimension 4 with centre K. For a
finitely generated additive subgroup Γ of D of rank r we define the dis-
criminant d1(Γ) as the determinant of the matrix with entries T1(γiγj)
(1 ≤ i, j ≤ r), where γ1, . . . , γr are elements of any Z-basis for Γ, and
T1 denotes the trace from D to Q obtained for example through left
(or right) regular representations. We also have for all δ in D

(3.1) T1(δ) = 2T (tr δ),

where as before T is the trace from K to Q and now tr is the reduced
trace from D to K; see for example [?] Ex.5 (p.7) and equation (9.7)
(p.116).

There is a canonical involution ρ0 on D defined by

(3.2) ρ0(δ) = (tr δ)− δ
for all δ in D. Its fixed space, consisting of all δ with ρ0(δ) = δ, is just
K; while its anti-fixed space, consisting of all δ with ρ0(δ) = −δ, is a
K-vector space E of dimension 3. So D = K ⊕ E.

The following result specifies the ternary quadratic form to which
Lemma ?? will eventually be applied. Denote the reduced norm from
D to K by

nm δ = δρ0(δ) = ρ0(δ)δ,

and let N as before be the norm from K to Q.

Lemma 3.1. If α, β, γ are elements of E linearly independent over K,
the quadratic form

Q(x, y, z) = −(xα + yβ + zγ)2 = nm(xα + yβ + zγ)
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satisfies

(3.3) N(d(Q)) = (−1)md1(M)d1(O)−3

for any order O in K, where M = Oα⊕Oβ ⊕Oγ.

Proof. If ξ1, . . . , ξm are elements of a Z-basis for O, then for any λ in
K the matrix with entries T1(ξiξjλ) (1 ≤ i, j ≤ m) has determinant
d1(O)N(λ). We can find a K-basis of E consisting of elements α0, β0, γ0
satisfying the standard quaternion relations

α2
0 = ξ, β2

0 = η, γ0 = α0β0 = −β0α0

for ξ, η in K, and now (??) follows after a short calculation with
α0, β0, γ0 in place of α, β, γ; in fact both sides have the value N(ξη)2.

Next let α, β, γ in E be such that M = Oα⊕Oβ⊕Oγ is a submodule
of M0 = Oα0 ⊕Oβ0 ⊕Oγ0, so that α, β, γ are related to α0, β0, γ0 by
means of a non-singular matrix V over O. If we can check that

(3.4) |N(detV )| = [M0 : M ]

then both sides of (??) change by the square of this quantity on re-
placing M0 by M , so (??) follows for α, β, γ.

Now (??) should be in the literature, but we could not find an exact
reference. It can be verified ad hoc by picking a Z-basis of O and
for each λ in K writing Vλ for the matrix in the corresponding right
regular representation; then if V has entries λ, the index [M0 : M ] is the
absolute value of the determinant of the matrix with blocks Vλ. By [?]
Ex.3 (p.7) this determinant is just N(detV ). See also [?] Ex.3 (p.231)
for another approach. Or one can compare the maximal exterior powers
of M and M0; these have the shape P(detV ),P for an O-module P of
rank 1.

Hence (??) is established for any such α, β, γ. Finally the general
case can be reduced to this case simply by multiplying by a suitable
positive integer; and the proof of the present lemma is thereby com-
plete. �

Notice in this lemma that d1(O) is not quite the same as the d(O)
in section 2; in fact

(3.5) d1(O) = 4md(O)

due to the differing traces.
Next let K1 be a CM-field over K; that is, a totally imaginary qua-

dratic extension of K. For a finitely generated additive subgroup Γ of
K1 we define the discriminant d1(Γ) as above using the trace T1 from
K1 to Q. The analogue of (??) is

(3.6) T1(δ) = T (tr δ),

where T is the trace from K to Q and tr is the (reduced) trace from K1

to K. There is a canonical involution ρ0 on K1, which we can identify
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with complex conjugation, and (??) continues to hold. We define as
before E as the anti-fixed space, so that K1 = K ⊕ E.

Lemma 3.2. Let O1 be an order of either D or K1. Then

a) |d1(K ∩ O1)| ≤ 24m|d1(O1)|
b) |d1(E ∩ O1)| ≤ 24m|d1(O1)|.

Proof. Suppose first that O1 is a maximal order. If OK is the ring of
integers of K then OKO1 contains O1 so must be O1. In particular O1

is an OK-order containing OK . So Theorem 10.1 (p.125) of [?] shows
that tr δ is in OK for all δ in O1. In particular tr δ is in O1, and now
the identity 2δ = tr δ + (2δ − tr δ) leads to

2O1 ⊆ (K ∩ O1)⊕ (E ∩ O1) ⊆ O1.

Since the summands are perpendicular with respect to the reduced
trace, and therefore by (??), (??) also with respect to T1, taking dis-
criminants gives

24m|d1(O1)| ≥ |d1(K ∩ O1)||d1(E ∩ O1)| ≥ |d1(O1)|.
Since all these discriminants are non-zero rational integers, (a) and (b)
follow when O1 is maximal.

In general there is a maximal order Om containing O1, and

d1(O1) = [Om : O1]
2d1(Om),

d1(K ∩ O1) = [K ∩ Om : K ∩ O1]
2d1(K ∩ Om).

But the second index above does not exceed the first index, so (a)
follows in general; and (b) is established similarly. This completes the
proof. �

4. Polarizations and representations

Let A be an abelian variety defined over the field C of complex
numbers. Analytically A is isomorphic to the quotient of the tangent
space LieA at the origin by the period group PerA defined as the kernel
of the exponential map from LieA to A.

We write Â for the dual abelian variety of A. Then Lie Â can be
identified with the space of all C-antilinear maps from LieA to C, and

Per Â with the subgroup of all such maps whose imaginary parts are
integer-valued on PerA (see [?] pp.35,73 or [?] p.86). Now a homomor-

phism f from A to Â takes an element z of LieA to an element of Lie Â
which itself takes (antilinearly) an element w of LieA into an element

R(z, w) of C. In this way the group H = Hom(A, Â) of all homomor-

phisms f from A to Â is identified with the group of sesquilinear forms
R = R(z, w) (linear in z and antilinear in w) on LieA × LieA whose

imaginary parts are integer-valued on PerA× PerA. The dual map f̂
(corresponding to R(w, z)) is also in H, and we can identify the Néron-
Severi group N = NS(A) with the subgroup of all such f satisfying
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f̂ = f . These correspond to Hermitian R. We shall also be interested

in the complementary group S = SN(A) of all f with f̂ = −f . For
example, the sum of NS(A) and SN(A) is direct, lying between 2H and
H.

Interchanging A and Â, we obtain in a similar way the groups

H′ = Hom(Â, A), N ′ = NS(Â), S ′ = SN(Â).

For f in H and f ′ in H′ we denote by f ′f the composition in the ring
EndA of endomorphisms of A.

Next let Γ,Γ′ be additive subgroups of H,H′ respectively with the
same rank, say r. We define the cross-discriminant c(Γ′,Γ), as in [?]
(p.15), as the square of the determinant of the matrix with entries
T1(γ

′
iγj) (1 ≤ i, j ≤ r), where γ1, . . . , γr and γ′1, . . . , γ

′
r are elements of

Z-bases of Γ,Γ′ respectively, and T1 is the trace from Q⊗EndA to Q
obtained through regular representations.

From now on (except briefly in section 7) we shall assume that A is
absolutely simple. The next lemma can be regarded as an analogue of
Lemma ??.

Lemma 4.1. Suppose that EndA has Z-rank `. Then we have

a) 1 ≤ c(N ′,N ) ≤ 24`c(H′,H)
b) 1 ≤ c(S ′,S) ≤ 24`c(H′,H).

Proof. Since H contains surjective homomorphisms (for example com-
ing from polarizations as in the discussion below), it is easy to see that
both H and H′ have Z-rank `. Further

2H ⊆ N ⊕ S ⊆ H, 2H′ ⊆ N ′ ⊕ S ′ ⊆ H′,
and taking cross-discriminants gives

(4.1) 24`c(H′,H) ≥ c(N ′⊕S ′,N ⊕S) = c(N ′,N )c(S ′,S) ≥ c(H′,H)

provided we check that N and S ′ (as well as N ′ and S) are perpendicu-
lar with respect to T1. But this trace is proportional (see equation (4.1)
of [?] p.14) to the rational representation trace coming from homology,
which is itself proportional to the real part of the analytic representa-
tion trace Tr (see for example [?] Proposition 2.3 p.10). Now pick basis

elements of LieA and then basis elements of Lie Â dual with respect to
the standard pairing. Then f in N corresponds to a Hermitian matrix
F , and f ′ in S ′ corresponds to an anti-Hermitian matrix F ′. With the
transposes F t, F ′t we have

Tr(F ′F ) = Tr(FF ′) = Tr(F ′tF t) = −Tr(F
′
F )

and so the real part of Tr(F ′F ) is zero. Hence indeed N ,S ′ are perpen-
dicular; and similarly for N ′,S. Now Lemma 5.1(b) of [?] (p.17) and
the non-vanishing of discriminants implies that c(H′,H) 6= 0. Since all
the cross-discriminants in (4.1) are rational integers, the inequalities of
the present lemma follow at once, and this completes the proof. �
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The next result generalizes Lemma 4.2 (p.16) of [?], at least when

B = Â. Note that through composition H and H′ have natural struc-
tures of right and left modules respectively over EndA. We write deg δ
for the degree of δ in EndA when it is an isogeny. As in section 1 let
n be the dimension of A.

Lemma 4.2. Let O in EndA be an order of a division subalgebra of
Q⊗EndA. Suppose that Γ in H is a right O-module of rank 1 and that
Γ′ in H′ is a left O-module of rank 1. Suppose further that c(Γ′,Γ) 6= 0
and f ′f is in O for every f in Γ and f ′ in Γ′. Then there are f in Γ
and f ′ in Γ′ such that f ′f is an isogeny with

deg f ′f ≤ c(Γ′,Γ)n.

Proof. There exists f in Γ with

[Γ : fO] = I ′ ≤ i′(O)

the right class index of O (see [?] p.13). And there exists f ′ in Γ′ with

[Γ′ : Of ′] = I ≤ i(O)

the left class index. The Class Index Lemma of [?] (p.8), together with
equation (3.11) (p.14) there, provides estimates for these class indices
in terms of the discriminant of O, which divides the discriminant d1(O)
defined using the present trace T1 (compare (??) above). We get

(4.2) c(Of ′, fO) = I2I ′
2
c(Γ′,Γ) ≤ d1(O)2c(Γ′,Γ).

On the other hand the left side is the square of the determinant of the
matrix with entries T1(ξiδξj) (1 ≤ i, j ≤ r) for δ = f ′f and elements
ξ1, . . . , ξr of a Z-basis of O. Using the left (or right) regular represen-
tation of δ in O, we find (much as in the proof of Lemma ??) that this
determinant is Nd1(O), where N is the norm of δ from Q ⊗ O to Q.
In particular N 6= 0 so δ is an isogeny. Finally comparison of norms
(see equation (4.2) of [?] p.14) yields

N2n = (deg δ)r ≥ deg δ,

and the present lemma follows from (??) after cancellation. This com-
pletes the proof. �

The ultimate goal of this paper is to obtain information about the
polarizations on A. These may be identified with the subset PolA
of NS(A) corresponding to positive definite Hermitian forms. Recall
that every such polarization f gives rise to its Rosati involution ρ on
Q⊗ EndA by the equation

(4.3) ρ(δ) = f−1δ̂f.

It is well-known (see for example [?] Theorem 1.8 p.120 or [?] Theorem
1 p.192) that ρ is a positive involution in the sense that T1(δρ(δ)) > 0
for all non-zero δ in Q⊗ EndA.
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The existence of ρ provides a quick method for calculating NS(A).
For multiplication on the left by f−1 gives a (non-canonical) identifica-

tion of Q⊗ Hom(A, Â) with Q⊗ EndA; and Q⊗ NS(A) corresponds
to the fixed space of ρ (see [?] Proposition 2.1(a) p.122 or [?] p.190).
Similarly SN(A) corresponds to the anti-fixed space. Further, multipli-

cation on the right by f gives an identification of Q⊗Hom(Â, A) with

Q⊗EndA; and now it is Q⊗NS(Â) and Q⊗ SN(Â) that correspond
to the fixed and anti-fixed spaces respectively of ρ.

Recall that A is absolutely simple. Then D = Q ⊗ EndA is a
division algebra, and we have the following fundamental classification
due to Albert (see for example the summaries in [?], [?], [?] or the
original papers [?], [?], [?]).

Type I: D is a totally real number field.
Type II: D is a totally indefinite quaternion algebra over a to-

tally real number field.
Type III: D is a totally definite quaternion algebra over a totally

real number field.
Type IV: D is a division algebra, of dimension e2 say, over its

centre, which is a CM-field.

For each type the underlying totally real number field will be de-
noted by K, and its degree by m. Let φ1, . . . , φm be the different real
embeddings of K as in section 2. For a field F we denote byMe(F ) the
ring of square matrices of order e over F , and we write U for the sub-

ring ofM2(C) consisting of all

(
x y
−y x

)
. The operation of complex

conjugate transposition defines an involution * onMe(R),Me(C) and
U , which we extend to m-fold products in the obvious way. We need
the following isomorphisms.

Lemma 4.3. Fix f in PolA with Rosati involution ρ. Then the above
real embeddings induce an isomorphism φ = (φ1, . . . , φm) from R ⊗D
to one of the following rings (corresponding to the above types)

(I) Rm =M1(R)m

(II) M2(R)m

(III) Um

(IV) Me(C)m.

Further we have

(4.4) φ(ρ(δ)) = φ(δ)∗

for every δ in R ⊗ D; and for every σ in K, the matrix φi(σ) is the
identity multiplied by σφi (1 ≤ i ≤ m).

Proof. All except the last clause is contained in the discussions in
[?] (pp.133–141), [?] (pp.201,202) or [?] (pp.150–153, p.155). As for
φ1(σ), . . . , φm(σ), they must be in the centres of the appropriate rings
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and therefore multiples of the identity matrix by some scalars. Further
these scalars must have the form σφ

′
1 , . . . , σφ

′
m for φ′1, . . . , φ

′
m chosen

from φ1, . . . , φm. But since φ is surjective, φ′1, . . . , φ
′
m must be all dif-

ferent, and after a permutation we can assume them to be φ1, . . . , φm.
This completes the proof. �

We next extend φ to an analytic representation of R ⊗ D on the
tangent space LieA. Let φ1, . . . , φm be the complex conjugates of the
coordinates of φ. For matrices X inMe(C) with entries xij (1 ≤ i, j ≤
e), and Y inMh(C), define the Kronecker product X ⊗ Y inMeh(C)
as in [?] (p.249) or [?] (p.156) to consist of blocks xijY (1 ≤ i, j ≤ e).
Also for matrices X1, . . . , Xk define diag(X1, . . . , Xk) as in [?] (p.249)
in the obvious way with blocks X1, . . . , Xk “down the main diagonal”.
Finally write I(e) for the identity in Me(C).

Lemma 4.4. Fix f in PolA. Then there is a basis of LieA such that
the corresponding analytic representation Φ sends δ in R⊗D to

Φ(δ) = diag(Φ1(δ), . . . ,Φm(δ))

with

(I) Φi(δ) = φi(δ)⊗ I(n/m) (1 ≤ i ≤ m)
(II) Φi(δ) = φi(δ)⊗ I(n/2m) (1 ≤ i ≤ m)

(III) Φi(δ) = φi(δ)⊗ I(n/2m) (1 ≤ i ≤ m)
(IV) Φi(δ) = diag(φi(δ)⊗ I(ri), φi(δ)⊗ I(si)) (1 ≤ i ≤ m)

for non-negative integers ri, si with ri + si = n/em (1 ≤ i ≤ m).

Proof. See [?] (pp.156,157); of course if ri = 0 or si = 0 then the
corresponding block in case (IV) should be omitted. �

The above result leads to the following for the Riemann form R(z, w)
associated with the polarization f , where now z = (z1, . . . , zn)t, w =
(w1, . . . , wn)t are column vectors of Cn identified with LieA by means
of the above basis.

Lemma 4.5. Fix f in PolA; then with the basis of LieA constructed
above, the Riemann form R(z, w) associated with f has the shape ztFw
for

F = diag(F1, . . . , Fm)

with

(I) Fi of order n/m (1 ≤ i ≤ m)
(II) Fi = I(2)⊗ F ′i for F ′i of order n/2m (1 ≤ i ≤ m)

(III) Fi = I(2)⊗ F ′i for F ′i of order n/2m (1 ≤ i ≤ m)
(IV) Fi = diag(I(e) ⊗ Gi, I(e) ⊗ Hi) for Gi, Hi of orders ri, si re-

spectively (1 ≤ i ≤ m).

Proof. The definition (??) of ρ leads to

R(z,Φ(δ)w) = R(Φ(ρ(δ))z, w)
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for every δ in EndA. With r(z, w) = ztFw it follows from (??) that
FΦ(δ) = Φ(δ)F for every such δ, and so also for every δ in R ⊗ D.
Therefore F commutes with every element of Φ(R⊗D) = Φ(R⊗D).
The required forms are now easy to work out; see for example [?]
(pp.161,162 formulae (32), (33)). This completes the proof. �

5. Preliminary estimates (i)

In this section we establish preliminary estimates for polarizations
on simple abelian varieties with endomorphism algebras of types I, III
and the commutative case e = 1 of type IV. These cases are especially
easy to handle because there is only one positive involution on D =
Q ⊗ EndA (see [?] Theorem 5.3 p.135 and Theorem 5.6 p.139 or [?]
Theorem 2 p.201). For type I it is the identity; for type III it is the
canonical involution of section 3; and for type IV it induces complex
conjugation on the centre, so in the commutative case it is also the
canonical involution considered in section 3. Therefore the totally real
number field K is always the fixed space. For the rest of this section
we assume that A is simple corresponding to one of the above cases.
We write

(5.1) O1 = EndA, O = K ∩ O1.

Lemma 5.1. Suppose that f is in PolA and ζ is totally positive in O.
Then fζ is in PolA.

Proof. Shimura [?] in Proposition 21 (p.185) gives a short elegant proof
of this based on Siegel’s Theorem that ζ is a sum of squares in K. The
following demonstration is more elementary.

By Lemma ?? the polarization f corresponds to the form ztFw with

F = diag(F1, . . . , Fm)

(with respect to a suitable basis). So fζ corresponds to the form ztFζw
with Fζ = Φ(ζ)tF . Now it follows easily from Lemmas ?? and ?? that

Φ(ζ)t = Φ(ζ) = diag(ζφ1I, . . . , ζφmI)

for I = I(n/m), and so

Fζ = diag(ζφ1F1, . . . , ζ
φmFm).

Since f is a polarization, F is positive definite Hermitian. Therefore
F1, . . . , Fm are positive definite Hermitian. Since ζ is totally positive,
it follows that ζφ1F1, . . . , ζ

φmFm are also positive definite Hermitian.
Hence Fζ is positive definite Hermitian, and so fζ is indeed a po-
larization. This completes the proof, which works even for the non-
commutative case of type IV. �

Lemma 5.2. The group N = NS(A) is a right O-module of rank 1;

the group N ′ = NS(Â) is a left O-module of rank 1; and f ′f is in O
for every f in N and f ′ in N ′.
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Proof. The claims for N can be checked by non-canonically identifying
Q⊗H with D = Q⊗O1 as described in section 4; this identification
respects the right D-module structure. For type I every Rosati involu-
tion is the identity; so N = H, S = {0} and everything is clear. For
type III every Rosati involution ρ is canonical, so H, N , S have Z-
ranks 4m,m, 3m respectively. So the asserted O-module structure of
N is obvious because ρ fixes O. For the commutative case of type IV,
every Rosati involution is again canonical, so H, N , S have Z-ranks
2m, m, m respectively, and again ρ fixes O.

The claims about N ′ can be verified similarly by identifying Q⊗H′
with D. Finally let f be in N and f ′ in N ′. It is easy to see that
Q ⊗ N is generated by polarizations. So in proving that δ = f ′f is

in O we may assume that f is a polarization. Now using f̂ = f and

a similar equation for f ′ we find at once that f−1δ̂f = δ, so δ is fixed
by the Rosati involution. So it lies in K and therefore in O as desired.
This completes the proof. �

We can now give our first preliminary estimate for polarizations. We

write deg f for the degree of f in H = Hom(A, Â) when it is an isogeny
(that is, when f 6= 0).

Proposition 5.3. Suppose that A is simple and its endomorphism al-
gebra is either commutative or a totally definite quaternion algebra over
a totally real number field. Then A has a polarization of degree at most
218mnc(H′,H)n|d1(O1)|n.

Proof. From Lemma ??(a) we have c(N ′,N ) 6= 0. Now Lemma ??
above allows us to apply Lemma ?? with Γ = N ,Γ′ = N ′ to find an

isogeny f̃ in N with deg f̃ ≤ c(N ′,N )n. Again using Lemma ??(a)
and the fact that ` ≤ 4m in our situation, we get

(5.2) deg f̃ ≤ 216mnc(H′,H)n.

Now there is certainly some polarization f ; so we deduce f̃ = fσ for
some non-zero σ in K. By Lemma ?? there is a ξ in O with ξσ totally
positive and |N(ξ)| ≤ d(O)

1
2 . Also Lemma ??(a) together with (??)

gives d(O) ≤ 22m|d1(O1)|, and so we get

(5.3) deg ξ = |N(ξ)|2n/m ≤ N(ξ)2n ≤ 22mn|d1(O1)|n.

It is clear from this and (??) that our Proposition is established as

soon as we verify that f̃ ξ is a polarization. But there is a positive
integer s such that ζ = sσξ is in O; and now it follows from Lemma

?? that sf̃ξ = fζ is a polarization. So f̃ ξ is too; and this completes
the proof. �
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6. Preliminary estimates (ii)

We now deal with type II. This is harder because there are now many
positive involutions on D = Q⊗EndA; even worse, the canonical invo-
lution ρ0 is not among them. It is here that we need the considerations
of section 2 on quadratic forms.

But first we recall the isomorphism φ from R⊗D toM2(R)m con-
structed in Lemma ?? from a given polarization on A. We already have
the equation (??) where * denotes complex conjugate transposition ex-
tended to the m-fold product. We also need the following remarks.

Lemma 6.1. For any δ in R⊗D we have

φ(ρ0(δ)) = φ(δ)a,

where (−)a denotes the adjoint involution extended to the m-fold prod-
uct.

Proof. The involution ρ0 on R ⊗ D induces via φ an involution i on
M =M2(R)m. Since δ + ρ0(δ), δρ0(δ) are both fixed by ρ0, they are
in the centre for every δ in R ⊗D. It follows that X + i(X), X i(X)
are both in the centre ofM for every X inM. From this we conclude
with a simple calculation that i(X) = Xa for every X, which is the
assertion of the present lemma. �

For the next remark we recall the decomposition D = K ⊕ E of
section 3.

Lemma 6.2. For any α, β, γ in E linearly independent over K, the
quadratic form

Q(x, y, z) = −(xα + yβ + zγ)2

has total signature (+−−).

Proof. Fix rational numbers x, y, z; then q = Q(x, y, z) = πρ0(π) for
π = xα + yβ + zγ, so calculating φi(q) from both Lemma ?? and ??
using MMa = (detM)I(2) on M2(R) shows that

Qφi(x, y, z) = detφi(π) = det(xφi(α) + yφi(β) + zφi(γ)) (1 ≤ i ≤ m).

Since α, β, γ are linearly independent over K, their images in R ⊗ D
are linearly independent over R ⊗ K and so their images by each φi
in M2(R) are linearly independent over R. Further their traces are
zero, again by Lemma ??. But it is easy to check that the determinant
function evaluated on the zero trace subspace ofM2(R) has signature
(+−−). The assertion of the present lemma is now evident, and this
completes the proof. �

Although ρ0 itself is not positive, it is known that every positive
involution ρ on D is defined by

(6.1) ρ(δ) = ω−1ρ0(δ)ω
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where ω is a non-zero element of D with ω2 in K and totally negative
(see for example [?] Theorem 5.3 p.135 or [?] Theorem 2 p.201 or [?]
Proposition 2 p.153). A simple calculation shows that ω lies in E (not
K). Let Ω ⊆ E be the set of such elements ω. Our first task is to find
a small element of Ω in the order O1. We keep the notation (??).

Lemma 6.3. There exists ω̃ in Ω ∩ O1 with

|N(ω̃)| ≤ 26m|d1(O1)|3.

Proof. Write M1 = E ∩ O1. By Lemma ??(b) we have

(6.2) |d1(M1)| ≤ 24m|d1(O1)|.

NowM1 is anO-module of rank 3, so by the definition of the generalized
class index in [?] (p.8) it contains a free O-module M = Oα⊕Oβ⊕Oγ
with index [M1 : M ] ≤ i3(O). By the Class Index Lemma we have
i3(O) ≤ d(O)3/2, and it follows using (??) and (??) that

|d1(M)| = [M1 : M ]2|d1(M1)| ≤ 2−2md1(O)3|d1(O1)|.

So by Lemma ?? the quadratic form

Q(x, y, z) = −(xα + yβ + zγ)2

satisfies

(6.3) |N(d(Q))| ≤ 2−2m|d1(O1)|.

And by Lemma ?? it has total signature (+ − −). So Lemma ??
provides ξ, η, ζ in O such that q = −ω̃2 is totally positive for ω̃ =
ξα + ηβ + ζγ in O1; and by (??)

N(q) ≤ 24m/3d(O)5|d1(O1)|1/3.

Finally the desired estimate for |N(ω̃)| = N(q)
1
2 , even with exponent

8/3, follows from this together with (??) and Lemma ??(a); the proof
is thereby complete. �

We next give an analogue of Lemma ??; recall from section 3 that
tr is the reduced trace from D to K.

Lemma 6.4. Suppose that f in PolA has Rosati involution ρ given by
(??) for some ω in Ω.

(a) Then f0 = fω−1 is in Q⊗ S, and we have

(6.4) f−10 δ̂f0 = ρ0(δ)

for every δ in D.
(b) Suppose further that ω′ is in Ω. Then tr ε 6= 0 for ε = ω−1ω′.
(c) Suppose in addition that ε is in O1 with tr ε totally positive.

Then fε is in PolA.
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Proof. By the definition (??) of ρ, we have

(6.5) f−1δ̂f = ω−1ρ0(δ)ω

for every δ in D. Put δ = ω; we get f−1ω̂f = −ω, and using f̂ = f we

see easily that the dual of f0 satisfies f̂0 = −f0. So f0 is in Q ⊗ S as
desired. Also the formula (??) is immediate from (??). This establishes
(a).

As for (b), we fix φ = (φ1, . . . , φm) corresponding to f as in Lemma
??, and we start by proving that the matrices

Ei = φi(ε) (1 ≤ i ≤ m)

in M2(R) are symmetric. For (??) gives the relations

φi(ω
−1ρ0(ε)ω) = φi(ε)

t (1 ≤ i ≤ m).

Also ρ0(ε) = ω′ω−1, and we end up with the desired symmetry proper-
ties.

Next by Lemma ?? we have

(detEi)I = φi(ε)φi(ρ0(ε)) = φi(ω
−1ω′ω′ω−1) (1 ≤ i ≤ m)

for I = I(2). But ω2 = σ and ω′2 = σ′ are both totally negative in
K; thus ω−1ω′ω′ω−1 = σ−1σ′ is totally positive in K, and the above
matrix is (σ−1σ′)φiI. We deduce that

(6.6) detEi > 0 (1 ≤ i ≤ m).

If ti is the trace of Ei, then we also have

(6.7) tiI = φi(ε) + φi(ρ0(ε)) = 2φi(τ) = 2τφiI (1 ≤ i ≤ m)

with τ = tr ε the reduced trace. Now τ = 0 would imply ti = 0
(1 ≤ i ≤ m); but the trace of a symmetric matrix in M2(R) cannot
vanish if its determinant is positive as in (??). So indeed τ 6= 0 and
this establishes (b).

Lastly suppose τ is totally positive. We prove that E1, . . . , Em are
positive definite. For (??) now implies that ti > 0 (1 ≤ i ≤ m), and it is
easy to check that a symmetric matrix inM2(R) is positive definite if
(and only if) its determinant and trace are both positive. Thus indeed
E1, . . . , Em are positive definite.

Finally from Lemma ?? we know that the polarization f corresponds
to the form ztFw with

F = diag(F1, . . . , Fm),

where Fi = I ⊗ F ′i for F ′i of order n/2m (1 ≤ i ≤ m). As in the proof
of Lemma ??, the map fε corresponds to ztFεw with Fε = Φ(ε)tF , and
we have

Φ(ε) = diag(Φ1(ε), . . . ,Φm(ε))
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with Φi(ε) = Ei ⊗ I ′ (1 ≤ i ≤ m) for I ′ = I(n/2m). By symmetry we
get

Φi(ε)
tFi = (Ei ⊗ I ′)(I ⊗ F ′i ) = Ei ⊗ F ′i (1 ≤ i ≤ m),

so that

Fε = diag(E1 ⊗ F ′1, . . . , Em ⊗ F ′m).

Since F is positive definite Hermitian, so are F1, . . . , Fm and also
F ′1, . . . , F

′
m. We have just seen that E1, . . . , Em are positive definite

Hermitian (and even symmetric). Now it is well-known (and almost
trivial) that the Kronecker product of two positive definite Hermitian
matrices is also positive definite Hermitian. It follows that Fε is pos-
itive definite Hermitian, and so fε is a polarization. This establishes
(c), and so completes the proof of the present lemma. �

The next result is the analogue of Lemma ??, but with the Néron-
Severi group replaced by the Severi-Néron group.

Lemma 6.5. The group S = SN(A) is a right O-module of rank 1; the

group S ′ = SN(Â) is a left O-module of rank 1; and f ′f is in O for
every f in S and f ′ in S ′.

Proof. The claims for S can be checked by non-canonical identification,
as in the proof of Lemma ??. In fact a Rosati involution of the form
(??) has anti-fixed space Kω, since the equation ρ(δω) = −δω turns
out to be equivalent to ρ0(δ) = δ. So H,N ,S have Z-ranks 4m, 3m,m
respectively. The claims for S ′ can be verified similarly.

Finally let f be in S and f ′ in S ′. In showing that f ′f is in O we
can assume f 6= 0. By Lemma ??(a) applied to some polarization (of

course not the present f) there is some f0 in Q⊗S with f−10 δ̂f0 = ρ0(δ)
for every δ in D. Since f0 = fσ for some σ in K, we deduce also

(6.8) f−1δ̂f = ρ0(δ)

for every δ in D. With δ = f ′f using f̂ = −f and a similar equation
for f ′ leads immediately to f ′f = ρ0(f

′f), so f ′f is in K and therefore
in O as desired. This completes the proof. �

It is perhaps interesting to note that (??) above says that any non-
zero f in S (for type II) determines the canonical involution on D in the
same way as a polarization determines its Rosati involution (compare
(??)).

We now establish our second preliminary estimate for polarizations.

Proposition 6.6. Suppose that A is simple and its endomorphism al-
gebra is a totally indefinite quaternion algebra over a totally real number
field. Then A has a polarization of degree at most

230mnc(H′,H)n|d1(O1)|7n.
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Proof. From Lemma ??(b) we have c(S ′,S) 6= 0. Now Lemma ??
allows us to apply Lemma ?? with Γ = S, Γ′ = S ′ to find an isogeny

f̃ in S with deg f̃ ≤ c(S ′,S)n. Again using Lemma ??(b) and ` = 4m,
we get

(6.9) deg f̃ ≤ 216mnc(H′,H)n.

Next by Lemma ?? there is ω̃ in Ω ∩ O1 with |N(ω̃)| ≤ 26m|d1(O1)|3,
and therefore

(6.10) deg ω̃ = |N(ω̃)|2n/m ≤ |N(ω̃)|2n ≤ 212mn|d1(O1)|6n.

Now there is certainly some polarization f ; and the Rosati involution
for f has the form (??) for some ω in Ω. By Lemma ??(a), f0 = fω−1

lies in Q ⊗ S, and therefore f̃ = f0σ for some non-zero σ in K. By
Lemma ??(b), τ = tr(ω−1ω̃) is non-zero and so we can use Lemma ??

to find ξ in O such that στξ is totally positive and |N(ξ)| ≤ d(O)
1
2 .

Exactly as in (??) above we find

deg ξ ≤ 22mn|d1(O1)|n.

Now it is clear from this and (??), (??) that the Proposition is estab-

lished as soon as we verify that f̃ ω̃ξ is a polarization. But there is a
positive integer s such that ε = ω−1ω′ is in O1 for ω′ = s(ω̃σξ), and
by construction tr ε = s(στξ) is totally positive. So from Lemma ??(c)

we see that fε = s(f̃ ω̃ξ) is a polarization. So f̃ ω̃ξ is too; and this
completes the proof. �

7. Conclusion

We prove the Theorem first. Thus let A be a simple abelian variety of
dimension n whose endomorphism algebra is commutative or its centre
is totally real of degree m. Then we are in the situation of section 5 or
6 and the appropriate Proposition shows that A has a polarization of
degree at most

(7.1) 230mnc(H′,H)n|d1(O1)|7n,

where H = Hom(A, Â), H′ = Hom(Â, A) and O1 = EndA.
Now suppose that A is defined over a number field of degree d. We

use positive constants C1, C2, . . . depending only on n and d, and we
estimate the quantities in (??) in terms of h = max{1, h(A)} using
Lemma ?? of [?] (p.19); this says that

max{c(H′,H), |d1(O1)|} ≤ C1h
λ

where λ = λ(8n) for a certain monotonically increasing function. The
inequality of our Theorem follows immediately, with exponent 8nλ(8n).

To prove the first Corollary, we observe that if A is simple of square-
free dimension n then its endomorphism algebra D is necessarily of the
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form considered in the Theorem. For we only have to rule out the non-
commutative case of type IV. In this case D has dimension e2 ≥ 4 over
its centre, which is a CM-field of degree 2m. Now it is well-known that
the Q-dimension 2me2 of D must divide 2n (see [?] Proposition 5.7
p.141 or [?] p.182). This is here impossible and so the first Corollary
is proved.

Similarly, as preparation for the proof of the second Corollary, we
note that if A is simple of dimension n ≤ 7 then D is also as in the
Theorem. Here the only possibility is e2 = 4 and then m = 1, n = 4.

Now it is a fact that such a case is impossible for simple A, but
we could not find a completely satisfactory explicit reference in the
literature. Without using this fact, the second Corollary would follow
only for dimension n at most 3. So we feel obliged to add some remarks
about the impossible case.

Everything can be found in Albert’s paper [?], but the reader may
well appreciate a more modern exposition. There are two subcases
characterized by r1s1 = 0 and r1s1 6= 0. The first of these is covered by
Theorem 3 (p.13) of [?]. A modern treatment (which also implies that
A is isogenous to the fourth power of a CM elliptic curve) is given in
Proposition 14 (p.176) of Shimura [?]. See also Exercise 3 (p.286) of
[?].

Next if r1s1 6= 0 then r1 = s1 = 1 by virtue of r1 + s1 = 2. So this
subcase is covered by Theorem 20 (p.391) of [?] and also Proposition
19 (p.184) of [?]. However Shimura’s conclusion that A is isogenous to
the square of an abelian surface (of endomorphism type II with m = 1)
is valid only for what he calls “generic” A; his arguments are definitely
moduli-space-theoretic in nature. Our own A is defined over a number
field and so unlikely to be generic; on the other hand it is known that
specialization only increases the endomorphism ring. Now the generic
ring already has rank 16 over Z, whereas the maximum rank for simple
A of dimension 4 is only 8 (see above). A general result independent
of such considerations is given in Exercise 5 (p.286) of [?].

This last subcase r1 = s1 = 1 can also be treated using only a very
elementary specialization argument, paying due attention to the dis-
crepancy between Shimura’s analytic concept of generic and the more
usual algebraic concept. We omit the details.

We can now prove the second Corollary. Suppose first that A is an
abelian variety of dimension n, not necessarily simple, defined over a
number field k of degree d. By Theorem I of [?] (p.5) there are simple
abelian subvarieties A1, . . . , Ar of A, simple over the algebraic closure
k, together with an isogeny g from A to A′ = A1 × · · · × Ar of degree

(7.2) deg g ≤ C2h
κ

for κ = κ(n) depending only on n. Also, as in [?] (p.6), A1, . . . , Ar are
necessarily defined over an extension of k of relative degree at most
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C3. Assume that the endomorphism algebras of A1, . . . , Ar are all of
the type considered in our Theorem. As we have observed, this is
automatically true if n ≤ 7. Then Ai has a polarization fi of degree at
most C4 max{1, h(Ai)}8niλ where λ is as above and ni is the dimension
of Ai (1 ≤ i ≤ r). As in [?] (p.6) we have h(A) ≤ C5h (1 ≤ i ≤ r), and
so

deg fi ≤ C6h
8niλ (1 ≤ i ≤ r).

Therefore A′ =
∏
Ai has a polarization f with

(7.3) deg f =
∏

(deg fi) ≤ C7h
8nλ.

Finally the “pullback” ĝfg is a polarization on A whose degree is
(deg g)2(deg f). So by (??) and (??) this completes the proof of the
second Corollary, with exponent 8nλ(8n) + 2κ(n).
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