Relative Manin-Mumford for Abelian Varieties

D. W. Masser

Institute of Mathematics
Preprint No. 2014-15
University of Basel
November 2014
CH - 4051 Basel
Switzerland

Relative Manin-Mumford for abelian varieties

D. Masser

2010 MSC codes. 11G10, 14K15, 14K20, 11G50, 34M99.

Abstract

With an eye or two towards applications to Pell's equation and to Davenport's work on integration of algebraic functions, Umberto Zannier and I have recently characterised torsion points on a fixed algebraic curve in a fixed abelian scheme of dimension bigger than one (when all is defined over the algebraic numbers): there are at most finitely many points provided the natural obstacles are absent. I sketch the proof as well as the applications.

A very simple problem of Manin-Mumford type is: find all roots of unity λ, μ with $\lambda+\mu=1$. Here the solution is easy: we have $|\lambda|=|1-\lambda|=1$ and so in the complex plane λ lies on the intersection of two circles; in fact λ must be one of the two primitive sixth roots of unity (the picture doesn't work too well in positive characteristic, and indeed any non-zero element of any finite field is already a root of unity, so from now on we stick to zero characteristic). This result has something to do with the multiplicative group \mathbf{G}_{m}, which can be regarded as \mathbf{C}^{*}. Actually with $\mathbf{G}_{\mathrm{m}}^{2}$ and the "line" inside it parametrized by $P=(\lambda, 1-\lambda)$: we ask just that P is torsion.

Now it is easy to generalize, at least the problem, to other algebraic varieties in other commutative algebraic groups.

For example let E be the elliptic curve defined by $y^{2}=x(x-1)(x-4)$. Asking for all complex λ such that the points

$$
\begin{equation*}
(2 \lambda, \sqrt{2 \lambda(2 \lambda-1)(2 \lambda-4)}), \quad(3 \lambda, \sqrt{3 \lambda(3 \lambda-1)(3 \lambda-4)}) \tag{1}
\end{equation*}
$$

are both torsion amounts to asking for torsion points on a certain curve in the surface E^{2}. But here the solution is much more difficult (and it is not clear to me that one can find all λ explicitly as above).

It was Hindry $[\mathrm{H}]$ who solved the general problem with any algebraic variety in any commutative algebraic group G. The outcome for a curve in G is that it contains at most finitely many torsion points unless one of its components is a connected one-dimensional "torsion coset"; that is, a translate $P_{0}+H$ of an algebraic subgroup H of G by a torsion point P_{0}. This H contains infinitely many torsion points and so $P_{0}+H$ also.

Thus for $G=\mathbf{G}_{\mathrm{m}}^{2}$ the analogue for $\lambda \mu=1$ of the problem above will not lead to finiteness, as the curve is such an H. Similarly $\lambda \mu=-1$ is $P_{0}+H$ for $P_{0}=(1,-1)$ with $2 P_{0}=0$ (written additively).

More generally G can be $\mathbf{G}_{\mathrm{m}}^{n}, E^{n}$ as in Habegger's talks in this volume, or an abelian variety A as in Orr's article, or products of these, or "twisted products" sitting inside an exact sequence

$$
\begin{equation*}
0 \rightarrow T \rightarrow G \rightarrow A \rightarrow 0 \tag{2}
\end{equation*}
$$

where T is a power of \mathbf{G}_{m} or even a product $\mathbf{G}_{\mathrm{a}}^{r} \times \mathbf{G}_{\mathrm{m}}^{s}$ for the additive group $\mathbf{G}_{\mathrm{a}}=\mathbf{C}$. Here the twisting can be quite complicated and G can end up very far from just $T \times A$. It is classical that every commutative algebraic group over \mathbf{C} has this form. We will see how several types turn up in applications.

The applications involve most naturally the "relative case", where G itself is allowed to vary in a family. Most of the current results allow only a single parameter here, and we already have parameters in the algebraic variety, so this had better stay a curve, essentially with a parameter λ, and G had better depend on no more than λ. An example like (1) involves the points

$$
\begin{equation*}
(2, \sqrt{4-2 \lambda}), \quad(3, \sqrt{18-6 \lambda}) \tag{3}
\end{equation*}
$$

now on the elliptic curve E_{λ} defined by $y^{2}=x(x-1)(x-\lambda)$; that is the famous Legendre family. Again we go to E_{λ}^{2}, where the square is the "fibre square" defined by the equations

$$
y_{1}^{2}=x_{1}\left(x_{1}-1\right)\left(x_{1}-\lambda\right), \quad y_{2}^{2}=x_{2}\left(x_{2}-1\right)\left(x_{2}-\lambda\right)
$$

with λ in common, and we get a curve defined by $x_{1}=2, x_{2}=3$. Then by [MZ1] there are at most finitely complex values of λ (now not 0,1 so that we have a genuine elliptic curve) such that both points in (3) are torsion. Here their effective determination may be a difficult problem in practice and even in principle.

In various works Umberto Zannier and I have treated any curve in any parametrized abelian variety A_{λ} of "relative dimension" at least two, sometimes with the proviso that everything is defined over the field $\overline{\mathbf{Q}}$ of all algebraic numbers. We get finiteness with
a similar condition about torsion cosets, now interpreted schemewise or more intuitively "identically in λ ". For example in E_{λ}^{2} above these are defined essentially by the vanishing of non-trivial integral linear combinations $n_{1}\left(x_{1}, y_{1}\right)+n_{2}\left(x_{2}, y_{2}\right)$. It is not difficult to show that this is impossible for (3). On the other hand

$$
2(0,0)=2(1,0)=2(\lambda, 0)=4(\sqrt{\lambda}, i(\lambda-\sqrt{\lambda}))=0
$$

so it is not quite easy.
A start has been made on more general G_{λ}. First with Bertrand and Pillay we have considered

$$
\begin{equation*}
1 \rightarrow \mathbf{G}_{\mathrm{m}} \rightarrow G_{\lambda} \rightarrow E_{\lambda} \rightarrow 0 \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
1 \rightarrow \mathbf{G}_{\mathrm{m}} \rightarrow G_{\lambda} \rightarrow E \rightarrow 0 \tag{5}
\end{equation*}
$$

with E not depending on λ. Bertrand $[\mathrm{Be}]$ had already given a surprising counterexample in (5): in rather special situations it is possible to construct what he calls a "Ribet curve" having infinitely many torsion points, even though it is not a torsion coset. We then checked in [BMPZ] that this happens only for Ribet curves.

And Harry Schmidt in Basle [Sc] has done

$$
\begin{equation*}
0 \rightarrow \mathbf{G}_{\mathrm{a}} \rightarrow G_{\lambda} \rightarrow E_{\lambda} \rightarrow 0 \tag{6}
\end{equation*}
$$

where it is reassuring to find that there are no counterexamples.
We give a short proof sketch of the result for (3). As in Habegger's talks, it hinges on the analytic representation of an elliptic curve as a quotient of \mathbf{C} by a lattice, as in the general strategy of Zannier expounded in [PZ]. For E_{λ} this lattice Ω_{λ} depends on λ, and in fact one can take a basis of periods

$$
\Omega_{\lambda}=\mathbf{Z} f_{\lambda}+\mathbf{Z} g_{\lambda}
$$

where f_{λ} is hypergeometric $\pi F\left(\frac{1}{2}, \frac{1}{2}, 1 ; \lambda\right)$ and $g_{\lambda}=i f_{1-\lambda}$. The points (3) correspond in \mathbf{C} to "elliptic logarithms" u_{λ}, v_{λ}, say; and since $\mathbf{C}=\mathbf{R} f_{\lambda}+\mathbf{R} g_{\lambda}$ there are real functions $p_{\lambda}, q_{\lambda}, r_{\lambda}, s_{\lambda}$ with

$$
u_{\lambda}=p_{\lambda} f_{\lambda}+q_{\lambda} g_{\lambda}, \quad v_{\lambda}=r_{\lambda} f_{\lambda}+s_{\lambda} g_{\lambda}
$$

As λ moves, the locus of $z_{\lambda}=\left(p_{\lambda}, q_{\lambda}, r_{\lambda}, s_{\lambda}\right)$ has real dimension two in \mathbf{R}^{4} and is in fact a (sub-)analytic surface Z. The torsion in \mathbf{C} is $\mathbf{Q} f_{\lambda}+\mathbf{Q} g_{\lambda}$, and so our particular λ gives a
point of $Z \cap \mathbf{Q}^{4}$. It is even in $Z \cap \frac{1}{N} \mathbf{Z}^{4}$ if the torsion order divides N. Such points cannot be very numerous: in Wilkie's talks we saw that the cardinality

$$
\left|Z^{\text {trans }} \cap \frac{1}{N} \mathbf{Z}^{4} \cap K\right| \leq c(\epsilon, Z, K) N^{\epsilon}
$$

for a certain subset $Z^{\text {trans }}$ of Z and any compact K (maybe this could be eliminated using o-minimality) and any $\epsilon>0$. See also Pila [Pil] and Pila-Wilkie [PW]. It may be very difficult to write down $c(\epsilon, Z, K)$ in an effective way.

Here it is possible to show that $Z^{\text {trans }}=Z$; this is a concealed algebraic independence result as in Pila's talks, for which the hard (Hodge-theoretical) work was done by André [An].

We deal with K using bounded height: more later. We get at most $c(\epsilon) N^{\epsilon}$ points z_{λ}. An easy argument with a faint flavour of zero-estimates of the type used in transcendence theory leads to at most $c(\epsilon) N^{\epsilon}$ values λ. But right now we don't know any upper bound for N.

In fact it is easy to see that these values λ all lie in $\overline{\mathbf{Q}}$; further any given λ yields $D=[\mathbf{Q}(\lambda): \mathbf{Q}]$ in all by conjugation λ^{σ} (compare also Habegger's talks). We deduce

$$
\begin{equation*}
D \leq c(\epsilon) N^{\epsilon} \tag{7}
\end{equation*}
$$

But there are also lower bounds for D. If we go back to the original problem of $\lambda, 1-\lambda$, now with say λ of exact order N_{1} then of course $D=\phi\left(N_{1}\right)$ for the Euler function, and this is classically known to be at least $c_{1}(\epsilon) N_{1}^{1-\epsilon}$ (now all constants are assumed positive). For our problem the analogue is that if $(2, \sqrt{4-2 \lambda})$ in (3) has exact order N_{1} then a famous Theorem of Serre [Se1] implies even

$$
\begin{equation*}
D \geq C_{1} N_{1}^{2} \tag{8}
\end{equation*}
$$

(which is classical in the case of complex multiplication); but here the elliptic curve depends on λ and therefore so does C_{1}. Furthermore it is not so easy to calculate this dependence. The work [MW2] (based on transcendence among other things) applies only if N_{1} is prime, an assumption we cannot afford. It was extended to arbitrary N_{1} by Zywina [Zy], but only for an elliptic curve defined over \mathbf{Q}, which we also cannot assume here. Very recently Lombardo [L] has extended the field of definition to $\overline{\mathbf{Q}}$; in a first version the dependence on D was not quite good enough for application here, but he has since fixed this. There is also a dependence on the absolute height $h(\lambda)$ of λ. Fortunately a Theorem of Silverman $[\mathrm{Si}]$
implies that this height is bounded above by an absolute constant. Combining everything leads to $D \geq c N_{1}^{\delta}$ now with c absolute. Here δ is less than 10^{-10}.

For effectivity purposes it will probably be very convenient to have a bigger δ. This arises from a more direct application of the transcendence methods, starting with an exponent smaller than 2 in (8). Then the very precise version [Davi2] due to David yields $D \geq c N_{1}^{1 / 2}$.

Similarly $D \geq c N_{2}^{1 / 2}$ for the exact order N_{2} of (3, $\sqrt{18-6 \lambda}$) in (3). Taking N now as the exact order, we have $N=\operatorname{lcm}\left(N_{1}, N_{2}\right) \leq N_{1} N_{2}$, and it follows that $D \geq c N^{1 / 4}$. Comparing this with (7), we see that it suffices to choose $\epsilon=\frac{1}{5}$ to get an absolute bound for $D=[\mathbf{Q}(\lambda): \mathbf{Q}]$. Combined with the absolute bound on $h(\lambda)$, this gives by a well-known result of Northcott (see below) the required finiteness.

As height bounds were not much mentioned in the other talks, we sketch here a proof that

$$
h(\lambda) \leq 6
$$

for the absolute height

$$
\begin{equation*}
h(\lambda)=\frac{1}{D} \log \left(\left|a_{0}\right| \prod_{\sigma} \max \left\{1,\left|\lambda^{\sigma}\right|\right\}\right) \tag{9}
\end{equation*}
$$

where $a_{0} \lambda^{D}+\cdots=0$ is the minimal equation for λ over \mathbf{Z}. All we use is $N_{1} P_{1}=0$ for $P_{1}=(2, \sqrt{4-2 \lambda})$, where the value of $N_{1} \geq 1$ is now irrelevant.

For any algebraic λ and $P=(x, y)$ on E_{λ} with algebraic x, y we can reasonably define $h(P)=h(x)$ (but in Habegger's talks it was $h(x) / 2$), as y is determined by x and λ. For example $h\left(P_{1}\right)=\log 2$. The Néron-Tate height $\hat{h}(P)$ is defined for example by

$$
\hat{h}(P)=\lim _{k \rightarrow \infty} \frac{h\left(2^{k} P\right)}{4^{k}},
$$

and $|\hat{h}(P)-h(P)|$ is bounded above independently of P. Explicit bounds for Weierstrass elliptic curves are practically classical, but I calculated for Legendre

$$
\begin{equation*}
|\hat{h}(P)-h(P)| \leq \frac{5}{3} h(\lambda)+c \tag{10}
\end{equation*}
$$

with explicit c absolute.
Further $\hat{h}(P)=0$ if and only if P is torsion.

We look at $4 P_{1}$ on E_{λ}. With the help of classical duplication formulae we find

$$
4 P_{1}=\left(\frac{A(\lambda)}{B(\lambda)}, *\right)
$$

with A, B in $\mathbf{Z}[t]$ of degrees 8 and 7 respectively. In fact

$$
\begin{gathered}
A=t^{8}-160 t^{7}+7104 t^{6}-57344 t^{5}+206336 t^{4}-401408 t^{3}+442368 t^{2}-262144 t+65536 \\
B_{4}=-288 t^{7}+3648 t^{6}-17408 t^{5}+38912 t^{4}-40960 t^{3}+16384 t^{2} .
\end{gathered}
$$

Now $h\left(\lambda^{8}\right)=8 h(\lambda)$ (not transparent from (9) by the way) and similarly one can show, after a bit of effort with resultants, that

$$
h\left(4 P_{1}\right) \geq 8 h(\lambda)-c^{\prime}
$$

with c^{\prime} absolute.
On the other hand (10) gives

$$
h\left(4 P_{1}\right) \leq \hat{h}\left(4 P_{1}\right)+\frac{5}{3} h(\lambda)+c=\frac{5}{3} h(\lambda)+c
$$

so

$$
h(\lambda) \leq \frac{c+c^{\prime}}{19 / 3}<6
$$

with some extra computation.
Here the Northcott result just mentioned becomes clear: if $h(\lambda)$ and D are both bounded above, then so are $\left|a_{0}\right|$ and the $\left|\lambda^{\sigma}\right|$ in (9), and then so are the absolute values of the coefficients in the minimal polynomial $a_{0} \prod_{\sigma}\left(t-\lambda^{\sigma}\right)$.

This completes the sketch for (3) and E_{λ}^{2}. The general curve in E_{λ}^{2} was treated in [MZ2], and more general products like $E_{\lambda} \times E_{-\lambda}$ in [MZ3]. For A_{λ} as in [MZ4] and [MZ5] there are several extra technicalities. The results of André and Silverman apply also to the abelian situation. But despite the enormous advances by Serre in [Se2], still the extensions of [Se1] seem to be less clear-cut, even for powers of a fixed prime, let alone effective. But once more a transcendence approach succeeds, and we use David's result in [Davi1] pre-dating [Davi2]. In fact this result seems to require that the value λ is such that A_{λ} is simple. At first sight this looks like a problem. At second sight one suspects that such λ are probably rare, possibly controlled by conjectures of André-Oort-Pink-Zilber type (see [Pin] and [Zi] for example). At third sight one realizes that such conjectures
are not yet proved. But finally by going back into the proof in [Davi1] to winkle out the "obstruction subgroup" in the zero-estimate, one sees that some easy tricks from the geometry of numbers (as in [MW1] for example) suffice. One ends up with $D \geq c N^{\delta}$ with a ridiculously small exponent δ (depending on the dimension of A_{λ}). One could also use [MW3] to factorize the non-simple A_{λ}, but then the exponent would be even smaller. Probably recent work of Gaudron and Rémond [GR] would give more reasonable values.

Now for the applications of these results, denoted by (I) and (II) below.
(I) All know that Pell's equation

$$
x^{2}-d y^{2}=1, \quad y \neq 0
$$

is solvable over \mathbf{Z} provided $d>0$ in \mathbf{Z} is not a square. Moving to the polynomial ring $\mathbf{C}[t]$, by now a knee-jerk reaction, especially in view of "abcology", we consider

$$
\begin{equation*}
X^{2}-D Y^{2}=1, \quad Y \neq 0 \tag{11}
\end{equation*}
$$

with D in $\mathbf{C}[t]$ not a square, surely easier. But in fact it is much more difficult to describe the set of D for which there is solvability over $\mathbf{C}[t]$. One can easily see that the degree m of D must be even. Now we proceed systematically.
$\underline{m=2}$: there is always solvability. Thus for $D=a t^{2}+b t+c$ we can take

$$
X=\frac{2 a t+b}{\sqrt{b^{2}-4 a c}}, \quad Y=\frac{2 \sqrt{a}}{\sqrt{b^{2}-4 a c}} .
$$

$\underline{m=4}$: there is not always solvability. For example not for $D=t^{4}+t+1$. And in the family $D=t^{4}+t+\lambda$ we have solvability exactly when λ lies in a certain countable subset of \mathbf{C}. In fact precisely when the point $(0,1)$ is torsion on $y^{2}=x^{3}-4 \lambda x+1$. This is essentially classical (Abel [Ab], Chebychev [C1],[C2]). In fact the set is infinite (which is not classical - for several proofs see [Za] pages 92,93 for example), as one might guess from its element (with its six conjugates)

$$
\lambda=\frac{\sqrt[3]{2 \sqrt{2}-2}}{2}
$$

where

$$
X=\frac{\left(4-32 \lambda^{3}\right) t^{5}-\left(4 \lambda-16 \lambda^{4}\right) t^{4}+4 \lambda^{2} t^{3}+\left(3-28 \lambda^{3}\right) t^{2}-8 \lambda^{4} t+8 \lambda^{5}}{32 \lambda^{8}},
$$

$$
Y=\frac{\left(4-32 \lambda^{3}\right) t^{3}-\left(4 \lambda-16 \lambda^{4}\right) t^{2}+4 \lambda^{2} t+\left(1-12 \lambda^{3}\right)}{32 \lambda^{8}}
$$

$\underline{m=6}$: there is rarely solvability. For example there are only finitely many λ in \mathbf{C} for which solvability holds for $D=t^{6}+t+\lambda$. This is proved in [MZ4] using the general result on A_{λ} described above. In fact here A_{λ} is the Jacobian of the hyperelliptic curve $s^{2}=t^{6}+t+\lambda$ of genus 2 , or better a complete non-singular model

$$
s^{2}=t_{3}^{2}+t_{0} t_{1}+\lambda t_{0}^{2}, \quad t_{0} t_{2}=t_{1}^{2}, \quad t_{0} t_{3}=t_{1} t_{2}
$$

The curve inside A_{λ} is the locus of the divisor $\Delta_{\lambda}=\infty_{\lambda}^{+}-\infty_{\lambda}^{-}$as λ varies, where $\infty_{\lambda}^{ \pm}$are the two places at infinity. When (11) holds we write it as $f_{\lambda}^{+} f_{\lambda}^{-}=1$ with the functions $f_{\lambda}^{ \pm}=X \pm s Y$ to see that their divisors are multiples of Δ_{λ} thus giving a torsion point.

There are actually some λ; for example $\lambda=0$ with

$$
X=2 t^{5}+1, \quad Y=2 t^{2}
$$

$\underline{m \geq 8}$: even rarer. For example with the family $D=d_{0}(\lambda) t^{m}+\cdots+d_{m}(\lambda)$ in $\overline{\mathbf{Q}}[\lambda][t]$, say for safety identically squarefree, there is solvability for infinitely many λ in $\overline{\mathbf{Q}}$ only if the analogous Jacobian, now an abelian variety of dimension $\frac{m-2}{2} \geq 3$, contains an elliptic curve. This also follows from the A_{λ} result in [MZ5].

Incidentally, if we want to go beyond squarefree, then we can use the result of [BMPZ] on multiplicative extensions (4). Thus for $D=t^{2}\left(t^{4}+t+\lambda\right)$ we get at most a finite set, despite the infinite set for $t^{4}+t+\lambda$. And also for $D=t^{3}\left(t^{3}+t+\lambda\right)$ using the additive extensions (6).
(II) This concerns the old problem of "integrating in elementary terms" (see for example the article $[\mathrm{R}]$ by Risch). By the way, the integration may be elementary but it need not be easy (just as for some proofs), as a wonderful example

$$
\begin{equation*}
\int \frac{\sqrt{1+t^{4}}}{1-t^{4}} d t=-\frac{1}{4} \sqrt{2} \log \left(\frac{\sqrt{2} t-\sqrt{1+t^{4}}}{1-t^{2}}\right)-\frac{i}{4} \sqrt{2} \log \left(\frac{i \sqrt{2} t+\sqrt{1+t^{4}}}{1+t^{2}}\right) \tag{12}
\end{equation*}
$$

due to Euler shows. Not only can my Maple (version 9) not do the integration on the left-hand side, but it cannot even check the result by differentiating the right-hand side. Actually Euler's version was

$$
\frac{1}{4} \sqrt{2} \log \left(\frac{\sqrt{2} t+\sqrt{1+t^{4}}}{1-t^{2}}\right)+\frac{1}{4} \sqrt{2} \arcsin \left(\frac{\sqrt{2} t}{1+t^{2}}\right)
$$

thus staying over \mathbf{R}.
We give some more examples in the above hyperelliptic context.
$\underline{m=2}$: now $\int \frac{d t}{\sqrt{D}}$ is always integrable - see any engineer's handbook of indefinite integrals.
$\underline{m=4}$: now $\int \frac{d t}{\sqrt{t^{4}+t+\lambda}}$ is integrable if and only if $256 \lambda^{3}=27$; then we can reduce it to

$$
\int \frac{d t}{(t+4 \lambda / 3) \sqrt{t^{2}+\mu t+\nu}}
$$

and run to the handbook.
$\underline{m=6}$: now the same methods show that $\int \frac{d t}{\sqrt{t^{6}+t+\lambda}}$ is integrable only if $46656 \lambda^{5}=$ 3125 , and with a bit more effort never.

However up to now all that is in fact relatively easy, and not at the same level as Pell. But

$$
\int \frac{d t}{t \sqrt{t^{4}+t+\lambda}}
$$

is integrable if and only if λ lies in a certain finite set. Oddly enough the proof does not use multiplicative extensions as for $t^{2}\left(t^{4}+t+\lambda\right)$ above but rather Schmidt's result [Sc] on additive extensions (6). Incidentally, he has made such results effective, using among other things a version [Ma] of the original result of Bombieri-Pila [BP] obtained as in Wilkie's talks with the Siegel Lemma). For example he shows that there are at most $e^{e^{e^{e^{5}}}}$ complex values of λ for which

$$
\int \frac{d t}{(t-2) \sqrt{t(t-1)(t-\lambda)}}
$$

is integrable. This is related to (3): thus integrability implies that $(2, \sqrt{4-2 \lambda})$ is torsion on E_{λ}. But the converse fails, so we cannot deduce infinitely many λ. In fact we get a torsion point even on a suitable G_{λ} as in (6), so we may conclude finiteness.

And also by [MZ5]

$$
\int \frac{d t}{t \sqrt{t^{6}+t+\lambda}}
$$

is integrable at most on a finite set; but no-one knows how to make this effective. Here we use A_{λ} as above, but now with the locus of $\Gamma_{\lambda}=P_{\lambda}^{+}-P_{\lambda}^{-}$, where $P_{\lambda}^{ \pm}=(0, \pm \sqrt{\lambda})$; this time the torsion property arises from a classical criterion of Liouville, which implies that the integral, if elementary, must involve a single $\log g_{\lambda}$ (as opposed to (12) with a pair).

Now differentiation (without Maple) gives $d t /(t s)=c d g_{\lambda} / g_{\lambda}$ for c in \mathbf{C}, from which we see that the divisor of g_{λ} is a multiple of Γ_{λ}.

These examples support an assertion of James Davenport [Dave] from 1981. I thank Gareth Jones for comments on an earlier version.

References

[Ab] N.H. Abel, Über die Integration der Differential-Formel $\rho d x / \sqrt{R}$, wenn R und ρ ganze Funktionen sind, J. für Math. (Crelle) 1 (1826), 185-221.
[An] Y. André, Mumford-Tate groups of mixed Hodge structures and the theorem of the fixed part, Compositio Math. 82 (1992), 1-24.
[Be] D. Bertrand, Special points and Poincaré bi-extensions; with an Appendix by Bas Edixhoven, ArXiv 1104.5178v1.
[BMPZ] D. Bertrand, D. Masser, A. Pillay, and U. Zannier, Relative Manin-Mumford for semi-abelian surfaces, submitted for publication.
[BP] E. Bombieri and J. Pila, The number of integral points on arcs and ovals, Duke Math. J. 59 (1989), 337-357.
[C1] P. Chebychev, Sur l'intégration des différentielles qui contiennent une racine carée d'un polynome du troisième ou du quatrième degré, J. Math. Pures Appl. 2 (1857), 168-192.
[C2] P. Chebychev, Sur l'intégration de la différentielle $\frac{x+A}{\sqrt{x^{4}+\alpha x^{3}+\beta x^{2}+\gamma x+\delta}}$, J. Math. Pures Appl. 9 (1864), 225-246.
[Dave] J.H. Davenport, On the integration of algebraic functions, Lecture Notes in Computer Science 102, Springer-Verlag, Berlin Heidelberg New York 1981.
[Davi1] S. David, Fonctions theta et points de torsion des variétés abéliennes, Compositio Math. 78 (1991), 121-160.
[Davi2] S. David, Points de petite hauteur sur les courbes elliptiques, J. Number Theory 64 (1997), 104-129.
[GR] É. Gaudron and G. Rémond, Théorème des périodes et degrés minimaux d'isogénies, to appear in Commentarii Math. Helv. (39 pages).
[H] M. Hindry, Autour d'une conjecture de Serge Lang, Inventiones Math. 94 (1988), 575-604.
[L] D. Lombardo, Bounds for Serre's open image theorem for elliptic curves over number fields, preprint 2014 (36 pages).
[Ma] D. Masser, Rational values of the Riemann zeta function, J. Number Theory 131 (2011), 2037-2046.
[MW1] D. Masser and G. Wüstholz, Periods and minimal abelian subvarieties, Ann. of Math. 137 (1993), 407-458.
[MW2] D. Masser and G. Wüstholz, Galois properties of division fields of elliptic curves, Bull. London Math. Soc. 25 (1993), 247-254.
[MW3] D. Masser and G. Wüstholz, Factorization estimates for abelian varieties, Publ. Math. IHES 81 (1995), 5-24.
[MZ1] D. Masser and U. Zannier, Torsion anomalous points and families of elliptic curves, Amer. J. Math. 132 (2010), 1677-1691.
[MZ2] D. Masser and U. Zannier, Torsion points on families of squares of elliptic curves, Math. Annalen 352 (2012), 453-484.
[MZ3] D. Masser and U. Zannier, Torsion points on families of products of elliptic curves, to appear in Advances in Math.
[MZ4] D. Masser and U. Zannier, Torsion points on families of abelian surfaces and Pell's equation over polynomial rings (with Appendix by V. Flynn), submitted for publication.
[MZ5] D. Masser and U. Zannier, Torsion points on families of abelian varieties, Pell's equation, and integration in elementary terms, in preparation.
[Pil] J. Pila, Integer points on the dilation of a subanalytic surface, Quart. J. Math. 55 (2004), 207-223.
[PW] J. Pila and A. Wilkie, The rational points of a definable set, Duke Math. J. 133 (2006), 591-616.
[PZ] J. Pila and U. Zannier, Rational points in periodic analytic sets and the ManinMumford conjecture, Rendiconti Lincei Mat. Appl. 19 (2008), 149-162.
[Pin] R. Pink, A common generalization of the conjectures of André-Oort, Manin-Mumford, and Mordell-Lang, manuscript dated 17th April 2005 (13 pages).
[R] R.H. Risch, The problem of integration in finite terms, Trans. Amer. Math. Soc. 139 (1969), 167-189.
[Sc], H. Schmidt, Ph.D. thesis (Basle), in preparation.
[Se1] J-P. Serre, Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Inventiones Math. 15 (1972), 259-331.
[Se2] J-P. Serre, Résumé des cours au Collège de France de 1985-1986, Collected papers IV 1985-1998, Springer-Verlag, Berlin 2000.
[Si] J.H. Silverman, Heights and the specialization map for families of abelian varieties, J. reine angew. Math. 342 (1983), 197-211.
[Za] U. Zannier, Some problems of unlikely intersections in arithmetic and geometry, Annals of Math. Studies 181, Princeton 2012.
[Zi] B. Zilber, Exponential sums equations and the Schanuel conjecture, J. London Math. Soc. 65 (2002), 27-44.
[Zy] D. Zywina, Bounds for Serre's open image theorem, ArXiv e-prints, 1102.4656, February 2011 (16 pages).
D. Masser: Mathematisches Institut, Universität Basel, Rheinsprung 21, 4051 Basel, Switzerland (David.Masser@unibas.ch).

Submitted 27th April 2014.
Revised 11th June 2014.

LATEST PREPRINTS

No.	Author: Title
$2014-01$	Helmut Harbrecht, Michael Peters, Markus Siebenmorgen Efficient Approximation of Random Fields for Numerical Applications
$2014-02$	Ali Hyder, Luca Martinazzi Conformal Metrics on $R^{2 m}$ with Constant Q-Curvature, Prescribed Volume and Asymptotic Behavior
$2014-03$	Jürgen Dölz, Helmut Harbrecht, and Michael Peters H-Matrix Accelerated Second Moment Analysis for Potentials with Rough Correlation
$2014-04$	Tianling Jin, Ali Maalaoui, Luca Martinazzi, Jingang Xiong Existence and Asymptotics for Solutions of a Non-Local Q-Curvature Equation in Dimension Three
$2014-05$	Marcus J. Grote, Michaela Mehlin, Teodora Mitkova Runge-Kutta Based Explicit Local Time-Stepping Methods for Wave Propagation
$2014-06$	Hanspeter Kraft, Andriy Regeta Automorphisms of the Lie Algebra of Vector Fields on Affine n-Space
$2014-07$	Jérémy Blanc, Alberto Calabri On Degenerations of Plane Cremona Transformations
$2014-08$	Helmut Harbrecht, Michael Peters, Markus Siebenmorgen Numerical Solution of Elliptic Diffusion Problems on Random Domains
$2014-09$	H. Harbrecht, W.L. Wendland, and N. Zorii Rapid Solution of Minimal Riesz Energy Problems
Covariance Regularity and H-Matrix Approximation for Rough Random	
Fields	

LATEST PREPRINTS

No. Author: Title
2014-13 M. Dambrine, H. Harbrecht, B. Puig
Computing Quantities of Interest for Random Domains with Second Order Shape Sensitivity Analysis
2014-14 Monica Bugeanu, Helmut Harbrecht A Second Order Convergent Trial Method for free Boundary Problems in Three Dimensions
2014-15 David Masser
Relative Manin-Mumford for Abelian Varieties

