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Abstract: With an eye or two towards applications to Pell’s equation and to Davenport’s

work on integration of algebraic functions, Umberto Zannier and I have recently charac-

terised torsion points on a fixed algebraic curve in a fixed abelian scheme of dimension

bigger than one (when all is defined over the algebraic numbers): there are at most finitely

many points provided the natural obstacles are absent. I sketch the proof as well as the

applications.

A very simple problem of Manin-Mumford type is: find all roots of unity λ, µ with

λ+µ = 1. Here the solution is easy: we have |λ| = |1−λ| = 1 and so in the complex plane

λ lies on the intersection of two circles; in fact λ must be one of the two primitive sixth

roots of unity (the picture doesn’t work too well in positive characteristic, and indeed any

non-zero element of any finite field is already a root of unity, so from now on we stick to

zero characteristic). This result has something to do with the multiplicative group Gm,

which can be regarded as C∗. Actually with G2
m and the “line” inside it parametrized by

P = (λ, 1− λ): we ask just that P is torsion.

Now it is easy to generalize, at least the problem, to other algebraic varieties in other

commutative algebraic groups.

For example let E be the elliptic curve defined by y2 = x(x − 1)(x − 4). Asking for

all complex λ such that the points

(2λ,
√

2λ(2λ− 1)(2λ− 4)), (3λ,
√

3λ(3λ− 1)(3λ− 4)) (1)

are both torsion amounts to asking for torsion points on a certain curve in the surface E2.

But here the solution is much more difficult (and it is not clear to me that one can find all

λ explicitly as above).
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It was Hindry [H] who solved the general problem with any algebraic variety in any

commutative algebraic group G. The outcome for a curve in G is that it contains at most

finitely many torsion points unless one of its components is a connected one-dimensional

“torsion coset”; that is, a translate P0 +H of an algebraic subgroup H of G by a torsion

point P0. This H contains infinitely many torsion points and so P0 +H also.

Thus for G = G2
m the analogue for λµ = 1 of the problem above will not lead to

finiteness, as the curve is such an H. Similarly λµ = −1 is P0 + H for P0 = (1,−1) with

2P0 = 0 (written additively).

More generally G can be Gn
m, En as in Habegger’s talks in this volume, or an abelian

variety A as in Orr’s article, or products of these, or “twisted products” sitting inside an

exact sequence

0→ T → G→ A→ 0 (2)

where T is a power of Gm or even a product Gr
a ×Gs

m for the additive group Ga = C.

Here the twisting can be quite complicated and G can end up very far from just T ×A. It

is classical that every commutative algebraic group over C has this form. We will see how

several types turn up in applications.

The applications involve most naturally the “relative case”, where G itself is allowed

to vary in a family. Most of the current results allow only a single parameter here, and we

already have parameters in the algebraic variety, so this had better stay a curve, essentially

with a parameter λ, and G had better depend on no more than λ. An example like (1)

involves the points

(2,
√

4− 2λ), (3,
√

18− 6λ) (3)

now on the elliptic curve Eλ defined by y2 = x(x− 1)(x− λ); that is the famous Legendre

family. Again we go to E2
λ, where the square is the “fibre square” defined by the equations

y21 = x1(x1 − 1)(x1 − λ), y22 = x2(x2 − 1)(x2 − λ)

with λ in common, and we get a curve defined by x1 = 2, x2 = 3. Then by [MZ1] there

are at most finitely complex values of λ (now not 0, 1 so that we have a genuine elliptic

curve) such that both points in (3) are torsion. Here their effective determination may be

a difficult problem in practice and even in principle.

In various works Umberto Zannier and I have treated any curve in any parametrized

abelian variety Aλ of “relative dimension” at least two, sometimes with the proviso that

everything is defined over the field Q of all algebraic numbers. We get finiteness with
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a similar condition about torsion cosets, now interpreted schemewise or more intuitively

“identically in λ”. For example in E2
λ above these are defined essentially by the vanishing

of non-trivial integral linear combinations n1(x1, y1)+n2(x2, y2). It is not difficult to show

that this is impossible for (3). On the other hand

2(0, 0) = 2(1, 0) = 2(λ, 0) = 4(
√
λ, i(λ−

√
λ)) = 0

so it is not quite easy.

A start has been made on more general Gλ. First with Bertrand and Pillay we have

considered

1→ Gm → Gλ → Eλ → 0 (4)

and

1→ Gm → Gλ → E → 0. (5)

with E not depending on λ. Bertrand [Be] had already given a surprising counterexample

in (5): in rather special situations it is possible to construct what he calls a “Ribet curve”

having infinitely many torsion points, even though it is not a torsion coset. We then

checked in [BMPZ] that this happens only for Ribet curves.

And Harry Schmidt in Basle [Sc] has done

0→ Ga → Gλ → Eλ → 0 (6)

where it is reassuring to find that there are no counterexamples.

We give a short proof sketch of the result for (3). As in Habegger’s talks, it hinges

on the analytic representation of an elliptic curve as a quotient of C by a lattice, as in the

general strategy of Zannier expounded in [PZ]. For Eλ this lattice Ωλ depends on λ, and

in fact one can take a basis of periods

Ωλ = Zfλ + Zgλ

where fλ is hypergeometric πF ( 1
2 ,

1
2 , 1;λ) and gλ = if1−λ. The points (3) correspond in

C to “elliptic logarithms” uλ, vλ, say; and since C = Rfλ + Rgλ there are real functions

pλ, qλ, rλ, sλ with

uλ = pλfλ + qλgλ, vλ = rλfλ + sλgλ.

As λ moves, the locus of zλ = (pλ, qλ, rλ, sλ) has real dimension two in R4 and is in fact a

(sub-)analytic surface Z. The torsion in C is Qfλ + Qgλ, and so our particular λ gives a
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point of Z ∩Q4. It is even in Z ∩ 1
NZ4 if the torsion order divides N . Such points cannot

be very numerous: in Wilkie’s talks we saw that the cardinality

|Ztrans ∩ 1

N
Z4 ∩K| ≤ c(ε, Z,K)N ε

for a certain subset Ztrans of Z and any compact K (maybe this could be eliminated using

o-minimality) and any ε > 0. See also Pila [Pil] and Pila-Wilkie [PW]. It may be very

difficult to write down c(ε, Z,K) in an effective way.

Here it is possible to show that Ztrans = Z; this is a concealed algebraic independence

result as in Pila’s talks, for which the hard (Hodge-theoretical) work was done by André

[An].

We deal with K using bounded height: more later. We get at most c(ε)N ε points zλ.

An easy argument with a faint flavour of zero-estimates of the type used in transcendence

theory leads to at most c(ε)N ε values λ. But right now we don’t know any upper bound

for N .

In fact it is easy to see that these values λ all lie in Q; further any given λ yields

D = [Q(λ) : Q] in all by conjugation λσ (compare also Habegger’s talks). We deduce

D ≤ c(ε)N ε. (7)

But there are also lower bounds for D. If we go back to the original problem of λ, 1 − λ,

now with say λ of exact order N1 then of course D = φ(N1) for the Euler function, and this

is classically known to be at least c1(ε)N1−ε
1 (now all constants are assumed positive). For

our problem the analogue is that if (2,
√

4− 2λ) in (3) has exact order N1 then a famous

Theorem of Serre [Se1] implies even

D ≥ C1N
2
1 (8)

(which is classical in the case of complex multiplication); but here the elliptic curve depends

on λ and therefore so does C1. Furthermore it is not so easy to calculate this dependence.

The work [MW2] (based on transcendence among other things) applies only if N1 is prime,

an assumption we cannot afford. It was extended to arbitrary N1 by Zywina [Zy], but

only for an elliptic curve defined over Q, which we also cannot assume here. Very recently

Lombardo [L] has extended the field of definition to Q; in a first version the dependence on

D was not quite good enough for application here, but he has since fixed this. There is also

a dependence on the absolute height h(λ) of λ. Fortunately a Theorem of Silverman [Si]
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implies that this height is bounded above by an absolute constant. Combining everything

leads to D ≥ cNδ
1 now with c absolute. Here δ is less than 10−10.

For effectivity purposes it will probably be very convenient to have a bigger δ. This

arises from a more direct application of the transcendence methods, starting with an

exponent smaller than 2 in (8). Then the very precise version [Davi2] due to David yields

D ≥ cN1/2
1 .

Similarly D ≥ cN
1/2
2 for the exact order N2 of (3,

√
18− 6λ) in (3). Taking N now

as the exact order, we have N = lcm(N1, N2) ≤ N1N2, and it follows that D ≥ cN1/4.

Comparing this with (7), we see that it suffices to choose ε = 1
5 to get an absolute bound

for D = [Q(λ) : Q]. Combined with the absolute bound on h(λ), this gives by a well-known

result of Northcott (see below) the required finiteness.

As height bounds were not much mentioned in the other talks, we sketch here a proof

that

h(λ) ≤ 6

for the absolute height

h(λ) =
1

D
log

(
|a0|

∏
σ

max{1, |λσ|}

)
, (9)

where a0λ
D + · · · = 0 is the minimal equation for λ over Z. All we use is N1P1 = 0 for

P1 = (2,
√

4− 2λ), where the value of N1 ≥ 1 is now irrelevant.

For any algebraic λ and P = (x, y) on Eλ with algebraic x, y we can reasonably define

h(P ) = h(x) (but in Habegger’s talks it was h(x)/2), as y is determined by x and λ. For

example h(P1) = log 2. The Néron-Tate height ĥ(P ) is defined for example by

ĥ(P ) = lim
k→∞

h(2kP )

4k
,

and |ĥ(P )− h(P )| is bounded above independently of P . Explicit bounds for Weierstrass

elliptic curves are practically classical, but I calculated for Legendre

|ĥ(P )− h(P )| ≤ 5

3
h(λ) + c (10)

with explicit c absolute.

Further ĥ(P ) = 0 if and only if P is torsion.
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We look at 4P1 on Eλ. With the help of classical duplication formulae we find

4P1 =

(
A(λ)

B(λ)
, ∗
)

with A,B in Z[t] of degrees 8 and 7 respectively. In fact

A = t8 − 160t7 + 7104t6 − 57344t5 + 206336t4 − 401408t3 + 442368t2 − 262144t+ 65536,

B4 = −288t7 + 3648t6 − 17408t5 + 38912t4 − 40960t3 + 16384t2.

Now h(λ8) = 8h(λ) (not transparent from (9) by the way) and similarly one can show,

after a bit of effort with resultants, that

h(4P1) ≥ 8h(λ)− c′

with c′ absolute.

On the other hand (10) gives

h(4P1) ≤ ĥ(4P1) +
5

3
h(λ) + c =

5

3
h(λ) + c

so

h(λ) ≤ c+ c′

19/3
< 6

with some extra computation.

Here the Northcott result just mentioned becomes clear: if h(λ) and D are both

bounded above, then so are |a0| and the |λσ| in (9), and then so are the absolute values of

the coefficients in the minimal polynomial a0
∏
σ(t− λσ).

This completes the sketch for (3) and E2
λ. The general curve in E2

λ was treated in

[MZ2], and more general products like Eλ ×E−λ in [MZ3]. For Aλ as in [MZ4] and [MZ5]

there are several extra technicalities. The results of André and Silverman apply also to the

abelian situation. But despite the enormous advances by Serre in [Se2], still the extensions

of [Se1] seem to be less clear-cut, even for powers of a fixed prime, let alone effective.

But once more a transcendence approach succeeds, and we use David’s result in [Davi1]

pre-dating [Davi2]. In fact this result seems to require that the value λ is such that Aλ

is simple. At first sight this looks like a problem. At second sight one suspects that

such λ are probably rare, possibly controlled by conjectures of André-Oort-Pink-Zilber

type (see [Pin] and [Zi] for example). At third sight one realizes that such conjectures
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are not yet proved. But finally by going back into the proof in [Davi1] to winkle out

the “obstruction subgroup” in the zero-estimate, one sees that some easy tricks from the

geometry of numbers (as in [MW1] for example) suffice. One ends up with D ≥ cNδ

with a ridiculously small exponent δ (depending on the dimension of Aλ). One could also

use [MW3] to factorize the non-simple Aλ, but then the exponent would be even smaller.

Probably recent work of Gaudron and Rémond [GR] would give more reasonable values.

Now for the applications of these results, denoted by (I) and (II) below.

(I) All know that Pell’s equation

x2 − dy2 = 1, y 6= 0

is solvable over Z provided d > 0 in Z is not a square. Moving to the polynomial ring C[t],

by now a knee-jerk reaction, especially in view of “abcology”, we consider

X2 −DY 2 = 1, Y 6= 0 (11)

with D in C[t] not a square, surely easier. But in fact it is much more difficult to describe

the set of D for which there is solvability over C[t]. One can easily see that the degree m

of D must be even. Now we proceed systematically.

m = 2: there is always solvability. Thus for D = at2 + bt+ c we can take

X =
2at+ b√
b2 − 4ac

, Y =
2
√
a√

b2 − 4ac
.

m = 4: there is not always solvability. For example not for D = t4 + t + 1. And in

the family D = t4 + t + λ we have solvability exactly when λ lies in a certain countable

subset of C. In fact precisely when the point (0, 1) is torsion on y2 = x3 − 4λx+ 1 . This

is essentially classical (Abel [Ab], Chebychev [C1],[C2]). In fact the set is infinite (which

is not classical - for several proofs see [Za] pages 92,93 for example), as one might guess

from its element (with its six conjugates)

λ =
3
√

2
√

2− 2

2

where

X =
(4− 32λ3)t5 − (4λ− 16λ4)t4 + 4λ2t3 + (3− 28λ3)t2 − 8λ4t+ 8λ5

32λ8
,
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Y =
(4− 32λ3)t3 − (4λ− 16λ4)t2 + 4λ2t+ (1− 12λ3)

32λ8
.

m = 6: there is rarely solvability. For example there are only finitely many λ in C

for which solvability holds for D = t6 + t + λ. This is proved in [MZ4] using the general

result on Aλ described above. In fact here Aλ is the Jacobian of the hyperelliptic curve

s2 = t6 + t+ λ of genus 2, or better a complete non-singular model

s2 = t23 + t0t1 + λt20, t0t2 = t21, t0t3 = t1t2.

The curve inside Aλ is the locus of the divisor ∆λ =∞+
λ −∞

−
λ as λ varies, where ∞±λ are

the two places at infinity. When (11) holds we write it as f+λ f
−
λ = 1 with the functions

f±λ = X ± sY to see that their divisors are multiples of ∆λ thus giving a torsion point.

There are actually some λ; for example λ = 0 with

X = 2t5 + 1, Y = 2t2.

m ≥ 8: even rarer. For example with the family D = d0(λ)tm+ · · ·+dm(λ) in Q[λ][t],

say for safety identically squarefree, there is solvability for infinitely many λ in Q only if

the analogous Jacobian, now an abelian variety of dimension m−2
2 ≥ 3, contains an elliptic

curve. This also follows from the Aλ result in [MZ5].

Incidentally, if we want to go beyond squarefree, then we can use the result of [BMPZ]

on multiplicative extensions (4). Thus for D = t2(t4 + t + λ) we get at most a finite set,

despite the infinite set for t4 + t + λ. And also for D = t3(t3 + t + λ) using the additive

extensions (6).

(II) This concerns the old problem of “integrating in elementary terms” (see for ex-

ample the article [R] by Risch). By the way, the integration may be elementary but it

need not be easy (just as for some proofs), as a wonderful example∫ √
1 + t4

1− t4
dt = −1

4

√
2 log

(√
2t−

√
1 + t4

1− t2

)
− i

4

√
2 log

(
i
√

2t+
√

1 + t4

1 + t2

)
(12)

due to Euler shows. Not only can my Maple (version 9) not do the integration on the

left-hand side, but it cannot even check the result by differentiating the right-hand side.

Actually Euler’s version was

1

4

√
2 log

(√
2t+

√
1 + t4

1− t2

)
+

1

4

√
2 arcsin

( √
2t

1 + t2

)
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thus staying over R.

We give some more examples in the above hyperelliptic context.

m = 2: now
∫

dt√
D

is always integrable - see any engineer’s handbook of indefinite

integrals.

m = 4: now
∫

dt√
t4+t+λ

is integrable if and only if 256λ3 = 27; then we can reduce it

to ∫
dt

(t+ 4λ/3)
√
t2 + µt+ ν

and run to the handbook.

m = 6: now the same methods show that
∫

dt√
t6+t+λ

is integrable only if 46656λ5 =

3125, and with a bit more effort never.

However up to now all that is in fact relatively easy, and not at the same level as Pell.

But ∫
dt

t
√
t4 + t+ λ

is integrable if and only if λ lies in a certain finite set. Oddly enough the proof does not

use multiplicative extensions as for t2(t4 + t+λ) above but rather Schmidt’s result [Sc] on

additive extensions (6). Incidentally, he has made such results effective, using among other

things a version [Ma] of the original result of Bombieri-Pila [BP] obtained as in Wilkie’s

talks with the Siegel Lemma). For example he shows that there are at most ee
ee

5

complex

values of λ for which ∫
dt

(t− 2)
√
t(t− 1)(t− λ)

is integrable. This is related to (3): thus integrability implies that (2,
√

4− 2λ) is torsion

on Eλ. But the converse fails, so we cannot deduce infinitely many λ. In fact we get a

torsion point even on a suitable Gλ as in (6), so we may conclude finiteness.

And also by [MZ5] ∫
dt

t
√
t6 + t+ λ

is integrable at most on a finite set; but no-one knows how to make this effective. Here we

use Aλ as above, but now with the locus of Γλ = P+
λ − P

−
λ , where P±λ = (0,±

√
λ); this

time the torsion property arises from a classical criterion of Liouville, which implies that

the integral, if elementary, must involve a single log gλ (as opposed to (12) with a pair).
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Now differentiation (without Maple) gives dt/(ts) = cdgλ/gλ for c in C, from which we see

that the divisor of gλ is a multiple of Γλ.

These examples support an assertion of James Davenport [Dave] from 1981.

I thank Gareth Jones for comments on an earlier version.
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[Ab] N.H. Abel, Über die Integration der Differential-Formel ρdx/
√
R, wenn R und ρ ganze

Funktionen sind, J. für Math. (Crelle) 1 (1826), 185-221.
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168-192.

[C2] P. Chebychev, Sur l’intégration de la différentielle x+A√
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