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Abstract. We consider the efficient solution of strongly elliptic potential problems with stochas-
tic Dirichlet data by the boundary integral equation method. The computation of the solution’s
two-point correlation is well understood if the two-point correlation of the Dirichlet data is known
and sufficiently smooth. Unfortunately, the problem becomes much more involved in case of rough
data. We will show that the concept of the H-matrix arithmetic provides a powerful tool to cope
with this problem. By employing a parametric surface representation, we end up with an H-matrix
arithmetic based on balanced cluster trees. This considerably simplifies the implementation and im-
proves the performance of the H-matrix arithmetic. Numerical experiments are provided to validate
and quantify the presented methods and algorithms.

1. Introduction. Modelling and simulating boundary value problems with sto-
chastic input parameters is of great importance for applications in engineering and
science. A principal approach to such problems is the Monte Carlo approach, see
e.g. [28] and the references therein. However, it is very costly to generate a large
number of appropriate samples and to solve a deterministic boundary value problem
on each sample. Thus, we aim here at a direct, deterministic computation of the
stochastic solution.

Deterministic approaches to solve stochastic partial differential equations have
been proposed in several papers. For instance, stochastic loadings have been consid-
ered in [33, 34], stochastic coefficients in [1, 2, 4, 5, 6, 25, 27], and stochastic domains
in [21, 36].

In this article, we present a new approach for the second moment analysis of
stochastic, strongly elliptic potential problems with rough correlation functions, i.e.
the eigenvalues of the correlation kernel provide a rather slow algebraic decay. Con-
cretely, given a domain D ⊂ Rd and a probability space (Ω,Σ,P), we consider the
Dirichlet problem

Lu(ω,x) = 0 for x ∈ D

u(ω,x) = f(ω,x) for x ∈ Γ := ∂D

�
P-almost surely (1.1)

with stochastic Dirichlet data f(ω,x). Here, the linear differential operator L is given
by

(Lu)(x) := −
d�

i,j=1

ai,j(x)
∂
2
u

∂xi∂xj
(x) +

d�

i=1

bi(x)
∂u

∂xi
(x) + c(x)u(x) (1.2)

with ai,j , bi, c ∈ C
∞(D). We suppose L to be strongly elliptic, i.e. y�A(x)y ≥ c > 0

for all y ∈ Rd \ {0} and almost every x ∈ D, where A(x) := [ai,j(x)]i,j . Under
these conditions, the Dirichlet problem (1.1) is known to be uniquely solvable for
appropriate Dirichlet data f , see e.g. [7]. For example, the Dirichlet problem for the
Laplace- or the Helmholtz equation can be represented with a differential operator of
the form (1.2).
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We can compute the solution’s mean

Eu(x) :=

�

Ω
u(ω,x) dP(ω)

and also its two-point correlation

Coru(x,y) :=

�

Ω
u(ω,x)u(ω,y) dP(ω)

if the respective mean Ef and Corf of the Dirichlet data are known. Namely, the
mean Eu satisfies

LEu = 0 in D and Eu = Ef on Γ (1.3)

due to the linearity of the expectation and the differential operator L. By additionally
taking into account the multi-linearity of the tensor product, one readily verifies by
tensorizing (1.1) that

(L⊗ L) Coru = 0 in D ×D,

(L⊗ Id)u = 0 on D × Γ,

(Id⊗L)u = 0 on Γ×D,

Coru = Corf on Γ× Γ.

(1.4)

The numerical solution of problems similar to (1.4) have already been the topic
of several articles. They all have in common that they are in some sense based on a
sparse tensor product discretization of the solution. For example, the computation
of the second moment, i.e. Coru, has been considered for elliptic diffusion problems
with stochastic loadings in [33] by means of a sparse tensor product finite element
method. A sparse tensor product wavelet boundary element method has been used
in [21] to compute the solution’s second moment for elliptic potential problems on
random domains. In [17, 20], the computation of the second moment was done by
multilevel finite element frames. Recently, this concept has been simplified by using
the combination technique, cf. [19].

We consider here another approach for the solution of (1.4) which does not employ
a hierarchic decomposition of the ansatz and test spaces. Namely, we follow here
the idea of [21] and reformulate (1.4) as a boundary integral equation. Then, we
employ an H-matrix discretization and solve the problem by means of the H-matrix
arithmetic. This is justified since rough two-point correlation kernels behave quite
similar to kernels of boundary integral operators.

The general concept of H-matrices and the corresponding arithmetic have at first
been introduced in [13, 15]. H-matrices are feasible for the data-sparse representation
of (block-) matrices which can be approximated block-wise with low-rank. Our partic-
ular realization is based on a parametric representation of the surface Γ by four-sided
patches. Such parametric surface representations can be obtained directly from com-
puter aided design (CAD). They are recently studied in the context of isogeometric
analysis [18, 22] and offer the advantage that they lead to balanced cluster trees. We
develop a fast H-matrix arithmetic tailored to such cluster trees which only induces a
slight restriction to the generality of the H-matrix concept. Nevertheless, the gain in
performance and the much easier implementation justify this minor drawback. Espe-
cially, the H-matrix based discretization of non-local operators on parametric surfaces
has recently been studied in [18].
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The rest of this article is organized as follows. In Section 2, we provide the
theoretical background for the further considerations. Especially, we introduce the
parametric surface representations which is referred to and reformulate problem (1.1)
in terms of a boundary integral equation. Section 3 is then devoted to the Galerkin
discretization of the obtained boundary integral equation. In Section 4, we explain
in brief why sparse grids are not feasible to solve problems with rough correlation
kernels. Furthermore, we introduce here the class of Matérn kernels. Section 5 is
concerned with the H-matrix arithmetic in case of balanced cluster trees. Some
improvements of the conventional H-matrix arithmetic are pointed out. In Section 6,
we present the algorithm for the iterative solution of the linear system of equations
derived in Section 2. This algorithm is based on the approximate computation of the
inverse to the stiffness matrix which arises from the single-layer operator combined
with an iterative refinement of the solution. Section 7 is finally dedicated to numerical
experiments which validate and quantify the presented methods and algorithms.

In the following, in order to avoid the repeated use of generic but unspecified
constants, by C � D we mean that C can be bounded by a multiple of D, indepen-
dently of parameters which C and D may depend on. Obviously, C � D is defined as
D � C, and C ∼ D as C � D and C � D.

2. Preliminaries.

2.1. Boundary integral formulation. In the following, we restrict ourselves
to the most important case d = 3. Therefore, let D ⊂ R3 denote a domain with
piecewise smooth and globally Lipschitz continuous surface Γ := ∂D. The coefficients
of the differential operator L, cf. (1.2), are assumed to be constant, i.e. A ∈ R3×3,
b ∈ R3 and c ∈ R. Then, the fundamental solution for L is given by

Φ(x,y) =
1

4π
√
detA

exp
�
b�(x− y)− λ�x− y�A

�

�x− y�A
,

where �x�A :=
√
x�Ax and λ =

√
θ if θ ≥ 0 or else λ = −i

�
|θ| with θ := c+ �b�2A,

cf. [31]. Given a density ρ ∈ H
−1/2(Γ), the single-layer potential

S̃ : H−1/2(Γ) → H
1(D), (S̃ρ)(x) :=

�

Γ
Φ(x,y)ρ(y) dσy.

satisfies

L(S̃ρ)(x) = 0 for x ∈ Rd \ Γ,

cf. [3]. Thus, for given boundary data f ∈ H
1/2(Γ) a solution to the corresponding

Dirichlet problem is obtained by solving the boundary integral equation

(Sρ)(x) := γ
int
0 (S̃ρ)(x) = f(x) for x ∈ Γ. (2.1)

Here, γint
0 : H1(D) → H

1/2(Γ) denotes the (interior) trace operator.
Remark 2.1. We consider here the indirect formulation by the single-layer po-

tential since it provides a higher order of approximation to the solution of (1.1). Of
course, also an ansatz by the double-layer potential would be possible, cf. [3, 31].

For the solution of (1.1), it is reasonable to assume that the Dirichlet data f are
contained in some Bochner space. More precisely, we have f ∈ L

2
P
�
Ω, H1/2(Γ)

� ∼=
L
2
P(Ω)⊗H

1/2(Γ). Thus, the solution ρ ∈ L
2
P(Ω)⊗H

−1/2(Γ) to

(Id⊗S)ρ(ω,x) =
�

Γ
Φ(x,y)ρ(ω,y) dσy = f(ω,x) (2.2)
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satisfies

Lx(Id⊗S̃)ρ(ω,x) = 0.

Together with Fubini’s theorem, we arrive at
�

Ω
(Id⊗S)ρ(ω,x) dP(ω) = (SEρ)(x) = Ef (x) (2.3)

and in complete analogy at L(S̃Eρ)(x) = 0. This means that, having determined the
density Eρ from the boundary integral equation (2.3), the solution Eu to (1.3) is given
via S̃Eρ.

By tensorizing (2.2) and integration with respect to the stochastic variable, we
obtain

�

Ω
(Id⊗S)ρ(ω,x)(Id⊗S)ρ(ω,y) dP(ω) = (S ⊗ S) Corρ(x,y) = Corf (x,y). (2.4)

Furthermore, it holds

(L⊗ L)(S̃ ⊗ S̃) Corρ = 0 in D ×D,

(L⊗ γ
int
0 )(S̃ ⊗ S̃) Corρ = 0 on D × Γ,

(γint
0 ⊗ L)(S̃ ⊗ S̃) Corρ = 0 on Γ×D.

Therefore, we conclude that Coru = (S̃ ⊗ S̃) Corρ is the solution to (1.4).
Obviously, a solution to (2.3) is easily obtained by means of standard boundary

element techniques. Thus, we shall focus on the solution of (2.4) which is much
more involved. To that end, we assume that Corf is asymptotically smooth, i.e. Corf
satisfies the following definition.

Definition 2.2. Let k : R3 × R3 → R. The function k is called asymptotically
smooth, if for some constants rk > 0 and q ∈ R holds

��∂α
x ∂

β
y k(x,y)

�� � (|α|+ |β|)!
r
|α|+|β|
k

�x− y�−2−2q−|α|−|β|
2 (2.5)

independently of α and β.
Note that the term 2q in this definition usually reflects the order of the integral

operator under consideration, e.g. we have 2q = −1 in the case of the single-layer
operator S and 2q = 0 for general Hilbert-Schmidt operators

A : L2(Γ) → L
2(Γ), (Au)(x) :=

�

Γ
k(x,y)u(y) dσy. (2.6)

A main feature of asymptotically smooth functions is that they exhibit a data-
sparse representation by means of an H-matrix, cf. [15].

2.2. Parametric surface representation. To introduce H-matrices, we have
at first to provide a hierarchical subdivision of the surface Γ. Since Γ is assumed to be
piecewise smooth and globally Lipschitz continuous, it is representable by the union
of several smooth patches, i.e.

Γ =
M�

i=1

Γi,
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where the intersection Γi ∩ Γi� consists at most of a common vertex or a common
edge for i �= i

�. Each patch Γi is supposed to be the image of the reference domain
� := [0, 1]2 under a smooth diffeomorphism γi, i.e.

γi : � → Γi with Γi = γi(�) for i = 1, 2, . . . ,M.

The regularity of the mesh is ensured by a matching condition: for each x = γi(s)
on a common edge of Γi and Γi� exists a bijective, affine mapping Ξ : � → � with
γi(s) = (γi� ◦Ξ)(s).

Fig. 2.1. Different parametric surfaces.

A mesh Qj on level j for Γ is induced by dyadic subdivisions of depth j of the
unit square � into 4j congruent squares, each of which is lifted to Γ by the associated
parameterization γi. This construction results in a quad-tree structured sequence
Q0 ⊂ Q1 ⊂ . . . ⊂ QJ of meshes consisting of Nj = 4jM elements on level j. We refer
to the particular elements by Γi,j,k where i is the index of the applied parameterization
γi, j is the level of the element and k is the index of the element in hierarchical order.
A visualization of the resulting quadrangulations of parametric surfaces can be found
in Figure 2.1.

Γi,0,0

level 0

Γi,1,3

Γi,1,0

Γi,1,2

Γi,1,1

level 1 level 2

Γi,2,6

Γi,2,5

Γi,2,4

Γi,2,7

Fig. 2.2. Visualization of the element tree

It is convenient to refer to Γi,j,k also as a cluster. In this case we think of Γi,j,k as
the union {Γi,J,k� : Γi,J,k� ⊂ Γi,j,k}, i.e. the set of all tree leafs appended to Γi,j,k or its
sons. Furthermore, we call the collection of all clusters up to the discretization level J
the cluster tree T . A scheme for the subdivisions of the patch Γi up to level 2 is shown
in Figure 2.2. In the following it will also be handy to set λ := (i, j, k) with |λ| = j.
With regard to the tree structure of T , we define also dad(λ) := (i, j − 1, �k/4�) and
sons(λ) := {(i, j + 1, 4k + �) : � = 0, . . . , 3}.

Note that the current setup refers to the framework of [18] where black-box
boundary element methods for the efficient solution of boundary integral equations
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on parametric surfaces haven been considered. As it turns out, the assembly and the
arithmetics of H-matrices are remarkably sped up due to the special structure of the
geometry which results in balanced trees. Nevertheless, the special choice of the sur-
face representation does not impose a restriction to the applicability of the presented
algorithms. In fact, one could also introduce any other clustering of the surface which
results in balanced trees.

2.3. Block-cluster tree. For the discretization of a Hilbert-Schmidt operator
with asymptotical smooth kernel, it seems natural to introduce a subdivision of the
preimage space Γ × Γ which separates smooth and non-smooth areas of the kernel
function. Therefore, we choose a special sub-tree of the level-wise Cartesian product
T × T := {Γλ ×Γλ� : Γλ,Γλ� ∈ T , |λ| = |λ�|} with respect to the following definition.

Definition 2.3. (i) The clusters Γλ and Γλ� with |λ| = |λ�| are called admissible
if

max
�
diam(Γλ), diam(Γλ�)

�
≤ η dist(Γλ,Γλ) (2.7)

holds for some fixed η ∈ (0, 1).
(ii) The largest collection of admissible blocks Γλ×Γλ� such that Γdad(λ)×Γdad(λ�)

is not admissible forms the far-field F ⊂ T × T of the operator. The remaining non-
admissible blocks correspond to the near-field N of the operator.

(iii) Finally, we denote by B := F ∪N the block-cluster tree.
The block-cluster tree can be constructed in accordance with Algorithm 2.1.

Algorithm 2.1 Construction of the block-cluster tree B
procedure BuildBlockClusterTree(cluster Γλ,Γλ�)

if (Γλ,Γλ�) is admissible then
sons(Γλ × Γλ�) := ∅

else
sons(Γλ × Γλ�) := {Γµ × Γµ� : µ ∈ sons(λ),µ� ∈ sons(λ�)}
for µ ∈ sons(λ),µ� ∈ sons(λ�) do

BuildBlockClusterTree(Γµ,Γµ�)
end for

end if
end procedure

Remark 2.4. In practical applications, Algorithm 2.1 terminates if the cardinal-
ity #Γλ = 4J−|λ| of Γλ falls below a certain threshold k ∈ N.

Now, with the definition of the block-cluster tree at hand, we are able to introduce
H-matrices.

Definition 2.5. Let B be a block-cluster tree and k ∈ N. We define the set
R(n, k) of rk -matrices by

R(n, k) := {M ∈ Rn×n : rank(M) ≤ k}.

Then, the set of H-matrices is defined according to

H(B, k) :=
�
M ∈ RNJ×NJ : MΓλ×Γλ� ∈ R(4J−|λ|

, k) for all Γλ × Γλ� ∈ F
�
,

where we assume that #Γλ ≤ k for all non-admissible blocks Γλ × Γλ� ∈ N .
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3. Galerkin discretization. Given s, t ∈ R, we define the Sobolev spaces
H

s,t
mix(Γ× Γ) of dominant mixed derivatives on Γ× Γ by

H
s,t
mix(Γ× Γ) := H

s(Γ)⊗H
t(Γ).

Then, the variational formulation of the boundary integral equation (2.4) is given as
follows:

Find Corρ ∈ H
−1/2,−1/2
mix (Γ× Γ) such that

�
(S ⊗ S) Corρ, v

�
L2(Γ×Γ)

= (Corf , v)L2(Γ×Γ) for all v ∈ H
−1/2,−1/2
mix (Γ× Γ).

(3.1)

For the Galerkin discretization of (3.1), we fix J ∈ N and introduce the space

V̂J :=
�
ϕ̂ : � → R : ϕ̂|�J,k

is a polynomial of order d
�
⊂ L

2(�),

where we define �j,k := γ−1
i (Γi,j,k). Then, the univariate ansatz space VJ on level J

is given by

VJ :=
�
ϕ̂ ◦ γ−1

i : ϕ̂ ∈ V̂J , i = 1, . . . ,M
�
⊂ H

−1/2(Γ).

For different values of J , the spaces VJ are nested, i.e. V0 ⊂ V1 ⊂ · · · ⊂ VJ . The
Sobolev smoothness t of VJ depends on the global smoothness of the functions ϕ ∈ VJ .
Especially, for transported piecewise constant functions (d = 1), we have t < 1/2,
which is sufficient for the Galerkin discretization of (2.4). Note that, due to the
parametric surface representation, the Galerkin discretization may be performed on
the reference domain � with respect to the space V̂J . For the details we refer to [18].

By replacing the energy space H
−1/2,−1/2
mix (Γ × Γ) in the variational formulation

(3.1) by the finite dimensional ansatz space VJ ⊗ VJ ⊂ H
−1/2,−1/2
mix (Γ× Γ), we arrive

at the Galerkin formulation for the boundary integral equation (2.4):

Find Corρ,J ∈ VJ ⊗ VJ such that
�
(S ⊗ S) Corρ,J , v

�
L2(Γ×Γ)

= (Corf , v)L2(Γ×Γ) for all v ∈ VJ ⊗ VJ .
(3.2)

We choose a basis {ϕ� ⊗ ϕ��}�,�� and represent Corρ,J by its basis expansion

Corρ,J =
NJ�

�,��=1

cρ,�,��(ϕ� ⊗ ϕ��).

Then, setting Cρ := [cρ,�,�� ]�,�� , we end up with the linear system of equations

(S⊗ S) vec(Cρ) = vec(Cf ), (3.3)

whereCf :=
�
(Corf ,ϕ�⊗ϕ��)L2(Γ×Γ)

�
�,��

is the discretized two-point correlation of the

Dirichlet data f and S :=
�
(Sϕ�� ,ϕ�)L2(Γ)

�
�,��

is the system matrix of the single-layer

operator. In (3.3), the tensor product has, as usual in connection with matrices, to be
understood as the Kronecker product. Furthermore, for a matrix A = [a1, . . . ,an] ∈
Rm×n, the operation vec(A) is defined as

vec([a1, . . . ,an]) :=




a1
...
an



 ∈ Rmn
.
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For matrices A ∈ Rk×n, B ∈ R�×m and X ∈ Rm×n, there holds the relation

(A⊗B) vec(X) = vec(BXA�).

Hence, since the system matrix of the single-layer operator S is symmetric, we may
rewrite (3.3) as

SCρS = Cf . (3.4)

Since Φ and Corf stem from the discretization of asymptotical smooth kernel
functions, the stiffness matrices S and Cf are compressible by means of H-matrices.
How this approximation can be achieved in case of parametric surfaces is explained
in detail in [18]. By representing the unknown quantity Cρ of interest also in the
H-matrix format, with respect to a common block-cluster tree, we can employ the
H-matrix arithmetic to solve the equation (3.4).

4. On the sparse tensor product approximation. With the Galerkin dis-
cretization (3.3) and even a multilevel hierarchy at hand, the question arises, why
one should not follow the approach of the preceding articles [17, 20] and use a sparse
tensor product discretization, or equivalently the combination technique, cf. [11, 19],
for the solution of (2.4). As it turns out, a discretization with H-matrices, which can
be thought of as a compressed full tensor approximation, yields a rate of convergence
which is twice as high as that of the sparse tensor product approximation. With the
following considerations we want to elaborate on this point. Therefore, it is convenient
to fix some notation.

We denote the energy space related with (2.4) by H := H
−1/2,−1/2
mix (Γ×Γ) and its

dual by H� = H
1/2,1/2
mix (Γ×Γ). Then, the additional isotropic smoothness of a function

relative to the energy space is measured by the spaces

H
s :=

�
v ∈ H : �∂α

x ∂
β
y v�H < ∞, |α|+ |β| ≤ s

�
.

To the best of our knowledge, these classes of Sobolev spaces have at first been consid-
ered in [12]. In order to measure the error of the sparse tensor product approximation,
we also need the anisotropic version of these spaces, that is

H
s
mix :=

�
v ∈ H : �∂α

x ∂
β
y v�H < ∞, |α|, |β| ≤ s

�
.

Note that it holds Hs
mix = H

s−1/2,s−1/2
mix (Γ× Γ).

Provided that Corρ ∈ Hs
mix or Corρ ∈ Hs respectively, we end up with the well

known error estimates for Galerkin approximation �Corρ,J in the sparse tensor product

space �VJ ⊗ VJ and for Galerkin approximation Corρ,J in the full tensor product space
VJ ⊗ VJ , respectively. Here, the sparse tensor product space is defined by

�VJ ⊗ VJ :=
J�

j=0

Vj ⊗ VJ−j .

From this representation it becomes clear that VJ/2 ⊗ VJ/2 is the finest (isotropic) full

tensor product space which is contained in �VJ ⊗ VJ .
According to [10, 12], we have

��Corρ,J − Corρ �H � 2−Js
√
J�Corρ �Hs

mix
for s ≤ d+ 1/2
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in the case of the sparse tensor product approximation and

�Corρ,J − Corρ �H � 2−Js�Corρ �Hs for s ≤ d+ 1/2

in the case of the full tensor product approximation. Thus, given that Corρ is suffi-
ciently smooth, both methods yield essentially the same order of convergence. Unfor-
tunately, the available smoothness is limited in our case.

In the framework of stochastic fields it is quite common to assume that Corf is
isotropic, i.e. Corf (x,y) depends only on the distance r = �x−y�2, cf. [29]. Examples
for correlation functions of this kind are given by the Matérn class of kernels, i.e.

Corf (r) = kν(r) :=
21−ν

Γ(ν)

�√
2νr

�

�ν

Kν

�√
2νr

�

�
(4.1)

with �, ν ∈ (0,∞). Here, Kν denotes the modified Bessel function of the second kind.
For half integer values of ν, i.e. ν = p+ 1/2 for p ∈ N the expression simplifies to

kp+1/2(r) = exp

�
−
√
2νr

�

�
p!

(2p)!

p�

i=0

(p+ i)!

i!(p− i)!

�√
8νr

�

�p−i

.

In accordance with [29], we obtain in the limit case ν → ∞ the Gaussian kernel:

k∞(r) = exp

�
−r

2

2�2

�
.
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Fig. 4.1. Matérn kernels for different values of the smoothness parameter ν (left) and for
different correlation lengths � (right).

The smoothness of the kernel kν is controlled by the smoothness parameter ν

and the correlation length �. A visualization of these kernels for varying ν is given in
the left plot of Figure 4.1 and for varying values of � in the right plot of Figure 4.1.
Although the correlation length � does not influence the Sobolev smoothness of the
kernel, it has a large impact on the preasymptotic behaviour and may cause severe
numerical difficulties.

Let us assume that the two-point correlation Corf is contained in some isotropic
Sobolev space H

s(Γ × Γ). For example, for the exponential two-point correlation,
i.e. ν = 1/2 in (4.1), we find s = 3/2− ε for any ε > 0 since the kernel is continuous
with a kink on the diagonal. Whereas, for the Matérn kernel with ν = 3/2, we find
s = 7/2− ε for any ε > 0 since it is two orders smoother than the exponential kernel.
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The highest order Sobolev space of dominant mixed derivatives which contains

the Sobolev space H
s(Γ × Γ) is Hs/2,s/2

mix (Γ × Γ) = H
(s+1)/2
mix . In particular, to ensure

Corf ∈ H� = H
1/2,1/2
mix (Γ × Γ), we have to ensure that s ≥ 1. In view of the shift

property of the single-layer operator, cf. [3, 31], we arrive at the regularity statement

Corρ ∈ H
(s−1)/2
mix .

For the error estimation in case of the full tensor product approximation, we make
use of the following result.

Lemma 4.1. Let s ≥ 1. For Corf ∈ H
s(Γ× Γ) it holds Corρ ∈ Hs−1.

Proof. The two-point correlation Corf satisfies

Corf ∈ H
s(Γ× Γ) =

�

s≥t≥0

H
s−t,t
mix (Γ× Γ) ⊂ H

�
.

The shift properties of the single-layer operator imply thus

Coru ∈
�

s≥t≥0

H
s−t−1,t−1
mix (Γ× Γ) ⊂ H.

From this, we derive �∂α
x ∂

β
y Coru �H < ∞ for all |α| + |β| ≤ s − 1 which proves the

assertion.
We conclude that, for small values of s, i.e. in case of rough correlation kernels,

the rate of convergence in the full tensor product VJ ⊗VJ is up to twice as high as the

rate of convergence in the sparse tensor product �VJ ⊗ VJ . Nevertheless, by using the
H-matrix approach proposed in the subsequent section, the cost for the approximation
is essentially linear for both approaches. We refer the reader to e.g. [18, 33] for the
computational complexity of the sparse tensor product approach.

5. H-matrix arithmetic.

5.1. Preliminary considerations. We assume that Cρ can be approximated
as an H-matrix with respect to some block-cluster tree for Γ. Thus, there exists
a common block-cluster tree B such that Cρ ∈ H(B, k1), Cf ∈ H(B, k2) and S ∈
H(B, k3). Therefore, we have Cρ,Cf ,S ∈ H(B,max{k1, k2, k3}).

In the following, we show how to add and how to multiplyH-matrices with respect
to a common block-cluster tree B. We especially point out the simplifications which
are possible with regard to the balanced cluster tree we have. More general results
may be found in [14].

Let B denote a block-cluster tree on level J ∈ N and an H-matrix H ∈ H(B, k)
defined on B. On level 0, B has M

2 children that correspond to M
2 quadratic sub-

matrices H�,�� ∈ R4J×4J . Hence, we can consider the matrix H as an M ×M block
matrix, that is

H =




H1,1 . . . H1,M
...

...
HM,1 . . . HM,M



 . (5.1)

Here, each submatrix H�,�� corresponds to a block-cluster Γλ×Γλ� ∈ B . If Γλ×Γλ� is
a leaf of B, then H�,�� is either an rk -matrix or a full-matrix, respectively. Otherwise,
Γλ × Γλ� has exactly 42 children. In this case, H�,�� is again a block-matrix with

quadratic matrix blocks H�
�,�� ∈ R4J−1×4J−1

.
On the one hand, in order to compute the sumH1+H2 of twoH-matricesH1,H2 ∈

H(B, k), we exclusively have to explain the following elementary sums:
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+ H-matrix rk -matrix full-matrix
H-matrix recursively
rk -matrix approximately
full-matrix exactly

On the other hand, for the product H1*H2 of two H-matrices H1,H2 ∈ H(B, k),
besides elementary products, we also have to introduce compound sums:

* H-matrix rk -matrix full-matrix
H-matrix recursively exactly
rk -matrix exactly exactly exactly
full-matrix exactly exactly

+= H-matrix rk -matrix full-matrix
H-matrix recursively recursively
rk -matrix approximately approximately approximately
full-matrix exactly exactly

In the table for the compound operations, i.e. +=, the operands in the rows of the table
coincide with the target format of the respective operation. In all the preceding tables,
recursively means that we use a recursive algorithm to compute the operation. The
term exactly means that we can perform this operation without a truncation error.
The term approximately indicates that we need to truncate the operation’s result in
order to guarantee H1+H2,H1*H2 ∈ H(B, k). Hence, the subsequent subsection is
devoted to appropriate truncation operators.

5.2. Truncation operators. We shall develop truncation operators to approx-
imate a given matrix by an rk -matrix. Especially, we have here in mind the following
situations from the preceding table for compound operations,

R1+=R2, H+=R, R+=H, R+=F,

for R,R1,R2 ∈ R(n, k), H ∈ H(B�
, k) and F ∈ Rn×n. These operations can formally

be introduced by means of a truncation operator.
Definition 5.1. Let M ∈ Rn×n. We define the truncation operator T to rk-

matrices,

T : Rn×n → R(n, k), M �→ R,

to be the best approximation of M in R(n, k) with respect to a given norm. We call
R = T(M) the truncation of M to rank k.

Remark 5.2. We may extend T to H(B, k) by the block-wise application of the
truncation operator T : Rn×n → R(n, k) with respect to the admissible blocks of a
block-cluster tree B.

With the truncation operator T at hand, we may define

(R1+=R2) := T(R1 +R2) ∈ R(n, k), (H+=R) := T(H+R) ∈ H(B, k),
(R+=F) := T(R+ F) ∈ R(n, k), (R+=H) := T(R+H) ∈ R(n, k).

For the specific realization, let the truncation operator T be defined with respect to
the Frobenius norm or the spectral norm. Then, the best approximation in R(n, k)
is provided by the truncated singular value decomposition.

Definition 5.3. The singular value decomposition of a matrix R ∈ R(n, k) is a
decomposition of the form

R = UΣV�

11



where U,V ∈ Rn×k̃ are orthogonal matrices, i.e. U�U = V�V = I ∈ Rk̃×k̃, and
Σ ∈ Rk̃×k̃ is a diagonal matrix whose diagonal entries

Σ1,1 ≥ · · · ≥ Σk̃,k̃ > 0

are called singular values. Here, k̃ ≤ k denotes the actual rank of R.
Remark 5.4. This definition of the singular value decomposition is in contrast to

the standard definition, see e.g. [9], where the matrices U and V contain a complete
basis for the image space and the preimage space, respectively.

The truncation of the singular value decomposition provides the best approxima-
tion of a matrix in R(n, k).

Lemma 5.5. Let k1 ≤ k̃ ≤ k2. Then, for a matrix R ∈ R(n, k2) with ac-
tual rank k̃, the best approximation of R = UΣV� in R(n, k1) with respect to

the Frobenius norm and the spectral norm is given by R̃ = UΣ̃V
�

where Σ̃ =
diag(Σ1,1, . . . ,Σk1,k1 , 0, . . . , 0). In particular, it holds

�R− R̃�F =

����
k2�

i=k1+1

Σ2
ii and �R− R̃�2 = Σk1+1,k1+1.

Furthermore, R̃ is the best approximation to R in the sense that

�R− R̃�F/2 = min
R�∈R(n,k1)

�R−R��F/2.

The proof of this lemma is a straightforward consequence of the orthogonal in-
variance of the Frobenius norm and the spectral norm.

The situation R1+=R2. In the following, it is convenient to assume that all ma-
trices are in factorized form. This means, for R1,R2 ∈ R(n, k), we have Ri = AiB

�
i

withAi,Bi ∈ Rn×k. Then, without truncation, it holdsR1+R2 = [A1 A2][B1 B2]� ∈
R(n, 2k). The action of the truncation operator T on R1 +R2 can now efficiently be
computed with the reduced singular value decomposition (rSVD). Numerically, this is
performed by computing the rSVD of R1 +R2 with Algorithm 5.2, cf. [14], and then
truncating to the k-th dominant singular values.

Algorithm 5.2 Calculation of the rSVD for an rk -matrix

QARA = QR-decomposition of A, QA ∈ Rn×k, RA ∈ Rk×k

QBRB = QR-decomposition of B, QB ∈ Rn×k, RB ∈ Rk×k

ŨΣ̃Ṽ
�
= SVD(RARB

�)
U = QAŨ
V = QBṼ

The situation H+=R. With the definition of R1+=R2, we can easily explain
H+=R in a recursive manner. Let H ∈ H(B�

, k) ⊂ R4J−j×4J−j
and R ∈ R(4J−j

, k).
We can exactly represent R with respect to the block-cluster structure of B by recur-
sively breaking up the rk -matrix structure. In the first step, we have

R = = = (R�,��)�,�� .

12



Now, proceeding this subdivision with respect to the structure of B� yields a situation
where we only have to add either two rk -matrices or a full-matrix and an rk -matrix.
The first is done with respect to the definition of R1+=R2, the latter can be exactly
performed.

Remark 5.6. For numerical issues, the subdivision of an rk-matrix with respect
to the block-cluster tree B� can be realized by index shifts. Therefore, no additional
calculations or storage are necessary here.

The situation R+=H. In contrast to the idea of the hierarchical approximation,
cf. [14], which is a successive approximation of the matrix H ∈ H(B�

, k) ⊂ R4J−j×4J−j

by rk -matrices, we make another approach here: We exploit the fact that we can
multiply the matrix H to a vector v ∈ R4J−j

with a complexity of O(2k4J−j), cf.
[14, 18]. Thus, it seems reasonable to directly compute the truncated singular value
decomposition of H up to rank k by means of a sparse eigensolver which only requires
matrix-vector multiplications as for example ARPACK, cf. [24]. Then, we are again
in the situation R1+=R2. For practical issues in the product of H-matrices, we rather
have to consider the case R+=H1H2. This situation can analogously be treated by
the indirect singular value decomposition.

5.3. The indirect singular value decomposition (iSVD). As already poin-
ted out, the complexity of a matrix-vector multiplication of an H-matrix is O(2k4J−j)

for H ∈ H(B�
, k) ⊂ R4J−j×4J−j

and v ∈ R4J−j
. Therefore, the complexity of comput-

ing the product (H1 · · ·Hm)v is obviously of order O(2k4J−j
m).

In the first step, we show how the iSVD can be applied to the (exact) product of
two H-matrices in H(B�

, k), i.e. H1H2, to compute the k largest singular values and
singular vectors of this product. Therefore, let

J :=

�
0 H1H2

H�
2H

�
1 0

�

be the Jordan-Wielandt matrix with respect to H1H2. The positive eigenvalues of
this matrix coincide with the singular values of H1H2, cf. [8, 23]. The complexity of

applying J to a vector x ∈ R2·4J−j
is of orderO(8k4J−j). Thus, the computation of the

k largest singular values of J can be performed within a complexity of O(8k4J−jncv2),
where ncv corresponds to the size of the Krylov subspace used for the eigenvalue
approximation, cf. [24].

Remark 5.7. The iSVD can directly compute the best approximation of an rk-
matrix R�,�� resulting from a block inner-product of a row and a column in the product
of two H-matrices H1,H2 ∈ H(B, k) structured like (5.1):

R�,�� = T

� p�

i=1

(H1)�,i(H2)i,��

�
.

Here, we have either p = M for level 0 or p = 4 for any other level. Then, the
complexity reads O(8k4J−j

p · ncv2).
5.4. H-matrix multiplication. Applying recursively the procedure from Re-

mark 5.7 yields the actual best approximation of the product H1H2 in H(B, k). This
realization of the product H1*H2 ∈ H(B, k) is provided by Algorithm 5.3. Note that
the calling sequence for Algorithm 5.3 is initiated with p

� = 1.
Unfortunately, although Algorithm 5.3 provides the best approximation of the H-

matrix product in H(B, k), the numerical computation time is rather bad. We have
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Algorithm 5.3 Compute H3 =
�p�

i=1 H
(i)
1 H(i)

2

function H3 =BestMultH({H(i)
1 }p

�

i=1, {H
(i)
2 }p

�

i=1)
if H3 ∈ H(B�

, k) then
for �, �

� = 1, . . . , p do

L = ∪p�

i=1{(H
(i)
1 )�,1, . . . , (H

(i)
1 )�,p}

C = ∪p�

i=1{(H
(i)
2 )1,�� , . . . , (H

(i)
2 )p,��}

(H3)�,�� =BestMultH(L, C)
end for

else
Compute H3 = T

��p�

i=1 H
(i)
1 H(i)

2

�
with iSVD or as full matrix

end if
end function

reason to believe that this is caused by the slow convergence of the eigensolver in case
of a clustering of the eigenvalues. Therefore, for practical purposes, we rather refer
to the following Algorithm 5.4 to realize the H-matrix product.

Algorithm 5.4 H-matrix multiplication

function H3 =MultH(H1, H2)
if H3 ∈ H(B�

, k) then
for �, �

� = 1, . . . , p do
for i = 1, . . . , p do

(H3)�,��+=MultH((H1)�,i, (H2)i,��)
end for

end for
else

H3+=H1H2

end if
end function

Note that the operation ‘+=’ is overloaded here and depends one the type of the
operands as introduced in Subsections 5.2 and 5.3.

Remark 5.8. The implementation of the H-matrix multiplication in Algorithm
5.4 implicitly employs the fast truncation as proposed in [14].

5.5. H-matrix addition. The realization of the H-matrix addition is based on
the assumption that all operands are H-matrices with respect to a common block-
cluster tree, i.e.H1,H2,H3 ∈ H(B, k). Then, with respect to the truncation operators
defined in Subsection 5.2, the H-matrix addition can be implemented along the lines
of Algorithm 5.5.

5.6. H-matrix inversion. The inversion of an H-matrix can be done approxi-
mately by a recursive block Gaussian elimination. Algorithm 5.6, cf. [14], computes
the approximate inverse Ĥ−1 ∈ H(B, k) of H ∈ H(B, k) where the original matrix H
is overwritten during the computation.

6. Iterative solution. For two H-matrices H1,H2 ∈ H(B, k), we have defined
the addition H1+H2 ∈ H(B, k) and the product H1*H2 ∈ H(B, k) as well as the
H-matrix inversion in the previous section.
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Algorithm 5.5 H-matrix addition

function H3 =AddH(H1, H2)
if H3 ∈ H(B�

, k) then
for �, �

� = 1, . . . , p do
(H3)�,�� =AddH(H1, H2)

end for
else

H3 = T(H1 +H2)
end if

end function

Algorithm 5.6 H-matrix inversion

function Ĥ−1 = InvertH(H)
if H ∈ H(B�

, k) then
for � = 1, . . . , p do � Eliminate lower blocks

(Ĥ−1)�,� = InvertH(H�,�)
{(Ĥ−1)�,��}�−1

��=1 = {(Ĥ−1)�,�*(Ĥ−1)�,��}�−1
��=1

{H�,��}p��=�+1 = {(Ĥ−1)�,�*H�,��}p��=�+1
for �

� = �+ 1, . . . , p do
{(Ĥ−1)��,i}�i=1+={−H��,�*(Ĥ−1)�,i}�i=1

{H��,i}pi=�+1+={−H��,�*H�,i}pi=�+1
end for

end for
for � = p, . . . , 1 do � Eliminate upper blocks

for �
� = �− 1, . . . , p do

{(Ĥ−1)��,i)}pi=1+={−H��,�*(Ĥ−1)�,i}pi=1
end for

end for
else

Ĥ−1 = H−1

end if
end function

Now, we will explain how these operations can be used to implement an iterative
solver for the linear system of equations (3.4), given that all matrices are represented
in the H-matrix format.

With an approximate inverse of the H-matrix at hand, we may consider an iter-
ative solver based on the iterative refinement method, cf. [9, 26, 35].

Let Ŝ−1 ∈ H(B, k) now be an approximate inverse to S. Then, starting with the

initial guess C(0)
ρ = Ŝ−1Cf Ŝ−1

, the solution to (3.4) can then be approximated via
the iteration

Θ(i) = Cf − SC(i)
ρ S, C(i+1)

ρ = C(i)
ρ + Ŝ−1Θ(i)Ŝ−1

, i = 0, 1, . . .

This method is known as iterative refinement and has originally been introduced in
[35] for the improvement of solutions to linear systems of equations based on the
LU-factorization, see e.g. [9].

Although we use here an approximate inverse based on the block Gaussian elim-
ination rather than an LU-factorization, the idea stays the same: The residual Θ(i)
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is computed with a higher precision than the correction Ŝ−1Θ(i)Ŝ−1. This yields an
improved approximation to the solution in each step. Note that this algorithm also
coincides with an undamped (preconditioned) Richardson iteration, see e.g. [30].

Finally, we want to remark that we have also considered aNewton-Schulz iteration,
cf. [16, 32], in order to compute an approximate inverse for a given H-matrix. In this
context, it has turned out that the inversion with aid of the block Gaussian elimination
is more reliable and much faster.

7. Numerical results. All computations of the following examples have been
carried out on a computing server with 2 Intel(R) Xeon(R) E5-2670 CPUs with a
clock rate of 2.60GHz and a main memory of 256GB. Each of the CPUs provides 8
physical cores, thus with Hyper-Threading enabled, we may access 32 cores in total.
In order to control the ranks of the far-field, we have previously introduced the bound
kmax. Therefore, to achieve a preferably data-sparse representation of the H-matrices
evolving in the computations, we set the threshold for the block size in the near-field
to the smallest power of four greater or equal to kmax.

7.1. Tests for the H-matrix arithmetic. After having adapted the H-matrix
arithmetic to the regime of parametric surfaces, see e.g. [18], as explained in Section
5, the question arises how the presented algorithms perform in practical applications.
To this end, we provide in this subsection sample computations for the H-matrix
arithmetic on two different geometries given as parametric surfaces. On the one
hand, we consider the unit sphere S2 parameterized by six patches and, on the other
hand, a pierced cube with circular holes on each face, which we will refer to as “toy”
geometry, represented by 48 patches. A visualization of both geometries can be found
in Figure 2.1.

unit sphere

J NJ time S+T (s) time S*T (s) time Ŝ−1 (s)
1 24 <1 <1 <1
2 96 <1 <1 <1
3 384 <1 1.23006 2.98704
4 1536 <1 22.3208 49.115
5 6144 <1 180.913 383.681
6 24576 5.46486 1022.96 2254.71
7 98304 36.0402 5484.22 11415.7

“toy” geometry

J NJ time S+T (s) time S*T (s) time Ŝ−1 (s)
1 192 <1 <1 <1
2 768 <1 <1 <1
3 3072 <1 68.5952 183.01
4 12288 <1 564.543 1665.43
5 49152 5.9599 3089.63 8664.33

Table 7.1
Computational times for each particular H-matrix operation on the unit sphere (top) and the

“toy” geometry (bottom).

On each of the geometries, we assembled two H-matrices S,T ∈ H(B, kmax).
Namely, S is the discrete and compressed single-layer operator, cf. (2.1), and T is the
discrete and compressed integral operator with kernel

Φ(x,y) = exp(−�x− y�2).

This kernel is also known as exponential kernel and corresponds to the Matérn kernel
with ν = 1/2 and � = 1. In order to obtain meaningful results for the computational
times, we have run the respective computations only on a single core with the rank
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Fig. 7.1. Asymptotic behavior of the computation times on the unit sphere (left) and on the
“toy” geometry (right).

limited to kmax = 16 on the sphere and to kmax = 25 on the “toy” geometry. The
computational times consumed for the operations S+T, S*T and the computation
of the approximate inverse Ŝ−1 are tabulated in the upper part of Table 7.1 in case
of the unit sphere and in the lower part of Table 7.1 in case of the “toy” geometry.
Additionally, Figure 7.1 shows the asymptotic behavior of the computational times.
It seems that we obtain the rate of NJ(logNJ)2, which is in concordance with the
complexity estimates proven in [14] and all constants which appear in these estimates
set to 1.
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Fig. 7.2. Error for the condition of the product SŜ−1 on the unit sphere for different ranks
and levels.

We consider the condition κ of SŜ−1 which we compute with ARPACK, cf. [24],
as measure for the quality of the approximate inverse S. Especially, we do actually
not need to compute the product SŜ−1 explicitly, but rather provide the application
of SŜ−1 to a vector. Figure 7.2 visualizes the error related to the condition, i.e. |κ−1|,
in dependence on the maximal rank kmax and the particular level for the unit sphere.
The visualization indicates, that even on the higher levels for an appropriately chosen
rank kmax, the approximation of the inverse yields an error which is about 10−5.
Qualitatively, we observe on each particular level the expected decay of the error
when the rank increases.

7.2. Tests for the iterative solver. Now, with the H-matrix arithmetic at
hand, we want to show how it actually performs in solving the linear system of equa-
tions (3.4). At first, we provide two simple numerical examples in order to show that
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our solver indeed works and provides convergence. Afterwards, we consider a realistic
example.

Fig. 7.3. Visualization of the trace of the density (left) and the trace of the potential (right)
on the unit sphere for NJ = 98304.

On the unit sphere, we consider a tensorized spherical harmonic as right hand
side, i.e. Corf = Y

0
2 ⊗ Y

0
2 with Y

0
2 (x) =

�
5/(16π)(3x2

3 − 1). This right hand side
is obviously a single dyad and thus of rank 1. Especially, since Y

0
2 is a harmonic

function, we can compute the related approximation error. To this end, we compute
the error in the trace of the tensor product single-layer potential, i.e. (S ⊗ S)|x=y.
As stopping criterion for the iterative solution, we require the relative error of the
residuals’ Frobenius norm to be smaller than ε = 10−6. For the levels J = 1, . . . , 6,
we have chosen kmax = 16. For the level J = 7, we had to increase kmax to kmax = 25
in order to achieve convergence. The error is measured in 1793 evaluation points
which are uniformly distributed within the unit sphere. The left plot in Figure 7.5
indicates that we obtain indeed the expected cubic convergence. Furthermore, we have
tabulated the related errors in the upper part of Table 7.2. A visualization of the trace
of the density and the trace of the potential on the unit sphere for NJ = 98304 is
found in Figure 7.3.

Fig. 7.4. Visualization of the trace of the density (left) and the trace of the potential (right)
on the “toy” geometry for NJ = 49152.

Likewise, we consider a tensor product of a harmonic polynomial, as right hand
side on the “toy” geometry, namely Corf = p ⊗ p with p(x) = 4x2

1 − 3x2
2 − x

2
3.

The computations are performed for the levels J = 1, . . . , 5 where we have always
chosen kmax = 25. For the “toy” geometry, the error is measured in 1208 evaluation
points which are uniformly distributed within the geometry. The plot on the right of
Figure 7.5 shows that we obtain cubic convergence for this example, too. The related
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unit sphere
J 1 2 3 4 5 6 7
NJ 24 96 384 1536 6144 24576 98304
l
∞-error 0.137424 0.0175391 0.000550161 0.000178334 2.25969 · 10−5 2.72717 · 10−6 1.93082 · 10−7

“toy” geometry
J 1 2 3 4 5
NJ 192 768 3072 12288 49152
l
∞-error 1.52454 0.324403 0.0448345 0.00551965 0.000753986

Table 7.2
l∞-errors for the tensor right hand sides on the sphere (top) and on the toy (bottom).

errors are given in the lower part of Table 7.2. A visualization of the trace of the
density and the trace of the potential on the “toy” geometry for NJ = 49152 is found
in Figure 7.4.
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Fig. 7.5. Errors for the potentials’ traces on the unit sphere (left) and on the “toy” geometry
(right).

Notice that, for both examples, we had to perform at most two steps of the
iterative refinement to achieve the error bound of ε = 10−6.

7.3. Stochastic application. Having shown that the numerical method works,
we shall now apply the method to an actual stochastic problem. We consider a
crankshaft as geometry which is parameterized by 142 patches, see also Figure 2.1.
For the discretization, we choose J = 4 which corresponds to NJ = 36352 degrees of
freedom. The maximum rank is set to kmax = 36.

In our computations, we apply the Matérn kernels with ν = 1/2, i.e. Corf (x,y) =
exp(−�x−y�2), and ν = 3/2, i.e. Corf (x,y) = (1+

√
3�x−y�2) exp(−

√
3�x−y�2),

as correlation kernels for the right hand side. These kernels are not of finite rank
anymore, but provide asymptotical smoothness and are thus compressible by means
of H-matrices. In particular, according to Section 4, the related two-point correlations
Corρ provide regularity in terms of Hs,s

mix(Γ×Γ) with s = 1/4+ ε if ν = 1/2 and with
s = 3/4 − ε if ν = 3/2, respectively. As a consequence, a sparse tensor product
approximation of these two-point correlations would suffer from the lack of regularity.

For sake of lower computational times, we employ in this example a parallel
version of the H-matrix multiplication and inversion on at most twelve cores. This
results in a computational time of about 5500 seconds for the approximate inversion
of the discretized single-layer operator S. The related error in the condition of SŜ−1

is 2.34 · 10−4. Applying this inverse yields an error of 8.32 · 10−5 in the iterative
refinement in case of the Matérn kernel with ν = 1/2 and an error of 6.84 · 10−5 in
case of the Matérn kernel with ν = 3/2. A visualization of the potentials’ traces is
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Fig. 7.6. Cross sections of the potentials’ traces on the crankshaft geometry for the Matérn
kernel with ν = 1/2 (left) and ν = 3/2 (right).

Fig. 7.7. Trace of the density on the crankshaft geometry for the Matérn kernel with ν = 3/2
and NJ = 36352.

found in Figure 7.6. Finally, the density’s trace in case of the Matérn kernel with
ν = 3/2 is found in Figure 7.7.
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